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Abstract

Pairs of numerically satisfactory solutions as n → ∞ for the three-
term recurrence relations satisfied by the families of functions 1F1(a +
ǫ1n; b + ǫ2n; z), ǫi ∈ Z, are given. It is proved that minimal solutions
always exist, except when ǫ2 = 0 and z is in the positive or negative real
axis, and that 1F1(a + ǫ1n; b + ǫ2n; z) is minimal as n → +∞ whenever
ǫ2 > 0. The minimal solution is identified for any recurrence direction,
that is, for any integer values of ǫ1 and ǫ2. When ǫ2 6= 0 the confluent limit
limb→∞ 1F1(γb; b; z) = eγz , with γ ∈ C fixed, is the main tool for identi-
fying minimal solutions together with a connection formula; for ǫ2 = 0,
lima→+∞ 1F1(a; b; z)/0F1(; b; az) = ez/2 is the main tool to be considered.

Mathematics Subject Classification (2000): 33C15, 39A11, 41A60, 65D20.

1 Introduction

Linear three-term recurrence relations are useful tools for computing a larger
number of special functions, and in particular, confluent (or Kummer) hyperge-
ometric functions.

As is well known, the Kummer function 1F1, defined by

1F1(a; b; z) =
∞∑

k=0

(a)n

(b)n

zn

n!
, (1)

satisfies linear relations with rational coefficients connecting any three functions
with parameters differing by integer numbers.
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In particular, given a family of Kummer functions

yn = 1F1(a + ǫ1n; b + ǫ2n; z) (2)

for any pair (ǫ1, ǫ2) 6= (0, 0), with fixed values of ǫi ∈ Z, and with fixed complex
values of a, b and z, there exists a three-term recurrence relation

yn+1 + βnyn + αnyn−1 = 0, (3)

αn and βn being rational functions of an = a + ǫ1n, bn = b + ǫ2n and z.
Any of the recurrence relations, for any integer values of ǫ1 and ǫ2, can be
obtained by suitably combining linear relations connecting contiguous confluent
hypergeometric functions (see [1], Eqs. 13.4.1–6). For example, if (ǫ1, ǫ2) =
(1, 0) we have βn = (−2an − z + bn)/an, αn = 1 − bn/an; for (ǫ1, ǫ2) = (0, 1),
βn = (1 − bn − z)/z, αn = (bn − 1 − an)/z; and for the case (ǫ1, ǫ2) = (1, 1),
βn = (bn−z−1)/(anz), αn = −1/(anz) (see [6, Chap. 4] for further details and
examples). As a further explicit example, we will consider later the recurrences
(ǫ1, ǫ2) = (±1,±2).

A crucial point to be elucidated before using a linear three-term recurrence
relation (TTRR) for computing a given function is the conditioning of the com-
putation. In particular, when a recurrence admits a minimal (or recessive)
solution fn, that is, a solution such that

lim
n→+∞

fn

gn

= 0 (4)

for any other solution gn of the TTRR independent of fn, this fact determines
that only one of the two possible recurrence directions (increasing or decreasing
n) is well conditioned, depending on the solution that is computed. Indeed, for
computing the minimal solution, the forward recurrence (increasing n) is ill con-
ditioned, because a small perturbation of the initial values (say f0 and f1) will
introduce a component of a dominant solution, which will ultimately dominate
for sufficiently large n. On the contrary, the forward numerical computation of a
dominant solution gn with initial values g0 and g1, is well conditioned. Regard-
ing computation in the backward direction (starting with large n), the evalua-
tion of a minimal solution fn with decreasing n is well conditioned; contrarily,
a dominant solution should never be computed in the backward direction.

When a recurrence admits a minimal solution (unique except for a multi-
plicative factor), a pair of numerically satisfactory solutions should comprise the
minimal solution and a dominant solution. From such a pair, any other solution
can in principle be computed in a numerically stable way (although transitory
effects are also possible [2]).

