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INTRODUCTION 

The main scope of these notes is to review and to discuss several 

aspects of implementations for the numerical computation of special functions. 

In this tract we consider functions which are related to the Euler gamma 

function, the exponential integrals and the error functions. For each of 

these groups we give 

1. definitions, analytic properties and fundamental formulas; 

2. algorithms, implementations, error analysis, references to tabulated 

coefficients, and testing aspects. 

We have limited ourselves to discuss the most important implementations, 

although we aimed at giving a complete survey. With respect to testing we 

have enumerated the techniques in use; no systematic testing has been done, 

although occasionally weak points or expensive methods have been observed. 

We feel that these notes fill up a gap in the existing literature, and 

we consider them as an addition to the Handbook of Special Functions 

(Abramowitz & Stegun) and to the various books of Luke. Furthermore we 

mention in this respect Hart: Computer Approximations and Lyusternik et al.: 

Handbook for Computing Elementary Functions. 

At the beginning of this project we intended to include more groups of 

functions, such as elliptic integrals, incomplete gamma functions and 

Bessel functions. However, the present notes grew out and the other groups 

are intended for a possible subsequent volume. Much depends on the need for 

it. We invite the readers to inform us on this point. Also, is the present 

form and set-up all right? Reactions are very welcome and will give us the 

motivation to continue, or to stop. 

The first two chapters contain general information on the computation 
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of special functions. The first one gives an annotated introduction to the 

literature and to .several program libraries. Some local program libraries 

are surveyed when sufficient information happened to be available to us. 

No systematic search is made in checking more Computer Centres. 

The second chapter gives a theoretical background on error analysis, 

recurrence relations, continued fractions and generalized hypergeometric 

functions. 

This tract originated from regular meetings of the Working Group 

Approximation of Functions, i.e., the Dutch group on the subject. We kindly 

acknowledge and appreciate the contributed sections of our colleagues 

Dr. R.M.M. Mattheij of the University of Nijmegen (section II. 3.2: The 

genePal aspects of thPee te:r:'111 PecuPPence Pelations), and Drs. J.P. Hollenberg 

of the University of Groningen (section II. 4: Continued fPactions). Further

more, we like to thank the members of the working group for their much 

appreciated comments and criticisms and for the patience for waiting on this 

final version. 



I. INTRODUCTION TO THE LITERATURE AND SOFTWARE 

This chapter.provides an introduction to the literature on the compu

tation of (special) functions and to the available software. We give an 

annotated selection of relevant books and papers on the subject, which in

cludes papers on general aspects of software and software engineering. 

1. LITERATURE 

ABRAMOWITZ, M. & STEGUN, I.A. (1964), Handbook of mathematical functions 

with formulas, graphs and mathematical tables, Nat. Bur. Stan

dards Appl. Math. Series, 55, U.S. Government Printing Office, 

Washington, D.C. 

A standard for general properties. A good starting point for classify

ing special functions, standard notation and definition. Contains many 

analytical properties, not always the most useful properties for numerical 

computation. No algorithms are provided for the evaluation, although now 

and then a polynomial or rational approximation is given. Tables are in

cluded with detailed information on how to use them in order to obtain 

values which are not tabulated. The nlllllerical data are useful for the oc

casional (desk) calculator, which is actual because of the growing populari

ty of hand-hold calculators and the break-through of personal computers. It 

contains material up to 1960. 

ABRAMOWITZ, M. (1954), On the practical evaluation of integrals. 175-190, 

in: Ph.J. Davis, Ph. Rabinowitz, (1967), Numerical Integration, 

Blaisdell. 

Important with respect to the recognition of special functions in in

tegrals with parameters. Examples concern: a disguised erfc, reduction to 

a known form, evaluating by a limiting procedure, use of functional 
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relationships and termwise integration, extraction of singular part, reduc

tion to a differential equation, Laplace transformation, saddle point approxi

mation, inversion of order of integration. 

ACTON, F.S. (1970), Numerical methods that work, Harper & Row Publishers. 

In order to find approximations to a function and to choose between 

them on experimental grounds, trial and error is examplified in chapter 1. 

A priori transformation of an approximation problem in order to remove 

singularities is treated in chapter 15 by means of: substraction of the 

singular part, substitution of trigonometric functions, and substitution of 

Jacobian elliptic functions. Complex arguments are not considered. 

BAUER F.L. (1973), Software and software engineering, SIAM Rev. 15, 

469-480. 

The development of software, in the past, now, and in the future, is 

discussed, exposing'the weaknesses at that moment. Suggestions are given 

to overcome the •software crisis'. 

BAUER, F.L. (1980), A trend for the next ten years of software engineering, 

in1 H. Freeman, P.M. Lewis (eds.): Software Engineering. 

A sequel to Bauer (1973) where the correctness preserving transforma

tion technique is emphasized. The CIP~project is treated as an example. 

BOEHM, B.W. et al. (1978), Characteristics of software quality, North--Hol•· 

land Publishing Company. 

The aspects inherent to software quality are discussed. 

BOEHM, B.W. (1981), Software engineering economics, Prentice Hall. 

Given quality criteria of software, ways to produce software in an 

economic way are discussed. 

BRENT, R,P. (1980}, Unrestricted algorithms for elementary and special 

functions, in: S,H. Lavington (ed.) Information Processing 80, 

613~619, North Holland Publishing Company. 

Unrestricted algorithms which are useful for the computation of elemen

tary and special functions when the required precision is not known in 
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advance are described. Discussed are: the evaluation of power series, asymp~ 

totic expansions, continued fractions, recurrence relations, Newton itera

tion, contour integration and transformation of power series into a better 

conditioned form. 

CLENSHAW, C.W. & F.W.J. OLVER (1980), An unrestricted algorithm for the ex•

ponential function, SIAM J. Numer. Anal., 17, 2, 310-331. 

An algorithm is presented for the computation of the exponential func

tion of real argument. There are no restrictions on the range of the argu

ment or on the precision that may be demanded in the results. 

BULIRSCH, R. & J. STOER, (1968), Darstellung von Funktionen in Rechenauto•· 

maten, 352-446 in, R. Sauer & I. Szab6, (eds.), Mathematische IIilfs-

mittel des Ingenieurs, Teil III, Springer Verlag. 

Chebyshev polynomials (a lot of practical information), continued 

fractions, elliptic integrals, Fo,urier analysis, and Bessel functions are 

treated. 

CODY, W.J. (1969), Performance testing of function subroutines, Proc. Spring 

Joint Computer, Conf., 34, 759-763 AFIPS Press, Montvale, N.J. 

A general approach with respect to testing is given. Experience with 

testing of special functions is exposed and the test methods for special 

functions are enumerated. 

CODY, W.J. (1970), A survey of practical rational and polynomial approxi

mation of functions, SIAM Rev., 12, 400-423. 

A good introduction to min,-max approximations. Is partly overruled by 

GAUTSCHI (1975). 

CODY, W.J., (1974), The construction of numerical subroutine libraries, 

SIAM Rev. , 16, 30-46. 

How to develop and maintain a collection of optimal numerical software, 

with respect to machine pecularities. 

CODY, W.J. (1975a), The FUNPACK package of special functions subroutines, 

ACM Trans. Math. Software, 1, 13-25. 

The design criteria of FUNPACK are exposed. FUNPACK is highly machine 
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dependent, but from the start it is implemented for three lines of (large 

scale) computers: IBM 360-370, CDC 6000-7000, UNIVAC 1108. Important with 

respect to advanced software engineering. 

CODY, W.J. (1975b), An overview for software development for special func

tions, in: G.A. Watson (ed.), Numerical Analysis, Lecture Notes 

in Mathematics 506, 38-48, Springer Verlag. 

Again important. It treats various number representations and their 

influence on accuracy - transmitted error and generated error - as well as 

how to do best. The concept of wobbling word length is introduced. Examples 

are given with respect to the gamma function. 

CODY, W.J. & W. WAITE (1980), Software manual for the elementary functions, 

Prentice Hall. 

Algorithms and test programs for the functions. SQRT, ALOG, ALOG10, 

EXP, **, SIN,COS,TAN,COT,ASIN,ACOS,ATAN,ATAN2,SINH,COSH are discussed. The 

test programs are available in machine readable form from the authors and 

IMSL. 

A must for every one who does not trust the elementary function imple

mentations in use or anyone who intends to provide some. Arithmetic peculari

ties of computers and their consequences for designing optimal special func

tion software are treated in a simple and coherent way. 

CODY, W.J. (1980a), Basic concepts for computational software, 1-23. In: 

P.C. Messina and A. Murli (eds.): Problems and Methodologies in 

Mathematical Software production. Lecture Notes in Computer 

Science 142, Springer Verlag. 

The relation of numerical mathematics and software engineering is given 

for the area of approximation of functions. Arithmetic pecularities which 

ought not to occur are given in their simplest form. The software attributes 

reliability, robustness and (trans~)portability are discussed. As an illu

stration an implementation for lzl is derived under account of the discus

sed criteria. 
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CODY, W.J. (1980b), Implementation and testing of function software, 24-47 

in: P.C. Messina and A. Murli (eds.), Problems and Methodologies 

in Mathematical Software Production, Lecture Notes in Computer 

Science 142, Springer Verlag. 

An overview of proven techniques for preparing and testing function 

software. The elefunt collection of CODY & WAITE (1980) is treated as an 

exaillf)le. 

CODY, W.J. (1981), Funpack - a package of special function subroutines 

TM-385 Applied Mathematics Division,Argonne National Laboratory. 

The package includes subroutines to evaluate certain Bessel functions, 

complete elliptic integrals, exponential integrals, Dawson's integral, and 

the psi-function. The paper reconstructs the events and decisions leading 

to FUNPACK. It concludes with: "We also feel that special function programs 

can now be written more portable than FUNPACK without sacrificing quality." 

CALGO: Collected Algorithms of the ACM. 

Nowadays the background of the algorithms, and how to use them, are 

published in TOMS, with the complete listing of the code on microfiche. 

Most of the implementations are in PFORT, a subset of FORTRAN. The iinple-

mentations are refereed before publication. The implementations, supple

mented with remarks and certifications, are issued in ACM I s looseleaf ser

vice CALGO. The machine readable versions of the algorithms can be obtained 

via IMSL. CALGO provides an index to the above implementations as well as 

implementations published elsewhere. 

DITKIN, V.A., K.A. KARPOV & M.K. KERIMOV (1981), The computation of special 

functions, USSR Comput. Maths. Math. Phys., 20, 3-12. 

Gives a review of methods for computing special functions, with the 

accent on methods used when tabulating the functions. An extensive list of 

references includes a lot of Russian contributions on table making. 

FORD, B. (1978), Parametrization of the environment for transportable nu

merical software, ACM Trans. Math. Software, 4,2 1 100~103. 

In order to obtain better transportable FORTRAN 66 software the IFIP 

Working Group 2.5 on mathematical software defined parameters for: 
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a. static arithmetic characteristics (i.e. radix, mantissa length, relative 

precision, overflow threshold, underflow treshold, symmetric range); 

b. basic input-output characteristics (i.e. standard input unit, standard 

output unit, standard error message unit, number of characters per record 

of the standard input unit, number of characters per record of the stan

dard output unit); 

c. miscellaneous characteristics (i.e. number of characters per word, page 

size, number of decimal digits). 

REMARK. Some of the suggestions in b) and c) are catered for in FORTRAN 77 

(e.g. standard units are default, character data type is provided). 

FOX, P.A., A.D. HALL & N.L. SCHRYER (1978), The PORT mathematical subroutine 

library, ACM Trans. Math. Software, 4,2, 104-126. 

A significant portable program library in the PFORT subset of FORTRAN 66. 

FULLERTON, L.W. (1977), Portable special function routines, 452-483 in: 

W. Cowell (ed.): Portability of numerical software, Lecture Notes 

in Computer Science, 57. 

Design criteria for his portable FNLIB are given and judged against 

CODY's and SCHONFELDER 1 s approach. In fact FORTRAN equivalents of those in 

the 'handbook special functions' are treated. 

FULLERTON, L.W. (1980), A bibliography on the evaluation of mathematical 

functions. CSTR 86, Bell Laboratories. 

Over 250 references on the evaluation of mathematical software have 

been collected in this annotated bibliography. Because it includes a per

muted index, one may easily find articles about specific functions. The 

collection has been compiled with two groups of users in mind: Those who 

frequently consult with scientists and engineers, and those who are devel

opers of mathematical software and who need to examine past work before 

writing programs. Papers of a highly theoretical nature have been excluded 

from this bibliography. 
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GAUTSCH!, W. (1967), Computational aspects of three-term recurrence rela

tions, SIAM Rev. 9, 24-82. 
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How to work with three-term homogeneous recurrence relations is ex

posed and illustrated with examples on: Bessel functions, incomplete gamma/ 

beta functions, Legendre functions, Coulomb functions, repeated integrals 

of the error function, Fourier coefficients, a Sturm-Liouville problem. 

GAUTSCH!, w. (1972), zur Numerik rekurrenter Relationen, Computing 9, 

107-126. 

Systems of linear first-order recurrence relations as well as higher 

order scalar recurrence relations are analyzed with respect to numerical 

stability. Examples of severe numerical instability are presented involving 

scalar first- and seccnd-order recurrence relations. Devices for counter

acting instability are indicated. 

GAUTSCH!, W. (1975), Computational methods in special functions - a survey, 

1-98 in: R. Askey (ed.) Theory and applications of special 

functions, Academic Press. 

Emphasis is put on methods for computing approximations such as: best 

rational approximation, truncated Chebyshev expansion, Taylor series and 

asymptotic expansions, Pade and continued fraction approximations, represen

tation and evaluation of approximations, linear recurrence relations, non

linear recurrence algorithms for elliptic integrals and elliptic functions. 

A final paragraph is devoted to software for special functions (NATS, NAG 

and others). 

HANDBOOK SERIES SPECIAL FUNCTIONS 

This project has been started by Numerische Mathematik in a similar 

spirit as the series on Linear Algebra and Approximation. Published are: 

Clenshaw, C.W. c.s. (1963),Algorithms for special functions I,_!, 403-419. 

Miller, G.F. (1965), Algorithms for special functions II,]_, 194-196. 

Bulirsch, R. (1965), Numerical calculation of elliptic integrals and ellip-

tic functions,]_, 78-90. 

Bulirsch, --R. ( 1965), Numerical calculation of elliptic integrals and ellip

tic functions II,]_, 353-354. 
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Bulirsch, R. (1967), Numerical calculation of the Sine, Cosine and Fresnel 

integrals,~, 380-385. 

Bulirsch, R. (1969), Numerical calculation of elliptic integrals and ellip

tic functions III, 13, 305-315. 

The series is not continued after these publications. However, see al

so Temme, N.M. (1983), The numerical computation of the confluent hypergeo

metric function U(a,b,z), 41, 63-82. 

HART, J.F. et al. (1968), Computer approximations, John Wiley. 

A good basis for developing an implementation of a special function. 

Design phase, general methods, choice and application of approximation, 

description and use of tables as well as examples are discussed. Provided 

in appendices are: tables of constants, conversion routines, some decimal 

and octal constants as well as a bibliography on published approximations. 

HENRICI, P. (1977), Computational analysis with the HP-25 pocket calculator, 

John Wiley. 

Shows what kind of numerical analysis can be done on a hand-hold cal

culator. Algorithms are given for (incomplete) gamma function, error func

tion, complete elliptic integrals, Bessel functions (integer and arbi'trary 

order, of the first and second kind), Riemann zeta function. 

HENRICI, P. (1974,1977), Applied and computational complex analysis, 

John Wiley. 

I. Power series, integration, conformal mapping, location of zeros. 

II. Special functions, integral transformations, asymptotics, continued 

fractions. 

Basic material for those who apply mathematical analysis in order to 

obtain the most suitable representation of a function for computation 

(Volume III in the series has been published but it is not related to ap

proximation of functions). 

HOUSEHOLDER, A.S. (1953), Principles of numerical analysis, McGrawHill. 

The first chapter Thecart of computation is still of value. 

In the chapters on approximation the mathematical description of the 

problems is still relevant, while the treated algorithms are overruled by 

more recent ones. 
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IEEE P754/82 - 10.0(1982), A proposed standard for binary floating-point 

arithmetic. 

9 

A nearly final proposal towards standardization. See also KAHAN (1983). 

LUKE, Y.L. (1969), The special functions and their approximations, Academic 

Press, 2 Vols. 

Volume I develops the 2F1, 1F 1 , pFq and the G-functions. 

Volume II is mainly concerned with approximations of these functions 

with particular emphasis on expansion in series of Chebyshev polynomials of 

the first kind, and with the approximations of these functions by the ratio 

of two polynomials. Tables of coefficients are given. 

LUKE, Y.L. (1975), Mathematical functions and their approximations, Academic 

Press. 

The author himself classified the book as a supplement to Abramowitz 

and Stegun. Approximations for F -named functions via analytical and 
p q 

numerical methods (so, no Mathieu-like functions). Chebyshev and Pade ex-

pansions are provided as well as (recursion) recipes for the computation of 

the coefficients of these expansions. Surveys numerical data in literature. 

Contains theorems, no proofs. More attractive for numerical oriented people 

than LUKE (1969). Emphasis is put on how to choose an expansion such that 

the problem is practically solvable. 

LUKE, Y.L. (1977), Algorithms for the computation of mathematical functions, 

Academic Press. 

As a sequel to the previous books FORTRAN programs are given in order 

to calculate the coefficients of the approximations. 

LYUSTERNIK, L.A. et al. (1965), Handbook for computing elementary functions, 

Pergamon press. 

Provides basic formulae and some coefficients for approximating ele

mentary functions. 

OLVER, F.J.W. (1978), A new approach to error arithmetic, SIAM J. Numer. 

Anal, 15,2, 368-393. 

By modification of the standard definition of relative error, a form 
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of error arithmetic is developed that is well-suited to floating-point com

putations. Rules are given for conversion from interval analysis to the new 

approach, and vice versa, both for real and complex variables. Illustrative 

applications include accumulation of products, quotients, sums and inner 

products, and the evaluation of polynomials. Also included are some new 

error bounds for basic operations in floating-point arithmetic. 

PARTSCB, B.& R. STEINBRUGGEN (1981), A comprehensive survey on program 

transformation systems, TUM report I 8108, Munchen. 

The important aspect of transformation of software is surveyed around 

the CIP-L project of the Technical University of Munich. 

RIVLIN, T.J. (1974), The Chebyshev polynomials, John Wiley. 

A survey of the most important properties of Chebyshev polynomials are 

given along with applications with respect to interpolation, approximation, 

integration, and ergodic theory. 

SCBONFELDER, J.L. (1976), The production of special function routines for 

a multi-machine library, Software-Practice and Experience, 6, 

71-82. 

The design of the special function chapter of the NAG program library 

is discussed. 

STEGUN, I.A. & ZUCKER, R., Automatic computing methods for special functions. 

So far four articles have been published in the Journal of Research of 

the National Bureau of Standards B: 

Part I. Error, probability and related functions, 74B, 211-224, 1970. 

Part II. The exponential integral En(x), 78B, 199-216, 1974. 

Part III. The sine, cosine, exponential integrals and related functions, 

BOB, 291-311, 1976. 

Part IV. Complex error function, Fresnel integrals, and other related 

:functions, 81, 661-686, 1981. 

Contains FORTRAN routines. Variable precision and multi-machine approach. 
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TEMM~, N.M. (1976), Speciale functies, 179-206 in: J.C.P. Bus, (red.) 

Colloquium numerieke programmatuur, deel lb, MC-Syllabus 29.lb, 

Mathematisch Centrum, Amsterdam. (Dutch). 

About integrals which can be recast as special functions and applica

tions of routines, among others Bessel function routines. 

VANDEVENDER, W.H. & K.H. HASKELL (1982), The SLATEC Mathematical subroutine 

Library, SIGNUM, 17,,3, 16-21. 

A report is given of a cooperative effort to create a mathematical 

subroutine library characterized by portability, good numerical technology, 

good documentation, robustness and quality assurance. The result is a por

table FORTRAN mathematical subroutine library of over 130,000 lines of code, 

with on-line documentation and help facilities. 

2. SOFTWARE 

The construction of multi-machine program libraries gave rise to dis-

cussions on several software engineering aspects, such as 

machine parametrization (FORD ( 1978)), 

reliable arithmetic (IEEE P754/82-10.0), 

computer aided design, computer-surveyed and intuition-controlled program

ming (SCHONFELDER (1976), PARTSCH and STEINBRUEGGEN (1981)), 

multi-machine testing (CODY (1969a), SCHONFELDER (1976), CODY and WAITE ( 1980)) 

(trans-)portability (FOX et al. (1977)). 

In our opinion one should design an algorithm in a design language and 

transform it by correctness preserving transformation software into a por

table computer language. It should be possible to use the resulting imple

mentations in any user language instead of to transliterate portable com

puter language implementations into various user languages, e.g. PASCAL, 

ALGOL 68 or Ada. 

2.1. Multi-machine program libraries 

The considered libraries are: NATS (FUNPACK), IMSL, NAG, PORT and 

SLATEC. Summarized are: the target computers, the contents with respect 

to special functions, and the design philosophy. 
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FUNPACK (release II, 1976) 

designed for: IBM 360/370, CD 6000/7000, UNIVAC 1108/1110 and written in 

FORTRAN 66. 

contains implementations for: 

- exponential integrals: Ei, E1 , e-x Ei(x), 

- psi function:~= r•/r, 
- Dawson integral: D, 

- Bessel functions: J 0 ,J1 ,Yv, 

- Modified Bessel functions: I 0 ,I1 ,K0 ,K1 , 

- complete elliptic integrals: E,K, 

- as well as routines for error handling. 

• design criteria: 

- modular, subroutine based structure (no multiple entry points), 

- robustness (error handling can be overruled by the user), 

- ultimate accuracy and efficiency, 

- not portable under ultimate accuracy and efficiency requirement, 

- accuracy profile testing and field validation. 

IMSL (edition 9, 1982) 

available in FORTRAN for three categories of computers: 

- supercomputers (CRAY 1, CYBER 200); 

- mainframes and upper mini's (roughly 15 machine ranges) 

- mini's (e.g. DEC PDP 11). 

• contains implementations for: 

- various probability functions and their inverses, 

- various special functions of mathematical physics and some inverses, 

some also in double precision or for complex arguments. 

The complete list is too extensive to reproduce here. 

• design criteria: 

- to provide a general reliable and robust mathematical and statistical 

library, 

- high performance, 

- converter portable. 

REMARKS. 

1. The error handling routine is called UERSET with input parameters: 

ier and name ; 

name contains the name of the subroutine where the error is detected and 

ier denotes either: 
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a hard failure (ier > 128), 

a warning with fix error (128 ~ ier > 64), 

a warning error 

an undefined error 

(64 ~ ier > 32) or 

(32 ~ ier). 

13 

More detailed information of the error is given in the documentation of 

the specific routine: name. 

NAG (mark 10, 1983) 

NAG provides program libraries in FORTRAN, ALGOL 60 and ALGOL 68. 

Here we concentrate on the FORTRAN library. 

available on a wide range of computers. 

contains with respect to special functions implementations for: 

- circular function, 

inverse circular sine and cosine, 

- hyperbolic sine, cosine, tangent and 

their inverses, 

- gamma and log gamma function, 

- exponential integrals, 

tan 

arcsin, arccos 

r, ln r 

- error function and probability functions, erf,erfc,D,P,Q 

- Fresnel integrals, s,c 

- Bessel and Airy functions (plus scaling), Ai ,Bi ,J0 ,J 1, Y0 , Y 1, 

- modified Bessel functions, r0 ,r1,K0 ,K1 

- elliptic integrals, 

design criteria: 

- to provide a general, reliable and robust mathematical and statistical 

library in a few major languages, 

- high performance and for special functions a uniform approximation 

method via Chebyshev series, 

- processor portable. 

REMARKS. 

1. Error handling is done via the function P01AAF. 

2. The special function implementations have two parameters: the argument 

and an integer ifail. 

ifail: entry 0, hard failure mechanism is used 

1, soft failure 

exit 0, no errors. 

f 0, an error occurred; the value indicates the error 

as given in the documentation. 



14 

3. In the documentation the condition of the function is displayed in clear 

graphs. 

PORT (version 1, 1977) 

PORT is a general portable program library written in the PFORT-subset of 

FORTRAN 

available on various machines, as the name indicates. 

contains special function implementations for 

- tangent, inverse cosine and sine (single and double precision), 

- hyperbolic sine, cosine and their inverses as well as the inverse 

hyperbolic tangent (single and double precision), 

- complex double precision exponent and logarithm, 

- Bessel functions: Jk (z), 

- modified Bessel functions: Ik(z). 

design criteria: 

- to provide a general, reliable and robust mathematical library as trans

portable as possible via parametrization of the environment: parameter 

values are provided for various machines, 

dynamic storage allocation is simulated via an array in common, 

- centralised error handling. 

REMARKS. 

1. Error handling is done via the principal error routine SETERR: 

- just remember the error (recovery mode), 

- print and stop, 

- print, dump and stop. 

The status of the recovery mode can be handled via ENTSRC. 

2. The programs do not contain (in their calling sequences) a parameter to 

~-indicate, on a return from a subprogram, whether an error has occurred. 

an error number can be retrieved via the function NERROR. Error messages 

are enumerated in the documentation and provided via SETERR, where the 

first 72 characters of the messages are printed. 

SLATEC (version 1, 1982) 

SLATEC stands for the cooperation of §_andia, ~os Alamos, ALr Force Weapons 

Laboratory, '.!'._echnical _i;;_xchange £ommittee. The computing centers of Sandia 

National Laboratory, Lawrence Livermore National Laboratory and the Natio

nal Bureau of Standards joined the project, VANDEVENDER & HASKELL (1982). 
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With respect to special functions the library consists of FNLIB (FULLERTON 

(1977)), FUNPACK and exponential and Bessel functions from AMOSLIB of SANDIA 

Laboratories. 

design criteria: 

- FORTRAN 66 portability based on the PFORT-verifier, 

- good numerical technology, programming style and documentation, 

- reliable and robust, 

- uniform processing of error conditions. 

2.2. Local program libraries 

From a historical point of view the multi-machine program libraries 

emerged from local activities, e.g.: IMSL from SSP, FUNPACK (the NATS ac

tivity) from Argonne National Laboratory, NAG from NPL and HARWELL. Below 

we summarise some local program libraries with respect to their special 

functions chapter. 

ARGONNE 

- Apart from FUNPACK they have made available on their IBM 360/370: 

circular functions 

inverse circular functions 

hyperbolic functions 

exponential integrals 

gamma function 

error function 

Bessel functions 

modified Bessel functions 

Coulomb wave function 

Coulomb phase shift 

Legendre functions 

angular momentum coefficients 

zeta function 

elliptic integrals 

CERN library (March, 1976) 

sin, cos, tan, cotan, 

arcsin, arccos 

sinh, cosh, 

FUNPACK, also complex 
2 r""'UNPACK, y, r,ln r, X 

FUNPACK, erf, erfc, 

E,K. 

- Available among others on CD-CYBER and contains FORTRAN routines, often 

also in double precision, fO'.L": 

exponential integrals 

gamma function (:R ,<I:) 

E1,Ei, Si, Ci, 

r ., ln r, 1jJ, quotient r functions 
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error functions («:), probability 

functions 

Fresnel integrals 

Bessel functions (R, 0::) 

modified Bessel functions 

Coulomb wave functions 

Legendre functions 

0-functions, Jacobi elliptic func

tion 

complete elliptic integrals 

Whittaker functions 

Fermi-Dirac function 

Struve functions 

HARWELL (August, 1977) 

erf, D, P, Q 

s, c, 

E 1 K, 

~,m' 

- Available on IBM 360/370 and contains FORTRAN routines for: 

exponential integrals 

gamma function 

error function («:) 

Fresnel integrals 

complete elliptic integrals 

incomplete elliptic integrals 

Bessel functions 

modified Bessel functions 

spherical Bessel functions 

Kelvin functions 

angular momentum coefficients 

NUMAL (see HEMKER (1981)) 

erf, D, 

C, S, 

E, K, IT, 

1st and 2nd kind 

Jo' Jl, Yo, Yl, 

IO, KO' Il, Kl, 

jn' 

ber, bei, ker, kei, ber', bei', 

ker', kei', 

- Written in ALGOL 60 for CD-CYBER (elsewhere converted into FORTRAN under 

supervision of P. Wynn) and contains implementations for: 

inverse circular functions 

exponential integrals 

gamma function 

error function 

Fresnel integrals 

Bessel functions 

modified Bessel functions 

arcsin, arccos, 

Ei, E1 , En(x), an' Si, Ci, 

f, ln f, y, B, Bx' 

erf, erfc, 

c, s, 
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spherical Bessel functions j, y, 

Airy functions (also: zeroes of) Ai, Bi, Ai', Bi'. 

Implementations for the probability functions: binomial, x2, F, hypergeo

"metric, normal, Smirnov, Students T, non-central T, Poisson, and their in

verses are provided in the Statistical library STATAL. 

2.3. Published software 

The Index to the Collected Algorithms of the ACM contains references 

to software published in roughly ten journals. The ACM publishes software 

in their Transactions-series, where Transactions on Mathematical Software 

(TOMS) is of special concern for us. Software published in TOMS is validated, 

and available in machine-readable form from the ACM distribution service. 

Software related to special functions published in TOMS, up to 1983, is 

listed below. 

TOMS Algorithm 

1.4 498 

3. 1 511 

3.3 518 

3.3 521 

5.4 542 

6.3 556 

7.2 571 

7.3 577 

9.2 597 

9.2 599 

9.4 609 

9.4 610 

number Item 

Airy functions using Chebyshev series approxi

mations 

CDC 6600 subroutines IBESS and JBESS for 

Bessel functions \, (x) and Jv (x) , x;, 0, v ;, 0 

Incomplete Bessel function I 0 : The Von Mises• 

distribution 

Repeated integrals of the coerror function 

Incomplete Gamma function 

Exponential integrals 

Statistics for Von Mises' and Fisher's distri

bution of directions: I 1 (x)/I0 (x), I 1 _5 (x)/I0 _5 (x) 

Algorithms for incomplete elliptic integrals 

Sequence of modified Bessel functions of the 

first kind 

Sampling from Gamma and Poisson distributions 

A portable FORTRAN subroutine for the Bickley 

functions 

A portable FORTRAN subroutine for derivatives of 

the psi function 
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REMARKS • 

• If one intends to use software published in TOMS, we advise to look in the 

loose-leaf collection of the ACM for additional REMARKS or CERTIFICATIONS, 

done by the 'scientific cODDDunity' after the implementation has been 

published. On the other hand if one uses software published in TOMS and 

detects some flaws it is worthwhile for the 'scientific community' to 

contribute a REMARK or CERTIFICATION • 

• An index to program collections is also provided by Guide to Available 

Mathematical Software (GAMS). It is intended for the National Bureau of 

Standards Staff and it gives an overview with respect to: NBS Core Math. 

Libraries, Mathware and the libraries IMSL, NAG and PORT • 

• A general bibliography on numerical software is published by EINARSSON (1977) 

with an update of chapter 16 in EINARSSON (1979) • 

• (Added in print) IMSL has available a new FORTRAN library, the SFUN/ 

LIBRARY for evaluating the following special functions: elementary func

tions, trigonometric and hyperbolic functions, exponential integrals, gamma 

functions, error functions and Bessel functions. It will be available ini

tially'for FORTRAN 77 compilers on IBM, VAX, DEC 10/20, CDC and DG 32-bit 

Eclipse. 
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II. GENERAL ASPECTS OF COMPUTING FUNCTIONS 

In this chapter we will discuss certain topics that play a fundamental 

role in the subsequent chapters. In section 1 we mention some aspects of 

error analysis for the computation of functions, in section 2 we classify 

algorithms and describe the general structure of implementations. Section 

3 deals with recurrence relations where the first order recurrence relation 

is treated in detail. Two-term recurrence relations are treated from a nu

merical algebraic as well as from a pragmatic point of view, where peculari

ties of recurrence relations, arising from computing special functions, are 

exposed. Section 4 gives an introduction to continued fractions and section 

5 pays attention to some basic properties of hypergeometric functions. 

1. ERROR ANALYSIS 

In this section we point out that a user needs only to consider careful

ly the effect of perturbation of the argument of a function if the designer of 

an implementation takes care of sufficiently accurate and well-conditioned 

approximations and benign computational processes. 

In discussing the sources of error in the computation of functions we 

will consider: 

a. the effect of perturbation of the argument; 

b. the effect of approximation of a function by more elementary functions; 

c. the effect of finite precision arithmetic. 

Generally speaking, the designer of a function routine takes care of (b) 

and (c) while a user has to be aware of (a). In order to understand this 

and to be aware of the assumptions, we will pose the problem and quantify 

the qualitative aspects (a), (b) and (c). 

The problem is: given 
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z, an approximation of z,_ 

Af, a well-conditioned approximation off depending on a set of coeffi

cients{<\:} and an argument z, 

Afc' a benign implementation of Af, 

then the value of Afc({<\:};z) and an estimate of 

are des;l.red. In the sections 1.2 and 1.3 we will return to well-conditioned 

approximations and benign implementations. 

To estimate (1.1) we consider 

The terms in the upper bound correspond to the qualitative aspects (a), (b) 

and (c); they will be treated in the sections 1.1, 1.2 and 1.3, respectively. 

1.1. Perturbation of the argument 

For a function holomorphic within y, y 

Taylor formula 

{t I lt-zl r} , we have the 

( 1. 3) f <z> - f <z> (z-z)f' (z) + (;-~/ J ~f~t) dt. 
1!1. jy (t-z) (t-z) 

In first order we obtain for the absolute and relative errors the well-known 

estimates 

(1.4> JfCz> - f(z> I,,, Jz-zl Jf' (z> I 

Jf<z> - f(z>J/Jf(z>I,,, Jz-zJlf'(zl/f(z>I, 

with the relative error amplification 

lf<'zl-f(zll/lf(z>I,,, 1~f'(z>j 
f (z) 

lz-zl/lzl 
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EXAMPLE. Suppose z = 100, to three correct significant figures. Then the re

lative error in f(z) = ez is .5, or 50%. Hence the value of f(z) has no sig

nificant figures. 

REMARK. In order to estimate the errors, an estimate of If' (z) I must be avail

able. The NAG library provides a graph of If' (x) I, for x in the relevant 

parts of :R.. 

1.2. Approximation of a function by more elementary functions 

By approximation of a function we mean replacing the mapping 

(1.5) f: z+f(z) 

by 

( 1 .6) 

Choices are to be made with respect to: 

- approximating form and size (e.g. polynomial or rational form), 

- representation of approximating form (e.g. representation of a polynomial 

as a sum of Chebyshev polynomials or powers of the independent variable). 

This has to be done such that for some prescribed£: 

( 1. 7) 

the so-called residual or truncation error, and 

(1.8) Af is well-conditioned with respect to{'\:}. 