The case of Kummer recurrences contains, as particular cases, many impor-
tant functions like Hermite and Laguerre polynomials and Bessel and Coulomb
functions. However, a systematic analysis of the conditioning of Kummer recur-
rences in the complex plane was not considered until recently [3], when numeri-
cally satisfactory solutions were found for the Kummer recurrences satisfied by
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the functions (2) with |ǫi| ≤ 1. The main tools for identifying minimal and dom-
inant solutions were Perron’s theorem (see for instance, [6, Chap. 4]), together
with uniform asymptotic estimates for Whittaker functions [4].

In the present paper, using asymptotic estimates for fixed complex z we
are able to find the minimal solution (when it exists) for any integer values of
ǫi, and a second independent solution. In other words, the problem of finding
numerically satisfactory solutions for Kummer recurrences is completely solved,
for all ǫi ∈ Z.

In the analysis, one has to consider two different asymptotic estimates: a
well-known estimate in terms of Bessel functions [8, p. 80] for the case ǫ2 =
0, and a new one for the cases ǫ2 6= 0. In the Appendix we give details on
obtaining the new asymptotic (and convergent) expansions corresponding to
the case ǫ2 6= 0.

2 Pairs of satisfactory solutions when ǫ2 6= 0

The main two ingredients for finding the numerically satisfactory solutions are,
first, an asymptotic estimate for large parameters and, second, a connection
formula.

For ǫ2 6= 0 the asymptotic estimate is provided by the following limit relation:

lim
b→∞

1F1(γb; b; z) = eγz , (5)

γ being a fixed value. This implies that, given two sequences {an}, {bn} such
that an → ∞ and bn → ∞ with finite limit γ = limn→∞ an/bn, we can write

lim
n→∞

1F1(an; bn; z) = eγz . (6)

One can understand (5) as a result of taking a double confluent limit as
follows:

lim
a,b→∞

1F1(a; b; bz/a) = 0F0(; ; z) = ez, (7)

with a fixed ratio a/b. Also, this limit reproduces the dominant behavior shown
by the uniform asymptotic expansions of F.W.J. Olver [7, p. 261] and T.M. Dun-
ster [4], considered in [3] for finding the condition of some Kummer recurrences.
It is surprising, however, that such limit relation does not appear explicitly in
the literature. In the Appendix we provide additional details, including new
asymptotic expansions of 1F1(γb; b; z) as b becomes large, with fixed γ ∈ C.

Regarding the analysis of the condition of the recurrences, the important
point in Eq. (6) is that the resulting limit is a well-defined bounded function of
z and that, therefore

lim
n→+∞

y
(1)
n+1(z)

y(1)
n (z)

= 1 (8)

for

y
(1)
n (z) = 1F1(a + ǫ1n; b + ǫ2n; z), (9)
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when ǫ1, ǫ2 6= 0.

This relation also holds when ǫ1 = 0: we can see this from the Maclaurin
series (1) of the Kummer function, or by using

1F1(a; b; z) = ez
1F1(b − a; b;−z). (10)

Therefore, except for ǫ2 = 0, Eq. (8) always holds. Later, we consider separately
the case ǫ2 = 0.

The second main ingredient is the well-known connection formula

U(a, b, z) =
Γ(1 − b)

Γ(a + 1 − b)
1F1(a; b; z)+

Γ(b − 1)

Γ(a)
z1−b

1F1(a−b+1; 2−b; z), (11)

which is already used in [3] for building accompanying solutions of the recur-

rence satisfied by y
(1)
n (z) when |ǫi| ≤ 1. The U -function, when multiplied by

appropriate Γ factors, is a solution of the same recurrences as those for 1F1.
This can be checked explicitly by verifying that the contiguous relations be-
tween 1F1(a; b; z) and any two functions with contiguous parameters (that is,
with one or two parameters differing in one unit) is the same; from these con-
tiguous relations the rest of recurrences can be built. Because of this, also the
second term in the right-hand side of (11) can be used for building solutions of
the Kummer recurrences.