As a measure of condition of a representation with respect to {ak} we 

introduce the condition function C as the 1-norm of the vector of the re

lative derivatives of Af with respect to the parameters, i.e., 

(1.9) 

The maximum of the condition function times IAf({ak};z) I over all relevant 

z is taken as the condition number K. (We suppose that for these definitions 

Af({'\:};z) is bounded away from zero in the z-domain.) 
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Different approximations to f may yield different condition numbers. 

If we have two approximations, say 

within the same z-domain, we can compare the condition numbers, say Ka and 

Kb. If Ka< Kb then we call Af better conditioned with respect to {ak} than 

to {bk}. The best conditioned approximation of a number of approximations is 

characterized by the lowest condition number. A well-conditioned form is 

characterized by a sufficiently low condition number, which possibly reflects 

a compromise between accuracy, efficiency and portability. 

In polynomial approximation, on [-1,1], the condition number of the 
k 

power sum representation, Pn(x) L ~x, equals the condition number of the 

Chebyshev representation, Pn(x) = LbkTk(x), if the coefficients{~}, and 

hence {bk}, are strictly alternating or of the same sign (NEWBERY (1974)). 

The condition function (1.9) may be used for representations in terms 

of an infinite set{~}. As an example consider the expansions 

-x 
e 

00 

}: · (-l)nxn/n~, 
n=O 

-x 
e 

where x0 is a positive number. The condition functions for these represen-
2 XO 

tations are ex and 1, respectively, and the condition numbers are e and 

1, respectively. 

1.3. Finite precision arithmetic 

Given an approximation Af({~};z), a well-conditioned computational 

problem, we must take into account the aspects of finite precision arith

metic, in particular in view of different computational processes. Our 

approach is inspired by BAUER (1974), who considers computational graphs in 

computations. For instance, the evaluation of a 2-b2 may be performed by 

either of the processes (a-b) (a+b) and (a2) - (b 2), yielding two different 

computational graphs. Another example in point is the evaluation of a poly

nomial by using Horner's rule. It gives a different computational graph 

than the process that computes the polynomial straightforwardly. We write 

Afc({~};z) if the approximation Af is computed according to a given com

putational graph c. In a graph several intermediate results arise, giving 
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intermediate rounding errors. Loosely speaking, we call a process (a compu

tational graph) benign if the effect of intermediate rounding errors does 

not spoil the computational aim. Intermediate results obtained by multipli

cation or division need not to be considered. 

As in the previous subsection it is possible to give a more rigorous 

definition of the concept benign, as was done for the condition function C 

of an approximation Af. First we introduce the condition function of a com

putational process Afc as the 1-norm of the vector of the relative deriva

tives of Af({¾};z) with respect to the intermediate results. Then we in

troduce the condition number Kc of the computational graph Afc as the maxi

mum of the condition function of Af times jAf ({a },z) I over all relevant 
C C k 

z. The computational graph is called benign if the condition number of the 

computational graph Afc is smaller than the condition number of the compu

tational problem Af. 

REMARK. In numerical linear algebra the concept of growth of intermediate 

results in a computation is used in order to decide upon which algorithm is 

best with respect to error propagation. 

EXAMPLE 1. Consider the evaluation of the polynomial 

3 k 
1 ¾x 

k=O 

as an approximation for a function f. The condition function of the approxi

mation is 

and the condition function of the computational graph based on Horner's 

rule is given by 

EXAMPLE 2. The evaluation of a 2-b2 . The condition function of this problem 

is 
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2 2 
The evaluation may be performed by the processes (a-b) (a+b) and (a) - (b) 

with condition functions 

which are both smaller than the condition function of the problem. 

REMARK. The above ideas are candidates for automatization. Work in this 

direction is indicated by BAUER (1974) and realized by MILLER (1975), 

MILLER & SPOONER (1978) with respect to the behaviour of absolute errors 

and LARSON et al. (1983) with respect to the behaviour of relative error. 

2. SOFTWARE 

In this section we classify algorithms and describe the general struc

ture of implementations. 

2.1. Algorithms and implementations 

In mathematical software for function approximations algorithms may be 

classified according to the input parameters: 

(2.1) - the argument; 

(2.2) - the argument and the precision. 

In the (nearly) maximum precision class (2.1) the approximation Af({ak};z) 

is determined such that the approximation error (1.7) is less than the 

machine accuracy£. Commonly a uniform approximation is predetermined based 

on an error bound for the worst case; when several approximation approaches 

are combined - say Taylor series and asymptotic series - uniform approxima

tions are commonly used for each approach. We call this a nearly class be

cause the resulting error (1.1), in general slightly exceeds the machine 

precision due to finite precision arithmetic, even for exact z. In the 

variable precision class (2.2) approximations are used for which the ap

proximation error (1.7) is easily available. Often, (especially when the 

approximating error alternates) the differences of then-th and the 

(n+l)-st approximation majorates the approximation error; this property is 

commonly used as a stopping criterion. However, when dealing with monotonic 

convergence or with finite precision arithmetic this criterion may not be 

reliable. 
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The implementations based upon (2.1) are generally structured in: 

(2.4) - checking of argument z; 

(2.5) - selection of appropriate{¾} as a function of z (segment or domain) 

and initialization; 

(2.6) - evaluation of appropriate approximation Afc({¾};z). 

The implementations based upon (2.2) are generally structured in: 

(2.7) - checking of argument z and the precision o, 

(2.8) - evaluation of Afc({¾};z) such that an approximation of the trun

cation error is less than o. 

Two elaborations of module (2.8) are in use: 

(2.8.1) - selection of appropriate {ak} as a function of z (segment or do-

main) and 0 (precision); one could think of evaluation of part of 

a finite Chebyshev sum - for example as determined by the proce-

dure Set (CLENSHAW, c.s. (1963)) - or one could think of evalu-

ation of the appropriate minimax approximations while the coeffi

cients of respectively the finite Chebyshev sum or the minimax 

approximations are included in the program for the precision range. 

(2.8.2) - no selection of appropriate{¾} as a function of z is made a 

priori. 

Further refinement of the modules with respect to portability may be 

achieved with either a special target computer in mind (advantage may be 

taken of, or measures may be taken against, some machine-environmental

peculiarities; this approach was coDDnon in local program libraries) or for 

a range of computers (standards and subsets are used; NAG approach). Of 

course one could think of a range of computers as a sum of special target 

computers (NATS approach). 

2.2. Testing 

In our opinion testing of software is verifying by a human being the 

correctness of different design stages of an implementation. RUTISHAUSER 

(1976) distinguishes for the creation of mathematical software the design 

stages: 
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formal algorithm: a description of the principal flow of a calcula

tion; 

naive program: an unambigious definition of the calculation process 

is given, where program correctness is empirically obtained via 

checking of a limited number of argument values; 

strict program: apart from round-off error effects the program is 

proven to be correct; 

numerically safe: the errors in the results are within proven bounds. 

The various states of a program can be placed in the total activity of 

mathematical problem solving in the following way. 
+ 

Starting point 

mathematical problem 

discrete mathematical 
problem 

formal algorithm 

naive program 

strict program 

strict program with 

Tasks 

discretisation 

Region of competence 

analysis 

algebra 

developing 
numerical method 

taking care of 

numerical calculation 
in exact arithmetic 

finite precision 
arithmetic 

numerical calculation 
in finite precision arithmetic 

sequential safety 

numerical safety 
a priori or a posteriori 
error bounds 

Nowadays test activities, at least with respect to approximation of 

functions, deal with the 'naive program'-level. On this level the tech

nique is automated by generation, via possibly different algorithms, of 

multi-length tables by CODY (1973,1975b) and SCHONFELDER (1976). Consisten

cy tests are treated by NEWBERY & LEIGH (1971). 

The creation of strict programs via pre- and postconditions and Hoare

like loop invariants has not been done in the considered software. 

The creation of numerically safe programs has not yet emerged, while 

first order error bounds are provided in the documentation of some 
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considered implementations. 

With respect to error bounds one could think of a first order estimate 

and a rigorous estimate, where the latter is generally pessimistic. During 

the checking of obtained values one could classify the errors into the clas

ses red, orange, green. Where red indicates a true error because it exceeds 

the rigorous bounds, orange indicates a possible error because it is within 

the rigorous bounds but exceeds the first order bounds, and green indicates 

an acceptable error because it is within the first order bounds. 

In our discussion of some special function implementations we will con

centrate our efforts on the 'naive program'-level 

are the used approximations accurate enough? 

are the used stopping criteria provable correct? 

. is the program readible; does it look correct? 

can we classify the implementations as 'good in principle'? 

Only after positive answers on the above questions by an initiated 

worker one can consider to 

either 

or 

perform the costly job of stringent tests in the sense of Cody and 

Schonfelder 

proof the program correctness and to provide bounds for the numerical 

errors. 

Only in the last case a numerically safe program is obtained while for prac

tical purposes the former approach is sufficient. 
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3. LINEAR RECURRENCE RELATIONS 

The behaviour of linear scalar recurrence relations in finite precision 

arithmetic is described in terms of first order matrix-vector recursions. 

We shall treat two-term recurrence relations (1x1-matrix) and three-term 

relations (2x2-matrix) separately. Our main tool is the concept of stabili

ty of the problem: amplification of perturbations of input data into the 

answer. For this class of problems it is convenient to consider rounding er

rors as perturbations of the input data. The amplification is quantified by 

the earlier introduced condition (§1.2.). Wherever appropriate we make use 

of geometric concepts in order to abstract from details and to strengthen 

the intuition. Furthermore, we shall make use of general knowledge of the 

solution when it concerns special functions. A half page introduction with 

practical information about stability directions for a few classical ex

amples is given in ABRAMOWITZ & STEGUN (1964, p.XII); see also §3.3. 

A state of the art survey is given in GAUTSCH! (1975). See also WIMP (1984). 

3.1. First order inhomogeneous scalar recurrence relations 

A thorough treatment of the stability, with emphasis on the effect of 

perturbations of the initial value, is given by GAUTSCHI (1972a). His graphs 

of pn make clear whether we must prefer the forward to the backward recur

rence or consider starting somewhere in between, eventually as a function 

of the (real) argument of the approximated function. We shall introduce 

Gautschi ''s pn as part of the condition of the problem; this quantity re

flects the stability due to the initial value neglecting other effects. 

Moreover, we shall introduce a new quantity an' which reflects the stabili

ty due to the initial value and the inhomogeneous terms while other effects 

are neglected. The examination of the stability of a recursion can be done 

by demonstrating that pn or crn are large, an instable recursion, and if not 

by proving that the condition is small. 

Introduction 

As an introduction we shall talk about 

Yj+1 a,y. + 
J J 

b., 
J 

j 0, 1, •.. 

(3.1.1) 

Yo given. 
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Recurrence relations of this type play a role, for example, in calculations 

of the incomplete gamma function with the exponential integrals as a special 

case. Sometimes recurrence relations are used in the forward direction, as 

in (3.1.1), and sometimes they are used in the backward direction: 

j n,n-1, ••. 

(3.1.2) 

yn given, 

provided of course that a.~ 0. We like to stress that mathematically the 
n J 

same values {yj}O are defined, but that the algorithms differ, especially 

in finite precision arithmetic. 

In order to decide a priori upon which algorithm is to be preferred 

in finite precision arithmetic, we will derive macroscopic quantities which 

govern the stability of linear first-order inhomogeneous recurrence rela

tions. 

The formulation of the problem 

The recurrence relation (3.1.1) may be stated as: given 

obtain 

(3.1.3) (
n-1 ) n-1 (n-1 \ 

f = n a. y0 + L n ak) b. 
n j=O J j=O k=j+1 J 

in finite precision arithmetic as accurate as possible. (This formula may 

be derived from (3.1.1) by the variation of parameters technique (HAMMING 

(1971)). The first term of the right hand side equals the solution of the 

homogeneous problem; the second term is a particular solution). 

Stability 

The stability of the problem may be characterized by the condition as 

introduced in formula (1.9), i.e., 

(3.1.4) 
n 

C 
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with 

(3.l.4a) 

(3.1.4b) 

n 
C 

Yo 

due to the inhomogeneous terms, 

(3.1.4c) 

due to the coefficients {ak}. 

n-1 I 
.TT a. lbk/f I, 
J=k+l J n 

The condition may macroscopically be represented in terms of the solu
(h) 

tion of the homogeneous recurrence: fn , as 

(3.1.5) 

The absolute value of the quotient of the homogeneous solution (with the 

same initial value) and the inhomogeneous solution is Gautschi's pn. So 

from the perturbation point of view pn reflects the stability of fn due to 

a perturbation in the initial value, say g: p =en.In the sequel we will 
n g 

use pn as a symbol to denote the relative amplification of a perturbation of 

the initial value into the answer fn' given a particular recurrence relation, 

independent of whether we call it a forward or a backward recurrence. If we 

consider pn large - a so called ill-conditioned initial-value problem -

we may pose another problem, for example by recurring in the opposite direc

tion; the latter generally has a different pn. For the calculation of fn by 

(3.1.1) - we call this forward - we have for pn of the forward problem 

(superscripted by f) 

while for the calculation of fn by (3.1.2) by starting at yn+k - we call 

this backward (superscripted by b) - we arrive at 

pbn = l(n~~-1 a~l) y /f J. 
J=n J n+k n 
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From { f}n+k b Pj j=n we may obtain pn, the backward amplification factor, as 

We appreciate Gautschi's graphs of pn, given a particular recurrence rela

tion, because from these we may obtain by the above formula the p's of the 

recurrence relation in the opposite direction. 

Another representation of en is obtained if we use the solution of the 

absolute recurrence: f~a) (with input parameters if0 j,{ l~I},{ lbkj}), in 

(3.1.4) 

(3.1'.6) 
n 

C 
( ) (h) n-1 k-1 (h) ] 

fna /jfnj + jfn /fnl }. ]1+ I bJ./fJ.+l , 
' k=0 j=0 

with f(h) again not zero, of course. 
j 

In the sequel we will denote the quotient of the solution of the absolute 

recurrence and the solution of the given recurrence by an, i.e. 

(3.1.6a) a n 
f(a) /jf 1. 

n n 

From the perturbation point of view an reflects the stability of fn due to 

perturbations of the initial value as well as perturbations of the inhomo

geneous terms, because the sum of the right-hand sides of (3.1.4a) and 

(3.1.4b) equals f(a) /]f !; so a is the symbol to denote the amplification 
n n n 

of perturbations of the initial value and of the inhomogeneous terms into 

the answer fn. This amplification is realistic when all perturbations are 

roughly equal. From these representations we easily obtain the inequalities 

(3.1.7) ,! lf(h) /f , • 
n n 

If pn or an is large we have an ill-conditioned problem. Usually this is 

stated in a geometrical sense (see also section II.3.2): an ill-conditioned 

initial-value problem is characterized by the dominance of f(h) over f 
n n 

(pn is large); an ill-conditioned inhomogeneous (initial-value) problem is 

characterized by the dominance of f(a) over f (a is large). The latter is 
n n n 

not generally known, e.g. it is not mentioned in section II.3.2. Finally, 

we will consider a problem suitably conditioned when en is tolerable; this 

introduces the context. 

For an absolute recurrence relation, say the absolute version of 

(3.1.3), an attainable upper bound for the condition is given by 
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(3.1.8) en ::s n+l. 

Derivation: (3.1.4a) + (3.1.4b) contributes 1 

(3.1.4c) contributes at most n-times the contributions of 

(3.1.4a) and (3.1.4b); a well-conditioned problem. 

REMARK. With matrix recurrence relations the relative values of the solu

tion of an absolute recurrence are of importance. 

For the problem of evaluating a polynomial as a power sum: the condi

tion may, after confluence of all a. into x, conveniently be bounded below 
J 

by 

(3.1.9) 

where we recognize the contribution of the derivative; for this particular 

recurrence we have for the absolute recurrence and for cr 
n 

f(a) 
n-1 k ). lbn-k x I n 
k=O 

n-1 k n-1 
bn-k xkJ. cr I lbn-k X I/I I n k=O k=O 

So, crn equals the 1-norm of the relative derivatives with respect to the 

coefficients in the power sum representation. 

REMARKS. 

1. We like to stress that so far we have considered the stability of the 

problem and not yet any particular computational graph nor the effects 

of finite precision arithmetic. The condition of the problem gives 

(first-order) information about the effect of perturbation of the input 

data - initial value and recurrence coefficients - into the solution; 

finite precision arithmetic or bad algorithms can only make things worse. 

Even if the input data are exact representable in the machine and there 

are no measurement errors in the picture, the above introduced concepts 

are still of interest. Namely for the class of problems defined by 

the recurrence algorithms, the intermediate rounding errors due to finite 

precision arithmetic can be considered in a natural way as perturbations 

of the initial data; backward analysis is easily applied. 
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For example, the recurrence relation (3.1.1) in finite precision arith

metic (the tilde denotes finite precision operations) 

j 0, 1, ••• 

(3.1.10) 

Yo given, 

may be stated (in first order) as (the tilde denotes the perturbated co

efficients which yield the same result as (3.1.10)) 

j 0, 1, ••• 

(3.1.11) 

y0 given 

in exact arithmetic, with aj = aj(l+o+o 1), bj bj(l+o 1), where we as

sumed for the machine operators (with tilde): x * y = x * y(l+o), x + y 

= (x+y) (1+o 1) with max(lol, lo 1 1> ~ £ (= machine precision). 

So the contributions (3.1.4b) and (3.1.4c) govern also the effect of in

termediate rounding errors. Commonly, (3.1.11) is replaced by 

with~- the local error. We think our approach for this class of prob-
J 

lems simpler, because, the local errors are absorbed in the recurrence 

coefficients and so we only have to look at the effects of perturbations 

of the input data; i.e., we only have to concentrate on the condition 

of the computational problem and not on the condition of the computational 

graph. The perturbations of the recurrence coefficients due to finite 

precision arithmetic is of the order of the machine precision: the recur

rence algorithm is benign. 

2. One can ask whether the positive recursion with bound for the condition 

(3.1.8) is well-conditioned or not. Such pin-point questions can easily 

be circumvented by going back to the perturbation idea; the condition is 

only a macroscopic tool. The condition as a 1-norm is a suitable tool 

when all perturbations, initial or due to interpretation of rounding 

errors, are of equal order of magnitude. For rounding errors in recur

rence relations this is the case, so we think this norm convenient. For 
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example (3.1.9) only states that perturbations are linearly amplified. 

Whether this is tolerable or not depends upon the circumstances. One has 

to decide upon this oneself given the particular situation; generally a 

linear amplification bound is considered harmless. 

3. An example of a stable initial value problem but an unstable inhomogene

ous problem, is given by 

K. ~ K > 0, 
1. 

where p2n = 1 and cr 2n ~ 2nK/o; cr 2n can be made as large as we please. 

4. If the contribution to the condition is mainly due to (3.1.4a), and we 

judge this intolerable, we can look for another problem formulation: a 

terminal value problem for example; i.e., (3.1.2). In closed form the 

solution may be represented by 

(3 .1.12) f 
n 

n+k-1 (n+k-1 -1) , TT a. b., 
_l j=i J i 
i=n 

with k suitable chosen. This is the so-called backward recurrence; Yn+k 

as starting value must be known or a perturbation of it is harmless in 

fn' so that we can take nearby values: (asymptotic) estimates or crudely 

0. As a special class of problems we have the absolute recurrence rela

tions with their stable properties. Absolute recurrences may just be 

given or recognized as the opposite recurrence from a recurrence rela

tion with all{~} and {yk} positive and all {bk} negative. An error in 

the starting value of an absolute (or positive) recurrence is damped be

cause the (inhomogeneous) solution dominates the solution of the homo

geneous recurrence relation. The effectiveness of this damping determines 

k: fast damping induces a small k; slow damping needs a large k. 

5. In estimating the condition of a problem defined by a recurrence relation 

with non-constant coefficients, we can sometimes - for the so defined 

slowly-varying recursions - consider the general problem as a perturba

tion of a problem with constant coefficients. On the other hand some 

recurrence relations have variable coefficients which exhibit a high 

regularity; for these recurrence relations one can look for - and we 

will in the sequel - handsome representations of (3.1.4a), (3.l.4b) or 

(3.1.4c). 
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6. When dealing with a polynomial it is convenient to have a tool which can 

be used in order to decide upon its representation. In this remark we re

strict ourselves to the problem of evaluation of the representations: 

a power sum 

a Chebyshev sum 

P (x) 
n 

P (x) 
n 

k 
X ; 

Our tool is: the representation with smallest 1-norm of the coefficient 

vector is best. (Indeed, the relative perturbations are amplified by 

l:=O I~ xkl or L:=O jbk Tk(x) I, which in turn are uniformly bounded by 

the 1-norms.) With this tool we easily understand Newbery's (1974) ex

perimental result (see §1.2) as well as some spread results: 

CLENSHAW (1962): 

where the Chebyshev sum representation is to be preferred because 

HART c.s. (1968): 

where the explicit power sum representation is not to be preferred, 

because 

* RUTISHAUSER (1968); (Tk(x) Tk (2x-1)): 

1 - 13.7x + 67.Sx2 - 153x3 + 162x4 - 64.8x5 

where the shifted Chebyshev sum representation is to be preferred, be

cause 
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462. 

NEWBERY (1974): If {¾} are of the same sign or strictly alternating then 

II ¾II 1; no preference, so for efficiency reasons the power 

sum can be used. 

GAUTSCH! (1972b) introduced the condition number of the coordinate map asso

ciating to each polynomial its coefficients with respect to a system of 

orthogonal polynomials. Let 

,n-1 oo 
i.e., with (u0 , .•• ,un_1) we associate Lk=O ~ pk(x), with {pk}k=O a set 

of orthogonal polynomials. Then 

cond M 
oo n 

From the perturbation point of view we have 

llt.P R llt.ull 
n-1 oo 1 oo 

II P 111 2'! cond M ~ 
n- oo co n ---

We did not follow Gautschi's approach because it concentrates on uniform 

results for a class of problems, while we are more concerned with tools 

for particular problems which do reflect the (known) qualitative beha

viour. Gautschi's ideas are worked out in GAUTSCH! (1972b, for orthogo

nal polynomials; 1979a, for polynomials in power form; 1978, for poly

nomials). 

7. Software for roundoff analvsis (MILLER (1975), MILLER & SPOONER (1978), 

LARSON & SAMEH (1978), LARSON, PASTERNAK & WISNIEWSKI (1983)) miqht be 

of use in order to decide upon stable representations. The merits of this 

software with respect to special functions software has not yet been con

sidered. 

8. The second term in (3.1.9) is inherent in the polynomial and cannot be 

minimized. We like to remark, however, that a perturbation of the argu

ment of the function, which is approximated by a polynomial, was already 

considered (see §1.1). But, because of confluence of all ak into x we 

are not surprised to see again the derivative of the approximating func-
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tion - the polynomial - in the stability of the problem of evaluating 

the approximation. 

9. For the homogeneous recurrence relation the condition is 

For this simple case the effect of relative perturbations of the input 

data of0 and {oak}, is in first order easily given by 

n-1 
IMnl = lof0 + }: o¾I 

k=O 

n 
5 C * E, 

where E = max{of0 ,o¾}. We see at once that the bound is attained if all 

relative perturbations of the input data are the same. Rounding errors 

behave not that systematic. In order to get a more realistic estimate 

of the effect of rounding errors we could think of an effective machine 

precision or introduce an effective condition notion. 

EXAMPLES. 
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1. The following example about evaluating a polynomial is theoretical. It is 

constructed in order to elucidate the use of different algorithms or 

properly speaking: to contrast the forward problem with the backward 

problem. Let 

(3.1.13) j = 0,1,2, ... ,n-1 

with initial value Yo -2n 
1 - 2 + E. 

The solution is given by 

(3.1.14) f. 
J 

j-1 

I l 
k=O 

j 0,1,2, ... ,n. 

The backward formulation is given by 

(3.1.15) j = n+k-1, •.• ,n+l,n 

with initial value Yn+k 
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we have taken k = n, so the (terminal) starting value is 

22n 
e: • 

In table 3.1 we have enumerated the 
(d) 

f. ; the forward problem (3.1.13), 

results of: the direct method (3.1.14), 

f~f); and the backward problem 
J J (b) 

( 3 • 1 • 15) , f . • We have taken n = k 
J 

= 10, e: = machine precision, and re-
-2n ~ 2n 

lative perturbated starting values: y0 = 1 - 2 and y 2n = e:2 (1-e:). 

The erroneous digits with respect to the direct method are underlined. 

0 .99999 90463 2569 
1 .99999 80926 5138 
2 .99999 61853 0276 
3 .99999 23706 0553 
4 .99998 47412 1105 
5 .99996 94824 2210 
6 .99993 89648 4420 
7 .99987 79296 8841 
8 .99975 58593 7682 
9 .99951 17187 5364 

10 .99902 34375 0728 
11 .99804 68750 1455 
12 .99609 37500 2910 
13 .99218 75000 5821 
14 .98437 50001 1642 
15 .96875 00002 3283 
16 .93750 00004 6566 
17 .87500 00009 3132 
18 .75000 00018 6265 
19 .50000 00037 2529 
20 .00000 00074 5058 

forward: f ~f) 
J 

.99999 90463 256.§. 

.99999 80926 5132 

.99999 61853 0271. 

.99999 23706 0547 

.99998 47412 1094 

.99996 94824 21.fil! 

.99993 89648 4375 

.99987 79296 8750 

.99975 58593 7.2.QQ. 
• 99951 17187 5QQQ 
.99902 34375 0000 
.99804 68750 0000 
.99609 37500 QQ.QQ 
• 99218 75000 QQ.QQ 
.98437 50000 QQ.QQ 
.96875 0000.Q 0000 
.93750 0000.Q 0000 
.87500 0000.Q 0000 
• 75000 000.QQ. 0000 
.50000 00000 QQ.QQ 
.00000 00000 0000 

Table 3 .1 

backward: f(b) 
J 

.99999 90463 2569 

.99999 80926 5138 

.99999 61853 0276 
• 99999 23706 0551_ 
.99998 47412 1105 
.99996 94824 2210 
.99993 89648 4420 
.99987 79296 8841 
.99975 58593 7682 
.99951 17187 5361. 
.99902 34375 0722 
.99804 68750 1455 
.99609 37500 2910 
.99218 75000 582.Q 
.98437 50001 1641. 
.96875 00002 3283 
.93750 00004 6566 
.87500 00009 3132 
.75000 00018 626.i 
.50000 00037 2529 
.00000 00074 5058 

Discussion 

The contribution to the condition of fj due to a perturbation in y0 is 

(3.i .16) j 0,1,2, .•• ,n, 

so we expected the forward recursion to grow erroneously. A perturbation of 

h0 = y0 - 1, the linearly transformed initial value, is amplified by 

(3.1.17) 

(Note the difference in the condition due to the simple change of variable~) 

The backward problem is a positive recurrence, so we expected it benign; 
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-(n+k-j) 
an error in fn+k is damped by 2 in fj. 

For the problem of evaluating a polynomial other algorithms can be 

considered. TRAUB & SHAW (1974) introduced a family of splitting algorithms 

for the power sum representation. 

In stead of 

(3.1.18) P (x) 
n 

they considered 

(3.1.19) P n (x) ( .•• ((a Xq+a q-1 ) q+1 
1x + .•• +a x + ••• 

n n- n-q 

q q-1 q+1 
+ (a 2 1x +a2 x + ••. +a 1))x + 

q+ q q+ 

q q-1 
+(ax +a 1x + ••• +a0), 

q q-

with q+1 a divisor of n+1. The advantage of this approach is that the linear 

amplification factor, say n, can be reduced to the sum of factors of n+1. 

Furthermore, this approach is also advantageous when all derivatives are 

needed because the .number of multiplications is of order O (n) , while the 

complete Horner is of 0(n2). The problem of summation of numbers may be 

considered as a special case of polynomial evaluation. BABUSKA (1972) 
2 

reported the benign nature, log n, of the repeated splitting-summation 

computational graph. However, his example 

s 
n 

n 
l 1/k 

k=1 

should have been compared with the "backward" process 

( •.• ((1/n+l/(n-1)) + 1/(n-2))+ ••• +1/2)+1. 

n 
The conditions of Sn with 1 as starting value, c 1 - i.e. summation of de-

creasing terms - and with 1/n as starting value, c~/n - i.e. summation of in

creasing terms - behave as 
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n 
1 +{ '-

j=2 k=l 
1/k}/S ) > 

n 

n j-1 
1 +{ I I 

j=2 k=0 
1/(n-k)}/S) ~ l+n/log n. 

n 

This illustrates the general rule of thumb: keep intermediate results 

small. Another elaboration of this general rule is the summation tech

nique of HAMMING (1971): order the positive terms and negative terms; 

merge these rows by keeping the intermediate results as close to zero 

as possible. 

2. This example is given by GAUTSCH! (1972a). Let 

(3.1.20) 

with 

(3.1.21) 

f 
n 

e 
n 

n 0,1,2, •• 

Gautschi enumerates illustratively for x 

tained by the forward recurrence 

1 the horrible results ob-

j * y '- xj, 
j-1 

j 1, 2, .•• 

(3.1.22) 

The condition of this initial value problem is bounded below by 

(3.1.23) 

For x away from zero we see immediately limn->oo pn 

tial value problem. 

00 ; an unstable ini-

The recurrence relation (3.1.22) is easily posed backwards 

(3 .1. 24) 

which for x > 0 is an absolute recurrence and so a benign problem. 

Moreover, a perturbation in the (terminal) starting value yt is damped 

by j~/t~ inf .• As an illustration we have depicted p for x = 5, 10, 15, 
J n 

20, 25, 30. See Figure 1. 
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Figure 1. pn of (3.1.23) 

3. Calculation of exponential integrals 

The exponential integrals 

(3.1.25) E (z) 
n J -n -zt 

t e dt 

obey the recurrence relation 

-z 
-z/k yk + e /k, k 1,2,3, ••. 

(3 .1. 26) 

y 1 given. 

The contribution to the condition due to perturbations in the initial 

value is given by 

(3.1.27) 

n 
z El ( z) I n-1 
, ( ) ~ I z I I n+z+ 1 I /n ! . 

n.En+l z 

41 
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+ For some x e :R GAUTSCH! (1972a) depicted the graphs as given in 

Figure 2. 

~igure 2._pn of (3.1.27) 

The stability for z e C is similar, because pn is approximately a func

tion of lzl. ·so the above graphs may be seen as iso-lzl-curves. The 

curves have a maximum for i = [lz!J. The graphs suggest to start at Yi 

and recur down the pn-hill on either side. So we obtain from (3.1.26) 

either of the problems 

(3 .1.28a) = -z/k yk 
-z 

Yk+l + e /k, k i,i+1, ••• ,n 

(3 .1.28b) -z 
yk -k/z Yk+l + e /z, k i-1,i-2, ••• ,1 

with 

Yi given, i [ I zl J. 

After some calculations we arrived at the bound for the condition 



FIRST ORDER RECURSIONS 

A class closely related to the exponential integral is 

a n 
Re z > O, n 0,1,2, ••• 

The integrals obey the recurrence relation 

k o, 1,2, ••• 

-z a0 e /z. 
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For z E: 1/ this is a positive recurrence relation and thus a benign 

problem. For {z I Re> 0, z E: t} we obtained with respect to the condi

tion 

Namely, 

a e ( I z I l / I e ( z) I . n n n 

a n 

and the solution of the recurrence relation with absolute values equals 

with 

e (z) 
n 

The limit 

lim a 
n n-><x> 

lzl/ x e e , z = x+iy, 

is a growing function of y, so we expect the recursion to become un

stable when IYI increases. As an illustration we have depicted an as 

iso-lim zl-graphs with Re z = 1 and Im z = 1,5,10,15,20,25,30. See Fig.3. 
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108 f •n 

Figure 3. on for the computation of an 

The integrals 

n -zt 
t e dt 

obey the recurrence relation 

k z -z 
((k+l)Sk - (-1) e -e )/z, 

z -z 
(e -e )/z. 

k 0 I 1, • • • 

30 

Im z 15 

Im z 10 

Im z 5 

Im z 

n 
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In closed form the solution can be represented by 

The solution of the recurrence relation with absolute values can be 

bounded below by· 

B (a) ~ ~ 2 sinh(x) e ( I zl), 
n lzln+l n 

As a consequence an can be bounded below by 

(3.1.29) 
e ( I zl) 

n 

Z = X + iy. 

a ~ 2lsinh(Re z)I 
n leze (-z)-e -ze (z) I 

n n 

For the second factor in the lower bound we have 

(3.1.30) for n + 00 ; 

45 

so the recurrence is (ultimately) unstable. As an illustration we have 

depicted (3.1.30) for lzl = 1,2,3,5,7 with Re z = 1, as iso-lzl-graphs, 

in Figure 4. 

Figure 4. Graphs of (3 • .1.301 
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REMARK. In STEGUN & ABRAMOWITZ (1956) it is suggested that forward recursion 

is stable if the function is increasing as the index increases. According 

to this principle the calculation of En(x) for small arguments should be 

stable in the backward direction. This is not the case. 

4. Let 

f(a,b) [r(a) - r(a+b)]/b, a> O, b ~ 0. 

The computation of f(a,b) is straightforward if bis bounded away from 

zero. If b is small, however, the above representation of f is not 

stable. For an application of f(a,b) we refer to GAUTSCH! (1979b), where 

it is needed in the computation of the incomplete gamma functions. 

Gautschi computes f(l,b) by using a Taylor expansion of the gamma func

tion. Here we analyse the recursion, of which y0 = f(a,b), 

k N-1,N-2, ••• ,0 

(3.1.31) 
y = r(a+b+N) ( r(a+N) -l) 

N b r(a+b+N) • 

The starting value may accurately be obtained by (III 2.12) or its modi

fications. The stability with respect to the initial value, yN, is given 

by 

= I YN ayol = I~ rca+N)-r(a+b+~n; r(a)-r(a+b) • 
Po Yo clyN r(a+N) b b 

(This may be obtained via (3.1.12) with aj 

For small b we arrive at 

Po~ l~Ca+N)/~(a) I= O(log N), 

a+ j and bj -r(a+b+j) .) 

N + co. 

The stability which also accounts for the inhomogeneous terms, for 

b + O, is given by 

The conclusion is that (3.1.31) is a mildly unstable inhomogeneous problem. 
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3.2. General aspects of three-term recurrence relations 

we give a survey of problems and methods involved with recursions, 

with the emphasis on three-term recurrence relations. Stability of solutions 

is discussed and some algorithms are given for the computation of minimal 

(or dominated) solutions. 

3.2.1. Introduction 

Recursions play an important role in special functions. Of course, the 

three term recurrence relation is a well-known tool for calculating func

tions of mathematical physics, such as Bessel functions. But also processes 

like determining partial sums of a series or evaluating polynomials with 

Horner's scheme, exploit recursions. 

In this section we consider several aspects of recursions which are in 

particular important from a computational point of view. The general second 

order scalar recursion (or difference equation) has the form 

(1.1) i ~ 1. 

This recurrence relation is called homogeneous if Vici= 0 and inhonogen

eous otherwise. A solution of (1.1), i.e. a sequence {~0 ,~1 , ••• } satisfying 

(1.1) for all i, will be denoted by{~.}. 
l. 

In order to be able to study more general recursions we introduce 

matrix vector recursions, viz. 

(1.2) i ~ 0 

where Vix. e: Rn (for some fixed integer n) and V.A. is a square matrix. As 
l. l. l. 

for the scalar case {xi} will denote a solution of (1.2). 

In §3.2.2 we shall consider the constant scalar recursion, which can be 

used as a kind of model problem. In order to get insight into the problems 

which are involved in the numerical computation of solutions, it is very 

useful to study the growth of solutions of (1.1) or (1.2), which is there

for the subject of §3.2.3. Armed with such information it will be possible to 

understand the effect of (rounding) errors made during the recursion, as 

will be shown in §3.2.4. As it will turn out that straightforward use of (1.1) 

or (1.2), for i.e., the initial value problem, is unstable for certain solu

tions (which are of great interest}, other methods have to be used. In §3.2.5 
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we shall give a brief discussion of several such methods. 

For general papers dealing with this subject, see e.g. GAUTSCHI(1967, 

1972a, 1975), MATTHEIJ (1977) & OLIVER (1968a). 

3.2.2. The scalar second order constant recursion 

Consider the recursion 

(2 .1) i ;?: 1. 

As is known (NORLUND (1924, p.295) the general solution can be found using 

the so-called characteristic equation, given by 

(2.2) 
2 

,: a,:+ b. 

Let (2.2) have roots a and B with lal < IBI, then the general solution of 

(2.1) is 

(2 .3) 
i i 

pa + qB , 

Obviously the solutions{~.} 
J. 

p,q € :R. 

the two dimensional solution space. We have 

(2.4) 
~i 

lim -- 0. 
i-- t/li -

{Bi} constitute a basis for 

Therefore {tj,i} is called a dominant solution and {~i} a dominated (or mini

mal) solution, cf. GAUTSCH! (1967). 

It is immediately clear that any solution of (2.1) written in the form 

(2.3) and with q ~ 0 will dominate{~.}. If we use the recursion (2.1) in 
. J. 

practice, we inevitably make rounding errors. A complete and detailed analy-

sis of their effects on the computed solution is a tedious and laborious 

task. However, investigating the effect of a single rounding error, made 

during the computation, at stage j say, is often satisfactory to get in

sight into the well - posedness of the problem. For simplicity we take 

j = 0; so assume 1;0 is perturbed by a quantity EO. Denote the solution of 

(2.1) with initial values ~0 = 1;0 + £0 and 1; 1 = 1; 1 by {~i}, then we clearly 

have 

(2.5) ~i+l - l;i+l a (~.-I;. ) +b ( ~. 1-1; 1) • 
J. J. J.- i-
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Hence the error {~i-~i} is propagated as a solution of (2.1), so we have 

(2.6) 

Substituting ~O - ~O = o0 and ~1 - ~1 = 0 it can be seen that q ~ 0. This 

means that the perturbation EO generates a dominant solution. 

49 

A similar statement also holds for perturbations made at other stages. 

Therefore (2.1) is not an appropriate recursion to compute a dominated 

solution, at least if relative precision is desired. In order to show that 

(2.1) is suitable for computing a dominant solution, we have to take con

taminations of errors into account. Thinking of a computer with floating 

point arithmetic, however, the rounding errors generally are relatively 

small with respect to a computed iterand (i.e. if no serious cancellation 

occurs) and therefore only generate small additional components of {wi}; 

whence the total relative error will remain small. 

The previous analysis also applies to inhomogeneous recursions. Con

sider 

(2.7) i ~ 1. 

Let {x.} be a particular solution of (2.7), then the general solution will 
i 

be given by 

(2.8) 

Perturbing ~Oas above, we see that the difference between the computed 

~- and~- itself also obeys (2.5) for all i and that the perturbations are 
i i 

propagated as solution of the homogeneous part~ Therefore (2.7) can be 

suitable for the computation of{~.}, if{~.} is not dominated by{~.} or 
i i i 

3.3.3. General linear recursions; estimating the growth of solutions 

The three-term recursion of the previous section can also elegantly 

be described using some linear algebra. Define 

(3.1) 
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and 

(3. 2) A (° 
b 

Then (2.1) can be written as 

(3.3) Ax., 
l. 

i 2: 0. 

Using this relation, we see that (2-1) is mathematically equivalent to power 

iteration with the matrix A and initial vector x0 • It is known that xi will 

asymptotically have the direction of the subdominant eigenvector; the latter 

problem, however, is known to be numerically unstable. Now if the coeffi

cients are varying (cf. (1.1)) then we can define 

(3.4) 
_ (0 1 \ 

Ai - ) 
b. a. 

l. l. 

It will not be surprising perhaps that if the coefficients are only mildly 

varying, there also exists a solution of which the iterands are direction-. 

ally close to successive dominant eigenvectors of the Ai and likewise a 

solution close to successive subdominant eigenvectors, cf. MATTHEY (1975), 

VAN DER SLUIS (1976). 

The special form of the Ai - viz. the companion matrix - is of no im

portance of course. More generally, if the Ai are slowly varying n-th order 

matrices then it can be shown that under some conditions there exist solu

tions whose directions are close to successive eigenvectors corresponding 

to a certain eigenvalue of the Ai; cf. MA'ITHEIJ(l976), VAN DER SLUIS (1976), 

SCHAFKE (1965). We give a qualitative formulation below. Consider the re

cursion 

(3.5) i 2: 0. 

PROPERTY 3.6. For each i let Ai(l), •.. ,Ai (n) denote the eigenvalues of Ai 

with \\Cll\> .•. >\\Cn)\ andei(l), •.• ,ei(n) the corresponding eigenvectors. 

If for each j and all i, Ai (j) is close to \+l (j) and sufficiently separ

ated from A. 1 (l), l ~ j, and a similar statement holds for the directions 
1.+ 

of the eigenvectors, then there exists solutions {x. ( 1) } , .•. , {x. (n) }with 
l. l. 
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For the solutions {x. (j)} of (3.5) we have 
]. 

PROPERTY 3.7. For each j and l for which 1 S j <ls n we have 

llx. (l) II 
]. 

lim II x. ( j) II 
i-><x> ]. 

0, 

i.e., {x. (j)} dominates {x. (l)}. 
]. ]. 

The solutions {x. (1)}, ... ,{x. (n)} in 3.6 constitute a basis of the 
]. ]. 
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solution space, and are called a fundamental system. It is often convenient 

to think of such a basis in terms of eigenvalues and eigenvectors. The re

quirements of 3.6 may be weakened such that only a separation between 

Ai(l), ..• ,Ai(k) on one hand and Ai (k+l), •.• ,Ai (n) on the other hand, and 

likewise of the corresponding invariant subspaces of :Rn,is assumed. The 

solution space can then be divided in a subspace whose elements dominate 

the elements of the complementary subspace (cf, MATTHEIJ(1980)). 

For the inhomogeneous recursion 

(3.8) 

the general soluti.on is lying in a linear variety to be found from a fun

damental system of the homogeneous part, in matrix notation{$.} (i.e., 
]. 

successive columns of the¢. constitute a solution of (3.5)) on one hand 
]. 

and some particular solution of (3.8), {y.} say, on the other hand, so 
]. 

(3.9) x. 
]. 

4iv+yi·' i 
v € :Rn a constant vector. 

By considering all possible v in (3.9) we can try to find out if there 

is any particular solution which has a growth character different from 

any complementary solution (i.e. of the homogeneous part). Of course this 

depends on the ri. We give a simple first order example. 

Consider 

(3.10) i 0, 1, • . • • 

1 i 
The solution of the homogeneous part equals {(3) }, apart from a constant 

factor being the initial value. The general solution of (3.10) is given by 
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(3 .11) 

i 
t (.!.) i-j ( 1, i 
L 3 rj-1 + xO 3 · 

j=l 

If e.g. ri = 1, then the homogeneous solution is 

lar solution. But 

9(1)i h" h . 

. 1 i 
1.f e.g. ri = (9) then 

dominated by an particu-
9 

with x0 = - 2, xi will be equal to 

{<½ii}. - 29 , W l.C l.S therefore dominated by 

In order to find out what the growth character is of such a more or less 

"pure" particular solution the following trick may be helpful in cases where 

solutions can be expected with an exponential growth type (as in the slowly 

varying case above) (cf. MATTHEIJ (1977,§4)). In relation.to (3.8) define 

(3.12) 

(3. 13) 

II r 11 

\ (' I 
i 

( rri-111 ri\ x') (~i~!) = ~ 
I 
I 

(3.14) + - - - - -

)~: ni+l I llr. 11 

i1J 
1. 

l"r7r 
i-1 

The recursion (3.13), (3.14) is of order n+l. The corresponding matrices 

have the eigenvalues of Ai plus an eigenvalue equalling the factor to which 

llrill increases with respect to llri_111. If this recursion is slowly varying 

then there certainly are solutions corresponding to the eigenvalues as in

dicated in the beginning of this section. Note that the additional eigen

value in the examples above equals 1 and ½ respectively, which nicely cor

responds to the results above. 

So far we have tried to bring some ordering in the solution space. 

Generally it will be very difficult for a certain solution of which e.g. 

only x0 is given, to find out whether it is a dominated solution or not, 

at least theoretically. For computational methods cf. MA'ITHEIJ (1982,. §6). 

However even though a certain solution may be classifiable from purely ma

thematical point of view, as a dominant one, it may have a subdominant 

character if one just looks at the first few iterands (cf. (3.9) with such 
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a choice of v, having only very small coordinates corresponding to the do

minant solutions). Although such situations may seem pathological one should 

be warned since any numerical procedure that is only suitable either for 

dominant or for dominated solutions, will fail then. 

REMARK. With respect to special functions one often knows the behaviour of 

the solutions of the related recurrence relations. 

3.2.4. The effect of errors made during the recursion 

We saw in §3.2.2 for the second order scalar recursion that (rounding) er

rors are propagated as solutions of the homogeneous part of the recursion, 

in first order. In the general case the situation is the same. For the sta

bility of the recursion we may distinguish between absolute and relative 

stability, by which we mean that the effects of small perturbations are 

not large or not large with respect to the solution respectively. A more 

precise definition would require a specification of "small" and "large". 

However, it is not unusual to have such a more or less qualitative notion 

only, and it is quite suited for our (limited) purposes. In order to find 

out whether or not the recursion is good natured we either have to investi

gate the solutions of the homogeneous part absolutely, or in relation to 

the desired solution. Absolute stability then means that the solutions of 

the homogeneous part are bounded (have growth factors not exceeding 1), cf. 

stability theory for discretizations of O.D.E. Relative stability then im

plies that no complementary solution dominates the desired solution, or even 

nicer, any complementary solution is dominated so that errors are damped 

out relatively. We shall give some examples. 

EXAMPLE 4.1. The recursion (3.10) is absolutely stable since the solutions 

of the homogeneous part damp out. If ri = 1, then it is also relatively 
1 i 

stable for any particular solution. However, if ri = (9) , then the recur-

sion is not relatively stable for the dominated solution {- fc½>i}. 

EXAMPLE 4.2. "Summation of a strongly decaying series." Let S z:; ai; 

assume that Sis of order unity. We are interested in S(N) = Z:~ ai, which 

is a sufficient approximation to S (both in absolute and relative sense). 

Consider the following two algorithms 

(4 .3) 0, S (N) 
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(4 .4) S(N) 

For the desired solution of (4.3), viz. {s.}~ 0 , we have S. ~ 1, whereas 
ii= i 

for the solution of (4.4), viz. {T.}~ 0 , we see that T. is strongly increasing. 
ii= i 

In both cases the solutions of the homogeneous part are {1}. Hence the sta-

bility properties of (4.3) make it preferable to use (4.4). This once more 

explains why one should sum up such a series with the smallest term (cf. 

also II .. 3 • 1) • 

For a more quantitative analysis one has to add up all effects of the 

rounding errors and their contaminations. This may be a laborious job. How

ever, the order of the error (and this is usually sufficient for a practical 

user) is often predictable. If we denote the relative computer accuracy by 

,, then the relative error in the computed xi (for the stable case) is of 
i 

the order, E. 0 max(IIA.11,llr.11). If the A, and r, resp. do not differ too 
J= J J ~ ~ 

much in norm for i varying we therefore may say that the rounding error 

is realistically estimated by max ( II A. II , Dr. II ) i'. 
j J J 

3.2.5. Methods to approximate solutions for which the initial value problem 

is not stable 

We shall restrict ourselves, for shortness sake, to relative stability 

questions from now on. Those who are interested in absolute stability can 

easily adapt the subsequent results using the remarks made about this sub

ject in §3.2.4. Another reason for considering the relative case especially 

is that the slowly varying recursions that we introduced in §3.2.3 have solu

tions of exponential type, which makes relative precision in the approxima

tions to a more natural question. 

Now assume that a solution {xi} satisfying 

(5. 1) 

and x0 given, is dominated by complementary solutions (i.e. of the homo

geneous part). We shall consider several algorithms for the computing (or 

rather approximating) such a solution. 
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3.2.5.1. Miller's algorithm 

We return to the tree term recursion, cf. §3.2.2. As is known many spe

cial functions obey such a relation, which however often is unstable for 

increasing index. An extensive study can be found in GATJTSCHI (1967). The 

classical approach to overcome this is Miller's algorithm, named after 

MILLER (1952), who first introduced backward recursion for the computation 

of Bessel functions. The basic idea can easily be demonstrated with the 

help of the constant recursion of §3.2.2. From (2.1) we obtain (if bf 0) 

(5.2) 

or in matrix notation 

(5. 3) 

For N suitably large and 

we would find a (!O) which has almost the direction of the subdominant 

eigenvectors of A, 1viz. (1). Mathematically this inverse iteration is equi-
a 

valent to backward recursion. Again we have a counter part for the variable 

case by considering dominated and dominant solutions rather than sequences 

of iterates of the eigenvectors. If some suitable "end" vector x~N), say, has 

a nonzero component of the dominated solution then backward recursion im

plies a relativ~ decrease of the undesired component as i + O. Historically 

one used to take ~N) = (~). We shall write out the results for the recur

sion in (2.1) (cf.§3.2.2) and{¢.} the solution to be determined. So assume 
l. 

that a sequence {~iN)}::~ is computed satisfying 

(5.4) O; ~ (N) 
N 

1. 

We find (cf. (2.3)) 

(5.5) 
ijJN+l <f,i-<f,N+l ijii 

ijJN+l (j>N-<f,N+l ijJN 
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Since lq /p I= I¢ 1/~ 1 1 it follows that, at least for large (N-i), ~~N) 
N N N+ N+ (N) i 

is almost proportional to¢ .• Hence~- /p would be a nice approximant for 
i i N 

¢i (the better the larger (N-i) is). The quantity pN itself is hard to 

determine. But if a relation of the form 

(5 .6) 1, 

is given (possibly µi = 0 for i > O, so ¢0 is given), then a satisfactory ap

proximant for pN is given by 

(5. 7) 

For more detailed analysis of the error see GAUTSCH! (1967), MATI'HEIJ & 

VAN DER SLUIS (1976), OLVER (1967a), ZAHAR (1977). From the geometrical in

terpretation of this algorithm as inverse iteration, it is immediately 

clear that one can often fasten the convergence by choosing a better approxi-
¢N 1 

mation for the direction of (¢N+l) than just (0 ) (cf. MATTHEIJ & VAN DER 

SLUIS (1976), OLVER & SOOKNE (1972)); t..~erefore one needs estimates for 

this dominated solution. For more general situations than this trivial 

constant case one can consult the cited literature. From §3.2.3 it follows 
1 

that a good guess will also be <aNl where aN is the absolutely smallest 

eigenvalue of AN. 

The generalization of this algorithm for the matrix vector and/or high

er dimensional cases is similar. Success is only assured if the desired 

solution is dominated by all solutions of a well determined (n-1) dimension

al solution space (i.e., loosely speaking, where no dominant solutions are 

directionally close to the dominated one). The computed sequence has to be 

normalized and this may be done with a similar relation as (5.6) (cf. MATI'HEIJ 

& VAN DER SLUIS, (1976)). The algorithm can also fruitfully be applied to in

homogeneous recursions if all solutions of the homogeneous part are dominant. 

Since the desired particular solution is unique then, no normalization of 

the computed sequence is necessary. 

The choice of N depends on the accuracy required. We shall investigate 

th 1 . (N) . l 1 ere ative error, Ti say, in our examp e. Suppose µ0 = ¢o; µi = 0, i > 0. 



We obtain: 

(5.8) 
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~i-<~iNl~o> 1~6Nl 

~i 

The last estimate in (5.8) equals <f>N-i. 
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Hence we see - in agreement with power method theory - that the rela

tive error almost decreases with a factor i at each iteration step. For 

slowly varying recursions (§3.2.3) we have a similar error behaviour, viz. 

(N) N A. (n) 
T :::: TI --=-J __ 

i j=i A. (n-1) 
J 

Again, knowledge of the order of magnitude of the solutions of the recur

sion is very useful to estimate the error cf. (5.8). 

As far as rounding errors concerns it has been shown in MATTHEIJ & 

VAN DER SLUIS (1976) that the relative error in xi is almost proportional 

to i and not to (N-i) or N, cf. §3.2.4. In the inhomogeneous case the error 

even is independent of the number of steps. Anyway the actual choice of N 

has no influence on the accuracy of xi with respect to rounding errors. 

3.2.5.2. Olver's algorithm 

If the recursion is third order or second order inhomogeneous or even 

higher order there may be a situation where both forward recursion and 

backward recursion (Miller's algorithm) will be unstable. Viz. if the de

sired (possibly particular) solution is dominated by some solution of the 

homogeneous part and dominates some other complementary solution in turn. 

A well-known scalar example is given by the recursion for the Struve func

tion Hi(x) (cf. ABRAIDWITZ & STEGUN (1964, p.496)) 

(5.9) 
(l:ix)i 

Rr !i +ii 
2 

The homogeneous part of (5.9) is also satisfied by the Bessel functions of 

the first and second kind, viz. {J, (x)} and {Y, (x)} respectively. 
J. J. 

An efficient algorithm for stable computation of "intermediate" solu-

tions like {H. (x)} was developed by OLVER (1967b);we shall deduce it in 
J. • 

such a way that generalizations may be easily understood, (cf. MATTHEIJ(1977)). 

Consider the general second order scalar recursion 



58 

(5.10) 

Define a solution {p.} of the homogeneous part of (5.10) by 
l. 

(5. 11) 1. 

By substituting 

(5.12) 

we find a first order recursion for {n.}: 
l. 

(5.13) 

This recursion can be derived using Abel's transformation trick (NORLUND( 

1924 p.289)); in his paper Olver employs a somewhat unconventional elimina

tion method for a system of equa~ions that was found by considering recur

rences for s 0 , ... ,sN and imposing boundary values. The recursion (5.13) is 

used in forward direction whereas after choosing an end value s(N) asap-
(N) N+l 

proximation to sN, a sequence of approximating values {s. } (to {s.}) is 
l. l. 

computed by 

(5. 14) 

(cf. (5.12)), i.e., in backward direction. 

In order to understand why this is a fruitful approach it may be help

ful to remark that the substitution (5.12) and the result (5.13) in fact 

are equivalent to reducing the order of a recursion when some solution (of 

the homogeneous part) is known. If this reduction solution was a dominant 

one, then there is hope that after the order reduction the transformed sub

dominant solution will become dominant, in particular the desired solution 

{n.}; hence forward recursion for {n.} is expected to be stable. We shall 
l. l. 

work this out later. Assume that {p.} is a dominant solution (this is true, 
l. 

except for the singular case that the direction of the first iterand of the 

dominated solution (of the companion matrix vector recursion) has the direc

tion of (7)) and let {cri} be a solution of the homogeneous part dominated 

by {si}. Let the solution of the homogeneous part of (5.13) be defined by 
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(5.15) 

Then 

(5.16) 

The factor between brackets in (5.16) will be bounded if for all i the 

growth factors p, 1/p, are larger than~- 1/~. (which is reasonable since 
i+ i i+ i 

{p,} dominates{~.}). Hence {n.} dominates {s.}. 
i i (N)i i 

For the approximant {~. } we find 
i 

(5.17) 

Hence 

(5.18) 

(N) 

~i+1 =~ 
pi+1 pipi+1 

which also holds without the superscript (N). On account of the dominance 

we therefore have by a limit argument 

(5.19) 

If the solutions are of exponential type (e.g. growing like eigenvalues of 

a suitable associated matrix cf. §3.2.3), then (5.19) will be of geometrical 

type and thus has fast convergence. In fact we then have 

(5.20) 

where K. is almost independent of j. 
J 

Comparing (5.18) and (5.19) we find for the relative error 
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(5. 21) 

0 th Other hand l.'f ~(N) - Owe can simply estimate (5.21) using computed n e ~N+l -

values of {ni} and {pi} by 

(5. 22) I I I I . 

If one wishes to approximate c;; 0 , ••• ,E;;p say, then (5.22) provides for an 

easily accessible criterion to estimate the value of N, viz. by recurring 

forwards with (5.13) until for a certain N > p and all i $ p, (5.22) is 

smalller than the required tolerance. Note that the algorithm can also be 

used to approximate the dominated solution of a homogeneous three term re

currence relation.-

3.2.5.3. More general algorithms for approximating "intermediate" solutions 

Above we have remarked that Olver's method was basically equivalent to 

classical order reduction. Hence a generalization to higher order recur

sions is straightforward. However, repeated use of such order reduction 

might deteriorate the conditioning of the problem, whereas possible con

vergence is hard to prove. On account of Olver's derivation, viz. via 

a kind of LU decomposition of an associated large (and sparse:) system, 

some authors (cf. OLIVER (1968b)) have proposed generalizations based on 

linear algebraic methods. A less attractive feature of such an approach is 

that a fairly simple problem is translated into a usually more complicated 

algebraic problem, with questions like pivotting, equilibration and loosing 

sparseness. 

A more general method, in some way also a generalization of Olver's, 

was proposed by MATI'HEIJ (1977, 1982) .It deals with matrix vector recur

sions: Suppose the solution {x.} of (1.2) is dominated by solutions of the 
l. 

homogeneous recursion, that constitute a well defined k-dimensional sub-

space s1 , say whereas {¢i} is not dominated by the solutions in the 
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complementary space s2 say. Let T0 be an n-th order nonsingular matrix, 

such that its first k columns span a subspace of :Rn that has an empty in

tersection with the subspace spanned by initial values of elements of s2 • 

(this is a harmless assumption and is comparable to the condition necessary 

for successful use of the QR algorithm). Given the recurrence (1.2) i.e. 

A,x. + r. 
l. l. l. 

we can obtain a transformed decoupled recursion 

(5. 23) 

with {Ti} a sequence of nonsingular matrices chosen such that 

(5. 24) 

and 

(5. 25) 

(5 .26) 

v. 
l. 

s. 
l. 

Yi 

Partitioning the 

and the matrices 

(5. 27a) 
1 

Yi+l 

(5 .27b) 
2 

Yi+l 

is block triangular 

-1 
Ti+l ri, 

-1 
T. x .• 

l. l. 

vectors into the first k and the last (n-k) 

Vi correspondingly, we find 

11 1 12 2 1 tk 
Vi Yi + Vi Yi+ s. 

l. 

2 2 2 t (n-k). 
Viyi + s. 

l. 

coordinates 

It can now be shown (cf. MATTHEIJ (1980)) that the solutions of the homo

geneous part of (5.27a}, viz. the recursion 

(5.28) 

have a growth character corresponding to the solutions~ s 1, whereas the 

solutions of the homogeneous part of (5.27b), viz. the recursion 

(5 .29) 
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grow like solutions€ s2 • 

Thus it turns out that a stable computation of {y~} has to be done in 
1 1 

forward direction, whereas {yi} has to be computed in backward direction; 
2 the latter can be performed after {y.} has been calculated. Of course we 

have to find some approximation toy!, say for N large enough, before we 

can start the backward algorithm (cf. Miller's and Olver's algorithm). We 

shall give an idea of the thus introduced truncation error for the case of 

a slowly varying homogeneous recursion (cf.§3.2.3); so let Bxi+ll/lxil ~ 
1 1 

Ai(k+l). Denote the sequence of approximants of {yi} by {yi(N)}. Then the 

relative truncation error in yi is given by 

(5.30) 

N-1 
0 ( T.T 

1 

1 
If we know a good approximation of yN then this should be used of course. 

If we do not have such an approximation at our disposal we may choose 
1 

yN(N) = O. We remark that the error found in (5.30) again resembles the 

power method like results in §§3.2.5.1-2. As in Olver's alqorithm we may 

use computed quantities to estimate the error and thus equip the algorithm 

with a self search device for determining an N necessary to obtain acer

tain relative precision: indeed, a qood estimator for lc'1:i Bj)-il is given 

by the inverse of the product of the absolutely smallest eigenvalues of the 

B., whereas y, and y~ can be estimated by y~. For refinements see MATI'HEIJ 
J 1 1 1 

(1982,§5). 

It can be shown that the relative rounding error in the computed re

sult is proportional to i - as was also found in·Miller's algorithm - and 

even independent of i for inhomogeneous recursions with solutions of the 

homogeneous part, that are sufficiently dominant and daninated resp. 

A straightforward way to determine these {T.} and {v.} is by using 
1 1 

orthogonal matrices. The factorization step (5.23) is then performed via 

QR-decomposition, which can be performed by Householder's or Given•s· 

method (cf. WILKINSON (1965)). As a by-product the matrices v~ 1 will be upper 
1 

triangular, which means that their eigenvalues are known (necessary to esti-

mate their norms) and moreover that inversion of the Bi - which is neces

sary for the backward recursion - is simple and stable alike. Finally back

transformation of the computed sequence {y~(N)/y~} is simple, because in-
1 1 

version of an orthogonal matrix is equivalent to transposing. 

The alqorithm of Olver in §3.2.5.2 can be considered as a special kind of 
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triangularizing the corresponding companion matrix vector recursion, but 

not via orthogonal matrices. For the general scalar problem the application 

of the triangularization method to the companion matrix recursion using 

orthogonal matrices, is likely to disturb the sparseness. Hence it is worth

while to investigate whether there are special choices for the Ti which pre

serve the scalar character of the recursion. A more detailed description is 

still under construction. 

3.2.6 conclusion 

In the previous sections we have tried to give a survey of problems 

and methods involved with recursion. We did not go too much into details; 

the interested reader can consult the papers indicated in the references. 

There are many more related subj~cts, some of them are treated elsewhere 

in this tract. Examples are the summation of series of dominated solution 

(see the excellent method given in the papers by DEUFLHARD (1976,1977)) or 

the problems encountered when there is no dominance phenomenon, and the 

rounding errors may become important. 
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3.3. Three-term recursions; some practical points of view 

In this section we again consider three-term recursions. In the pre

vious section general aspects of these recursions were considered. For 

applications, especially for special functions, it is worth-while to have 

information how to use the algorithms for practical problems. 

3.3.1. On the growth of solutions of three-term difference equations 

Let us consider the recursion 

(1.1) 0, n 1,2, .•• , 

where an, bn are given sequences of real or complex numbers, bn f 0. The 

general solution of (1.1) can be written as a linear combination of any 

pair fn,gn linearly independent solutions, that is 

(1. 2) 

I 
where A and Bare complex numbers not depending on n. We are interested 

in the special case that the pair fn,gn ~as the property 

(1.3) 0. 

Any solution (1.2) with Bf 0 then satisfies fn/yn + 0, n + 00 If B = 0 in 

(1.2) yn is called a minimal solution of (1.1), if Bf 0 it is called a 

dominant solution. If we have two initial values y 0 ,y1 of (1.1) and f 0 , f 1 , 

g0 , g1 are known, then we can compute A and B, viz. 

A 
g1y0 - gOyl 

fOgl - flgo' 
B 

Yof1 - Y1fo 

gOfl - glfo" 

The denominators are non-zero if fn,gn are linearly independent. When we 

prescribe that the initial values y0 ,y1 are intended for a minimal solu

tion, then B = 0. It follows that in that case just one initial value can 

be prescribed, the remaining one follows from the relation y0f 1 = y 1f 0 . 

In computations this leads to well known instabilities for the evaluation 

of minimal solutions. If our initial conditions y0 ,y1 do not fulfil 
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exactly the condition B = 0, then the computed solution (1.2) behaves 

ultimately as a dominant solution (even when computing with infinite preci

sion), although we intended to compute a minimal one. 

For applications it is important to know whether a given recursion 

(1.1) has dominant and minimal solutions. Sometimes this can be concluded 

from the asymptotic behaviour of the numbers an,bn in (1.1). The following 

theorem is quoted from GAUTSCH! (1967). For a proof the reader may consult 

the references given there. 

THEOREM. Let an,bn have the asymptotic behaviour 

a 
n 

a an, b ~ bnB, 
n 

ab -f o, a,B real, n + oo 

and let t 1,t2 be the zeros of the characteristic polynomial 
2 

<l>(t) = t +at+b, lt1 1 ~ lt2 1. 
(i) If a> ½B then the difference equation (1.1) has two linearly 

independent solutions Yn,l and Yn, 2 , for which 

Yn+1,1 ~ a 
-an , 

Yn, 1 

Y n+ 1 , 2 ~ b B-a 
--n 

a 
n + oo 

(ii) If a= ½B then (1.1) has two linearly independent solutions 

Yn,l'Yn, 2 for which 

-a 1/n 
limsup[lynl(n!) J lt1 1 

n+oo 

for all nontrivial solutions of (1.1). 

(iii) If a< ½B then 

lb, 112 

for all nontrivial solutions of (1.1). 

n -+ oo, 

In both case (i) and the first part of case (ii) fn = Yn, 2 is a min

imal solution of (1.1). Furthermore, in the first part of case (ii) 
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r = 1, or r 2, 

where r = 2 for the minimal solution, and r 

see this we remark that from (i) we derive 

n ➔ oo, 

1 for any other solution. To 

which tends to zero since 8-2a < 0. Hence the sequence {y 2/y 1} tends n, n, 
to zero. In the first part of (ii) we have 

n + co 

Since lt11 > lt2 1, we again conclude that {yn,zlYn,l} tends to zero. 

The second part of case (ii) of the theorem and case (iii) give no 

information about dominant and/or minimal solutions. As will become clear 

from the examples below, we need extra information of the solutions of 

(1.1) in these cases. 

Some insight in the above theorem can be obtained from the companion 

matrix vector recursion: 

¾ 

The eigensystem of ¾ is given by 

eigenvectors: Ek 

+ 
A~\ ( + I 

e~) 
(Ak 

ek: \1 1 ) 

eigenvalues: Ak 

+ 
(Ak 

A-). \ k' 

+ -The quotients of the elements of each eigenvector behave as). and)., re-
a 8 k k 

spectively. The eigenvalues with~= ak and bk= bk are given by 

and behave, fork large, as depicted in the following table. 
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~ situa 1>-;1 1>-;1 

s < 2a \b/a lkS-a lalka 

s = 2a l>-+lka l1,-lka 
1 

/[0kS/2 s > 2a /jblkS/2 

If we assume 

which is the case with the above specified coefficients then two independent 

solutions of the matrix vector recursion are given by the eigenvectors 
+ ek and ek. The quotient of successive elements of the independent solutions 

behave as given in the above table for the eigenvalues as a function of the 

relation between Sand 2a. 

Examples 

1. Bessel functions. 

Recursion: 

Solutions: f 
n 

Case of theorem: (i), 

Conclusion of theorem: 

2 
a = - z' 
b 1 

o. 

a= 1, 

s 0. 

f 

z ,f 0. 

n+l ~ ~ 
f 2n 

n 

Known asymptotic behaviour: f 
n 

2. Legendre functions. 

-~ ez -n 
g ~-(nn/2) (-) 

n 2n 

a) Recursion with respect to the order 

n ➔ oo 
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Recursion: 
2 _l 

ym+l + 2mz(z -1) 2ym + (m+a) (m-a-l)ym-l 

Solutions: f 
m 

a € a:, 

m 
gm= Qa(z), 

a ,f -1,-2, ••. 

2 _l 
Case of theorem: (ii), a= 2z(z -1) 2 , a = 1 

b 1, 

Conclus1.·on of theorem: 1· fm+l t im ~ = 2' 
m-- m 

fl 2 

Re z > 0, 

z i. (0,1]. 

b) Recursion with respect to the degree 

Recursion: 
2n+2a+l n+a+m o. y n+l - z n+a-m+l yn + n+a-m+l yn-1 = 

f 
m m 

0. Solutions: Qa+n(z), gn Pa+n(z), Re z > 
n 

Case of theorem: (ii), a = -2z, a = 0 

b 1, fl 0 

t = 1 z + (z 2-1)½, 

lt1 1 > 1 > lt2 1. 

Conclusion of theorem: lim fn+i/fn 
n~ 

3. Coulomb wave functions 

Recursion: 2 2 i L[(L+l) +n] YL+l- (2L+l)[n+L(L+l)/p]yL 

+ (L+l)[L2+n2J½yL-1 = 0, L = 

Solutions: f = L FL(n,p), gL GL(n,p), n € JR, 

Case of theorem: (i) , 2 1 a= a = p 
b 1, fl 1. 

Conclusion of theorem: gL+lgL 
2L 

fL+l/fL ~ ;L, L-+ ~ p' 

o. 

1, 2, ... 

p > 0. 

00. 
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Known asymptotic behaviour: fL 

L -1 
gL ~ [2LCL(n)p] 

CL(n) ~ 2-½e-TTn/2[~JL+l_ 
2(L+l) 

4. Incomplete beta functions 

Recursion: ( 1 + n+p+q-1 x) + n+p+11- l 
Yn+l - n+p Yn n+p xyn-1 

Solutions: f n Ix(p+n,q), 

Case of theorem: (ii) a= -(l+x), 

b = X 

CJ. 

s 

fn+l 
Conclusion of theorem: lim -- = x 

n➔oo fn • 

1, 

0 

0 

0 ,e; X < 1. 

q-1 q-1 p+n 
Known asymptotic behaviour: fn ~ (1-x) n x /f(q). 

5. Repeated integrals of the error function 

Recursion: 

o. 

Solutions: f 
n 

z2 n 
e i erfc z, n z2.n 

gn = (-1) e i erfc(-z), 

inerfc z f n-1 i erfc t dt, 

-1 
i erfc z 

Case of theorem: (iii) a= z, 
1 

b = -2 

Z E <J:. 