The U -function will not be crucial in the present analysis, because the two
terms at the right-hand side of Eq. (11) allow the construction of numerically
satisfactory pairs of solutions in all cases, except when ǫ2 = 0, in which case the
U -function is minimal. We recall that a pair is said to be satisfactory when the
minimal solution is included in the pair.

With this, we will show that the pair

{y(1)
n (z), y

(2)
n (z)} = {1F1(an, bn, z), λnz−bn

1F1(an − bn + 1, 2 − bn, z)},

λn =
Γ(bn − 1)Γ(an − bn + 1)

Γ(1 − bn)Γ(an)
,

an = a + ǫ1n, bn = b + ǫ2n,

(12)

is a satisfactory pair whenever ǫ2 6= 0.

As explained in [5] and [3], it is convenient to use the reflection formula for
the gamma function in order to avoid negative values of n. Then, it is assumed
that the reflection formula

Γ(λ − n) =
(−1)nπ

sin(πλ)Γ(n + 1 − λ)
(13)

is used when n appears with negative sign. The factors not depending on n can,
of course, be dropped.
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Using Eq. (8), together with Eqs. (12) and (13), it is a straightforward matter
to check that, as n → +∞,

y
(1)
n+1(z)

y(1)
n (z)

∼ 1,
y
(2)
n+1(z)

y(2)
n (z)

∼ C
(n

z

)ǫ2
. (14)

When ǫ1, ǫ2 6= 0, the constant C reads

C = (−1)s|ǫ1|−ǫ1 |ǫ2|2ǫ2 |ǫ1 − ǫ2|ǫ1−ǫ2 , s =
1

2
(sign(ǫ1) + sign(ǫ2)) (15)

with sign(ǫ) = +1 when ǫ ≥ 0 and sign(ǫ) = −1 when ǫ < 0. When ǫ1 = 0 the
same expression is valid by neglecting the factor |ǫ1|−ǫ1 .

The crucial information is the dependence on n of the ratio y
(2)
n+1/y

(2)
n , show-

ing that y
(2)
n dominates over y

(1)
n when ǫ2 > 0, which means that y

(1)
n is minimal.

The contrary happens when ǫ2 < 0.
This holds for any recurrence relation with ǫ2 6= 0 provided the solutions are

defined (which, for instance, is not the case when b ∈ Z± and n → ∓∞) and for
all z ∈ C; also, the argument breaks down for z = 0, in which case the second
solution is undefined or zero. In all these cases, the recurrence relation becomes
singular in the sense that αn becomes 0 or ∞ for some n value. Therefore,
the result holds when the recurrence is non-singular and can be applied in the
corresponding recurrence direction. That is, the result is as general as can be.

It can be easily checked that all results corresponding to ǫ2 6= 0 described
in [3] can be condensed in Eqs. (7-10). For a further check, we consider the
recurrences with ǫ1 = ±1 and ǫ2 = ±2 (abbreviated, the (±1,±2) recurrences),
which have as particular cases Bessel and Coulomb wave functions; we will test
the asymptotic estimates against the prediction of Perron’s theorem [6, Thm.
4.6]. In this case, the recurrence relation yn+1 +βnyn +αnyn−1 = 0 satisfied by

y
(1)
n = 1F1(an; bn; z) has coefficients

βn = fncn, cn = [bn(bn − z − 2) + 2zan]/(bn − 2),

αn = −fnbn,

fn = (b2
n − 1)bn/(an(bn − an)z2),

(16)

when an = a + n, bn = b + 2n (which is the (1, 2) recurrence) and

βn =
cn

bn
, αn = − 1

fnbn
, (17)

when an = a − n, bn = b − 2n (the (−1,−2) recurrence).
Therefore, for the (1, 2) recurrence, we have