CJ. = -1 

s -1. 

i 0erfc z 

Conclusion of theorem: lim sup[Jy I (n:)½]l/n 2-½ 
n n ➔ oo 

for both yn = fn and yn = gn 

erfc z 
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L ➔ oo 

Known asymptotic behaviour: inerfc z 2-ne-!z2-z£/r (!!.+ 1) 
2 

hence 

n ➔ co. 
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6. Confluent hypergeometric functions U{a,b,z), M{a,b,z) 

a) Recursion with respect to a 

Recursion: 

Solutions: 

{n+a+1-b)yn+l + {b-z-2a-2n)yn + {a+n-1)yn-l = O. 

r{a+n) 
fn = ~ U{a+n,b,z), 

rca+nl 
r{1+a+n-b) M(a+n,b,z). 

Case of theorem: {11) a= -2, a= 0 

0 b 1, 

t1 = t2 1. 

conclusion of theorem: lim sup ly ll/n = 1 
n n -+ co 

for both yn = fn and yn gn. 

Known asymptotic behaviour: 
~b-¾ -2/nz"" 

fn ~ c 1n e 

hence 

c1 not depending on n. 

bl Recursion with respect to b 

Recursion: 

Solutions: 

Case of theorem: 

zyn+l + {1-b-n-z)yn + {b+n-a-1)yn-l = 0. 

r (b+n-a) 
r {b+n), M (a,b+n,z) f n 

gn U{a,b+n,z). 

(1), a = -1/z, a = 1 

b 1/z, a 1. 

f gn+1 ~ Conclusion of theorem: n/z, n+l ~ 1. f gn 

Known asymptotic behaviour: fn 
-a 

n 

n 

1-b-n 
gn ~ z r(b+n-1)/r(a). 
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7. Jacobi polynomials 

Recursion: 

Solutions: 

(2n+2) (n+a+a+1) (2n+a+a)yn+1 

2 2 
(2n+a+a+1) { (2n+a+a+2) (2n+a+a) X + CX - a }y n 

-2(n+a) (n+a) (2n+a+a+2)yn-1 

g =P(a,a)(x), 
n n 

f = Q (a, a> (x) , 
n n 

X € 0:. 

Case of theorem: (ii) a= -2x, a= 0 

b 1, a = o 

x+ ~, t = x- /x2-i' 
2 

lt2I = 1 if x e: [-1,1] 

> 1, lt2I < 1 if xi [-1,1] 

Conclusion of theorem: x e: [-1,1]: lim sup ly 11/n = 1 
n -+ "' n 

for both yn 

X / [-1,1]: 

Q (a, a> (x), 
n 

Q(<l,a) (x) 
n+1 

Known asymptotic behaviour: x e: (-1 , 1) , x = cos 8, o < a < 7T 

X / [-1,1], 

Q(a,a) ~ n-½$(x)tn 
n 2 
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where~ and$ are independent of n. 

Examples 1 through 5 are extensively treated in GAUTSCH! (1967). For 

ALGOL 60 implementations of the algorithms see Gautschi's references. 

Example 6 is considered (with ALGOL 60 algorithm) in TEMME (1983). 

Information on the Jacobi polynomials P~a,a) (x) and ~Q~a,a) (x), 

Jacobi's function of the second kind, can be found in SZEGO (1974). The 

Jacobi polynomials contain as special cases the important Chebyshev and 

Legendre polynomials. It follows that for x not lying in the interval of 
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orthogonality the polynomials P(a,S) (x) can be 
(a B) (a,S)n 1 

values PO' (x) = 1 and P1 (x) = 2 (a,B) + 

safely recurred from initial 
1 
2 (a+S+2)x. For x E [-1,1] 

(for numerical applications the most important case) the theorem is incon

clusive and also our formulas give no information. The point is that 

Q~a,B)(x) is usually not considered for x E [-1,1].Itisamany-valuedfunc

tion of x and it can be made single-valued and regular in the complex plane 

by cutting the plane along the segment [-1,1]. If x E [-1,1], the values 

Q(a,B) (x± iO) are not equal. 
n 

For the case a= B = 0, SZEGO (1974, p. 224) gives the result 

± iO) ~ ( TI )½ ±i[(n+½)B+TI/4] 
2n sin 0 e ' 

n + oo, 

where O < 0 <TI.It follows from his analysis that the result for the gen

eral case can be obtained using the same method. It gives the same behaviour 

as for Q (O ,O) (cos 0 ± iO) except for a constant factor depending on a, B and 
n 

0, but not on n. Thence we conclude that the asymptotic behaviour of 

(a,B) ) (a,S) ( 'O) · f h'ft · th h f P n (x and Qn x±i is the same, apart rom a s i in · e p ase o 

the oscillatory part of the functions. It follows that for x E [-1,1] the 

Jacobi polynomial P(a,S) (x) is not a minimal solution of the recursion given 
n 

in Example 7. Rounding errors become important in this case when using the 

recursion relation for computing successive Jacobi polynomials. 

Other examples for the use of backward recurrence relations can be 

found in CLENSHAW (1962) and CLENSHAW & PICKEN (1966), where the method is 

used to generate coefficients for the expansion of many special functions 

in series of Chebyshev polynomials of the first kind (in these cases higher 

order recursions are involved). 

3.3.2. The Miller algorithm 

Let us suppose we want to compute the minimal solution {fn} of the 

recursion (1.1) with the normalizing relation 

(2. 1) I 
n=O 

\ f 
n n 

s, s 'f 0 

wheres and An are given numbers. Of course a finite number, viz. 

f 0 , ••• ,fN, will be considered where N ~ O. As mentioned in earlier sec

tions, Miller's algorithm is based on choosing v > N and computing a solu

tion {y~vl} of (1.1) with initial values 
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0, 

(where the numbers O and 1 may be replaced by any other pair if at least 

one of the numbers is not equal to zero; in some cases a different choice 

may speed up the convergence). It follows (cf. (5.5) on p.55) that for 

0 ~ n ~ v-1 

(2.2) 
gv+lfn-fv+lgn 

gv+lfv-fv+lgv 

fn - fv+/gv+l gn and from (1.3) we derive that for 

f . 
n 

(V) 
It follows that, if vis large enough, fn can be computed from yn and Pv· 

The latter is not known, in general, and we proceed using (2.1). We com

pute 

(2. 3) 
(V) 

s 
V 

I 
n=O 

f(v) s (v) 
n = ~ y n ' 

s 

then we have for the relative error in fn (if fn f 0) 

(2. 4) 

with 

(2.5) 

f(v)_f 
n n 

f 

a 
V 

n 

I (v) (v) f 
s s yn - n 

f 
n 

av-pv+/Pn +,v 
1-a -, 

V V 

T 
V 

On account of (1.3) and the convergence of (2.1) it follows that the 

left-hand side of (2.4) tends to zero (for v + 00 ) if and only if 'v tends 

to zero. Also, (2.4) gives information on the relative error when the 

quantities av, pn, pv and 'v can be estimated. 

To facilitate the error analysis, the quantities av and 'v' represent

ing sums, are replc>.ced by the possibly most relevant terms in these s=s, viz. 
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(J 
V 

; ..!_ ). f 
s v+l v+l' 

Then the relative error (2.4) is written as 

(2.6) 

f (V) -f 
n n 

f 
n 

- ..!_ ). f 
s v+l v+l 

fv+l gn ---
gv+l fn 

(n O, ••. ,N). 

For obtaining an a priori estimate of v, which makes the right-hand 

side of (2.6) smaller than a given quantity€> 0, GAUTSCH! (1967) consider

ed only the case n = N (taking into account (1.3) this is a reasonable 

step). In the examples in his paper he replaced the values fv+l' gv+l' fn 

and gn by asymptotic approximations. Then, using an inversion process, he 

obtained a first estimate of v. By computing successive values 
(v) (v+5) (v+Sj) 

f , f , • • . (n = 0, 1, .•• ,N) the values of f are accepted if they 

agnree :ith f(v+S(j-l)) within the prescribed re~ative n accuracy. An unpleas-

ant feature of this procedure is that computing time is wasted if either 

the first estimate of vis much too low or much too high. Another diffi

culty is a slight uncertainty associated with the acceptance criterion: 

mere numerical agreement of solutions computed with two different values 

of v(v and v+5) does not guarantee their accuracy. In §3.3.4 we describe a 

different procedure for obtaining estimates of v. 

3. 3. 3. Gautschi' s modification of the Uiller algorithm 

In GAUTSCH! (1967) the computation of f(v), n = O, .•. ,N, follows a 
n 

different scheme. It is based on the ratios (we suppose throughout that 

( 3. 1) r 
n 

and it originates from continued fractions for these ratios of minimal 

solutions of three term recursions. From (1.1) it follows that the rn satis

fy the non-linear recursion 

(3. 2) 
-b 

n 
a +r 

n n 
n ~ 1 
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and substituting for rn a similar equation a continued fraction arises. 

For the partial sums of (2.1) we introduce 

(3.3) s n 

00 

= f- I 
n m=n+l 

A f , 
mm 

hence for s we have the recursion 
n 

(3. 4) n ;:: 1. 
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If r\/ ands\/ are known for some\/> N the ratios rn and the partial 

sums can be obtained from (3.2) and (3.4) respectively, applying these re

cursions for n = v,v-1, ••• ,1. In particular we have 

and so 

(3. 5) 

00 

s 0 = f- I 
0 m=l 

A f 
mm 

This gives the initial value of the desired solution. The remaining values 

follow from f = r 1f 1 , n = 1, ••• ,N. 
n n- n-

In the actual algorithm the quantities r\/ ands\/ for starting the re-

cursions (3.2) and (3.4) are taken equal to zero. The infinite continued 

fractions rn and the infinite series snare thus replaced by truncated 

fractions and truncated series (n < v). In fact two sequences {r(vl}, {s(v)} 
n n 

(0 s n s v) are defined 

(\/) o, r 
\I 

(3. 6) s 
(\/) 

0, 

according to the recursion 

(\/) 
r n-1 

(\/) 
5 n-1 

(v) 
-bn/(an+rn ) 

n 

r (v) (A +s (v)) 
n-1 n n 

(v) f (v) 
rn-1 n-1' 

scheme 

\)I• • • I 1 

n=l, •.. ,N. 

It can be verified that the quantities f(v) obtained in this way are the 
n 

same (mathematically, perhaps not numerically) as those in (2.3) and, as a 

consequence, the relative errors are as in (2.4). 

While algorithm (3.6) and Miller's algorithm (resulting in the compu

tation of (2.3)) are mathematically equivalent, they have different 
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computational characteristics. In many cases, e.g., the quantities y(v) of 
n 

(2.2) grow rapidly as v increases (especially those for small n), and may 

cause "overflow" on a digital computer. 

ties r(v) in (3.6) converge to a finite 
n 

if the algorithm converges at all. 

In contrast with this, the quanti

limit as v ➔ 00 , and so does s(v) 
n 

When applying the Miller algorithm or Gautschi's version (3.6) of it, 

one should take care of two points. The first is (it is important for both 

versions) to take a normalization (2.1) in which no cancellation of leading 

digits occurs when summing it numerically. Sometimes one has some choice 

in the selection of (2.1). Consider, for instance, for the computation of 

the modified Bessel functions the two series 

for z E a::. For Re z ➔ 00 we have I (z) ~ e z / (21rz) ½. It follows that the con
n 

dition function (see §II.1.2) of the first series is much smaller than that 
2z of the second one (1 and e , respectively, for real positive z). 

A second point is that we assumed fn f 0. In Gautschi's algorithm this 

assumption is very important, in Miller's original algorithm it can be drop

ped. Zero-values of fn can occur, for instance, in the case of ordinary 

Bessel functions with 

-2n 
an= -z-, 

Although exact values 

puter (except for z = 

b 
n 

of 

0) 

sider the first elements 

0, 

1, f 
n 

zeros of Jn(z) are not representable 

the algorithm may break down in this 
(v) 

computed according to (3.6): r n 

2vz 

4v(v-1)-z2 

on the com-

event. Con-

The number v, the starting value of Miller's algorithm, is (for this case) 

larger than lzl (GAUTSCH! (1967, p. 51). Hence, the value of r(v2) is well
v-

defined. Values of r(v) (n < v-2) may become undefined, owing to a vanish
n 

ing denominator. Computer programs must be protected against this phenomemn. 

According to Gautschi (see the discussion on p. 42 of his paper) the 
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presence of zeros need be of no great concern for the computed values f(v) 
n 

in the final step of algorithm (3.6). 

3.3.4. Olver's algorithm 

This algorithm is already mentioned on p.57 in the previous subsection 

II.3.2. Here we consider a few practical aspects of it and we will indicate 

how it can be used in combination with Gautschi's algorithm. In the latter 

the estimate of v~ see our remarks at the end of §3.3.2, is not very satisfact

ory, whereas Olver's version is rather attractive for the estimation of v. 

We only consider the homogeneous recursion (1.1); in OLVER (1967b) also the 

inhomogeneous case is treated. The combination of the algorithms of Gautschi 

and Olver is discussed in OLVER & SOOKNE (1972), where it is applied to the 

well-used example of the Bessel functions. For the sake of completeness we 

summarize Olver's algorithm. 

Let the given difference equation be denoted by (1.1). We compute a 

solution {p} defined by 
n 

0, 1 , (n ?: 1) • 

Furthermore we introduce sequences {en} and {En} with e0 = s (see (2.1)) 

and en= bnen-l (n?: 1), and En defined as the (necessarily convergent) 

series 

(4.1) E n 

oo e 

min PmP:+1 1 
n ?: 1; 

the process fails if, and only if, one of the numbers pn vanishes. The 

above given quantities are used to compute a minimal solution {y} of (1.1) 
n 

with initial value y0 = s. 

PROPOSITION. The sequence {yn} given by 

(4.2) n?: O, 

where for n = 0 (4.2) ·is to be interpreted as y 0 = s, is a minimal solu

tion of ( 1. 1) • 
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PROOF. Substituting (4.2) in (1.1) gives (for n ~ 1) 

en en-1 en 
= Pn+1En+1 + a p (E 1 +---) + b p 1 (--- + --- + En+1). 

n n n+ PnPn+1 n n- pn-lpn PnPn+l 

Since {p} is a solution of (1.1) it is easily verified that this expression 
n 

vanishes identically. From its construction it follows that yn is a minimal 

solution. D 

In Olver's algorithm the wanted solution {yn} is approximated by a 

finite part of the series in (4.2), viz. 

v-1 e 
(4. 3) pn l m 

m=n pmpm+l 
0 s n s v-1, 

with, again, the assumption Yciv) = s. It is easily verified that {y~")} is 

also a solution of (1.1) (for 0 S n S v) with "boundary values" 

(4. 4) 
(V) (v) o. Yo s, Yv 

The truncation errors and the relative errors are given by 

(V) 
E 

(4. 5) 
(v) 

pnEv, 
yn-yn \) 

yn -yn E yn n 

both defined for n S v, but only of interest for OS n SN. 

The value of v plays the same role as in Miller's algorithm and in 

Gautschi's version of it, i.e., it is used for starting the backward pro

cess for computing the solution {y(v)} of which the values for n = O,v are 
n 

given in (4.4) and the remaining follow from 

(4. 6) e 
n 

applied successively for n = v-1,v-2, ••• ,1. Here the quantities Ei are used 

-to decide whether the error is satisfactorily small. If the infinite series 

(4.1) are replaced by their first terms then the second of (4.5) reduces 

to 

(4. 7) 
ev pnpn+l ---- 0 Sn SN. 
en PvPv+l 



PRACTICAL ASPECTS OF RECURSIONS 79 

Thus, the relative error is easily computed (approximately) by the quanti

ties pi and ei. The right-hand side of (4.7) is computed for v = N+1,N+2, ••• 

until they fall below the desired relative accuracy. Since the Ei in (4.5) 

are replaced by approximations it is not proved that a value of v accepted 

in this way is a correct value. To make the choice more rigorous one may 

use bounds for the solution {p} in order to obtain upper bounds for 
n 

IEv/Enl. Theorems and examples in OLVER (1967c) may be useful in this con-

nection. 

For a full understanding of Olver's method we remark that (4.6) can be 
(v) 

conceived as a first order recursion for yn • As observed on p.58 in the 

previous subsection II.3.2 the original recursion (1.1) is reduced in order: 

the difficult problem for the second order recursion is reduced to a per

haps less difficult problem for first order recursion. In this connection 

the theory of subsection II.3,1 may be important, 

The algorithm for the computation of y(v) is not always well-condition-
n 

ed. This may be analysed by using the results of II.3.1. In some cases in-

stabilities occur due to a loss in accuracy in the formation of these

quence {pn} (initially pn may be like a multiple of the minimal solution, 

although it increases ultimately in proportion to the dominant solution). 

Therefore we remark that the two values (4.4) can also be used to compute 

y(v) with the help of Gautschi's algorithm (3.6) with the simple normaliza-
n (v) 

tion Yo = s (i.e., Ao= 1, Am= 0, m ~ 1). In OLVER & SOOKNE (1972) this 

device is followed for the computation of ordinary Bessel functions. 

It remains to give information for the computation of a minimal solu

tion of (1.1) in the case of a general normalization (2.1). 

one could reason as follows (however it will be a false reasoning). 

Suppose we have computed (within a given accuracy) a minimal solution {y} n 
of (1.1) with initial condition y0 = s as a simple normalization. As men-

tioned in §3.3.1 any other minimal solution {fn} (satisfying f.i. a general 

normalization relation (2,1)) is a multiple of Yn• That is, by using (2,1), 

we infer that 

(4.8) t 

For computations we suppose that in this series and in (2.1) the symbol 00 

is replaced by v. Then, for v we have two conditions 

(i) to make the second of (4.5) or (4.7) small enough, 
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(ii) to make both infinite series 

and 

small enough. 

r 
m=v+1 

A f mm 

Moreover we suppose that the yn are replaced by y~v), of which the computa

tion is described earlier in this part. 

This reasoning is used in OLVER & SOOKNE (1972, p. 945) (in fact only 

condition (i) is mentioned) and we will show, as is done properly in OLVER 

(1967b, §11), how to obtain a correct condition on v. The point is that the 

computed y (i.e., ;(v)) is not an exact minimal solution, since it is com-
n n 

puted with two conditions given in (4.4). In §3.3.1 we remarked that for a 

minimal solution one and only one value can be prescribed. 

Let {fn} be the wanted minimal solution of (1.1) (to be computed for 

n = 0,1, •.. ,N) with normalization (2.1). Let {y(v)} be computed as above n --
with condition (4.4), and {y} the exact minimal solution of (1.1) with 

n 
Yo= s. Then we have (compare (4.5)) 

(4.9) 

Using (4.8) we obtain 

(4.10) 

with 

In (4.10) , 

quantities 

defined by 

(4.11) 

f 
n 

t 
\) 

t 
\) 

T 
\) 

\) 

I 
n=O 

and 
(v) 

yn 

and pnEV 

are 

are 

0 $ n $ v. 

s 
t +T 

\) \) 

\) 00 

T 
\) Ev l Anpn + l AnYn. 

n=O n=v+l 

known whenever a choice of v is made. 

not known. We approximate f of n (4. 10) 

n=0,1, ••. ,N. 

The small 
f (v) by 

n 

Then the relative error in this approximation is obtained by using (4.10) 

and (4.11), that is, 
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To the first order of small quantities we have t + T ~ t p E /y(v) ~ v v - v' n v n -

Ev/En (see 

f -f(v) 

(4.2) ) .• We obtain for the relative error approximately 

(4 .12) n n 
f(v) 

n 

- E /E - T /t , 
V n V 

0 Sn SN< v. 

The first part corresponds with condition (i) on page 79. The second part, 

which does not depend on n, is connected with condition (ii). It is clear 

that it contains more than the series mentioned there. Actually we have 

V oo 

(4.13) 
Ev l AnPn + L AnpnEn 

n=O n=v+l 
V 

I 
n=O 

If more information on pn and En and the remaining quantities is available 

this expression can be estimated further. For the present discussion the 

only possible step is to replace the series by their most relevant terms, 

viz. Tv/tv ~ (AvpvEv + Av+lPv+lEv+l)/(A0s). Using the first term of (4.1) 

we obtain 

(4.14) 

and this expression is easily computed. 

CONCLUSION 

Although Olver's algorithm gives a better control on error analysis 

than the Miller algorithm, in the final stage of the above analysis approxi

mations are used. In general one has to use such approximations for obtain

ing the starting value v of the backward approximation process. For special 

cases bounds for pi and Ei may be constructed in order to obtain more rigor

ous and possibly strict error bounds. We believe, however, that the choice 

of v based on testing the smallness of (4.7) and (4.14) is more reliable 

than the estimations based on asymptotic expressions (as mentioned in 

§3.3.2), whenever these are available. 
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4. CONTINUED FRACTIONS 

In this chapter we discuss continued fractions. In section 4.1 through 

4.4 some basic theory about continued fractions is introduced. In sections 

4.5 through 4.7 we treat the approximation of (infinite) continued fractions 

and the evaluation of these approximations. This material can be found scat

tered in the literature. New is an estimation for the condition in section 

4.8. In section 4.9 we give some examples. 

4.1. Introduction 

In this section we introduce continued fractions and establish some 

notations and definitions. 

A mathematical function can often be represented by a continued frac

tion. A continued fraction is defined as an ordered pair (({a },{b }) ,{c }) , 
n n n 

where a 1 , a2 , and b 1 , b 2 , ••• are complex numbers with all ak # 0 and 

where {c} is a sequence in the extended complex plane defined as follows: n 

{ 
ck= Sk(0), k = 1, 2, ••• where 

(4.1.1) $0 (w) w, sk (w) = 8k-1 (sk(w)) k 1 , 2, ..• and 

sk (w) '\/ (bk +w), k=l,2, ••• 

The continued-fraction algorithm is the function~ which assigns to each 

pair ({a },{b }) the sequence {c }. 
n n n 

The prescriptions to perform the operations may be denoted by 

typographically this is not convenient, so we write 

a 1/ a~ _a3/ 
fi+~+~+ .•• or 
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We also use 

(4.1.2) 

in analogy to series and the L-symbol. From this continued fraction we call 

ak the k-th partial numerator, 

bk the k-th partial denominator, 
k a. 

l. 
ck i11 b. 

the k-th convergent. 
l. 

A continued fraction is said to converge if the sequence {c} converges. 
n 

The value, c, of the continued fraction is the limit of {c }. 
n 

The analytic behaviour of continued fractions is treated in WALL (1948), 

in PERRON (1950) and KHOVANSKII (1956). More recent views on the matter and 

the applications of continued fractions in numerical analysis are found in 

HENRICI (1977a)and JONES & THRON (1980). This chapter leans heavily upon 

the last book. Recent conference proceedings are JONES, THRON & WAADELAND 

(1982) • 

4.2. Some examples. 

In this section we demonstrate some methods to construct a continued 

fraction. 

In order to construct a simple example, which will be useful further 

on, we look at the quadratic equation 

(4. 2.1) 2 
z - bz - a 0 I 

where the roots, z 1 and z 2 , satisfy the two equations 

b 

Eliminating z 2 we get 
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It is easily verified that, if we take in (4.1.1) 

s(w) a/(b+w), 

the continued fraction, thus defined, has the convergents 

ck s(s( ... (s(0)) .•• ) 

and the limit, c, (if existing) of {c} has the property 
n 

c = s(c). 

This enables us to write 

(4. 2. 2) -c 

As an illustration we take a b 1 and find for the golden ratio, r, 

(4. 2. 3) 

In a similar way, due to Gauss, we find for the quotient of two hyper

geometric series a continued fraction 

(4.2.4) 

F(a,b+1;c+1;z) 
F(a,b;c;z) 

F(a,b;c;z) 
F (a,b+l; c+l; z) 

1_ a(c-b)z 
c(c+l) 

F(b+1,a+1;c+2;z) 
F(b+1,a;c+1;z) 

-d z 
i 

--1-

(b+k) ( c-a+k) 
d2k= (c+2k) (c+2k-1) 

d = (a+k) (c-b+k) 
2k+1 (c+2k+1) (c+2k) l k 0, 1, .... 

or 

A more formal treatment of the convergence of this continued fraction and 

various applications is given in JONES & THRON (1980, §6.1.1). 
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4.3. Some relations 

In this section we investigate the connection between continued frac

tions and other parts of mathematical analysis, in order to be able to use 

the theory developed elsewhere. 

A well known and useful part of elementary continued fraction theory 

is that if we introduce two sequences {pk} and {ak}, which are defined by 

l; O; 

(4. 3 .1) 
O; 1; } k 1, 2,.. . , 

it can be proved that for ck, the k-th convergent of i!l ai/bi' holds 

(4.3.2) k 1, 2,.. . . 

For the continued fraction (4.2.3) we get ck 

Fibonacci numbers. 

More important is that we have connected continued fractions with re

currence relations, see also JONES & THRON (1980, §5.2). Three-term recur

rence relations (like (~.3.1)) are surveyed by GAUTSCH! (1967). 

In order to link continued fractions with series we take (4.3.1) and 

(4.3.2) and we get 

From this and c 
n 

(4. 3. 3) 
n a. n 
<j, -2 = I 

i=l bi i=l 

i 

(-l) i+l j~l aj 

qi-lqi 

i 

(-l) i+l j~l aj 

qiqi-1 

Conversely, there is the identity of Euler 

n 
i do 

(4.3.4) I d,x 
i=0 

]_ n -(di/di-l)x 
1+ <j, 

1+(dJdi_1)x i=l 
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A very much related and fertile part of the mathematical theory is 

touched upon when we consider a continued fraction as a function, c, of 
i 

a parameter, x, with (formal) power series expansion Eyix. We approximate 

c(x) by a rational function 

Pn (x) /Qm (x) , 

where Pn is a polynomial in x of degree at most n and Qm of degree at most 

m. We can choose the approximation so that 

has a (formal) power series expansion E oixi, in which o. = 
l. 

0, 0 $ i $ n+m. 

If we impose a normalization condition and if we require that P and Qm n 
have no common factors, we can prove that P and Qm are unique. 

n 
Frobenius conceived Pn/Qm as an element of matrix and Pade developed 

the theory; we say that Pn/Qm occupies the position (n,m) of the Fade table. 

It can be proved (see JONES & THRON (1980, Theorem 5.19)) that the conver

gents of a continued fraction c(x) occupy the stair step sequence 

i of the Pade table of the power series E yix of c(x). Theory about Pade 

tables can be found in BAKER (1975), GILEWICZ (1978) and JONES, THRON & 

WAADELAND (1982, §5.5). Recent conference proceedings are CABANNES (1976) 

and WUYTACK (1979). Connections between Pade tables and numerical analysis 

are surveyed in WUYTACK (1976). A bibliography of Pade approximations and 

related matters like continued fractions is BREZINSKI (1976). 

4.4. Some transformations 

In this section we point out some ways to simplify a continued frac

tion, without changing its value. 

Different sequences {a} and {b} can lead to the same sequence of 
n n 

convergents. To establish some transformations of {a} and {b} we conceive 
n n 

{c} as 
n 
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k 1,2, ••• where 

(4.4.1) 
k 1,2, ••• 

In order to confirm (4.1.1) ~n must have the form 

if 
(4.4.2) 

else, 

where {x } , {y } and {z } can be arbitrarily ch0sen. n n n 
Also it can be shown that if we take for tk the transform 

~(w) 
ak+yk(w) 

f\+<\(w) ' 
k 1,2, ••• , 

87 

< 00 

we can construct a continued fraction in such a way that ck= Tk(0). For 

proof and details see JONES & THRON (1980, §2.4) or THRON & WAADELAND (1982). 

These two theoretical results have the practical implication (especially 

because the arbitrary construction of~) that we have a certain degree of 

freedom in the choice of {a} and {b }. In fact we see immediately that we 
n n 

can safely write instead of (4.1.2) 

alrlj 

~ 
+ ••• , 

which leads, with a suitable choice for {r.}, to a continued fraction like 
l. 

or 

Bernoulli found for the problem to construct a continued fraction with 

known,convergents 

al cl ; bl 1 and (supposing co 0) 

C -c C -C n-1 n 
b 

n n-2 for 2, 3, ••• a ; n = n C -c n C -c n-1 n-2 n-1 n-2 
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which is, essentially, the simplest form of ( 4. 4. 2) • 

In order to obtain another practical result we take for tk 

Evaluating this and constructing a new continued fraction we get two new 

{a *} { *} { } sequences n and bn with convergents c 2n. This continued fraction 

is called an even contraction of the original one. Of course many other con

tractions are possible, for example odd contractions. 

The theory gives for the sequences {a*} and {b *} 
n n 

a2k-1b2k+a2kb2k-2+b2k-2b2k-1b2k 

b2k-2 

which applied to (4.2.3) gives 

r = <rs=i.>12 

2,3, ... , 

The advantage of contractions is of course the possibility to get better 

approximations from the same computing effort. 

4.5. Convergence of continued fractions 

In this section we investigate the convergence of ck, the k-th conver

gent of a continued fraction. 

To obtain an easy-to-use result we suppose that in (4.1.2) ai > 0 and 

bi> 0 for i = 1,2, .•.• Then the convergents show the following pattern, 

(4.5.1) 

This alternating behaviour is illustrated by the convergents of (4.2.3): 
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cl 1 

c2 .5 

c3 .66 ••• 

c4 .6 

cs .625 

c6 .615 ••• 

c7 .619 ••• 

r C = .61803 ••• (v'5-1)/2 . 

In this case we see that convergence means that both 

lim c 2n 
n-+oo 

and lim c 2n+l 
n-+oo 

exist and are finite and equal. 
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Convergence theory is a fascinating topic in continued fractions but the 

reader has to turn to the theoretical works mentioned in §4.1. A survey of 

recent results is given in THRON (1974). We will just mention three im

portant theorems. 

Worpitzky's theorem states that 

converges to a value c for n ➔ 00 if 

moreover we have 

I c I < -1/2 and 

2,3, ••• 

le -cl n 
1 

~ 2n+l 

This convergence region can be generalized to a parabolic one. See also 

JONES & THRON (1980, §4.4). 

The well-known theorem of Seidel states that (4.1.2) with ai > 0 and 

bi> 0 for i = 1,2, ••• converges iff at least one of the series 
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i 
a2k-1 

i 
(X) 

k~l 
(X) II 

a2k 
I b2i and I k=l 

b2i+1 i i 
i=l II a2k i=l II a 

k=l k=O 2k+1 

is divergent. Note how easily this is applied to the continued fraction 

(4.2.3). 

One of the theorems of Van Vleck states that 

converges to a function f(z) if 

lim a 
n n-+<x> 

a < oo. 

if a= 0 this convergence is at any closed region that contains no poles 

off. 

If a i O this convergence is for all z outside a cut {z I Jzl > l¼al, 

arg(z) arg(-¼a)} from -¼a to 00 in the direction of -¼a and outside the 

poles off. 

Figure 1. 

Having ensured the convergence of en to c, one is, for practical rea

sons, interested in the speed of this convergence. For a survey paper see 

FIELD (1977). In order to use results about the convergence of series we 

construct a sequence {o.}, so that 
J. 

(4.5.2) 
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From (4.3.3) we develop this ,sequence as follows 

(4. 5. 3) 

fork 2, 3,... . 

GAUTSCH! & SLAVIK (1978) apply this to compose the speed of convergence of 

two continued fraction with the same value. 

For a simple theorem we look at a continued fraction like (4.1.2) with 

limn.._ an= a and limn.._ bn = b. We can prove that for a certain N 

converges to z1 with a geometric convergence rate lz2/z 1 I (iz 1 l>lz2 1), where 

z 1 and z 2 are the roots of (4.2.1), see also SAUER & SZABO (1968). For a 

brief explanation and more examples of the geometric convergence rate see 

GAUTSCH! (1983). 

To consider an example we look at 

(4.5.4) 
ln ( 1+x) 

X 

and we construct a continued fraction of it, using (4.2.4) 

So we have 

ln ( 1+x) 
X 

ln(1+x) 
X 

ln(1+x)/x 
1 

F ( 1 , 1; 2; -x) 
F ( 1 , 0; 1 ; -x) 

-11 x/21 
=!T+n-+ .•• + 

kx/ (4k-2}l kx/ (4k+2)j 
I 1 +1 1 + ... 

and a= x/4; b = 1. The continued fraction converges for x > -1 like a geo

metric series with quotients 

1-/i+;Z 
1+ ✓ l+x 

The Taylor-series for (4.5.4) is 

2 3 
1 - x/2 + X /3 - X /4 + ••• 1 
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which converges for lxl < 1 with a geometric convergence rate x. 

So we see that the continued fraction has a greater region of convergence 

and since 11-h+xl/ll+h+xl < lxl, (x complex, lxl<l,x;iO), it converges 

faster that the Taylor series (for lxl<l). 

Moreover we can accelerate the convergence if we calculate the sequence 

{c*} (' n with ck*= Sk(tk), with tk instead of zero as in 4.1.1) a suitable 

approximation of the "tail", see JACOBSEN & WAADELAND (1982). In THRON & 

WMDELAND (1980) there is taken t = ~00 a/b, which is minus a root of 
n i=n 

equation (4.2.1). It is shown there and in JONES, THRON & WAADELAND (1982, 

§8.4) that lim lc*-c I= 0 and an upperbound for lc*-c I is given. All 
n-+m n n n n 

these approximations and the function itself are displayed in Figure 2. 

Ii! 

i . 

I:! 
►. 

Iii . 

~ . 

Ii; 
,00 ,40 ,BO 1.20 

X 

l!I continued fraction (3rdconvergent'1 

t!) Taylor series (3 terms) 
.t. 3rd convergent (accelerated) 

♦ ln(l+x)/x 

1,60 2,00 2,4D 2,BO 

Figure 2. Approximations of ln(l+x)/x 
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4.6. Truncation errors 

In this section we estimate the "errors" made while approximating the 

value of a continued fraction. 

An easy case to find an estimation or bound for the difference between 

the value of a (convergent) continued fraction and a convergent is (4.1.2) 

with a. > 0 and b. > 0 for i = 1,2, •.•• Here it is clear from (4.5.1) that 
]. ]. 

the truncation error is smaller than the difference between two consecutive 

convergents. In general this is, however, not true. 

To get further insight we look at a simple example 

(4.6.1) 

This continued fraction has, see (4.2.1) and (4.2.2), the value 1, being a 

root of 

z2 + z - 2 0. 

For the convergents of (4.6.1) we get ck 

now 

k 
k+l . So the truncation error is 

however 

1 - C 
n 

1 
n+l ' 

n(n+l) 

It should be noted that in this example the difference between two consecu

tive convergents is of a lower order of magnitude than the truncation error. 

This remark can be generalized as follows: 

Consider the continued fraction i!l ai/1 and i!l 1/Bi and let 

la. I s 1/4 - E 
]. 

and I Bi I ~ 2 ( 1 +E) , E > 0, for i 

(So both are convergent). For these continued fractions we can prove 

1, 2, • . . . 
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for the first one and 

for the second one. 

For the proof itself and more details see BLANCH (1964) or JONES & THRON 

(1971) or JONES & THRON (1980, §8.3). 

For more specialized results see FIELD & JONES (1972), GRAGG (1968), 

HENRICI & PFLUGER (1966), JEFFERSON (1969), JONES & SNELL (1969) and GILL 

(1982). 

4.7. A special type of continued fractions 

In this section we treat Stieltjes fractions and the way to construct 

them. 

Frequently one considers continued fractions with partial numerators 

and denominators of a special form (g-fractions or T-fractions, for example). 

For the representation of functions the z-fraction can be usefull. This is 

a continued fraction of the form 

(4.7.1) 

and is, of course, a function of z. The partial numerators and denominators 

are complex numbers different from zero. To every z-fraction, there cor-
. -1 responds exactly one formal power series in z 

co di 

l i+l 
i=O z 

(4.7.2) 

such that the expansion of then-th approximant of (4.7.1) in powers of z-l 
-n 

agrees with (4.7.2) through the term dn-l z for n = 1,2, ••• 

Theory about existence and convergence can be found in JONES & THRON 

(1980, §7.1). A more detailed review can also be found in SAUER & SZABO 

(1968).Inclusion regions (depending on the convergents) for the value of a 

Stieltjes fraction and bounds for the truncation error are given in 
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HENRICI & PFLUGER (1966). 

Now we look at the problem of calculating {f.} and {e.}, given these-
1. 1. 

quence {d.}, i.e., how to determine (4.7.1) from (4.7.2). The following al-
1. 

gorithm, called the Q(uotient) D(ifference) algorithm is due to Rutishauser. 

It is obvious that e 0 = d0 , then let us introduce the formal series 

I 
i=0 

di+k 
i+l 

z 

and suppose that Fk(z) and 

are corresponding (often denoted as Fk(z) ~ ck(z)). From contractions we 

get continued fractions for zFk(z) - ~ and Fk+l (z), which must be equal 

and so we get the recursion relations 

and 

el-1,k+l + fl,k+l = fl,k + el,k; eO,k = O 

(this is used for the calculation of {e .. }) 
1.,J 

f e = e 0 f · l,k+l l,k+l ~,k +1,k' 

(this is used for the calculation of {f .. }) . 
1.,J 

It can be shown that no zero divisors can occur, So the scheme is well de

fined. However the numerical stability can be poor, GARGANTINI & HENRICI 

(1967) explain this and they construct a stable form of the algorithm. 

4.8. Evaluation 

In this section we discuss methods for calculating a convergent of 

a continued fraction and their consequences. 

A convergent can be numerically evaluated in basicly three ways. 
n ai 

The backward computation of, say,i!l bi can be done as follows: 

for i n,n-1, .•. ,1. 
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This can be conceived as a Miller algorithm and yields one convergent, 

C 
n 

a1 . A recursive operator for this method is prograll!Illed in VAN 

WIJNGAARDEN (1976). 

As can be seen from (4.3.1) and (4.3.2) one can use two three-term 

recurrence relations to construct a sequence of convergents. A relation like 

(4.3.1) can be considered as a triangular system of n equations and nun

knows. In MIKLO~KO (1977) this is used to speed up the computationo A third 

method can be derived from (4.3.3) as follows (see also (4.5.2) and (4.5.3)): 

ul := 1; vl := cl := a/bl 

1 

uk+l := ak+l 
1+--- - Uk 

bkbk+l 

vk+l := vk(uk+l-1) for k 1,2, ••. . 

ck+l := ck + vk+l 

While evaluating a continued fraction we have to deal with two types 
of errors. If we don't have an exact value for the tail, we have to cope 

with the truncation error. Besides that, there can be errors due to finite 

arithmethic. For bounds of these errors see BLANCH (1964), JONES & THRON 

(1974), MIKLO~KO (1976) or JONES & THRON (1980, §10.1). The work of Blanch 

seems to indicate that the backward algorithm is numerically more stable 

than the forward algorithm. 

We will look at the condition (see section II.1). Suppose we want to 
oo ai 

approximate the value of <l>i=l T' this can only make sense if the continued 

fraction converges. In this case, see section 4.51 convergence is ensured if 

la. I ~~for i = 1,2, ..•. For establishing the condition of then-th con-
1. 

vergent, en, we need to evaluate the expression 

dC 
n 

aa. 
1. 

i 0, 1, ... ,n-1, 

and for notation purposes we will write for a certain fixed n: 

We now have 

C 
n 

r. 
1. 

ai+l 
1 + r 

i+l 
for i 1,2, •.. ,n-1, rn 1. 
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i-2 a 
(JI-~) 

k=l 2 r. 
rk+l l 

To establish a bound for the condition, we have to estimate I (rk-1) /rk I. 
Therefore suppose 

(4.8.1) 

which is trivial fork= n. We then have 

a 
l~I $ 1/4 
rk 1 _ (n-k) 

2(n-k)+2 

n-k+l 
2(n-k+1)+2 
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because we have imposed la. I $ 1/4 for i 
l 

1,2, ..• ,n. So (4.8.1) is true by 

induction and can be used to derive 

Using this we get 

n-k 
< n-k+2 

(n-i+2) (n-i+l) 
n(n+l) for 

and the estimation for the condition of C is 
n 

n 

n a.,ic l k (k+l) 

I I --2:..__E. I $ 
k=l 

(n+2) /3 
C dCI., n(n+l) i=l n l 

i 1,2, ... ,n 

now 

. 

This can be considered small. To illustrate this the condition of three re

presentations of ln(l+x)/x (this function is plotted in section 4.5) is 

plotted in Figure 3. 
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12 
.,J 

o.ua 

~ power series (G terms) 
6 Chebychev Series (6 terms) 
~ continued fraction {6th converg:,-mt~ 

X 

Figure 3. Condition of approximations for ln(1+x)/x 

4.9. Examples of special functions 

In this section we construct a continued fraction for the error func

tion, the gamma function and for confluent hypergeometric functions. 

The complementary error function 

00 

2 I -t2 erfc(z) = 7ir e dt 

z 

can be written as a Stieltjes fraction, see section 4.7. To do this we pro

ceed as,follows: 

From the asymptotic expansion 
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R -z2 1 1 1.3 
- erfc (z)~ze (-- - --- + --- - ••• ) 
2 2z2 (2z2) 2 (2z2) 3 

and the QD algorithm we get 

2 

r, ez _ 11 (21 
1
2/21 

1
3/21 r21 

v,r z erfc (z) - [) + 1 + 2 + 1 + 2 + 
z z z 

See also ABRAMOWITZ & STEGUN (1964) formula 7.1.14. 

The error function itself 

erf(z) 

can be written as 

with 

Iii' 
2 erf(z) = z 

(-1/ 
(2i+1) ! 

2 
e-t dt 

}: 
i=0 

According to (4.3.3) we get 
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2 2 2 2 ~ ✓ erf(z) = 1j lz /31 _ lz /301 l39z /70j _ 739z /163 + 
1T 2z rT + 1 1 + 1 I 1 • • • 

To get a continued fraction for the r-function we look at ABRAMOOITZ & 

STEGUN (1964), formula 6.1.40, which is 

lnr (z) - (z-1/2) lnz + z - ~ln (2,r) ~ 

(X) 

z }: 
2 m 

m=l 2m(2m-1) (z ) 
{Bi} are the Bernoulli numbers. 

Using the methods described in section 4.7 we get the corresponding Stieltjes 

fraction 

B/21 fil ell ~ 
z( rT - F - iz2 - f1 - ... ). 
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Using the QD algorithm we get (compare ABRAMOWITZ & STEGUN (1964), formula 

6.1.48 and see also CHAR (1980)) 

{f,} = 
1. 

{-1/30, -195/371, -29944523/19733142, 

-294045 27905795295658/97692 14287853155785, 

-2637081256939 77190019319929 45645578779349/ 

527124426791 79808019665536 49147604697542, ••• } 

and 

{ei} 

{-53/210, -22999/22737, -109535241009/48264275462, 

-45 53770304201134 32210116914702/11 30841289236750 14537885725485, 

-152537490709 05480988163889 74729859908667 53853122697839/ 

24274291553 10512843829739 81089021953653 73879212227720, ••• }. 

For the confluent hypergeometric function we consider the function 

I e-txtv-l(l+t)-pdt; 

0 

Re X > 0; Re V > 0; p E (t. 

In terms of confluent hypergeometric functions we have (in the notation of 

ABRAMOWITZ & STEGUN (1964)): 

f(v)U(v,v+l-p,x). 

By specifying v and p we obtain error functions, incomplete gamma functions, 

etc. Taking in the above integral v+l instead of v, a partial integration 

yields 

xuv+l,p(x) 



from which follows 

uv+l,p(x) 

uv,p(xl 
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V 

Furthermore, writing in the integral 

we obtain 

0v+2,p+1 (x) 

Combining the above relations we obtain finally 

uv+l ,p (x) 

uv,p (xj 

V 

0 v+2,p+1 (x) 

uv+l ,p+l (x) 

which yields a continued fraction for the quotient Uv+l,p(x)/Uv,p(x). If 

xis positive and p and v are real, then, from a certain index i we have 

positive numerators and dencminators. If p = 1 we have 

where f(a,x) is the incomplete gamma function. 

Hence 

uv,l(x) 

0 v-1,1(x) 
(v-l)r(l-v,x) 

f(2-v,x) 

From the well-known relation 

r (a+l ,x) 

we thus obtain 

uv,l(x) 

0v-1,1(x) 

-x 1-v 
_ l + e X 

f(2-v,x) 

which gives, using the above continued fraction 

10 I 
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The case a=~ gives the complementary error function, the case a= 1-n, 

n = 0,1, ••• , gives exponential integrals. The expansion for r(a,x) converges 

for all a E e and for all x ,r 0, larg(x) I < '11. In GAUTSCH! & SLAVIK (1978) 

a different approach for functions like Uv'p(x) is used, based upon the 

methods described in section 4.7. 
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5. HYPERGEOMETRIC FUNCTIONS 

It is nearly impossible to study special functions without the notion 

of hypergeometric functions. In this section we give a short introduction 

to this subject, in order to be able to describe interrelations between 

special functions considered in later chapters. For a more complete and 

more rigorous introduction the reader should consult the literature, for 

instance RAINVILLE (1960) (a very readable book on special functions) or 

LUKE (1969) (with much more information, especially on expansions which are 

useful for numerical computations). 

The usual definition is through power series, giving the F -functions. 
pq 

This is done in section 5.1 (Gauss-functions 2F1). These classes can be ex-

tended considerably by using a Mellin-Barnes contour integral; this approach 

is described in section 5.3. In section 5.4 we give some useful expansions, 

for instance, in terms of Chebyshev polynomials. 

Our attitude is to be careful with general forms of special functions. 

From our own experience and from the good examples in the literature, we 

know that a basic knowledge of these functions can be very convenient. For 

computations, the general setting of F and Meijer's G-function is rather 
p q 

useless when too many parameters are involved. Already the well-studied 

case of Bessel functions (belonging to the 0F 1-functions) with two complex 

parameters may yield serious problems for certain combinations of these 

parameters. 

Not all interesting special functions are of hypergeometric type. A 

completely different class, with as prototype Mathieu's functions, is 

described by ARSCOTT (1981) as the Land beyond Bessel, or as "higher" 

special functions. They can not be defined by simple power series or inte

grals. 

5.1. Gauss' hypergeometric function 2F 1 

Here we introduce the best-·known hypergeometric function 

2F 1 (a,b;c;z) by means of its power series expansion. We give the relevant 

properties and some relations with other special functions, for instance 

with orthogonal polynomials. 
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(1. 1) 

The usual definition for Gauss' hypergeometric function is 

00 

I" 

l 
n=O 

(a) (b) 
n n 

(c) n! 
n 

n 
z , 

where lzl < 1, c ~ 0, -1,-2, .... In (1.1) Pochhammer's symbol is used for 

the shifted factorial 

or (a) 
n 

(a) 
n 

a (a+l) ••• (a+n-1), n ~ 1 

f(a+n)/f(a), where r is Euler's gamma function. 

From the ratio test it follows that (1.1) has the disc lzl < 1 as its 

domain of convergence. From well-known properties of the gamma function, 

for instance 

( 1.2) f(a+n)/f(S+n) ~ na-S 

it fol lows that 

(1.3) 
(a) (b) 

n n 
(c) n! 

n 

a+b-c-1 ~n 

n ➔ oo, 

n ➔ oo, 

so long as none of a,b,c is zero or a negative integer. Hence, a sufficient 

condition for absolute convergence of (1.1) on lzl = 1 is Re(c-a-b) > 0. 

For a= 1, b = c, (1.1) reduces to 1/(1-z), which explains the name 

hypergeometric. Other examples in terms of elementary functions are 

2F1 (a,b;b;z) 

(1.4) 

-a 
(1-z) , 

-1 -1 
z ln (1-z) • 

A more extensive list is given in ABRAMOWITZ & STEGUN (1964, p.556). 

The 2F 1-function is symmetric in a and b. When one of these parameters 

is a negative integer, say a= -m, then (1.1) is a polynomial. This follows 

from 

(-m)n 

r-l)nm(m-1) ... (m-n+l) 

l 0 n > m 
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(-l)nm!/f(m-n+l). Some particular cases are 

2F1 (-n,n;\;x) = Tn(l-2x) 

2F 1 (-n,n+l;l;x) = Pn(l-2x) 
n! (a) 

2F 1 (-n,n+2a;a+\;x) = ~ en (1-2x) 

F ( +13 1 1 ) ~ P(a,i3) (1-2x) 2 1 -n,n+a + ;a+ ;x = (a+l) n 
n 

Name polynomial 

Chebyshev 

Legendre 

Gegenbauer 

Jacobi 

An extensive theory is based on the differential equation 

(1.5) z(l-z)y"(z)+[c-(a+b+l)z]y'(z) - aby(z) 0, 

10:S 

resulting into the well-known transformation formulas. They express func-
+1 +1 

tions of argument z into combinations of functions with argument z-, (1-z)- , 
+1 

[z/(z-1)]-, giving interesting relations for numerical computations. See 

ABRAMOWITZ & STEGUN (1964, p.559). The convergence of the series (1.1) is 

rather poor when lzl is close to unity. The transformation formulas can 

always give a reduction to lzl $½,although some combinations of parameters 

may yield rather complicated expressions. 

The 2F1-functions include as further special cases 

Legendre functions 

incomplete beta functions 

elliptic integrals. 

The last two cases easily follow from the integral representation 

(1.6) 

1 

-f-(b_)_~-:-~-~-b-) f tb-1 (1-t) c-b-1 (1-tz) -adt, 

0 

which is valid when Rec> Re b > 0. The integral gives a one valued 

analytic function in the z-plane cut along the real axis from 1 to +oo. 

Hence, (1.6) gives the analytic continuation of (1.1) in the case that 

Rec> Re b > 0. The relation between the right-hand sides of (1.1) and 

(1.6) is easily verified by expanding (1-tz)-a in a binomial series and 

using the integral representation for the beta function B(x,y) = 

f(x)f(y)/f(x+y), that is, 

1 

(1. 7) B(x,y) f tx-l(l-t)y-ldt, Rex> 0, Rey> 0. 

0 
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When Re(c-a-b) > 0, (1.7) gives the limiting form for (1.6) 

(1.8) 2F 1 (a,b;c; 1) r (c) r (c-a-b) 
f(c-a)f(c-b)' c ,f O,-l,-2,··· · 

There is an extensive list of contiguous relations for 2F1-functions, 

expressing 2F 1 (a,b;c;z) in terms of 2F 1 (a+a,b+S;c+y;z), where a,S,y equal 

0,1,-1 (in all possible combinations). Also, derivatives can play a role 

here. A simple example obtained from (1.1) is 

ab 
c 2F l (a+l ,b+l ;c+l ;z). 

For more examples we refer to ABRAMOWITZ & STEGUN (1964, p.557,558). 

5.2. A generalization of the 2F1 

We introduce the generalization F by means of the power series. A 
p q 

compact notation is used and examples are given for special functions. 

We consider a generalization of Gauss' hypergeometric function by 

writing 

( 2. 1) F (a ; p ; z) 
p q p q 

p 
where ap is interpreted as a 1, ... ,ap and (~p)k as nh=l(ah)k; the same for 

p and (p )k. To distinguish between nominator and denominator parameters, 
q q 

a notation is used of the form 

a 
F ( p J z) • 

p q pq 

No denominator parameter ph is allowed to be zero or a negative integer. 

If any numerator parameter ah in (2.1) is zero or a negative integer, the 

series terminates. 

With respect to convergence we have the following possibilities 

(a) if p :'., q, the series converges for all finite z; 

(b) if p q+l, the series converges for I z I < 1, and diverges for 

lzl > 1 ; 

(c) if p > q+l, the series diverges for z ,f 0. 
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If the series terminates the conclusions in (b) and (c) do not apply. If 

p = q+l, the series is absolutely convergent on the circle !zl = 1 if 

When the series is not convergent it may have a meaning as an asymptotic 

expansion. 

We permit p or q, or both, to be zero. Then the parameters ah or Ph 

are absent. For example, the first of (1.4) is 

and 

-a 
( 1-z) 

z 
e . 
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An important class of functions, with many examples as special func

tions of mathematical physics, is governed by the case p = q = 1. It gives 

the Kummer or Whittaker functions, which are known as degenerate or con

fluent hypergeometric functions. See Chapter 13 in ABRAMOWITZ & STEGUN 

(1964) or Chapter IV in LUKE (1969). This class includes Bessel functions, 

incomplete gamma functions (and the special cases the exponential integrals, 

sine- and cosine-integrals_, error functions and Fresnel integrals), Laguerre 

polynomials, Hermite polynomials, Coulomb wave functions and parabolic 

cylinder functions. 

( 2. 2) 

The adjective "confluent" originates from the limiting process 

lim 2F 1 (a,b;c;z/b). 
b->oo 

The limit is 1F1 (a;c;z), as follows from elementary analysis. The 2F1-

function with variable z/b has a differential equation (see (1.5)) with 

singular points O,b, 00 ; the limiting form defines an entire function with 

a singularity at z = 00 , which is a confluence with those at band 

In LUKE (1969, Chapter VI) a lot of named special functions are ex

pressed as pFq's, including the examples mentioned above with p = q = 1. 
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5.3. The G-function 

Only the basic ideas behind the role of the G-function are considered 

here. For a good understanding of the theory of hypergeometric functions 

it is important to know about it. Interested readers should consult the 

literature. 

As mentioned in the previous section, the definition (2.1) is useless 

for the case p > q+l. In that case the series diverges except when z = 0. 

It may be interpreted as an asymptotic expansion, however. Which function 

is a natural candidate to have that expansion as an asymptotic series? 

When p = q+l, (2.1) defines a function for lzl < 1; what is the 

analytic continuation of this function beyond lzl = l? 

These, and many more, questions can be answered when we introduce the 

G-function. It appears that representations in terms of series may be rather 

restrictive in defining special functions, whereas a definition in terms of 

a contour integral in the complex plane may be much more flexible. 

To introduce the G-function let us first consider the integral 

(3.1) I(z) 1 
:= 2rri 

c+i00 

J zsr ( l+s) r (-s) ds, -1 < C < 0, 

c-i00 

where the many-valued function zs is defined by zs exp(s(lnlzl+i arg z)), 

with larg zl < rr. The product of gamma functions can be replaced by 

f(l+s)f(-s) = -rr/sin(rrs), from which information on convergence and other 

analytical aspects (residues, for instance) can be obtained. The contour of 

integration can be shifted to the right, across the poles at s = 0,1,2, .•. 

It easily follows that the infinite series of residues converges when 

I z I < 1 and that 

(3 .2) I(z) lzl < 1. 

On the other hand, by shifting the contour to the left and picking up the 

residues at s = -1,-2,-3, ..• , we obtain 

(3. 3) I(z) 1 
l+z ' lzl > 1. 

Hence, the contour integral (3.1) contains both series representations in 
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(3.2) and (3.3), the first for lzl < 1, the latter for lzl > 1. Observe that 

the series are examples of hypergeometric series. (In this example there is 

a lot of symmetry between the cases lzl < 1, lzl > 1 since we have the 
-1 

equation I(z ) = 1 - I(z), which easily follows from (3.1) without know-

ledge of I(z) 1/ (1+z).) 

A second example is governed by 

(3.4) F(z) r(c) I r(a+s)r(b+s)r(-s) zsds 
2nir(a)r(b) r(c+s) 

L 

which contains (3.1) as a special case (b=c,a=1). The contour runs from 

-i00 to +i00 and separates the poles of r(a+s)r(b+s) (at s = -a-n, s 

n,m = 0,1, ••• ) from those of r(-s) (at s = 0,1, ••• ). We suppose that 

-b-m, 

larg zl < n and a,b,c are not equal to 0,-1,-2, .•• In general, the con-

tour cannot be a vertical line, but it meanders in order to separate the 

poles of the gamma functions. Shifting it to the right we obtain an in

finite series of residues, which converges to 

(3.5) I zl < 1. 

A shift to the left will result in two series of hypergeometric type; when 

a-b is not equal to' an integer we obtain one of the transformation formulas 

2F 1 (a,b ;c ;-z) 
r(c)r(b-a) -a 1 
r(b)r(c-a) z 2F1 (a,1-c+a;1-b+a;- z) 

r (c) r (a-b) -b 1 
+ r(a)r(c-b) z 2F1 (b,1-c+b;1-a+b;- z), 

larg zl < n; the two residue series converge of course when lzl > 1. Again 

it follows that the contour integral (3.4) contains series expansions for 

lzl < 1 as well as for lzl > 1. 

We could write down a similar representation for the F, just be ex
p q 

tension of numerator and dencminator parameters in (3.4). Such an integral 

has a meaning when p ~ q, for a restricted domain of arg z. 

(3.7) 

The G-function includes the F as a special case and is defined as 
pq 

r(1-b 1+s) ••. r(1-b +s)r(a 1-s) ••• r(a -s) ' 
m+ q n+ p 



I JO 

0 $ m $ q, 0 $ n $ p. L separates the poles of f(b.-s) (j = 1, .•. ,m) from 
J 

those of f(l-a;+s) (j 1, ... ,n); a- and b-poles should not coincide. Further 

information on Lis found in, for instance, LUKE (1969, Vol. 1, p.144). In 

the same reference we find a list with named special functions in terms of 

the G-function (p.225). For instance, we have in compact notation as in 

(2 .1) 

Cl. 

F ( plz) 
p q p 

q 

1-a. 
r (p l 1 ( P \ 
_.5.LG ,p zl r (a. ) p,q+l - 0, 1-p / 

p q· 

for p $ q, z E f, or p = q+l, lzl < 1. 

The G-function contains also functions related to the generalized hyper

geometric function F. For instance, the second solution of the differen-
p q 

tial equation for 1F 1 (a;c;z), which, in general, is singular at z = 0, 

whereas 1F1 is entire in z. 

Although the definition of the G-function is quite complicated when 

many parameters are involved, the basic idea is rather simple and well under

stood via the trivial example (3.1), or via (3.4) and (3.5). Observe that 

(3.7) has the form of the inversion of the Mellin transform; hence the 

Mellin transform of the G-function is (under several conditions) a combi

nation of gamma functions. Other integral transforms for many special func-; 

lions follow also from those for the G-function. Generally speaking, re

presentation (3.7) is a convenient starting point for manipulations with 

special functions of hypergeometric type. The recent monograph of MARICHEV 

( ·1983) may be very helpful for obtaining transfQ;i;:ms of special functions. 

5.4. Expansions for hypergeometric functions 

We give the construction of a continued fraction for the 2F1-functions 

and some Chebyshev expansions for the 2F1-function and a confluent hyper

geometric function. 

The power series gives a good starting point for computing the F -
pq 

functions in the neighborhood of z = 0. For the 2F1-functions several trans-

formation formulas are available in order to reduce computation to lzl < ½. 

The coefficients are easily generated during computations, so no pretabulated 

coefficients are needed. Still there is a need for other types of expan

sions. In the continued fraction approach, the coefficients are, again, 

easily constructed; in the Chebyshev expansions a more ingenious algorithm 
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based on recursions can be used. 

5.4.1. Continued fraction for 2F1 (a,l;c+l;z) 

Gauss first showed that one can construct a continued fraction for a 

ratio of 2F1-s; when b=l it results into a fraction for a single 2F1. One 

can easily verify for the terms in (1.1) that 

(a) (b+l) 
n n 

(c+l) n! 
n 

(a) (b) 
n n 

(c) n! 
n 

a(c-b) 
c (c+l) 

(a+l) n-1 (b+l) n-1 

(c+2)n-l (n-1) ! ' 

from which we conclude that 

(4.1) 

This can be rewritten as 

F(a,b+l,c+l) 
F(a,b,c) 

za(c-b) 
c(c+l) 2F1 (a+l,b+l;c+2;z). 

l/[l- za(c-b) F(a+l,b+l,c+2)] 
c(c+l) F(a,b+l,c+l) 

I 11 

where we used an obvious short-hand notation for the 2F1 . Similarly, by an 

interchange of symbols (recall the symmetry in a and b) 

F (a+l ,b+l, c+2) 
F(a,b+l,c+l) 

l/[l- z(b+l) (c+l-a) F(a+1,b+2,c+3) J 
(c+l) (c+2) F(a+1,b+1,c+2) 

and replacing this in the former we find a relation between the ratio 

F(a,b+1,c+1)/F(a,b,c) and the ratio with a,b,c replaced by a+l,b+l,c+2, 

respectively. The case b=0 is of particular interest since in that case 

2F1 (a,0;c;z) = 1. Then the set up of the continued fraction reads 

2F 1 (a, 1 ;c+l ;z) 

1-
za/(c+l) 

with an obvious extension to the general form. Note that for a= c = 1 we 

have the second of (1.4). The incomplete beta function can also be written 

in terms of 2F1 with second parameter equal to unity (consider, for instance, 

in (1.6) the transformation t = (z-T)/[z(l-T) ]) . 
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5.4.2. Chebyshev expansions 

We give a few examples of Chebyshev expansions of hypergeometric func

tions. In LUKE (1969) a considerable collection of expansions is included; 

in LUKE (1977) algorithms are found in order to obtain coefficients of the 

(Chebyshev} expansions. 

Luke's general approach is to expand wide classes of hypergeometric 

functions in terms of other hypergeometric functions (polynomials, Bessel 

functions} which are rather easily computed. The coefficients again are of 

hypergeometric type, and the numerical problem to compute the coefficients 

is not always trivial. A general approach here is to use a recursion rela

tion for the coefficients. A special algorithm (based on Miller's algorithm, 

see III.3) is needed, since forward recursion is not stable. An example is 

(4. 2) 2F1 (a,b;c;z) I 
n=O 

c (w}T* (z/w}, 
n n 

z/wE [0,1], 

where T* is the shifted Chebyshev polynomial. The coefficients are 
n 

'j_ 

(4. 3) C (W} 
n 

£ (a} (b) wn 
n n n 

22n(c) ni 
n 

and c satisfies the recursion 
n 

(4 .4) C n 

F (a+n,b+n,½+njw> 
3 2 c+n, 1+2n 

where an,8n,yn are given in LUKE (1977,Ch.4). The factor £n equals½ (when 

n=O) and 1 (when n > 0). Luke gives a detailed analysis on the computation 

of the coefficients en. Observe that each coefficient is more complicated 

than the wanted 2F 1 in (4.2). The backward recursion scheme does not use 

any accurate initial en-value, however. 

A second, and more interesting example is the expansion of the Kummer 

U function in LUKE (1969, II, p.25). The U function is related to the 1F1-

function. It is the irregular (at z=O) solution of Kummer's equation 

zy" + (c-z)y'-ay = 0, of which y(z) = 1F 1 (a;c;z) is a regular, entire solu

tion (ABRAMOWITZ & STEGUN (1964, Ch.13). It includes many named functions 

as special cases. The expansion reads 

(4.5) 
co 

(wz) au (a;c;wz) = L 
n=O 

* c (z) T ( 1/w) , 
n n 
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w ~ 1, and the parameter z can be used to cover a wide range of complex 

values, but it should be bounded away from zero. In fact, (4.5) is an ex

pansion "around infinity", whereas (4.2) is useful near the origin. The 

coefficients en obey a recursion as in (4.4). In this case a representa

tion in terms of the G-function is possible. 

5.4.3. Representations for lzl > 1 

It follows from (3.7) that 

(4.6) 

This important relation can be used to obtain representations for lzl > 1, 

for instance for the 2F1-functions. The representation (3.6) is a special 

case, although some combinations of the parameters must be excluded: 

a-b not an integer. When a-b E Zl a more complicated relation holds, in

volving logarithms of z. In the case of 2F1-functions, convergent expansions 

result from (4.6). In general, i.e., for general p,q, the functional equa

tion (4.6) may yield series which have a meaning as asymptotic expansions. 
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III. THE GAMMA FUNCTION AND RELATED FUNCTIONS 

0. HISTORY 

The gamma function is the most plausible generalization of the fac-

torial function. Euler was confronted with this matter when an apparently 

simple problem was proposed to him. It was expected that n! (this notation 

was not yet used then), was expressible in elementary algebraic quantities. 

Just as the triangular numbers Tn = 1+2+ ..• +n can be expressed as Tn = ½n(n+l). 

In Euler's days, one paid much attention to these questions. First, because 

such a formula enables one to compute Tn or n! immediately, secondly be-

cause it gives the possibility for interpolating: Tn = ½n(n+l) also has a 

sense for non-integer values of n. 

In 1729, Euler proved that for n! such a simple formula did not exist; 

or, there was no formula with a finite number of algebraic evaluations. At 

the same time he turned up with the formula 

(0.0) n! 

1 

j (-ln x)n dx, 

0 

of which indeed the right hand is defined for real positive values of n. 

Nowadays, the above integral is often presented differently, and in 

Legendre's notation f(n+l) = n!, the gamma function is defined as follows 

(0 .1) f -t z-1 
f(z) = e t dt, Re z > 0. 

0 

Immediately we have the fundamental property 

(0 .2) r (z+l) zr (z). 

It is easily understood that in several ways the factorial function 

can be generalized to a function defined for positive real numbers. What 
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makes Euler's choice such a plausible one? After the event it appeared 

that (0 .1) frequently occurs and, in a "natural" way emerges in many 

problems. But this does not answer the question. However, it is possible 

to formulate criteria into which Euler's choice fits exactly. In this way, 

the gamma function is accepted and incorporated in the Bourbaki-works. 

There the definition is: 

the gamma function r : ll + -+ ll + is the function f with f ( 1) 

that satisfies for x > 0: 

- f(x) > 0 

- f(x+l) xf(x) 

- f is logarithmic convex (i.e., ln f is convex). 

1 and 

For the equivalence between this definition and those of section 1 

the reader is referred to BOURBAKI (1951) or ARTIN (1964). 

A striking property is that the gamma function cannot satisfy a dif

ferential equation with algebraic coefficients (Holder's result). This 

makes the gamma function a function of completely different type of tran

scendency than other special functions, such as Bessel functions, Legendre 

functions, etc •• While the difference equation (0.2) is so simple: 

More elaborate information on the functions of this chapter can be 

found in LUKE (1975.l, WHITTAKER & WATSON (1927) (an important book for 

classical results and methods in analysis and special functions), ARTIN (1964) 

(a little monograph with emphasis on convexity properties and elementary 

analysis; a classic), HOCHSTADT (1971) (recommended for lessons on special 

functions), and NG (1975) (a survey and evaluation of software for the 

complex gamma function). 

1. DEFINITIONS AND ANALYTICAL BEHAVIOUR 

In section 1.1, we give the Euler and Weierstrass representations of 

the gamma function as well as a graph of lr(z) J. In section 1.2 we in

troduce thew and polygamma functions by series representations. 

In section 1.3 some integral representations of the beta function and 

its relation to the gamma function are given. In sections 1. 3 and 1 .4 the 

occurrence of the gamma function in other special functions is mentioned. 
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1.1 Gamma function 

Apart from the definition given in section O the following three 

definitions are usually considered. 

(1.1) (Euler) r (z) 

(1.2) (Euler) f(z) 

(1.3) (Weierstrass) 1/f(z) 

f e-t tz-l dt, Re z > 0. 
0 

n! nz 
k:U\l z(z+l) .•. (z+n)' z * O,-l,-2 , · • · · 

yz oo -z/n 
z e n~l (l+z/n) e , 

117 

with y = 0.57721 ••• , Euler's constant. The equivalence of these definitions 

is proved in HOCHSTADT (1971). 

From (1.3) many other results follow. It is the most manageable defi

nition. It readily follows from (1.3) that 1/r has zeros for z = 0,-1,-2, ••• 

and that it is nowhere singular. In an analytical sense, 1/r is easier to 

cope with than r itself; the latter does have singularities. This difference 

is reflected in numerical approximations. For 1/f approximations are usually 

more favourable (less terms in a series for obtaining a given precision). 

Of course (1.3) is useless for direct computations, although it is so power

ful from an analytical point of view. (A simple numerical consideration 

learns us that for.a relative accuracy of£, about ~z 2/£ factors in (1.3) 

are needed. ) 

The decomposition (Prym) into incomplete gamma functions 

1 00 

r(z) f -t z-1 dt + f -t tz-l dt e t e 
0 1 

00 
(-1) n 

00 

I + f -t z-1 
dt 

n! (z+n) 
e t 

n=O 1 

gives insight in analytical aspects of r. The last integral is an entire 

function of z, while the series gives information about the singularities 

of r. It follows that 

lim (z+n) r (z) 
z+-n 

That is to say, r has in -n, n 

residue (-l)n/n!. 

0,1,2, ••• , a pole of the first order with 

After this introductory matter the graph of r is easily drawn. See 

tigure 1. We also give the landscape of Jr(z) I for complex values of z. 

See ~igure 2 (from JAHNKE & EMDE (1945)). 
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Figure 1. Graph of r(x), x real 

X 

Figure 2. !r(z) I for complex z 
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An important relation for range reduction is 

1 sinTiz 
(1. 4) r(l+z) f(l-z) 

---, 
TIZ 

which is called the reflection formula. It is easily proved by using (1.3), 
2 2 

which yields at the right-hand of (1.4): Il(l-z /n ). This is connected with 

the factorization of the sine function. 

We conclude this subsection with some integral representations which 

follow immediately from the above results. With the methods of function 

theory we obtain Hankel's formula 

(1. 5) f(z) 

where the contour of integration is drawn in Figure 3. By using (1.4) one 

obtains 

(1.6) 1/r (zl 1 
27fi 

· z-1 -z 
with oontour as in Figure 4. The branch cuts of (-1;;) and t in (1.5) and 

(1.6), run as usually from Oto 00 and from Oto - 00 , respectively. The in

tegral in (1.6) is valid for all z E ~ and is very useful for analytic 

manipulations. 