βn ∼ 16n2

z2
, αn ∼ −16n2

z2
. (18)
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Perron’s theorem guarantees that this recurrence relation admits a minimal

solution. Further, it provides the asymptotic estimates for the minimal, y
(1)
n ,

and dominant solutions y
(2)
n :

y(1)
n (z)

y
(1)
n−1(z)

∼ −
αn

βn

∼ 1,
y(2)

n (z)

y
(2)
n−1(z)

∼ −16n2

z2
. (19)

This prediction is, indeed, consistent with equations (14) and (15). 1F1(a +
n; b + n; z) is indeed minimal as n → +∞ for any set of complex parameters
a, b, z. In particular, the regular Coulomb function FL is therefore minimal as
L → ∞ (and also, as a particular case, the Bessel function Jν(z), as ν → +∞).

For the (−1,−2) recurrence, we have

βn ∼ 1 , αn ∼ − z2

16n2
, (20)

and Perron’s theorem is again positive with respect to the existence of minimal

solution and provides the following asymptotic estimates for the minimal, y
(2)
n ,

and dominant solutions y
(1)
n :

y(1)
n (z)

y
(1)
n−1(z)

∼ 1,
y(2)

n (z)

y
(2)
n−1(z)

∼ −βn ∼ − z2

16n2
. (21)

We see that the minimal solution exists and that it is not y
(1)
n (z) = 1F1(a −

n, b − 2n, z) in this case, but y
(2)
n .

3 Satisfactory solutions when ǫ2 = 0

This case was treated in [3], and we only mention this for completeness. It
is worth observing that because of the Kummer relation (10), the functions

1F1(b−a+ǫ1n; b;−z) and 1F1(a−ǫ1n; b; z) satisfy the same recurrence relation,
and that, hence, the recurrences (ǫ1, 0) and (−ǫ1, 0) are related.

Also, it is clear that the information for the case (1, 0) (and hence also
(−1, 0)) gives also all the information for other values ǫ1 ∈ Z, because the
recurrence direction is the same.

For the case (1, 0) another type of confluent limit is considered, namely

lim
a→∞

1F1(a; b; z)/0F1(; b; az) = ez/2, (22)

which follows from the following relation between the 0F1 hypergeometric func-
tion and Bessel functions. We have

0F1(; b; z) = Γ(b)z(1−b)/2Ib−1(2
√

z), (23)

and the known asymptotic estimate (see [8, p. 80])

1F1(a; b; z) ∼ ez/2Γ(b)(az)(1−b)/2Ib−1(2
√

az), a → ∞. (24)
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Similar estimations are available for the U -function. Considering Eq. (11),
we see that when the U -function is multiplied by Γ(a + 1 − b), the resulting
function will satisfy the same recurrence (in the direction of varying a) as the
function 1F1(a; b; z). We have the known asymptotic behavior [8, p. 80]

Γ(a + 1 − b)U(a, b, z) ∼ 2(az)(1−b)/2ez/2Kb−1(2
√

az). (25)

With this, and using the fact that the Bessel function Iν(w) (Kν(w)) is
exponentially large (small) as ℜw → ∞, it is clear that the pair

{y(1)
n (z), y(2)

n (z)} = {1F1(a + n; b; z), Γ(a + 1 − b + n)U(a + n, b, z)} (26)

is a numerically satisfactory pair and the y
(2)
n is minimal except for z at the

negative real axis for the (1, 0) recurrence and at the positive real axis for the
(−1, 0) recurrence. In these two latter cases, the pair of solutions is also satisfac-
tory, but the functions become oscillatory as a function of the first parameter,
as can be seen from Eqs. (23), (24) and (25), and no minimal solution exists.

Observe that this pair is also satisfactory when ǫ2 > 0, because we proved

in that case that y
(1)
n is minimal. We summarize this in the next section.

4 Main results

We summarize the main results of this paper in the following theorem. As
mentioned before, it is assumed that the reflection formula (13) is applied when
the gamma functions acquire a negative argument.