Figure 3 

Contour for (1.5) 

1.2 Psi function and polygamma functions 

From (1.3) we derive 

d z z 

Figure 4 

Contour for (1.6) 

(1. 7) dz ln r (z+l) -y + l(z+l) + 2(z+2) + z ,f -1,-2, .... 



120 

The ¢-function is defined by 

(1.8) 1/J(z) = __Q__ 1n f(z) 
dz 

f I (z) /f (z). 

From (1.7) we obtain the well-known series representation 

00 

(1. 9) 1/J (z) 1 'i' z 
-y - 'z" + n:l n(z+n) 

The higher order derivatives of (1.8) are the polygamma functions 1/J(k). 

Repeated differentiation of (1.9) leads to ever better converging series 

(1.10) 1/J I (z) I -2 (z+n) , 1/J (k) (z) 
00 

(-1) k+\! I -k-1 
(z+n) . 

n=0 n=0 

The integral 

(1.11) 1/J (z) -y + Re z > -1, 

is verified by expanding the denominator of the integrand and by comparing 

the result with (1.9). The series in (1.9) and (1.10) converge for all 

z E G::, z ,f 0,-1,-2, •••• By using (0.2) and the corresponding recursion 

ljJ(z+l) ljJ(z) + 1/z, 1/J(k) can be examined in these exceptional points. 

1.3. Beta function 

The beta function is for Rep> 0, Re q > 0 defined by 

(1.12) B(p,q) 

We have B(p,q) 

B (p,q) 

1 
f tp-l(l-t)q-l dt 
0 

B(q,p). Other forms are 

1 

r (pl r (ql 
r (p+q) . 

00 

f (l+t)-p-q(tp-l+tq-l) dt ftp-l(l+t)-p-q dt. 
0 0 

Integrals with c~rcular functions expressing beta functions are 

½n f (sin t) 2p-l(cos t) 2q-l dt = ½ B(p,q), 
0 

(1.14) 
2-a inS/2 

ne Rea>-1. 
(a+1)B[½(a+(3)+1,½(a-(3)+1]' 
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With hyperbolic functions one encounters 

(1. 15) 

(1.16) 

00 

J cosh(2yt) cosh-Zx (t) dt = 2Zx-Z B(x-y,x+y), Rex > I Re YI, 
0 

f sinha(t) cosh-S(t) dt = ~[(l+a)/2, (S-al/2], 
0 

Re(S-a) > 0, Re a> -1. 

1.4 Coulomb phase shift 

The Coulomb functions FL(n,p) and GL(n,Pl, with pas argument, n as 

parameter and L the order (integer), are solutions of the differential 

equation 

L(L+l)J 
2 w o. 

p 
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This equation is used in the description of physical problems involving 

collisions and scattering of charged particles. The gamma function appears 

in the formulas for the asymptotic behaviour of FL and GL asp ➔ 00 : 

with X p - n ln 2p - ½wL + crL(n), containing the Coulomb phase shift 

arg [f(L+l+in)J Im [ln f(L+l+in) ]. 

1.5 Relation with other special functions 

The gamma function is frequently used in formulas for many other 

special functions, especially those of hypergeometric type, cf. Ch. II.5. 

As an example we give the series expansion of the Bessel function 

J (z) 
V 

(z/2)v z2 /4 ( z2 /4) 2 
(1--- + -----'--"'-'--'---+ ) 

f(v+l) (v+l) 2! (v+l) (v+2) • • • · 

In the ALGOL 60 procedures for the computation of the Bessel functions, 

GAUTSCH! (1964b) used a gamma function algorithm; it was not used for 

summing the above series, but for an algorithm based on recursion relations. 
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2. FUNDAMENTAL FORMULAS 

In section 2.1 we discuss asymptotic expansions for the gamma function 

and the psi function; rational expressions are mentioned in section 2.1.3. 

In section 2.2 we give Chebyshev expansions. In section 2.3 formulas for 

analytic continuation are given. 

2.1 Expansions 

2.1.1 Asymptotic expansions of the gamma function 

The following representation of ln f(z) is of fundamental importance 

for deriving expansions for large values of lzl: 

(2. 1) ln r(z) (z-½) ln z -z + ½ ln (2,r) + S (z). 

S(z) (for large lzl) gives a small correction with respect to the remaining 

terms of the right-hand side. These terms yield the well-known Stirling 

formula 

(2. 2) r(z) ~ z -z 
z e 

½ (2,r/z) , z ➔ oo. 

S(z) can be written as a Laplace integral 

00 

(2. 3) s (z) f e-zt f(t) dt, 
0 

t -1 
f(t) = [(e -1) + ½ - 1/t]/t. 

For an elementary and elegant proof of this representation see LAUWERIER 

(1974, p".30). A different representation is 

(2. 4) S(z) arctan(t/z) ----~-dt; 
e2nt_l 

(2.3) and (2.4) are called Binet's integrals. In both equations we assume 

that Re z > O. The proof of (2.41 (and of (2.31) can be found in WHITTAKER 

& WATSON (1927). 

More information on Sis obtained by, for instance, expanding f of 

(2.3) in powers oft. This well-known technique for the asymptotic expan

sion of Laplace integrals is outlined in LAUWERIER (1974). Here f is an 

even function, and we write 

(2. 5) f (t) 
N-1 
l a t 2n + t 2N f (t), N 

n=O n N 
1,2, .•• , 
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with an= B2n+2/(2n+2)!. Bm are the Bernoulli numbers, which are special 

cases of the Bernoulli polynomials Bn(x) appearing in the expansion 

(2. 6) I < 211. 

n=O 
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The Bernoulli numbers Bn are given 
1
by Bn = Bn(O). The first few are B0 = 1, 

1 1 1 
B1 = - 2, B2 = 6, B4 30, B6 = 42 , (B3 = B5 = ••• = 0). For more infor-

mation see ABRAMOWITZ & STEGUN (1964, p.804) and LUKE (1975, Ch.1). 

From the definition of f it is concluded that fN is bounded on [0, 00 ); 

that is, there are assignable numbers M = sup If (t) I. So, we can write 
N t~D N 

(2. 7) S(z) 

and for EN we have for every z with Re z > 0 the estimation 

f t2N fN(t) e-zt dtl s 

0 

~(2N) ! 

(Re z) 2N+1" 

This bound for E tells us the following: for given £ > 0 and N(= 1,2, ••• ), 
N 

we can choose z, Re z > 0, such that IEN(z) I < £. For fixed N, IEN(z) I 

comes smaller according as Re z increases. 

REMARK. It is not concluded that for fixed z, I EN (z) I becomes smaller 

according as N increases. 

be-

The numbers MN are not easily evaluated, and so, this method does not 

give much information for numerical application. From (2.4) more insight is 

gained in this respect. The interested reader is referred to WHITTAKER & 

WATSON (1927, p. 251). The result is 

(2.8) I I B2N+2K(z) ·lzl-2N-1, 
EN(z) S (2N+1) (2N+2) 

where 

If larg z] < ¼11, then K(z) = 1. For real positive z, EN(z) is less in 

absolute value than the first term neglected in (2.7) and it has the same 

sign. These results are used in numerical algorithms. For the use of error 

bounds for complex z see NG (1975) and also LUKE (1975, p.7). 
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-2N-1 From (2.8) it follows that EN(z} = _O(z } for Re z + +00 • In the terminol-

ogy of asymptotic analysis we call (2.7) an asymptotic expansion. Inserting 

the values of the first Bernoulli numbers we arrive at the representation 

(Stirling's series} 

(2.9) 1n r(z} (z-½) ln z - z + ½ ln (2n) + - 1- - - 1- + 
12z 360z3 

+ __ 1_ - __ 1_ + Ocz-9). 

1260z5 1680z7 

For numerical applications (2.9) is very important. The error bound in 

(2.8) gives a good criterion for selecting N and the range of z, especially 

when larg zl < n/4. 

Stirling's series is valid, however, for Jarg- zj < n, but for Re z < O 
its usefulness detoriates as z approaches the negative reals. 

By exponentiation of (2 .9) we obtain expansions for r or 1/r. The 

result is 

(2.10) 

r(z} ~ e-zzz (2n/z}½ (1+ - 1- + - 1- - 139 + ••• ) 
12Z 288z2 51840z3 

z z ½ 1 1 139 1/r(z} ~ e z- (2n/z}- (1- -- + -- + ---+ ••• ), 
12Z 288z2 51840z3 

again for larg zl < n, z + 00 • We remark that the series in (2.10) contain 
-1 -2 powers of z , whereas (2.9) is essentially in powers of z ; thus (2.9) 

is more efficient than (2.10). Of course, expansions for rand 1/r can be 

obtained directly from their integral representation. Numerical values of 

more coefficients in (2.10} are given in WRENCH (1968) and SPIRA (1971), 

together with more useful information on numerical aspects of the gamma 

function. 

Writing in (2.3) for z the value z+a and expanding f(t} 

powers oft, we obtain (with (2.6)) the expansion 

(2 .11) ln r (z+a} = (z+a-½} ln z - z + ½ ln (2n) + 

N 
(-l}m+l 

Bm+1 (a) -N-1 I + 0 (z } , 
m=1 m(m+1)z 

m 

-at 
e in 

for z + 00, larg zl < n/2. Combining expansions of this type yields 
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(2. LO 

From LUKE (1975) it follows that, again, the general term in this expansion 

is a Bernoulli polynomial. Luke also considers an interesting modification 

of (2.12) due to Fields but details will not be given here. See LUKE (1975, 

p.11). 

In applications we are often confronted with quotients of gamma func

tions: f(x)/f(y). If x and y are both large it is recommended not to com

pute r(x) and f(y) separately, for the computer's range of the reals is 

(especially for this function) rather limited. It is better to use repre

sentations such as (2.12). On the other hand, it is possible to avoid over

flow by writing r {x) /r (y) = exp (ln r (x) - ln r (y)), but the subtraction may 

cause a loss of significant digits. Here (5.1) on p.136 may be useful. 

2.1.2 Expansions for the psi and polygamma functions 

By formal differentiation of (2.11) we obtain asymptotic expansions 

(with m ~ 0; c0 =- ln z, cm= (m-1) !/zm(m~l)) 

(2.131 [ N-1 ] 
lj,(m)(z) = (-l)m-1 c + _!!!l._+ I B2k (2k+m-1)! + 0(z-2N-m)' 

m 2Zm+l k=l (2k)!z2k+m 

N = 1,2, ••• , z + 00 in larg zl <TI.On the other hand we have (1.9) and 

(1.10). Direct application of these formulas is not efficient for computa

tions, but they may be transformed, e.g. by using the Euler-MacLaurin sum

mation formula. But asymptotic methods based on (2.13) and range reduction 

(see section 2.3) may result in more efficient algorithms. 

In order to demonstrate the Euler-MacLaurin method we give more details. 

The theory can be found in, for instance, LAUWERIER (1974) and KNOPP (1964). 

Suppose, we want to evaluate series of the form I:=O f(i), where f is a 

function defined for non-negative real numbers. The Euler-MacLaurin method 

can be used by choosing a positive integer n and by computing the partial 
,n-1 

sum li=O f(i) directly. The remainder is written as follows. Fork= 1,2,3, ••• 

we have 

00 00 k ~ f(2i-1) ( ) (2. 14) I f(i) I, f (n) + I f (x) dx - I (2i) ! n + ~' 
i=n n i=l 

00 

~ 
1 f f(2k+l) ( ) 

(2k+1)! x 
n 

P2k+1 (x) dx, 
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where P2k+l (x) is the periodic continuation of the Bernoulli polynomials 

Bn(x) with respect to [0,1]. That is, Pk(x) = Bk(x) for x E [0,1] and 

Pk(x+j) = Pk(x) for all integers j. For the validity of (2.14) we suppose 

that the first 2k+l derivatives off exist on [0, 00), that f(j) (00 ) 0, 

j = 0,1, .•. ,2k+l and that the integrals occurring in (2.14) exist. 

For the polygamma functions w(m) with series expansions (1.10) we 
-m-1 fro take f(x) = (z+x) , and we suppose that m;,, 1. The integral n f(x) dx 

is easily evaluated (this is of importance for the applicability of the 

method). Moreover the derivatives off are available. Let us give the 

result fork= 3: 

(2 .15) 
n-1 

w(m) (z) = (-l)m+l m: I (z+i)-m-1 + 
i=O 

m+l -m[ m: (m+l) : (m+3) : 
+ (-1) (z+n) (m-1) !+~( + ) + 2 - 4 + 

z n 12 (z+n) 720 (z+n) 

( l) m+l , + - m. R3 • 

(m+5) ! l + 

30240(z+n) 6J 

By using well-known estimates for the Bernoulli polynomials (see ABRAMOWITZ 

& STEGUN (1964, p.805)), viz. 

(2 .16) I I 2(2n+1)! 
P2n+l (x) < 2n+l 1_2-2n' 

(27f) 

X ;,, 0, 

we obtain a bound for R3 • For z = 1, m = 1 and n = 10 we obtain 

JR3! ~ 3.56 x lo-10 • (Observe that a check can be made by using w(l) (l)=1r2/6.) 

2.1.3 Rational approximation of w 

LUKE (1975) gives a rational approximation of the form 

(2 .17) w(z) + y 
A (z) 

2 (z-1) _n __ + 
z B (z) 8n (z)' Re z > 0, 

n 

where An and Bn are polynomials. They satisfy a fourth order recursion 

relation. From estimations of Sn(z) given by Luke we expect that (2.17) 

gives an efficient algorithm. 

2.2 Chebyshev series 

An expansion of win terms of Chebyshev polynomials is given by Wimp 

(see HART c.s. (1968, section 6.6)) 
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Q) 

lji(x+a) 2 I' ck (a)Tk (x), -1 < X :5 1, a > 1. 
k=O 

with 
Q) 

{[(j+a) 2-1]~-(j+a)}k 
ck(a) - I k 2: 1. 

j=O [(j+a) 2-1]~ 

Integration with respect to a will give a Chebyshev series for ln r(x). 

See also in this connection NEMETH (1967), of which the results are quoted 

in LUKE (1975, p.4). 

2.3 Range reduction 

Important relations are 

(2 .18) r(z+1) = zr(z) (recursion), 

(2 .19) r(z) (conjugation), 

(2 .20) 
____, _____ 1..,.... __ = ~ 
r(1-z)r(1+z) nz (reflection), see (1.4). 

Straightforward application of (2.20) may involve some pitfalls, which can 

be avoided by a proper representation of the quantities, as indicated by 

KUKI (1972). For example, if z = x+iy, x < O, y < O, he writes 

with 

(2.21) 

log r(z) log(2n) + ny - in[x-~] - log H(z) - log r(1-z), 

H(z) 2ny 2ny . 2 ~ . . ~ ~ [ LJ -(1+e )tanhny + e (2 sin nx+1s1n2nx),x= x- x+-.. 

By using (1.2), Gauss' duplication relation can be proved. It is given 

by 

(2.22) r (2z) 

with generalization 

r(mz) 

where m = 2,3,4, •••• 

For the psi and polygamma functions analogous formulas exist (see 

ABRAMOWITZ & STEGUN (1964)). 
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3. ALGORITHMS AND IMPLEMENTATIONS 

In this section we give information on available algorithms and soft

ware for the gamma function and the related functions. We discuss nearly 

maximum precision implementations in section 3.1 and variable precision 

implementations in section 3.2. Finally, known implementations are listed. 

3.1. Nearly maximum precision 

The computation of the logarithm of the gamma function may be done 

by computation of (2.7), for some strip parallel to the imaginary axis, 

followed by (2.18), (2.19) or (2.20) or some combination. A survey of the 

approaches and activities is given by NG(1975); we select the approach of 

KUKI(1972) as an illustration. He partioned the first quadrant of the com

plex plane by the curve 

(3. 1) 

where z 

(3. 2) 

(3.3) 

(3.4) 

(3. 5) 

X t(y) max{.1,min(10,10v2-lyl)} 

x + iy, x,y € ·R .. The used algorithm for Af({ak} ;z) · reads 

Alnr{z) for x > t(y), y > O 

Alnf(z+k) - ln kn1 (z+j) 
j=O 

ln TT - ln sinTTz - Alnr (1-z), 

Alnf (z) 

for x < t (y) , x > O, y > O 

with t (y) :<; x+k < t (y) +1 

for x < 0, y < 0 

for x < 0, y > 0 

or x > 0, y < O, 

where Alnr is the following approximation of ln r: 

(3.6) Alnf(zl (z-½)ln z - z + ½ln 2TT + S (z) 
N 

with SN(z) the first series of (2.7), i.e., 



III. GAMMA FUNCTION 129 

(3.7) ~ -2k+1 
l B2kz /[2k(2k-1)]. 

k=1 

In order to make the subtraction in (3.3) harmless, Kuki considered 

(3.81 (Alnf(z+k) - kln(z+k)) - ln{ ~D~ (z+j)/(z+k)}. 

To avoid cancellations the subtraction in the first term of (3.8) is done 

analytically by combining kln(z+k) with other terms in (3.6). The contin

uous branch of the second term is chosen; because the imaginary part is be
tween O and 4.7 the principle value of the logarithm is augmented by 2wi when 

appropriate. In (3.4) the reflection formula (2.20) is used. When the gamma 

function is desired, the reflection formula may be used more directly by 

writing 

(3. 9) sinTiz 
TI 

r(l-z) (sinwx coshwy +i cosTix sinhwy)f(l-z)/TI 

where the sinh function, with good relative precision, is to be used, and 

f(l-z) may be obtained from the log gamma by exponentiation. The use of the 

reflection formula may be minimized by using a complex sine and, for log 

gamma, a complex logarithm (Spira's approach, see NG(1975,p.64)). The be

haviour near the poles must be considered during the computation of 

log H(z) (see (2.21)); if- the perturbation of the argument 

b.z lz-zl 
is such that 

!H(z) I - exp (2wy) 2wl':.z :$ 0, 

then z is considered as a singularity. Ng proposed to deliver the largest 

positive number representable in the machine in this case; Kuki assigned 

this value to the imaginary part as well. 

In IMSL the implementation for the log gamma is based on the work of 

CODY & HILLSTROM(l967) and the reflection formula. Cody c.s. approximated 

the approximation: from the Stirling series and the recurrence relation 

they provided minimax approximations. The used algorithm for the log gamma, 

Alnr, reads 



I 30 

0 -ln x + R (x+l) 
n,m 

(x-11R1 (x) n,m 

(x-2) R2 (x) 
n,m 

3 
R (x) 

n,m 

-1 4 2 
(x-1:i)lnx- x + 1:iln2TT+x R (1/x ), 

n,m 

Q < X < .5 

.5 !> X < 1.5 

4 < X $; 12 

X > 12, 

i i i where R (x) = Pn(x)/Qm(x), a ratio of polynomials. The partitioning of 
n,m 

the interval has been chosen such that for modest values of n and m the 

maximal errors in each subinterval are nearly the same. The reflection for

mula is used in the form 

Alnjr(x) I ln 11 - lnj sinTTxj - lnj f (1-x) j. 

The computational problem for the gamma function, Af, is for the IMSL im

plementation based on HART c.s. (1968) as follows: 

11/ (sinTTX Ar (1-x)), x < O 

Af(x+k)/ ~; (x+j) , 0 < x < 2, k E IN, 2 $; x+k < 3 

5 
R (xl 2 !> x $; 3 

n,m 

Ar(x-k) k_n-0
1 (x+J'-k), 3 < 12 k 2 k 3 < X - , E IN, < x- $; 

J= 

exp(Alnf(x)) 12 < x. 

Attention has been paid to the argument reduction of the· sine. 

3.2. Variable precision 

CLENSHAW c.s.(1963) considered a variable precision implementation 

based on the Chebyshev expansion of 1/f(l+x) as follows. The computational 

problem is 
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(3.10) Al/r(x); for O ~ x ~ 1, 

with recursion for the remaining x-values, where 

Al/f(x) 
N 

l ckTk(2x-1) 
k=O 

and N ~ 14 such that for the desired precision o 
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The first neglected term in the Chebyshev series represents the approximation 

error. The poles are handled by an error jump. ANTONINO & SCHWACHHEIM(1967) 

published an implementation with arbitrary precision; this must be under

stood in the sense of nearly machine independent. On every machine they ob

tain nearly maximum precision. The algorithm is based on the observation 

that the first neglected term in the Stirling series for the log gamma 

majorates the approximation error for jargzj ~ ~/4 (LUCAS & TERRIL(1971)). 

LUCAS c.s.(1971) used a similar approach for evaluation of the gamma 

function for complex arguments. The implementation S14HAA/F (NAG) is based 

on (3.10) with fixed N and !xi < SO, in order to prevent overflow for a 

CD CYBER. 

Without giving any further details we give a selection of implementations 

known to us. 

Gamma function and log gamma function for real argument: 

MGAMMA/MLGAMA IMSL 

S14ABA/F NAG 

GAMMA CALGO 309, ANTONINO c.s(1967) 

GAMMA/LOG GAMMA NUMAL 

GAMMA/LOG GAM MSL 

GAMMA/ALOGAM/DGAMMA CERN 

GAMMA CALGO 221, GAUTSCHI(1964a) 
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Gamma function and log gamma function for complex argument: 

CDLGAM 

CGAMMA 

CGAMMA/CLOGAM 

Psi function: 

psi 

CDIGAM 

POLYGAMMA 

PSIFN/DPSIFN 

Ratio of complex gamma functions: 

CRAGAM 

Coulomb phase shift: 

COULOMB 

REMARKS• 

CALGO 421, KUKI(1972) 

CALGO 404, LUCAS c.s. (1971) 

CERN 

FUNPACK 

CERN 

, KOLBIG(1972). 

, KOLBIG(1972) 

CALGO 349, MEDEIROS c.s.(1969). 

CALGO 610, AMOS (1983) 

CERN. 

CALGO 300, GUNN(1967). 

1. We have omitted the early publications in CALGO because we consider them 

overruled. 

2. The reader may not conclude that we agree with the methods in the above 

implementations. It falls outside the scope of this tract to give-full 

certifications for all algorithms. 

3. The CERN algorithm for the computation of the ratio of two gamma func

tions is based on straightforward application of 

r(x)/f(y) = exp[lnf(x) - lnf(y)]. As mentioned earlier, for large x and 

y we recommend to use (2.12} or modifications of this expansion (see 

LUKE(1975,p.11)). 

4. For applications an implementation of the "tamed" function r (z)ezz -z 

and of S(z) defined in (2.1) would be useful. 
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4. SOME ASPECTS OF ERROR ANALYSIS 

In this section we consider some aspects of error analysis in con

nection with the concepts introduced in s:ection II.1. 
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For large and intermediate values of JzJ the error caused by pertur

bation of the argument is significant in the evaluation of r(z). For 

the relative error in z, E , we have the estimate 
z 

(4.1) J[r(z) - r(z)J/r(z) I 

with w(z) ~ ln z, z + 00 , largzl <TI.For z = 100, zw(z) = 460.0 .... so that 

2 or 3 figures may be lost. For small z, for instance in the interval [1,2], 

the relative error is slightly damped. 

The amplification factor for the relative error, viz. zf' (z)/f(z), for 

lnf(z) and w(z) approaches 1 and 0, respectively, for JzJ + 00 • Hence, the 

relative error in the computations is not larger than in z (for large Jzj). 

For ln r(z) the intrinsic (absolute) error is given by 

(4.2) 

In order to obtain an estimate of the intrinsic error, KUKI (1972) used a 

practical variant of (4.2) during the computation cf the logarithm of the 

gamma function. This estimate is composed of quantities available during 

the calculation • 

The intrinsic error estimate Jw(z)ltz is approximated for 

X > t (y), y > 0 as jln(z) ltz 

X < t(y), X > 0, y > 0 as J2 + lzl ~ /',z Jtz, Jzl small 

J1n(z+n)jtz , I z I large 

X < 0 I Y < 0 as 
exp ( 2Tiy) 2TI6z 

IH(z) I - exp(2Tiy)2TI6z 

with /',z = lz-zl, z = x + iy and H(z) defined by (2.21). 

For real parameters some examples will be given on condition numbers 

as introduced in section II.1. 
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EXAMPLE !.(Condition of part of the truncated Stirling series) 

When computing the gamma function the Stirling series is commonly used, 

say on Ca,oo], where a is appropriately chosen. From (2.9) we select the 

sum 

(4.3) 
S(x) = ...!._ __ 1_ + __ 1 ____ 1_ 

12 360x2 1260x4 1680x6 
,x € [a,co) 

with representations 

1 = --
2 3 

~ + _w __ _ _ w __ = 
12 360 1260 1680 

(4.4) 

2 , w E [0,1/a ). 

The condition numbers of (4.31 and (4,4) are equal; for a 

K ~ 1. So we prefer the power sum representation. 

10 we obtain 

EXAMPLE 2. (condition of polynomials in rational approximation of ln f) 

CODY c.s. (1967) gives for .5 ~ x ~ 1.5, among others, the approximation 

(4.5) ln r (x) = (x-1) { (2.02x2-2. 74x-2.61)/(x2+3.97x-.80)}. 

2 
Representation of the numerator as l bkTk(2(x-1)) yields a slightly bet

k=O 
ter conditioned representation; the denominator is better conditioned as a 

power sum. 

EXAMPLE 3. 

KUKI(1972) estimated for log gamma the rounding error by the value of the 

dominant term of the Stirling series, to be multiplied by a factor because 

of neglected smaller contributions, as 

(4.6) I (z-½) 1n (z+k) I £ in case of (3.2) 

(4. 7) 1 k-1 j (3.15) + !Re ln j!!o (z+j)/(z+k) £ in case of (3.3) 

(4.8) {J(ln2n + ny) - in[x-½JI + JRe(lnH(z)) J}e: in case of (3.4). 

~o (4. 8) the effect of evaluation of ln r (1-z) must be added by appropriate 

use of either (4.6) or (4.7); £ is of the order of machine accuracy. We can 
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understand this, because an error bound of a sum is proportional to the 

sum of the moduli of the terms, as is well known. In our approach we con

sider each term of the Stirling series as a parameter ai; the condition 

number K represents the sum of the moduli of the terms. 

5, TABULATED COEFFICIENTS 

In this section we summar.ize approximations with published coefficients. 

For more information see LUKE (1975,p.21). 

LUKE ( 1975) 

1/f(z+ll Ia z 
n 20 d I zl < 00 a 

n n 

r (z+3) Ia z 
n 

20 d I zl < 3 a 
n n 

f(x+ll }:a T*(x) a 20 d 0 $ X $ 
n n n 

1/f(x+1) Ia T*(x) a 20 d 0 $ X $ 1 
n n n 

r (x+3l Ia T*(xl a 20 d 0 $ X $ 1 
n n n 

ln r (x+3) Ia T*(x) a 20 d 0 $ X $ 1 
n n n 

1/J (m) (x+3) Ia (m) T* (x) a(m) 20 d 0 $ X $ 1 
n n 

(m=O , 1 , •.. , 6) 

S(x) (see (2. 7)) Ia T2 (1/x) a 15 d X 2 1 
n n n 

HART c.s. (1968) 

f(x) rational approximations up to 22 don [2,3] 

S(x) rational approximationsupto22 don [8,lOOO]and D.2,1000] 

CODY c.s. (1967) 

ln f(x) rational approximations up to 22 don [0,12] 

CODY c.s. (1970) 

cr0 (n) (see(l.4)) rational approximations up to 22 don (-oo, 00 ). 

REMARKS. 

1. The approximations for r in HART c.s. (1968) are not on [0,1] (as stated 

there) but on [2,3]. 
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2. T 
n 

and T* denote the Chebyshev polynomials of the 

sidered 
n * 
on C-1,1] and [0,1]; Tn(x) = Tn(2x-1). 

3. In CODY c.s.(1967) ln f(x) is represented as 

(x-1) * rational function on [½,1½] 

(x-2) * rational function on [1½,4] 

first kind usually con-

in order to preserve accuracy near the zeros 1 and 2. We favour the ap

proximation 

x * rational function on[-½,½] 

for ln f(l+x); the computation near x 

near 1 by 

2 is reduced to the problem 

ln f(2+y) = ln f(l+y) + ln(l+y) 

with y = x - 2. An algorithm for accurate avaluation of ln(l+x) for 

small xis needed; no known library provides this function (see, however, 

KAHAN (1983)). An efficient algorithm for ln(l+x) may be based on the expan

sion 
co 2k+1 2 

ln ( l+x) 4 L _P __ T (l+p 2-) 

k=l 
2k+1 2k+1 2p 2+X I 

. (5 .1) 

0 < < 1, -4p 
X < ~ p ---< 

2 2 (p+l) (p-1) 

(cf. LYUSTERNIK c.s.(1965)). From some analysis it follows that we can 

take p = 1/7, yielding the x-interval [-7/16,7/9] for safe evaluation 

of ln(1+x). In order to obtain relative accuracy near x = O, the odd 

Chebyshev series should be evaluated, for instance, by using Clenshaw's 

algorithm given in CLENSHAW (1962). 

6. TESTING 

When testing one can think of verification of the coding and an accurate 

performance profile. In both cases one needs: 
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known values (tables, previous or multiple precision programs), 

mathematical relationships. 

We agree with NG(1975) to use for testing the duplication formula (2.22), 

because the algorithms do not use it; we do not agree with HART c.s. 

(1968) because the recurrence relation is generally used in the algorithms. 

Arguments may be selected in different ways; arguments near singularities 

or other difficult values must be incorporated-in the test set. 

Known values of the gamma and related functions are published by 

LUKE(1970) and ABRAMOWITZ & STEGUN(1964). The latter contains references 

to published tables; in this connection see also FLETCHER c.s. (1962). For 

automatic table comparison NG(1975) constructed a reference subprogram 

which computed the complex gamma function in extended precision using a 

package of subroutines in 70-bit (about 21 decimal) arithmetic, composed 

by Lawson c.s. of JPL. seHONFELDER(1976) used a package M~ITHA (ALGOL 68) 

to produce multi-length function values with which the multi-machine li

brary routines are compared. Background information about testing of func

tions is given in NEWBERY & LEIGH(1971) and CODY(l969). The NATS approach 

is discussed in CODY(l975a); the NAG approach in SCHONFELDER(l976). Fur

ther we mention CODY(l973). 

7. APPLICATIONS 

In this section we mention some analytical applications of the func

tions of this chapter. 

7.1. Summation of rational series by means of polygamma functions 

An infinite series whose general term is a rational function in the in

dex may always be reduced to a finite series of psi and polygamma functions. 

EXAMPLE. 

with 

(ABRAMOWITZ & STEGUN (1964,p.265)) 

s 

u 

00 

I 1 

n=l (n+l) (2n+l) (4n+l) 

1/3 _ _1_ + ...lLL = 
n+l n+l/2 n+l/4 n 

1 (-1- _ .!.., 
3 n+l n 

00 

I 
n=l 

Un' 
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Application of (1.9) yields 

s 

For alternating series we can use the relation 

7.2. Substitution of factorials by their integral representations 

Sometimes it is useful to replace in series factorials or expressions 

of gamma functions by their integral representations. 

EXAMPLE. 

For Ix I · < 4 let 

~ (n!) 2 n f(x) = l --'-=-=- x • 
n=O (2n+1) ! 

Then by use of (1.12) we obtain 

1 

f(x) = I. xn f {t(l-t)}ndt 
n=O O 0 

= --4-- arctan , __ x __ ) = --4-- arcsin ( v'x/4) . 
/4x-xi /4x-x20 /4x-x2' 

This result could also have been obtained by use of hypergeometric func

tions. 

In order to facilitate the use of this technique we enumerate the 
integral representations of some expressions of factorialsr for more re

lations see DINGLE(1973). For notational convenience we use n!,(n-~)!, ••• 

instead of r(n+l), r(n+~), •••• 

n! 

1/n! 

n!/(~n)! 

1; e-ttndt 

1/(2wi) f ett-n-ldt (see(1.6)) 
2 21; tn+le-t dt 

2 
2w -\r; (2t)ne -t dt 

2w -~ ,~w sin 2ntdt = 2w -~ ,~w cos 2nt fit 
0 0 
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n!/(n-m)! 

(n-½)!/n!n 

(n+a) ! (n+S) ! 

(n+a) !/ (n+S) ! 

[(½n-½)!~ 2/n! 

(n!//(2n+1)! 

n!/[(½n)!] 2 

(2n) !/ (n!) 2 

(3/3t)mtnjt = 1 

471-½l~ (1-t2)n-lt arc sin 1r. dt 

4/; t 2n+a+S+lKa-S(2t) dt (Bessel function) 

1 101 tn+a (1-t) S-a-ldt 
(S-a-1) ! 

2a(a-S) ! 1:
00 

(-2-)n _____ d_t ____ _ 

(l+it)S+l(l-itla-S+l TI l+it 
dt 

21671 (½sin t)ndt 

l~ [t(l-t)]ndt 

2 100 

-oo (2 cash t)n+l 

27[-l ll.:,71 (2 t)nd cos t 
0 
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Observe that a factorial form is transformed into a power form; the 

validity of interchanging summation and integration must be verified. 

7.3. Laplace transforms as psi functions 

Laplace transforms of the functions 

cash St sinh St sinh St 
cash yt' sinh yt' cash yt 

are represent~ble in terms of psi functions; see OBERHETTINGER & BADII 

(1973) for an extensive table of Laplace transforms. 
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IV. EXPONENTIAL INTEGRALS AND RELATED FUNCTIONS 

In section 1 we give the definitions and some relations between the 

functions of this chapter. In section 2 attention is paid to expansions of 

these functions. Taylor and asymptotic expansions are derived in section 

2.1. Chebyshev expansions and continued fractions are mentioned in 2.2 and 

2.3, with reference to earlier given results for hypergeometric functions. 

1. DEFINITIONS and ANALYTICAL BEHAVIOUR 

Many results for the functions in this chapter follow from the more 

general hypergeometric functions, of which some results are given in II.5. 

Especially, results for Chebyshev expansions follow easily from the expan

sions of confluent hypergeometric functions. For a first introduction, how

ever, some specific properties and results of the exponential integrals are 

easier understood by considering special cases instead of the wider class of 

hypergeometric functions. At the end of this section we give the relations 

with these functions. 

1.1. The exponential integrals 

( 1.1) 

The function we start with is the well-known exponential integral 

El (x) = I e:t dt, 

X 

which we consider temporarily for x > 0. We cannot express it in a finite 

number of elementary functions. For x = 0 it is not defined and we first 

give a representation from which the behaviour near x = 0 is easily under

stood. 

Let us consider the auxiliary function 
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which for v 

f (x) 
\) 

"' 
~dt J -t 

~ , 
X 

X > 0, \) $ 1, 

1 coincides with E1 • If v < 1 we can write 

"' X 

f (x) 
\) J 

-t -\) 
e t dt - J 

-t -\) 
e t dt 

0 0 
X 

-t 1 1-v 

J 
1-e r(l-v) - --x + --dt. 1-v t\) 

0 

If we now try to substitute v = 1 we must carry out a limiting process. The 

integral is well-defined for v = 1, but,however, the remaining terms are 

not. By writing 

g(v) 
1 1-v r ( 1-v) - l -v x 

1-v f(2-v)-x 
1-v 

and applying l'H6pital's rule we obtain 

lim g(v) 
v-+1 

r' < 1) - ln x - y - ln x 

(see (1.7) of Chapter III). Hence, it follows that 

( 1. 2) - y 

X 

- ln x + J 
0 

-t 
1-e 
--t- dt, X > 0. 

\) < 1 

This formula enables us to consider E1 for complex values of its argument. 

It appears that the singularity of E 1 at O is described by the logarithm, 

which is a many-valued function. The integral in (1.2) represents an entire 

function of x. Hence, E 1 is a many-valued function of which the principal 

branch can be defined by 

(1. 3) - y - ln z + 
z -t 

J~dt t , z ,f O , i arg z I < TI , 

0 

where the logarithm has its principal branch (real for positive z). The ana

lytic continuation for other values of the phase of z is given by 

( 1.4) 

( 2nni) E1 ze 

-Jx 1-e-t 
- y - ln x + ni + --t- dt, X > 0, 

0 

E1 (z) - 2nni, n ±1,±2, ... ,z,f,.O. 
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REMARK. Using Cauchy's theorem and (1.1) for complex values of z, viz. 

(1.5) 
COJ -t 

El (z) = et dt, z f 0, /arg z/ < rr 

z 

the relations in (1.4) can also be understood. (The path in (1.5) should 

avoid the negative reals and the origin,) Increasing the phase of z in (1.5) 

beyond the range (-rr,rr) gives an integral of the type (1.5) plus an integral 

over a closed circuit around t = O, which can be evaluated by computing the 

residue at t = O. 

(1.6) 

The following exponential integral is also used: 

Ei(x) - + 
! 

-x 

-t 
~dt 

t 

X t f et dt, x E lR, x # 0, 

where the symbol f is used to mean the Cauchy principal value of the integral, 

e.g. I 

Ei(x) lim 
E-1-0 

t X 

et dt + J 
E 

t 
~ dt} t , X > 0. 

(If x < 0 then the integrals in (1.6) need not to be interpreted as princi

pal value integrals). Ei is real for real x and it is usually not considered 

for complex values of its argument. 

From the first integral in (1.6) it easily follows that 

(1. 7) E:i(-x) X > 0. 

For negative x this relation does not hold, as Ei is real for x < 0 whereas 

E1 is not (this follows from the first of (1.4)). For x > 0 we have from 

(1.6) 

Ei(x) 

where we use fx 
-x 

have 

X 

- f -t 
et dt - E1 (x) 

X -t 

f e t -1 dt - El (x) 

-x -x 

xf 1-e-t -x 1-e-t 
-t- dt - E1 (x) - I -t- dt 

0 0 

dt 
-= 
t 

0, (1.2) and the first of (1.4). Hence, for x > 0 we 
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(1.8) Ei (x) 

or 

( 1.9) Ei(x) 
1 Tii -Tii 
2 [ E1 (xe ) + E1 (xe ) J, 

which are the modifications of (1.7) for x < 0. Combining the above results, 

we obtain 

(1.10) Ei (x) y + lnlxl + 

X t I e -1 dt 
t , X E JR, X f' 0. 

0 

In Figure 1 the graphs of E1 and Ei are shown. 

-, 

-3 

Figure 1. Graphs of Ei(x} and E1 (x) 

Generalizations of E1 are defined by 

(1.11) 
oof -tz 

E (z) = _e __ dt, 
V tV 

1 

Re z > O, 

where v may be any complex number. Generally one encounters Ev for integer 

values of v, especially v = n = 1,2, ..•. For arbitrarily v-values Ev is 

rather considered as an incomplete gamma function. En has, just as E1 , a 

logarithmic singularity at z = 0. There is also a branch point at infinity. 
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One may think it peculiar, this definition of Ev. From (1.5) one should 
OO -v -t 

expect fz t e dt. The present definition, however, defines En as a re-

peated integral of E1, as follows from E~(z) = -En-l (z). Hence 

00 00 

E (z) 
n f En-l (t)dt 

z 
I I e -tt (dt)n, 

z t 

from which follows (the proof is left to the reader) 

(1.12) E (z) 
n 

-z I ,:-1, ! 
0 

-t n-1 
e t 

t+z 
dt, 

In this formula we can take larg zl < TT. 

n 1, 2,... . 

n-1 
By partial integration in (1.11), or writing t 

(1.12) we obtain the recursion 

( 1.13) nEn+l (z) 
-z 

e zE (z), 
n 

n = 1,2, •... 

For numerical computations this relation is very important. See GAUTSCHI 

(1961a) and GAUTSCHI (1973). For stability aspects of this recursion see 

also II.3. A variant recursion is given by ACTON (1974). 

The logarithmic integral li(x) is defined by 

(1.14) 

X 

li(x) = J dt = Ei(ln x), 
ln t 

0 

X > 0. 

The functions an(z), defined by 

an(z) = f tne-ztdt, 

1 

Re z > O, n 

are special cases of Ev(z). We have the recursion 

0 I 1, 2 I••• I 

n=l,2,3, ... 

For stability aspects see again II.3. For z E R+ this is a positive recur

sion and therefore stable. 

1.2. The sine and cosine integrals 

1TTi 
If we consider (1.3) with z replaced by ze 2 and if we separate, for 

real z, the real and imaginary parts we obtain functions connected with the 

sine and cosine integrals: 



146 

1 . 1 - Y - z111. - n z + 
iz -t I 1-e 

--t-dt 

0 

1 1 

- y - ln z + I 1-co: zt dt + i[-½1r+ I si: zt dt]. 

0 0 

The definitions for the sine and cosine integrals are 

Si (z) 

(1.15) 

Ci (z) 

On the other hand, 

( 1.16) E1 (iz) 

z I si~ t dt 

0 

z 

I cos t-1 
y + ln z + t dt, 

0 

we have using (1.5) 

00 00 

I 
-t r -izt 

~dt _e __ dt 
t J t 

iz 1 

00 00 

I cos(z+t) 
z+t 

dt - i I sin(z+t) 
z+t 

0 0 

I arg z I < 7f. 

dt. 

Hence, combining the above results we obtain 

Si(z) 
1 
2 7f - f(z) cos z - g(z) sin z 

( 1.17) 

Ci (z) f(z) sin z - g(z) cos z, 

where, 

00 

f(z) I sin t dt 
t+z 

0 

( 1.18) 00 z 'Io, larg zl < 7f. 

g(z) I cost dt 
t+z 

0 

REMARK. In the second integral of (1.16) we integrate from 1 to+ 00 The 

integral exists for Re iz > 0. In the first integral we integrate from iz 

to+ 00 , avoiding the non-positive real t-values. By using the principle of 

analytic continuation the restriction Re iz > 0 may be dropped; we proceed 
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with the z-valuea indicated in (1.18). 

In rigure 2 the graphs of Si and Ci are shown. 

Si(x) 

·1.0 

Figure 2. Graphs of Si(x) and Ci(x) 

For large lzl, the functions in (1.18) are slowly varying. The oscilla

tory or exponential behaviour of Si and Ci is fully described by the be

haviour of the circular functions in (1.17). We give another representation 

off and g. 

Writing 

(1.19) g(z) + if(z) 
it I ~+z dt 

iT 
0 

and integrating JL ~ dT around the contour LR 
R T+z 

{itl O $ t $ R}, 

R, 0 $ arg T $½TT} 

for positive R, and letting R + 00 , we obtain for Re z > 0 

g(z) + if(z) =if 

0 

-t 
e 
it+z dt J e-zt t2+ i dt. 

O t +1 

Hence, we have by writing f(z) = f 1 (x,y) + if2 (x,y), g(z) = g1 (x,y) + 

ig2 (x,y), z = x + iy and by separating the real and imaginary parts in the 

last integral 
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"' 
J e -2xt 

(t cos yt + sin yt)dt 
O t +1 

-- "'J e-2xt (cos yt - t sin yt)dt. 
O t +1 

Since g 1 and f 1 are even functions of y, whereas g2 and f 2 are odd (use 

(1.18) in order to verify this) we can solve the above equations for f 1,f2 , 

g1 ,g2 and we obtain 

(1.20) 
"'I -zt 

f(z) = Tdt, 
O t +1 

g(z) 
"' I -zt 
~dt 2 I 

O t + 1 
Re z > 0. 

Remark that if Re z > 0 the above integrals exist and the point, 

outside the contour LR. 

-z lies 

Apart from the function Si defined in (1.15) the function si, given by 

"' 
( 1. 21) si(z) Si(z) - ..!. u = - J sin t dt 

2 t 
z 

is used. Furthermore we have the representation 

00 

(1.22) Ci(z) ~ I cost dt t , larg zl < u, 

z 

where t avoids the non-positive reals. 

Finally, we mention the "hyperbolic analogues" of (1.15) 

z 

Shi(z) I sit t dt 

0 

(1.23) z 

Chi(z) y + ln z + I cosh t - 1 larg zl < u. 
t 

0 

1.3. Relations with hypergeometric functions 

The confluent hypergeometric function U (ABRAMOWITZ & STEGUN (1964, 

Ch, 13)) can be used for these functions, We have 
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-z e U(l,1,z) 

( 1. 24) 

-z n-1 -z 
En(z) = e z U(n,n,z) = e U(l,2-n,z). 

In terms of incomplete gamma functions we have 

(1. 25) 
v-1 z r(l-v,z), 

The functions f and g of section 1.2 follow from 

(1.26) 
:p1Ti 

U(l,1,ze 2 ) = g(z)± if(z). 

2. FUNDAMENTAL FORMULAS 

2.1. Expansions based on Taylor series and asymptotic series 

2.1.1. Taylor expansions 

By expanding the exponential function in the integrals of (1.3) and 

(1.10) we obtain the representations 

00 

(-z)n 
E1 (z) - y - ln z - }: z cf o, larg zl < 1T 

nn~ 
(2.1) n=l 

00 n 
Ei(x) y + lnlxl }: X 

X cf 0, IR, + 
nni I X E 

n=l 

in which the series converge for all finite values of z and x. Similar 

expansions can be obtained for the functions Si, Ci, Shi, Chi. 
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With induction with respect ton we obtain, using (1.13), for n 1, 2, .•. 

(-z)n-1 00 
(-z)m 

(2. 2) E (z) [- ln z + l)i(n)] - }: n (n-1) ! 
m=0 

(m-n+l)m! 

mcfn-1 
where z cf 0, larg zl < 11. For 1)i (n) see III.1.9. 

As remarked earlier these expansions converge for all finite values of 

the argument x or z. However, the applicability for numerical purposes is 

rather limited. This will become clear when we have considered the behaviour 

of E1 and Ei for large values of their argument. 
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2.1.2. Asymptotic expansions 

By repeatedly using (1.13) we obtain 

and so for n 

(2.3) 

where 

(2.4) 

For real z 

Hence, 

( 2. 5) 

-z 
e 

z 

0,1,2, ..• 

R (z) 
n 

e -z 1 2 ! 3 ' n n ! 
-- [1 - - + __:_ + ... + (-1) - + R (z)] 

z z 2- 3 n n 

(-l)n+l (n+l) ! 

z z z 

-n z z e f -zt 

:n+2 dt. 

1 

x we have 

00 

-n X 
x e En+ 2 (x) 

-n x f -n-2 -xt -n x x e t e dt s x e f e-xtdt 

1 

R (x) 
n 

0 s 6 (x) s 1, 
n 

-n-1 
X 

which says that the remainder in (2.3) is less in absolute value than the 

first term neglected and has the same sign. 

For complex values of z = x + iy it easily follows that R (z) = 
0 -n-1 n 

O(R (x)) = (x ), x + 00 Hence, we can conclude that (2.3) gives an 
n 

asymptotic expansion of E1 (z) for z + 00 , larg zl <½~.By using other 

representations of Rn(z), more information can be obtained. 

Let us write (2.4) in the form 

(2.6) r -u 
~-du. 
.n+2 

u z 

If we put u z + p x + iy + p, where x,y,p are real, then 

(2.7) R (z) 
n 

J e -pdp 

0 L(x+p)+iy]n+2, 
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which can be estimated as 

IR (z) I !> S 
n n 

(2.8) 

IR (z) I !> T 
n n 

( 2 2) -! (n+2) (n+l) ! x +y if X <': 0, 

-n-2 
(n+l) ! Jyl ifx!>O. 

From these estimates the asymptotic character of the expansion (2.3) 

15.1 

follows for z ➔ 00 , Jarg zl < TI, with Jyl ➔ 00 for x < 0. It can be shown that 

the domain of arg z can be extended beyond the bounds ± TI to ± 3TI / 2. However, 

numerical bounds for the remainder are not easily obtained outside (-TI,TI). 

The way of constructing the asymptotic expansion (2.3) seems rather 

ad hoc. By using (1.12) and expanding 1/(t+z) in powers oft we can use a 

general method from asymptotic analysis for integrals of the Laplace trans

form type. (See III.2.1 how this is applied in relation with the gamma function) 

The asymptotic expansion (2.3) can be used for the computation of E1 (z) 

for large values of lzl. In order to obtain information for the range of 

applicability we reason as follows. For a given z = x + iy the remainder 

R (z) in (2.3) is considered for n = 0,1,2, ••.. We remark that JR (z) I n n 
decreases until n reaches a certain value n0 (depending on z). From (we 

suppose x > 0) 

n+2 
2 2 l 

(x +y )2 

2 2 l 
we infer that S decreases until n exceeds the value (x +y ) 2 • Hence to 

n 2 2 l 
obtain the least value of JRn(z) I, it is plausible to taken~ (x +y ) 2 

= JzJ. For this value of n, we find, using Stirling's formula that S is 

about (2TI/n)!e-n = (2TI/Jzl)!e-lzl_ If this value is smaller than thendesired 

accuracy, the given value of lzl is large enough in order to use (2.3), 

otherwise lzl is too small. 

Other techniques from analysis may be used for (2.3) if lzl is too small. 

We mention the Euler transformation (see LAUWERIER (1974) or OLVER (1974)) 

or techniques for a further expansion of the remainder in an asymptotic 

expansion. For this last aspect, the asymptotic expansion of E1 (z) is often 

used as an example in the literature (see, for instance, BERG (1977) or OLVER 

(1974, p. 523)). 

For small values of lzl the first expansion in (2.1) can be considered. 

Howevsr, the condition function (see II.2.1) is exponentially increasing 

for increasing x = Re z. Intuitively one can verify this immediately. For 
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-x 
large x, E1 (x) behaves as e /x. In order to obtain such small function 

values, serious cancellation takes place in summing the quantities in the 

first formula of (2.1). 

For Ei the asymptotic expansion for x + - 00 and for x + +00 can be given. 

The first case follows from (1.7) and (2.3). For x + 00 we have for 

N=0,1,2, .•. 

(2. 9) Ei (x) 

Remark that it results from formal substitution of z = -x in (2.3) and using 

(1.7) for x < 0. A proof of (2.9) follows from (1.9) and the fact that (2.3) 

holds for arg z = ± ni (which is not proved here). A direct proof may be 

obtained by observing that 

X t 

Ei(x) = f et dt + 0(1), 

1 

X ➔ +oo 

which follows from (1.10). By partial integration of this integral we arrive 

at (2.9). 

For E we have for n 
n 

(2.10) E (z) 
n 

·-z 
e 

z 

1, 2, ... 

for n = 1,2, .•. , N = 0,1,2, ... , z + 00 , !arg zl < 3n/2. The remainder in 

(2.10) can be expressed in terms of the exponential integral En+N+l (z). In 

this expansion n is fixed, i.e., it is not supposed that n grows with z. An 

expansion of En(x) valid for x + n + 00 is given in Gautschi (1959), together 

with numerical bounds for the remainder. 

The asymptotic behaviour of Si and Ci is well described by (1.17) and 

the expansions off and g, which follow. We use (1.20). 

Let us write 

1 
--= 

N-1 

I 
n=O 

Then for IRe z > 0 

f(z) 

(2.11) 

2 n N t 2N 
(-t) + (-1) --

1+t2 

I -zt 2N 
e t 

l+t2 
0 

dt 
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g(z) 
e t 
-----dt. f -zt 2N+1 

1+t2 
0 

Bounds for the remainders in these expansions follow from replacing 

1/ (1+t2) by 1. 

2.2. Chebyshev expansions 

2.2.1. Expansions near the origin 
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Coefficients in the Chebyshev series for small argument values can be 

expressed in terms of Bessel functions. From LUKE (1969, Vol. II, p. 41-42) 

we obtain (with Eo = 1' Ek 
ax 

f 
0 

ax 

f 
0 

-1 t 
t (e -l)dt 

EO 

vl 

E 
n 

t-1 (1-e-t)dt 

A (a) 
n 

2, k ;;: 1) 

00 

}: EnTn (x), -1 ,,; X,,; 1, 
n=O 

00 

-2 }: r 
(-) vrI2r(a)' 

r=l 

1 r-1 

2 I V }: (1/k) + (1/2r), r;;: 2, 
r 

k=l 

00 

(2/n) }: k 
1. Ek(-) In+2k (a)' n;;: 

k=O 

00 

}: * A (a)T n (x)' 0 ,,; X,,; 1, 
n=O 

n 

k 
2 L (1/r) + 1/(k+l), k ;;: 1, 

r=l 
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A (a) 
n 

ax 

f 
-1 . 

t (1-cost)dt 

0 

ax 

f 
0 

ax 

f 
0 

AO 

A 
n 

-1 
t sin t dt 

B 
n 

C (a) 
n 

00 

I AnT2n (x), -1 s s 1, X 

n=0 

00 

2 I vrJ2r(a)' 
r=l 

r-1 
1 
2' V 

r 
l (1/k) + (1/2r), 

k=l 

(-)n-1 00 

l e:kJ2n+2k(a), 
k=0 

n 
n 2 1, 

-1 $ X $ 1, 

* I C (a)T (x), 
n n 

0 $ X $ 1, 
n=0 

A (ia), 
n 

A (a) as in ( *) • 
n 

r 2 2, 

These expansions follow from more general expansions for confluent 

hypergeometric functions. In order to show the relation with the Bessel 

functions we give some information on the construction of the coefficients. 

Let us consider the well-known expansion (see ABRAMOWITZ & STEGUN 

(1964, p. 361)) 

cos AX 2 

where J 2k is a Bessel function. We suppose -1 S x S 1 and A positive real, 

although it may be complex. Integrating with respect to A we obtain 



with 

J cos Ax dA 

0 

e 
n 
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sin µx = 2 
X 

From ABRAMOWITZ & STEGUN (1964, p. 480) it follows that en 

Integrating with respect to x gives 

Using 

we obtain 

t 

J si: µx dx 

0 

t 

I T0 (x)dx 

0 

t 

I T2k(x)dx 

0 

t 

2 00 J ,' k 
l (-1) e2k 

k=O 
T2k(x)dx. 

0 

Tl (t) 

T2k+1 (t) T2k-1 (t) 1 
2 [ 2k+1 2k-1 J' k > 0 

In this way the expansion for Si is obtained: 

(2 .12) Si (x) -µ :'> X :'> µ, 
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where f 2n+l depends onµ. This free parameter is included in order to choose 

an interval for the approximation. The expansions on p. 153-154 all contain a 

free parameter a. If a is chosen too large the approximations may become 

ill-conditioned. In BULIRSCH (1967) coefficients for Si and Ci are given for 

the x-interval [-16,16]. For x near the end points of this interval the 

given expansions yield inaccurate results. 
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2.2.2. Expansions near infinity 

For the sine and cosine integrals it is preferred to obtain expansions 

for f and g. From (1.26) and the expansion (4.5) on p.112 we obtain 

(2.13) iz[g(z) - if(z)] l 
n=O 

C (iµ)T*(µ/z) 
n n 

where C (z) can be obtained from a recurrence relation. 
n 

For E1 (z) = ez U(l,1,z) such an expansion is also available. A direct 

approach can be given by observing that 

y(x) 
z 

ze E1 (z), z = 1/x 

satisfies the differential equation 

2 
X y' + (1+x)y 1. 

Substitution of 

(2 .14) Y (x) l 
j=O 

gives the following recurrence relation 

(k 2c 2) • 

For :\ = 1 this result is a.l o given in FOX & PARKER (1968). It is a special 

case of (4.5) on p.112 and it converges for wide ranges of x and\. Let us re

write (2.14) as follows: 

(2.15) wz wz e E1 (wz) l 
j=O 

c.(1/z)T~(l/w), 
J J 

w 2c 1. 

Then from LUKE (1969,II.p.25) it follows that this expansion converges for 

all z f O, larg zl < 3rr/2. 

The coefficients cj(l/5), giving an expansion of E1 (x) for x 2c 5, are 



IV. EXPONENTIAL INTEGRALS 

given in LUKE (1969, Vol. II, p. 322) and LUKE (1975, p. 105). 

2.3. Continued fractions 

We mention the important fraction 

E (z) 
n 

for larg zl < 7f, 

-z 1 n 1 n+l 2 
e ( z+ 1+ z+ 1+ z+ • · • ) 

which converges better with increasing lzl. This frac-
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tion again follows from the results for hypergeometric functions (see (1.24) 

and p.100 ff). 

From the above fraction the even and odd contraction can be obtained. 

Let 

then the coefficients of the contractions are given in the following table. 

:s;::~ 
al bl ~,k=2,3, ••. bk,k = 2, 3, ..• 

C 

even 1 z.+n - (k-1) (n+k-2) z+n+2k-2 

i<Jdd n z+n+l (k-1) (n+k-1) z+n+2k-1 

For z 1; :R. + the sequence of convergents of the even contraction is 

increasing, and the sequence of convergents of the odd contraction is 

decreasing (see II.4.5). 
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3. ALGORITHMS AND IMPLEMENTATIONS 

Discussed are special cases and known implementations of exponential 

type integrals. In contrast with the gamma function no efficient universal 

routine is available. In our opinion this is hardly posgible because the 

class of exponential type integrals contains various special cases. 

3.1. Exponential integral for real positive argument and integer order: 

E (x) 
n 

The computation of En(x) (see (1.11)) can be based on a combination 

of the following representations: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

n-1 
E (x) = (-x) /(n-1)! fw(n)-ln(x)} -

n 

E (x) 
n 

-x{ 1 n 1 n+ 1 2 \ 
e \. ;;=- 1+ x+ 1+ x+ • • · ) 

00 

l (-x) m / ((m-n+l) m!) ; 
m=0 
mfn-1 

and the even and odd contractions (see 2.3); 

E (x+h) 
n 

E (x) 
n 

E (x) 
n 

I 
j=0 

(-h)j 
-.-,- E . (x) (Taylor expansion); 

J. n-J 

-x 
(e -nEn+l (x)) /x (recurrence relation); 

-x oo k k 
e l (-1) (k+n-1) !/x 

x(n-1) ! k=0 
(asymptotic expansion). 

3.1.1. The implementation of Stegun and Zucker (1974) 

They implemented in ANSI FORTRAN 66 in double precision the exponen

tial integral with the parameters 

input rn - the order (CN) 

X - the argument, X <! 0 

output: enx - the value of E (x) 
n 

expenx - the value of exE (x) 
n 

ier the integer error indicator. 

In the routine the following machine dependent parameters have to be initial~ 

ized: 
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rinf - the largest number x such that x and -x belong to the system 

of real (computer) numbers; 

rmaxi - the largest integer i such that all integers in the range 

[-i,i] belong to the system of integer (computer) numbers; 

nbm the number of binary digits of the mantissa. 

Moreover, the constant of Euler, y, must be initialized for the particular 

machine (in the paper 35 digits of y are listed). 

The computational problem used for En(x),resp. exEn(x), reads 

n=O rinf 

e-x/x resp. 1/x, 

n E lN min(l/(n-1), rinf) 

an a posteriori finite 

part of the series (3.1) 

an a posteriori finite 

part of the even contraction 

(3.2) 

0 

for O $ x $ 1/rinf; 

, for 1/rinf < x 

, for x = 0 

, for O < x $ 1 

, for 1 < x < rinf-n; 

, for rinf-n < x. 

For x E (0,1] the series (3.1) is evaluated in the forward direction where 

the (n-1) -st term-, apart from a factor, consists of ln (x) and 1/J (n) ; the 

evaluation is terminated when 

!TM/SUMI < TOLER 
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with TOLER a tolerance variable and TM the value of the most recent term. 

The even contraction of the continued fraction is evaluated in the forward 

direction (see II.4.8); the evaluation is terminated if either 

with ci the i-th convergent of the even contraction. The error indicator, 

IERR, is set to 

0 no error detected 

1 n < 0 or x < 0 (the value -rinf is delivered for En(x) resp. 

exE (x) 
n 
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2 

REMARKS. 

0 < n < ~I and n I Ill (the value rinf is delivered for E (x) 
n 

resp. e~ (x)). 
n 

In the note on the parameters for transportable numerical software of 

IFIP WG-2.5 the parameters RINF, RMAXI and NBM are called SOVFLO, IOFLO 

and SDIGIT, respectively. 

The summation of the alternating almost monotonically decreasing series 

is handled with care: the (n-1)-st term does not majorate in general the 

remainder of the series and therefore the termination test is not applied 

to this term. 

We consider the used termination criterion of the evaluation of the con

tinued fraction not correct. The reason why and a counter example is 

given below. 

The implemented even contraction is a continued fraction of the second 

class of BLANCH (1964). 

After an equivalence transformation the continued fraction reads 

1/(x+n),'\ 
-(k-1) (n+k-2) 

(x+n+2k-2) (x+n+2k-4) 

The converge behaviour is given by the fraction 

00 -.25 1 k 
-.25 1 

C = k!l 1 2' ck II> -1- = - 2 k/(k+l). 
j,=1 

For this continued fraction we have 

and therefore we do not consider the implemented criterion 

foolproof, because the left hand side is a factor (k+l)/k2 smaller than the 

actual truncation error. 

The counter example below demonstrates that the truncation error majorates 

the prescribed tolerance for x = 1, i.e. 
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ca 859580/1441729 

c 9 748420/1255151 

c 14 9591325648580/16083557845279 

with c!/c8 - c 14 < 0 (:). 
2 

Because of c > c 14 > c9/c8 , which in our case is equivalent to, 

)61 

we have that the tested quantity (left-hand side of inequality) is not an 

upper bound for the relative truncation error (right-hand side of inequal

ity). 

3 .. 1.2. The implementation of GAUTSCH! (1973) and AMOS (1980) 

Gautschi implemented in ALGOL 60: fn(x) 

x > 0. The parameters are 

input X - the argument, x > O; 

exE (x), n = 1,2, •.. N, and 
n 

nmax - the number of exponential integrals: 

f1 (x), ... ,fnmax (x); 

d the accuracy requirement: the required number of sig

nificant decimal digits; 

output : f - an array for the values of f 1 (x), •.. ,fnmax(x). 

In the implementation no measures against overflow or underflow are taken; 

Euler's constant is initialized to 24 digits. 

The used computational problem reads 

an a posteriori finite part of 

the series (3.1) and the for

ward recurrence relation for 

an a posteriori finite part of 

, for O < x ~ 1; 

the even and odd contraction of the continued 

fraction (3.2) for fm(x), with 

m the integer closest ,to X, 
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and the recurrence relation 

in the backward direction for 

f 1 (x), ... ,fm-l (x) and in the 

forward direction for fm+l (x), ... 

f (x) 
nmax 

, for 1 < x. 

The series is evaluated in the forward direction; the summation is termi

nated if either 

or s 0 or se cease to behave monotonically, with 

s the partial 
0 

sum with an odd number of terms, 

s the partial sum e with an even number of terms, 

s the arithmetic mean of s and s e' 
10-d 

0 

eps the precision 

The even and odd contraction of (3.2) are evaluated by means of the evalua

tion of the sum representation of the convergents where the quotient of the 

terms obey a nonlinear two-terms recurrence relation (see II,4.5.3)1 the 

evaluation is terminated if either the successive convergents of the even 

or the odd contraction cease to behave monotonically (Rutishauser's device) or 

(w +w )/2 
o e 

with w0 and we the convergents of the odd and even contraction, respective

ly. The error handling consists of testing for x $ 0, nmax $ O, and, when 

appropriate, calling a procedure RECOVERY (to be supplied by the user) 

followed by a return to the user program. 

REMARKS. 

• No range for the argument is indicated where the implementation is free 

of overflow and underflow; so we do not consider it robust. 

In order to prevent infinite loops in cases where d, the required accura

cy, is specified unreasonable large for a particular computer, we propose 

to test 10-d against the machine precision (which is named and callable 

in nowadays languages) times a small factor (5 or 10), instead of using 

Rutishauser's device, which is stronger because it requires the monotonic 

behaviour of the calculated quantities. 
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• The implementation can be considered as belonging to the variable pre

cision class. (See II. 1) • 

An improved FORTRAN variant of the ALGOL 60 implementation is due to 

AMOS (1980). Implemented is the computation of 

N ~ 1, k 0, 1, ••• , M-1. 

The used algorithm reads 

recursion starting with En(x), with n, the integer 

closest to x within the constraint N $ n s N + M - 1 

En(x) is calculated via 

the power series for O $ x $ 2 

the confluent hypergeometric function U(n,n,x) for 2 < x < o. 
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U(n,n,x) is computed by recurrence relations via the Miller algorithm for 

U(n+k,n,x), k = 0,1, ..• , with a normalizing relation derived from the two

term recurrence relation satisfied by En(x) and En+l(x). Truncation error 

bounds are derived and used in error tests in EXPINT. Exponential scaling 

is also provided as a subroutine option. The improvement concerns savings 

in the recurrence when N is large and x $ 1 or when xis large and N+M-1 is 

small. 

3.1.3. The implementation in NUMAL 

The implementations: 

ENX delivers Ek(x), k = n 1, .•. ,n2 , x > 0 

NONEXPENX delivers ex~(xl., k = n1 , .•. ,n2 , x > 0 

are in ALGOL 60 for a CD CYBER, and are heavily based on Gautschi's; EI is 

based on CODY & THACHER (1968,1969). 

The computational problem used in ENX and NONEXPENX is: 

El (x) = -Ei (-x) 

and the forward recurrence 

for E , ••. ,E 
n1 n2 

an a posteriori finite part 

of the Taylor expansion of 

Em(x), with m the integer 

closest to x, and the re

currence relation with E (x) 
m 

as initial value 

for O $ x $ 1.5 

for 1.5 < x < 10.5 
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an a posteriori finite part 

of the even and odd conti

nued fraction (3.2) for 

exE (x) and the recurrence 
m 

relation with E (x) as initial 
m 

value, analogous to Gautschi 

REMARKS. 

for 10.5 s x. 

• E1 (x) may efficiently be obtained from a call to Ei (E 1 (x) = -Ei (-x)). 

• The disadvantage of the slow convergence of the continued fraction near 

x = 1 is replaced by the unproven used termination criterion of the 

Taylor series. The termination criterion is to handle an alternating 

series and a positive series; for the alternating series we agree with 

the used criterion (but use names for the machine precision), while for 

the positive case we propose 

••• while lwll > 10* machine precision do 

Namely, for the positive series the first neglected term is a measure 

for the relative truncation error. 

The implementation is not portable and not robust. 

(machine parameters are not named and there is no error handling). 

The implementation can be considered as belonging to the variable preci

sion class. 

3.1.4. The implementation in NAG 

The implementation S13AA delivers E1 (x). The computational problem 

reads 

i· ajTj(t) - ln X 

with t = ~x - 1 

-x ,' e /x l b.T. (t) 
. J J 

with tJ= (11.25-x)/(3.25+x) 

0 

where xhi is machine dependent. 

, for O < x $ 4 

, for 4 < x < xhi 

, for xhi $ x 

The only parameters are the argument and an error indicator. The latter is 

set to 

0 

1 

no error detected 

x s O (E 1 is set to zero). 
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REMARKS. 

The method is based on CLENSHAW c.s. (1963; see II); the bilinear trans

formation is modified because of the faster convergence of the Chebyshev 

series in this new variable. 
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• The required terms of the Chebyshev sums are a priori converted to a 

power sum; the evaluation of the latter is more efficient while the same 

accuracy is obtained. (A 'streamlined' form is not considered) 

• The implementation is available in NAGF (mark 7), NAGA and NAGB (mark 2). 

• THACHER (1965) obtained experimentally a faster convergent series for 

0 < x $ 4 by the transformation t = 8x/[1+(8-.25)x], 8 = .2915 

3.1.5. The implementation in NATS 

The implementation EONE which calls a poly-algorithm is written in 

ANSI FORTRAN 66. The only parameter of EONE is the argument. The computa

tional problem is 

Plm {x) - ln X for 0 < X $ 1 

-x 
e Q1J1/x) for 1 < X $ 4 

e-x/x {1 + Rlm { 1/x) /x}, for 4 < x, 

where P,Q,R denote rational functions with 1 the degree of the numerator 

and m the degree of the denominator. The coefficients for the various 

domains and a diversity of relative precisions (down to 10-21 ) are given 

in CODY & THACHER (1968). 

The error handling is done by a call to the general FUNPACK routine 

MONERR; x $ 0 is signalized. 

REMARK. 
The paper of Cody & Thacher also entailed the software provided by 

PACIOREK (1970), IMSL ~g~ CERN. 

3.2. Exponential integral for imaginary argument: E1 (ix) 

According to (1.14a) and (1.15) we have 

-Ci(x) + i{Si{x) - ~/2) 
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with Ci(x) the cosine integral and Si(x) the sine integral. The computation 

of Ci(x) and Si(x) can be based on a combination of the following represen

tations as special cases of (3.1) and (3.2): 

(3.6) 

( 3. 7) 

(3.8) 

00 

-(y+ln x + l (-l)m x2m/((2m)(2m)!) 
m=l 

+JI 
\n=o 

m 2m+l ) (-1) x /( (2m+l) (2m+l) ! )-Tr/2 ; 

where the coefficients are given in the following table. 

==~ al bl ak, k = 2, 3, ••. bk, k = 2, 3, •.• 
r 

cont. fraction 1 ix k1·2 ix, k is odd 
1, k is even 

even contraction 1 ix+l - (k-1) 
2 

ix+2k-1 

odd contraction 1 ix+2 (k-1) k ix+2k 

The formulas (1.17). 

3.2.1. The implementation of Stegun and Zucker (1976) 

They implemented in ANSI FORTRAN 66 in double precision a poly-algo

rithm for the sine, cosine, exponential integrals and related functions 

with the parameters 
input: ic - an indicator for the desired integrals 

ic functions to be computed 

1 Si, Ci 

2 
-x E., e E. 