We use the notation

an = a + ǫ1n, bn = b + ǫ2n, n, ǫ1, ǫ2 ∈ Z, a, b ∈ C. (27)

Theorem 1 (Recurrences with ǫ2 ≥ 0) The pair of functions

{y(1)
n , y(2)

n } = {1F1(an; bn; z), Γ(1 + an − bn)U(an, bn, z)} (28)

is a numerically satisfactory pair of solutions of the (ǫ1, ǫ2) three-term recurrence
relation (3) when ǫ2 = 0, 1, 2, . . ..

The solution y
(1)
n is minimal for all complex z as n → +∞ if ǫ2 > 0. When

ǫ2 = 0, y
(2)
n is minimal except when ℑz = 0 and ǫ1ℜz < 0, in which case no

minimal solution exists.

Theorem 2 (Recurrences with ǫ2 6= 0) The pair of functions

{y(1)
n (z), y

(2)
n (z)} = {1F1(an, bn, z), λnz−bn

1F1(an − bn + 1, 2 − bn, z)},

λn =
Γ(bn − 1)Γ(an − bn + 1)

Γ(1 − bn)Γ(an)
,

(29)

constitutes a pair of numerically satisfactory solutions whenever ǫ2 6= 0.

The solution y
(1)
n is minimal when ǫ2 > 0 and y

(2)
n is minimal when ǫ2 < 0.

This holds for all complex values of z.
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5 Appendix: Two expansions for 1F1(a; b, z) as
b → ∞ with a/b fixed

A first glance at the limit (5) suggests that it can be understood from the power
series definition of the Kummer function given in (1). If both a and b tend to
infinity with γ = a/b fixed, we observe, given

lim
b→∞

(γb)k

(b)k

→ γk, (30)

that then Eq. (5) holds term by term. A better way to confirm this result
is by building asymptotic series as b becomes large, as we are doing now in
two different ways: by using the differential equation and by using integral
representations.

5.1 An expansion obtained from the differential equation

The starting point is Kummer’s differential equation

zy′′ + (b − z)y′ − ay = 0. (31)

Now, because we expect that the limit (5) holds we write

y = eγzw (32)

where γ = a/b, and then it is straightforward to verify that w satisfies the
following differential equation

−z[w′′ + (2γ − 1)w′ + γ(γ − 1)w] = bw′. (33)

Now, we write the formal series

w(z) =

∞∑

k=0

Ak(z)b−k, (34)

with A0 = 1, as corresponds with the fact that 1F1(b; b; z) = exp(z). Then
equating equal powers of b we find that the rest of the coefficients can be obtained
recursively by means of the relation

Ak+1(z) = −
∫ z

0

x [A′′
k(x) + (2γ − 1)A′

k(x) + γ(γ − 1)Ak(x)] dx. (35)

For instance, the expansion with three terms reads:

1F1(γb; b; z) ∼ Eγ,b(z) = eγz

[
1 + γ(γ − 1)

z2

2b

(
−1 +

φ(z)

12b

)
+ O(b−3)

]
,

φ(z) = 3γ(γ − 1)z2 + 8(2γ − 1)z + 12.
(36)
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Clearly, for fixed z and γ the coefficients Ak(z) are bounded. In addition,
the expansion Eγ,b(z) satisfies Eγ,b(0) = 1, E′

γ,b(0) = γ = a/b, as corresponds
to the solution 1F1 of the differential equation.

In addition the derivatives at z = 0 of the expansion up to order O(b−n) at
z = 0 coincide up to O(b−n) with the derivatives of 1F1(γb; b; z). This is not
surprising, since we have applied the differential equation term by term in the
asymptotic series.

Observe that the expansion is exact for γ = 0 or γ = 1, because all the
coefficients except A0 appear multiplied by the factor γ(γ − 1) and, obviously

1F1(b; b; z) = ez and 1F1(0; b; z) = 1, b 6= 0.
The above analysis can be supported by the proofs for more general cases

given in [7, Ch. 10]. The expansion (34) holds for large complex b, uniformly
with respect to bounded z, γ = a/b ∈ C. No restriction has been considered
when building the series. A more direct verification of the validity of such series,
and therefore of the limit (5), is obtained by considering a related expansion
obtained from integral representations. We recall that the limit (5) when γ ∈ R

is the only ingredient used in analyzing the conditioning of the recurrences.

5.2 An expansion obtained from integrals

Consider the integral representation (see [9, p. 105])

1F1(a; b; z) =
Γ(b)Γ(1 + a − b)

2πi Γ(a)

∫ (1+)

0

eztta−1(t − 1)b−a−1 dt, (37)

where ℜa > 0 and b − a /∈ N. The contour starts and terminates at t = 0, and
encircles the point t = 1 in the anti-clockwise direction.

Again we write a = γb, and we expand at t = γ, the saddle point of ta(t −
1)b−a,

ezt = eγz
∞∑

n=0

zn

n!
(t − γ)n, (38)

and substitute this expansion into (37). This gives the expansion

1F1(a; b; z) = eγz
∞∑

n=0

zn

n!
Φn, (39)

where

Φn =
Γ(b)Γ(1 + a − b)

2πi Γ(a)

∫ (1+)

0

ta−1(t − 1)b−a−1(t − γ)n dt. (40)

We can write Φn in terms of the Gauss hypergeometric function:

Φn = (−γ)n
2F1(−n, a; b; 1/γ), (41)

as follows from the representation of the Gauss function (see [9, p. 111]):

2F1(a, b; c; z) =
Γ(c)Γ(1 + b − c)

2πi Γ(b)

∫ (1+)

0

tb−1(t − 1)c−b−1(1 − tz)−a dt, (42)
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where ℜb > 0. From the recurrence relation satisfied by Gauss functions, we
see that

Φn =
n − 1

b + n − 1

(
γ(1 − γ)Φn−2 + (1 − 2γ)Φn−1

)
, n = 2, 3, . . . , (43)

with Φ0 = 1, Φ1 = 0. It is easily verified that all Φn, n ≥ 2, vanish when γ = 0
or γ = 1.

The expansion in (39) has an asymptotic character for large b, with z and γ
bounded. This follows from the estimate

Φn = O
(
b−⌊(n+1)/2⌋

)
, b → ∞, (44)

which can be proved by using (43) and mathematical induction. On the other
hand, the expansion is convergent. This can be easily seen by using the ratio
test and considering that Φn+1/Φn is bounded as n → +∞.

Taking into account the ranges of parameters for which the integral repre-
sentations are valid, we conclude that (39) is an asymptotic (and convergent)
expansion as b → ∞, with γ, z bounded complex numbers, and b − a /∈ N.
The restriction b − a /∈ N can be eliminated by using the well-known integral
representation

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0

eztta−1(1 − t)b−a−1 dt, (45)

valid for ℜb > ℜa > 0 and proceeding similarly as before. The same expansion
is obtained starting from this representation for which the restriction b− a /∈ N

is not present.
Observe that the relation (10) is preserved in expansion (39). We have

1F1(γb; b; z) = ez
1F1((1 − γ)b; b;−z) = eze(γ−1)z

∞∑

n=0

(−z)n

n!
Φ̃n

Φ̃n = (1 − γ)n
2F1(−n, (1 − γ)b; b; 1/(1− γ)) = (−1)nΦn.

(46)

The expansion in (39) can be seen as convergent expansion in the complex
domains of the parameters b and γ, and the expansion constitutes an analytic
function with respect to these parameters. The left-hand side of (39) is also
an analytic function of these parameters, with the usual exception for b =
0,−1,−2, . . ., and analytic continuation can be used to extend the domain of
convergence for all fixed complex γ and complex b 6= 0,−1,−2, . . ., with as extra
property the asymptotic nature of the expansion as b → ∞.
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