J. J. 

3 Ei, 
-x 

e Ei, Shi, Chi 

4 Si, Ci, Ei, 
-x 

e E., Shi, Chi 
J. 

x - the argument(> 0 for ic = 2) 

output: the appropriate function values are returned in si,ci,ei,exnei, 

shi,chi; moreover, the variables cii,shii are used (they 

have sense for negative arguments). 
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In the routine the following machine dependent parameters have to be initial

ized 

rinf - the largest number x such that x and -x belong to the system of 

real (computer) numbers; 

nbm - the number of binary digits of the mantissa; 

ulsc - the maximum value for the argument in order to obtain reliable 

results; 

y, n/2, n, log 2. 

The computational problems used for Ci and Si read 

-rinf resp. 0 

an a poster~o~i finite part of 

the series (3.6) 

an a posteriori finite part of 

the even contraction (3.7) 

0 resp. n/2 

Ci(-x)-in resp. -Si(-x) 

for x 0 

, for O < x S 2· 

, for 2 < x < ulsc 

, for ulsc S x 

, for x < O. 

The matching of the various methods is based on the results of an experi

mentally obtained efficiency profile; the results of the experiments are 

provided in the paper. The series is evaluated in the forward direction; 

the evaluation is terminated when 

!TM/SUMI < TOLER, 

with TOLER a tolerance variable, TM the value of the most recent term and 

SUM the calculated partial sum of Si or Ci, respectively. 

The even contraction of the (complex) continued fraction is evaluated in 

the forward direction (see II.·4.8); the evaluation is terminated if either 

or 

with ci the i-th convergent of the even contraction. The error indicator, 

IERR, is set to 
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0 - no error detected 

1 - if ic ~ 1 and x < 0 then ei and exnei contain invalid results. 

REMARKS. 

• The even contraction of the continued fraction (3.7) can be represented 

by 

1/(l+ix), 
(2k-1+ix) (2k-3+ix) 

This fraction is of the third class of BLANCH(1964). We doubt the cor

rectness of the stopping criterion, because 

-.25 

and therefore theorem 8 of Blanch (the remainder is in absolute sense 

estimated above by a factor times the difference of successive conver

gents) does not apply. 

The chosen value of the imaginary part of Ci and Chi, for x < 0, is -rr. 

We should omit the delivery of this value, because it is not universal 

to deliver -rr (+rr could also have been chosen; it can be reflected into 

the choice of the value of the logarithm for negative values) and in 

absence of the type DOUBLE COMPLEX the parameter list is confusing. 

• For the naming of the machine parameters see the earlier remark in 3.1.1. 

Although in the introduction of the paper the easy-to-modify criterion of 

the implementation is explicitly mentioned as an aim, we feel that the 

authors did not succeed with respect to this point. 

3. 2. 2. 'l'he implementation in NAG 

The implementations S13AC and S13.l'D deliver Ci respectively Si. 

The computational problem is heavily based on BULIRSCH (1967) and given 

in the following table. 
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Si(x) Ci(x) argument range 

X * }:~ akTk (t) ln(x)+}:~ bkTk(t) 0 < X !> 16 with 
t = 2(x/16)2-1 

1T f(t)cos X g(t)sin X fC (t) COS X gc(t)sin X 16 < x < xhi with 2- - - 2 X 2 X 
t = 2(16/x) 2 -1 X X 

1T 0 xhi !> X 
2 

- Si(-x) not provided X < 0 

(Ci (x) = C'i (-x)+i1T) 

The functions f,g,fc,gc are represented by Chebyshev expansions; xhi is 

machine dependent. 
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The only parameters are the argument and an error indicator. The error in

dicator is not used in S13AD (Si); in S13AC (Ci) an error return is given 

with ifail = 1 when x !> O. 

±i1T 3.3. Exponential integral for negative argument: E1 (xe ) 

From relation (1.8) we have 

- Ei(x) + i1T. 

In literature implementations for Ei(x) are provided. The computation of 

Ei(x) can be based on a matching of (2.1) and (2.9). 

3.3.1. The implementation of Stegun and Zucker (1976) 

The general description is given in 3.2.1. The used computational 

problem reads 

the series (2.1) for O < x !> aell 

the asymptotic expansion (2.9) for aell < x, 

with aell a machine dependent parameter. The error indicator, IERR, is set 

to 
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0 - no error detected 

1 negative argument; ei and exnei contain invalid results. 

3.3.2. The implementation in NATS 

The implementation EI, which calls a poly-algorithm is written in 

ANSI FORTRAN 66. The only parameter of EI is the argument. The computational 

problem with experimentally chosen representations reads 

xinf 

, for x < 0 

for O < x ~ 6 and x0 the zero of 

Ei(x) 

for 6 < x ~ 12 

, for 12 < x ~ 24 

for 24 < x < xmax 

for xmax < x. 

The error handling is done by a call to the general routine MONERR; x 0 

and overflow are signalized. 

REMARKS. 
• The coefficients for the various above mentioned functions and for a 

-21 
diversity of relative precisions (down to 10 l are given by CODY & 

THACHER (1969) and obtained via rational minimax approximation. 

The paper of CODY & THACHER also entailed the software provided by PACIOREK 

(1970), IMSL, NUMAL and CERN. 

3.4. Exponential integral for general z: En(z) 

The only implementation known to us is BEAM (1960), which is based on 

the evaluation of the continued fraction. In relation with (1.24), LUKE 

(1977) gives routines for the determination of the Chebyshev coefficients 

of the confluent hypergeometric function U for real arguments (see his 

ch.VIII) and also routines for the expansion of exponential type integrals 

in series of Chebyshev polynomials. When the coefficients ~,ck of the fol

lowing expansions 
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00 

f(x) I * bkTk(x/A), 
k=O 

00 

F(x) I * ckTk (A/x), 
k=O 

are given, the routines yield the coefficients gk'¾ in 

X 
00 

-ax u-1 

f eattuf(t)dt I * A g(x) e X gkTk(x/A), 0 $; X $; 

0 
k=O 

or 
00 

f 
00 

bx -u -bt u I * G(x) e X e t F(t)dt ¾Tk (A/x), 0 < A $; X 

k=O 
X 

Re b > 0 (see LUKE (1977, Ch.XI)). 

These routines may be used as starting point for the complex case. 

On the other hand, one can use via (1.24) the expansion (4.5) on p.112, 

where the coefficients are functions of the argument z. The coefficients 

o~ey a recurrence relation (p.27 in LUKE (1969)) and asymptotic estimates 

are given (p.28 in LUKE (1969)). For the calculation of these coefficients 

a proper use of the Miller algorithm should be made. A concise treatment 

is given in LUKE (1976). 

TODD (1954) recommends the Laguerre quadrature method in preference to 

the asymptotic expansion for the terms I 1,I2 in 

with 

00 

f e -p x+p 
dp 2 2 

0 
(x+p) +y 

00 

f e -p y 
dp, X + iy. 2 2 z = 

0 
(x+p) +y 

Bounds for the approximating error are given; their iso-bound curves look 

like 
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--------------
I 

I , , 

For z outside 'the finger' the approximating error is less than 

Implementations for obtaining the (Laguerre) Gaussian weights and abscissae 

are published by GAUTSCH! (1968a,1968b and absorbed in NUMAL) and GOLUB & 

WELSCH (1969); the ALGOL 68 library of NAG contains implementations in order 

to access tabulated Gaussian weights and abscissae, so a limited number are 

direct available. In STROUD & SECREST (1966) FORTRAN-routines are provided. 

REMARK. Todd compares the quadrature method with the asymptotic expansion; 

the above given estimate of the error for the quadrature method is smaller 

than the error estimate for the asymptotic expansion (2.8). As shown by the 

experiments of STEGUN & ZUCKER (1974,1976) - j.e., the continued fraction is 

more efficient than the asymptotic expansion along the real and imaginary 

axis - it is interesting to compare the Laguerre quadrature method with the 

continued fraction for reasonable (large) z. Consider Gautschi's remark in 

relation with w(z) on this matter (Chapter V). 

4. SOME ASPECT OF ERROR ANALYSIS 

In this section we consider: the effect of perturbation of the argu

ment, the recurrence relation for E (z) and the recurrence relation for 
n 

E (x), n > 0 in order to obtain E (x), m < 0. 
n m 

4.1. The effect of perturbation of the argument 

From 
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we have for the relative error amplification (in first order) 

IE ~z) :z En (z) I 
n 

For the special case E1 (z) we have for x € :R+ 

argument amplification / pc I asymptotical amplification for x + 00 

-x 
X e • /E1 (x) X 

ex/lEi(x) I 
X 

-x e 

ix 1/IE1 (ix)I X 

REMARKS. 

• The error amplification is inversely proportional to the modulus of the 

delivered function value. 
-x • The documentation_of E1 (x) in the NAG manual contains a graph of e /E1 (x). 

• It is curious, that when the amplification factor is so simple in terms 

of the result, as is the case here, it is not even mentioned in the docu

mentation of most program libraries, or used in the routines. 

4.2. The recurrence relation for En(z), n > 0 

In II.3.1 we considered the recurrence relation and derived a quadratic 

bound for the condition if we start the recursion for n = [lzl] and recur 

down the pn-hill. 

REMARK. From (1.11) it follows that x > O, k > m imply Ek(x) < Em(x). So it 

is tempting to conclude that backward recursion is stable. This is no rule 

of thumb, as suggested by STEGUN & ABRAMOWITZ (1956): " ••• However, in the 

case of the function yn(x) there will be no loss of accuracy since this 

function is an increasing function of n for fixed n ••• ". The point is here 

that (1..13) ·-is not positive in the backward form (i.e., the coefficients are 

not all positive). A recursion, which is positive in the direction of in

creasing function values, is stable. 
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4.3. The recurrence relation for En(x), n > 0 

This recurrence is used in NUMAL in order to obtain the derivatives 

of En(n), n = 2,3, ..• ,10, because for x E (1.5,10.5) the Taylor expansion 

y [x+.5] 

is used, where the En-k(y) are obtained from the recurrence 

j y,y-1, •••• 

For E. with positive index, we have a recurrence down the p-hill, while 
J 

for a negative index we have the recurrence for an, a positive recurrence, 

and so a benign problem. (see II.3.1 with respect to the recurrence of an). 

5. TABULATED COEFFICIENTS 

BULIRSCH (1967) 

Si(x), Ci(x) coefficients of the Chebyshev expansions up to 17d on 

lxl < 16, 16 ~ lxl. 

CLENSHAW, MILLER & NOODGER (1963) 

Ei(x) coefficients of the Chebyshev expansions up to 17d on 

x 2 < 16, X ~ -4. 

(In CLENSHAW (1962) the above coefficients are provided for 

the same intervals up to 21d). 

CODY & THACHER (1968) 

rational approximations up to 22d on (0,1],[1,4],[4, 00 ); con

tinued fraction expansion up to 25s for small x. 

CODY & THACHER (1969) 

Ei(x) 

LUKE (1969) 

rational approximations up to 22d on (0,6],[6,12],[12,24], 

[24,oo); 

zero of Ei(x) to 30d. 

(main reference, with much more information; see also LUKE 

(1975)) 
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{E (z).+lnz+y}/z main diagonal Pade approximations for n = 2, ... , 10 up to 20d 
1 

Si(z)/z 

and the corresponding approximation errors for z = 1,i,-1. 

main diagonal Pade approximations for n = 2, •• ,,10 up to 

20d and the corresponding approximation errors for 

z=l,2, .•• ,10 

4(y+lnz-Ci(z))/z2 main diagonal Pade approximations for n = 2,4, ... ,10 up 

to 20d and the corresponding approximation errors for 

z=l,2, ... ,10 

(y+lnz-Ei(z))/z diagonal of rational approximation array for n = 0,1, ... ,10 

up to 13d and the corresponding approximation errors for 

z = r,ir,-r with r = 1,2, .•• ,10 

E1(x),x > 5 coefficients of the Chebyshev expansion (p.322), 

Ci(x), !xi < 8 coefficients of the Chebyshev expansion (p.325) 

Si(x), lxl < 8 coefficients of the Chebyshev expansion (p.325) 

ze2 E (z) diagonal of rational approximation array for n = 0,1, ... ,10 
1 

up to 13d and the correspondiug approximation errors for a 

variety of z. 

6. TESTING 

STEGUN & ZUCKER (1974,1976) compared the results of their programs 

with published values. Further checks were obtained by comparing with other 

(less efficient) methods or algorithms e.g.: overlapping the power series 

with either the asymptotic expansion or the continued fraction, using various 

forms of the continued fraction, numerical quadrature. 

The numerical accuracy was ascertained by comparing multi-precision results 

with analogous results of the single and double precision implementations. 

Their test argument values are 0,10j(10j) lOj+l, j = -2(1) jend, with jend 

appropriately chosen. A driver program was published in the 1974 paper, 

REMARK. 

• Error bounds for the evaluation of the approximation in finite precision 

are not provided in the paper; the correct coding as well as the numeri

cal accuracy are evidenced by experimentation. The implementations belong 

to the naive program class. 
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• The truncation error is of the order of the machine precision because the 

implementation is of the variable precision class. 

GAUTSCH! (1973) compared the results of his procedure with results in 

40s obtained by Thacher via a desk calculator, by - we assume - the same 

algorithm; to be precise: in the latter comparison the 40s results were 

taken as yard stick, and compared with the results from a FORTRAN double 

precision version of the published ALGOL 60 implementation. So, another 

piece of software was tested with respect to accuracy. 

The implementation in NUMAL was based on the assumptions: Gautschi's 

algorithm and implementation as well as CODY & THACHER (1968,1969) coeffi

cients are correct. Diverse tests showed that the coding, the algorithms 

and the coefficients were correct. 

The NATS-implementations were tested on random arguments: a so called 

accuracy profile. 

The NAG-implementations were tested with automatic portable test soft-

ware. 

7. APPLICATIONS 

This paragraph illustrates the paraphrase: pitfalls in computation or 

why a math book and even a program library is not enough. Program libraries 

will not - and we think will never - be sufficient for solving problems, 

because a huge (infinite) number of problems are thinkable which can be 

expressed in basic special functions, and all those problems can't be in

corporated in the program library. So mathematical skill, numerical insight 

and programming technique remain necessary, though on a less extended scale. 

ABRAMOWITZ & STEGUN (1964) tabulate from 5.1.28 up to and including 

5.1.44 some integrals which are expressible in exponential integrals. 

Tfilll4E (1976) mentions the special case (see also ACTON (1970)) 

= 

f sin xt dt = ~{e-xEi(x) - exEi(-x)}, x > 0. 
t2+1 

0 

For small x cancellation occurs so another representation is desired, e.g. 
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oo n 
-sinh(x) (y + ln x) + ½{e-x L ~ -

n=lnn. 

00 n n 
X \ (-1) X } 

e L ' • 
1 nn. n= 

KADLEC (1976) encountered in transport problems through a scattering 

medium definite integrals of the type 

1 

f R (x)f(x)dx 
m,n 

0 
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with R a rational function (m~n) with real coefficients and (known) real 
mn 

poles, and f(x) one of the functions e-y/x, lnlrx+sl, lnlrx+sl .e-yx_ As an 

example we mention 

1 

f -y/x 
_e __ dx 
ax+b 

0 

For small a cancellation occurs and another representation is necessary, 

e.g. 

The exponential integrals with negative index can be obtained - in a stable 

way - via recursion (see 4.2). The subtraction in the first term must be 

performed with high relative precision, e.g., via 

ye 0 sinh 6 
2b O , 6 = ya/ (2b). 

~- The above denominator, ax+b, is typical, because the rational func

tion can be split into partial fractions. 

ACTON (197O,ch.4,exlS) asks for the evaluation of 

xf 1-e -t 
-t-- sin t dt, for x . 2 ( .1) 2. 

0 

A representation of this integral is (see 5.1.36 ABRAMOWITZ & STEGUN) 

Si(x) - (TI/4+Im El ((l+i)x)). 
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For the required argument values we may look in ABRAMOWITZ & STEGUN for tab

ulated values; in table 5.1 Si is given, while E1 for complex argument is 

not sufficiently given in table 5.7. 

LUKE (1969, Ch.XVII, table 64.1) enumerates Pade approximations for. 

E(z) 

So we could program the rational function and obtain the desired values of 

E1 , on e.g. a HP. (By the way, HENRICI (1977b) did not publish a program for 

El (z)). 

If we compute E1 (z) in an environment where program libraries are available, 

then we could obtain Si via a library; at the moment E1 (z) is not available 

in current program libraries so the programming, testing etc. for this func

tion remains. Apart from LUKE's approximation one could program the series 

(2.1) combined with the continued fraction given in paragraph (2.3). Proper

ties such as the monotonic behaviour of the even and odd contraction do not 

hold for general z, so GAUTSCHI's implementation can't be transliterated 

for complex argument. 

BEAM (1960) implemented in ALGOL 60 the Legendre continued fraction 

via algorithm (4.5.3) given in II.4. Because of the conciseness of the im

plementation and the used algorithm we consider BEAM's implementation use

ful in absence of faster algorithms. The programming with type complex can 

make the implementation more concise. 

Another approach could be to integrate the Taylor series of the integrand. 

The resulting series can be transformed into a continued fraction. So the 

problem is then reduced to the evaluation of a continued fraction. 

Finally, we like to remark that this application appeared in the con

text of numerical integration and that a straightforward application of a 

quadrature routine would easily yield the result provided the subtraction 

is handled with care. 
As an example of where exponential integrals can be used in the com-

putation of more advanced special functions we mention the implementation in 

FORTRAN of the computation of the Bickley functions, repeated integrals of 

K0 (x) Bessel function, in terms of exponential integrals En(x) due to AMOS 

(1983) and published as CALGO 609. 
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V. ERROR FUNCTIONS AND RELATED FUNCTIONS 

In this chapter we consider the error functions erf, erfc and some 

related functions as w(z), Dawson's integral and the Fresnel integrals. In 

section 1 we give the definitions and interrelations in addition to the 

main analytical aspects of these functions. In section 2 important expansions 

are considered: power series, Chebyshev series, continued fractions and some 

other expansions. In section 3 the algorithms and implementations are dis

cussed and section 4 is devoted to aspects of error analysis. A selection 

of tabulated coefficients for several types of expansions is given in section 

5. In section 6 the testing of some implementations is enumerated. In section 

7 some applications are given. 

1. DEFINITIONS AND ANALYTIC BEHAVIOUR 

The most well-known representations are given. Some less obvious rela

tions are proved. Especially the relation be.tween Fresnel integrals and the 

basic function w(z) is considered, together with relations for the functions 

f(z) and g(z) which describe the asymptotic behaviour of the Fresnel inte

grals. 

1.1. The error function 

The error function erf(z) is defined for all (finite) complex values 

of z by the integral 

z 
2 _! I -t (1.1) erf(z) 27T 2 e dt. 

0 

Its complement with respect to 1 is denoted by 

(1. 2) erfc(z) 1 - erf(z) _1 I -t2 
27T 2 e dt. 

z 

In statistics we often see a slightly different function, P(z), called the 

normal or Gaussian probability function, and its complementary function 

Q(z) = 1 - P(z), given by 



180 

z 

P(z) c21r> -l J e-lt2 dt ½erfc(-z/fi) 
;..co 

(1.3) "' -lt2 
Q(z) c21r>-l I dt ½erfc (z/12) • e 

z 

This leads to 

(1.4) erf(z) 2P(z/2) - 1, erfc(z) 2Q(z/2). 

We furthermore introduce the functions 

2 
w(z) -z erfc(-iz) e 

(1.5) 2 z 2 

F(z) -z 
Jet dt. e 

0 

The function Fis called Dawson's integral and w(z) is known in physics as 

the plasma dispersion function. 

The Fresnel integrals (with applications in optics) are defined by 

z z 

(1.6) C(z) J 2 
cos½1rt dt, S(z) J sin},rt 

2 
dti 

0 0 

they can be expressed in terms of erfc and of was will be done in the next 

subsection. For representing the Frensel integrals for large values of lzl 
2 it is useful to introduce, for Re z > O, 

f (z) 

(1.7) 

"' 2 

~I -lvz t _l e t 2 dt, 
1+t2 

0 

g(z) 

.. 2 

~I -lvz t 
ti dt. e 

1+t2 
0 

The relation between these functions and c and Swill also be given below. 

Finally, we introduce the repeated integrals of the error function, i.e., 

we define 

(1.8) in erfc(z) J .n-1 
i erfc(t) dt, n 0,1,2, ••• 

z 
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with 

io erfc{z) erfc{z). 

The operator in can be used with negative values of n, in which case it acts 

as a differential operator. For instance, we have 

i-l erfc {z) 
2 -½ -z 2,r e 

These functions often occur in physics and chemistry, notably in problems 

involving heat and mass transfer. They are defined for all finite values of 

z. 

A representation as a single integral is given by 

in erfc{z) 
-½ 00J 2 

2:! {t-z)n e -t dt, 

z 

from which a recursion formula with respect ton easily follows. For 

n = 1,2, ••• we obtain 

{1.9) in erfc{z) z .n-1 1 n-2 
n J. erfc {z) + 2n i erfc {z) • 

The functions introduced here are special cases of confluent hypergeo

metric functions, ABRAMOWITZ & STEGUN (1964, Ch.13). For instance 

2 
inerfc{z) - -! -n -z 1 1 1 2 - ,r 2 e U{2n+2,2,z ) , 

with as special case the error function for n 

cylinder functions we have 
O. In terms of parabolic 

2 
in erfc{z) = e-!z n-1 -! c; 

(2 ,r) D-n-l {zv~). 

The second solution of the difference equation for erfc can be obtained from 

the known solutions of the difference equation for the U-function. The 

solutions are useful in order to decide upon how to use the recurrence 

relation. 
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1.2. Some further relations for the error functions 

First we give another integral representation for erfc. We have 

(1.10) 
2

00J 22 2 -z -z t dt 
erfc (z) = --- e e - 2-, 

ff t +1 
0 

where we suppose that the integral converges; i.e., we suppose temporarily 
2 that Re z ~ 0. We prove (1.10) by differentiating with respect to z. Thus 

we obtain for the-right hand side (denoted by ~(z)) 

~ I (z) 
4z -z2 

--e 
ff 

0 

Integrating this relation and using ~(O) = 1, we obtain indeed (1.2). 

From (1.10) we obtain furthermore 

00 2 
2z -z2 J e -T = -e ---dT 
ff 2 2 ' 

QT +z 
(1.11) erfc (z) 

2 
where the domain of arg z can be extended to (-ff,ff). When we introduce 

, = iz, with O < arg, < ff, we obtain from (1.11) and (1.5) 

erfc(-i') 

Writing 

we obtain 

we,> 

from which we obtain 

(1.12) 

00 -t2 

w(z) = ~ J _e __ dt Im z > O. 
,, z-t ' 

2 
-T 

.e [_l - .... !JdT T-, T+,] 

This formula tells us that for Im z > 0 the function w is the Hilbert trans

form of the Gaussian or normal density function. For Im z < 0 we can use 

one of the relations 
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(1.13) erf(-z) -erf(z), erfc{-z) 2-erfc (z) 

which easily follow from (1.1) and (1.2). In combination with (1.5), (1.13) 

yields 

2 
( 1.14) w(-z) 2e-z - w(z). 

Of course, this relation follows in a more direct way by using residue theory 

when z in (1.12) crosses the real axis. Other symmetry relations are 

(1.15) erf (i) 

From (1.14) and (1.15) it follows that for the evaluation of w(z) we 

can restrict z = x + iy to the quarter plane x ~ 0, y <! 0. The function w (z) can 

be considered as the basic function. For Dawson's integral of (1.5) we have 

( 1.16) 

and the Fresnel integrals introduced in (1.6) satisfy 

C(z) ± i S(z) l~i erf Qlir(l+i)z] 

(1.17) 0 

½ /2 ( 1 ±i) z. 

The representations (1.16) and (1.17) are subject to cancellation of leading 

digits when they are used in computations for small values of z. 

Next we will show how f and g of (1.7) are related tow, C and S. From 

the definitions and (1.11) we obtain for Re z > 0 

g(z)±if(z) 

( 1. 18) 

1f-12-½ I 
0 

2 -½1rz t -½ dt 
e t tH 

-1 ! 1f 2 2 
""I 2 2 e-½1rz T 

0 

withs+ given in (1.17). Combining (1.17) and (1.18) we have (using 
2 -2 

s+ = -s_l 
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l+i ½i 2 
C(z) + iS(z) = - 2- - e ,rz [g(z) + if(z)], 

(1.19) 
1 . 1. 2 

C (z) - iS (z) = ; 1 - e - 21.,rz (g (z) - if (z)] , 

from which we obtain 

C(z) i - cos ½1rz2 g(z) + Sin ½1rz2 f(z) 

(1.20) 

S(z) = ½ - sin ½1rz2 g(z) - cos ½1rz2 f(z). 

Inverting (1.20) we can express f and gin terms of C and S: 

f(z) [l S (z)] cos [) C(z)] sin ½,rz2 , 

(1.21) 

g (z) = n - C (z)] cos !1rz2 + [) - S (z)] sin },rz2 • 

Since C and Sare entire functions, it follows that f and g, are entire 

functions as well. 

The oscillatory behaviour of C(z) and S(z) is fully described by the 

circular functions in (1.20). For large lzl the functions f and g are slowly 

varying. In the next section we give more information on the asymptotic 

expansions off and g, from which the asymptotic representations of Sand C 

are obtained by using (1.20). 

St.rJ,CtrJ 

qa 

l 
10 ;r 

Figure 1. Graphs of S(x) and C(x), x ~ 0. 
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To summarize the relations between the functions introduced here we express 

them in terms of the function w(z). 

2 
erf (z) 1 - 2e 

-z 
w(iz) 

erfc (z) -z w(iz) e 2 
inerfc(z) (-i)n -n -z w (n) (iz) /n! 

2 
2 e 

P (z) ½e 
-z 

2 w(-iz/,'2) ( 1. 22) 
Q(z) ½e-z w(iz/n°) 

-z2 
F(z) !i /:ir [e - w (z)] 

1+· r,;2 
C (z) ± iS (z) ~ [1 - e ± w(±I',;±)] .2 
f(z) ± ig (z) l±i + -2- w(_r,;±) I',;± 

In the third line, w(n) (iz) means dn w(u) 
dun 

evaluated at u 

2. FUNDAMENTAL FORMULAS 

½hr (l±i) z 

iz. 

2.1. Expansions based on Taylor series and on asymptotic series 

2.1.1. Taylor expansions 

The expansion 

(2 .1) erf (z) 
_ 1 ~ (-l)nz2n+1 

271 2 l 
n=0 n! (2n+1) 

is obtained by expanding the exponential function in (1.1). For large values 

of z this alternating series may be unsuitable. By transforming the integral 

(1.1) via t ➔ z/1-t we obtain 

-z2 1 2 
ze I tz erf(z) = -/ir e 

0 

dt 
✓ 1-t. 

2 
By expanding exp(tz) we obtain by using the integral representation for the 

beta function 

(2. 2) erf(z) 
2 

-z 
e 

00 2n+1 I _z __ 

n=0 r (n+3/2 ) ' 

a series with positive terms if z > 0. 

A Taylor series for w(z) is given by 
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(2. 3) w (z) 
(iz) n J0 rC1+n/2l 

It is obtained by combining (1.5), (1.2) and (2.3). For C(z), S(z) and F(z) 

power series easily follow from the above ones or from their integral 

representations. 

2.1.2. Asymptotic expansions 

The starting point here is the integral for erfc(z) in (1.2). We 

transform it into 

(2. 4) erfc(z) 
-z2 cof 

ez ,7# 
0 

In this representation we suppose that Jarg zl < ,r/2. For n 

obtain by partial integration 

0,1, ... we 

(2.5) erfc(z) 

2 -z 
e n-l m -2m n -2n [ I (-1) rcm+!lz + (-1) r(n+!J z en (zl] 

with 

(2 .6) e (z) 
n 

Z'!T 
m=O 

00 

e (1+T/z ) 2 d,. f -, 2 -n-1 

0 

Suppose now that z Ea is such that 

(2. 7) 

Then Je (z) I ~ 1 and we conclude that for the values of z satisfying (2.7) 
n 

the absolute value of the remainder in the asymptotic expansion (2.5), taking 

n terms, is not larger than the absolute value of the first neglected term. 

For real z, it has the sign of this term. 

To describe the values of z satisfying (2.4), we remark that the equation 

I 1+r; I 1 

2 2 
in the l;-plane is satisfied by the points on the circle (u+l) + v = 1, 

where l; = u +iv.It follows that (2.7) is satisfied by those z-values 

satisfying I arg z 2 I ~ ,r/2, z -f O. By using complex values of, in (2 .6) , we can 

give bounds for a wider z-domain. To show this we write 



(2 .8) 
2 z 

Then we consider the integral 

(2.9) I 
CR 
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where the contour in the complex T-plane is shown in the following picture. 

R is a positive number, 0 = ,P- (sign ,P) 11/2. 

R 

Figure 2. Contour of integration for (2.9). 

From (2.8) it follows that Isl < 11/2. The singularity T -z2 of the 

integrand in (2.9) lies outside the contour CR. Hence, by using Cauchy's 

theorem, (2.9) vanishes. Furthermore, the contribution along the circular 

arc of CR vanishes in the limit R + 00 • It follows that (2.6) can be written 

as 

8 (z) 
n 

ooe 

I 
0 

i8 

-T 2 -n- 1 
e (l+T/Z ) 2 dT, 

where on the path of integration arg T = 8. Again we can use (2.7), now for 

T = pei8 • Since arg T/z2 = ±11/2, (2.7) holds true for the considered 
2 

values of T and z. The bound for. 8n(z) thus becomes 

len(z) I ~ I e-T cos 8dT = 1/cos 0 

0 

1/ I sin ,P 1-

Resume. The remainder 8n(z) in the expansion (2.5) is bounded as follows: 
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if lipl :5 TT/2 
(2.10) if -TT<$ :5 -TT/2 or TT/2 :5 $<TT 

2 
where ip = arg z , n = 0, 1 , 2 , • . • • 

Remark. By refining the above methods it can be shown that (2.5) gives an 

asymptotic expansion for the range larg zl < 3TT/4. Note that for 

larg zl ~ TT/2 the reflection formula erfc(-z) = 2 - ertc(z) can be used. 

For f and g introduced in (1.7) we can also obtain asymptotic expansions. 

By writing 

n-1 
l (-t2)m + (-l)nt2n/(l+t2) 

m=O 

we obtain upon substituting this in the integrals of (1.7) 

00 ½ 2 I 

1 
n-1 (-l)mrc2m+D (-l)n f - TfZ t 2n-2 

f{z) I e t dt, ir7'2 er 2J2m+! + """"ii72 
l+t2 m=O 2TfZ 0 

(2 .11) 00 

- 1 TTz 2t 2n+1 n-1 {-1)mr(2m+312) + (-l)n f 
g(z) 1 I 

e 2 t 2 
dt, 

~ 3/ """"ii72 2 
m=O ( I 21 2m+ 2 0 l+t 

2TTz , 

where Re z2 > 0. Bounds for the remainders in these expansions follow from 

replacing 1/(1+t2) by 1. Bounds for larger z-domains are obtained by using 

more refined estimates. It can be proved that (2.11) gives asymptotic 

expansions for z + 00 , larg zl < TT/2. 

2.2. Chebyshev expansions 

LUKE (1969) gives several Chebyshev expansions for erf(x), in which 

case the coefficients can be expressed in terms of Bessel functions. For 

example 

2 2 
ea x erf (ax) 

where -1 :5 x :5 1 and a E ~. Tabulated coefficients are given by LUKE 

(1969) for erf(x), erfc(x) and Dawson's integral (p. 323/324, vol :0:). 

SCHONFELDER (1978) gives for erf(x) and erfc(x) coefficients in Chebyshev 
-30 

expansions which enable computation with accuracy of about 10 • A 
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modification of SCHONFELDER (1978} is considered in SHEPHERD & LAFRAMBOISE 

(1981). 

]89 

In various Chebyshev expansions the (real) independent variable is 

transformed in order to obtain a faster convergent series. (See SCRATON 

(1970), LOCHER (1975) for the choice of the transformation from a theo

reticalpointofview, while THACHER (1965) and SCHONFELDER (1978) determined 

experimentally the parameters of the transformation). 

HUMMER (1964) has given an elegant method for the calculation of the 

coefficients of the expansion of Dawson's integral in Chebyshev polynomials. 

(The method also applies, with respect to the Chebyshev series of y(x), to 

erf(x) 
2 -x2 

7-rr e y(x) 

because y(x) obeys the differential equation y' (x) 

Let 

XE [-1,1] 

1T 

an(k) = ¾ J F(k cos 6)cos(2n+1)6 d6. 

0 

2xy(x)+1.) 

Integration by parts and using the differential equation yields 

a (k) 
n n 1, 2, •••• 

The formula for the coefficients is given by 

a (k) 
n 

2.3. Continued fractions 

The well-known continued fraction 

(2.12) z2 -1 I 
,;;;-e z erfc (z) = j z12 + 

1
_1½ I + I.LI + Ill + I ½ I + 

z 2 1 z2 •·· 

as given in lI. 4 • 9 converges for Re z > 0. Contraction gives a more 

efficient fraction. 

McCABE (1974) discussed continued fractions for Dawson's integral, 

which by transforming z can also be used for erf(z) or erfc(z). 
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2.4. Other expansions 

STRECOK (1968) has given expansions of erf(x) based on the Poisson 

summation formula 

r 
m=-oo 

2 
e-K(m+T) 

One of his expansions is 

r 
n=-oo 

erf(x) 2 37 -1 - (n/5) 2 
- [x/5+ l n e sin(2nx/5)], 
7f n=l 

-24 with accuracy of about 10 • 

lxl !, s7[;2, 

By using the Gauss-Hermite quadrature rule it is easy to derive from 

(1.12) 

(2 .13) 
. n ~n) 

w(z) = .:1:.. 1~ l ~• 
7f n k=l z-~ 

Im z > O, 

(n) (n) 
where~ and 1\ are the zeros and weight factors of the Hermite poly-

nomials. 

The trapezoidal integration rule applied on (1.12) gives for any h > 0 

00 -n2h2 
(2.14) w(z) ih r e 

Eh (z) ---+ 7f z-nh n=-oo 

+ p if y < 7r/h 

+ !P if y 7r/h 

+ 0 if y > 7r/h 

2 2 2 
where z = x + iy, P = 2e-z /[1-exp(-27riz/h)] and Eh(z) = 0(e-7f /h), 

uniformly for z € IC. See for instance LUKE (1969, vol :a:, p. 214) and 

MATTA & REICHEL (1971). When z is close to a multiple of h, say z ~ n0h 

for some integer n0 , then a limiting process has to be used in order to 

compute 

However, by choosing a smaller value of h, it is always possible to avoid 

such cases. The quadrature rule (2 .13) asks for the values of x (n) and H (n) , whereas 
k k 

(2.14) can be applied without pre-tabulated constants. The error term for 
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(2.14) is satisfactory and the series converges very fast. For complex 

values of z,(2 .14) is an excellent starting point for a reliable and efficient 

algorithm. For application of (2.14) to functions related to the error 

function see MATTA & REICHEL (1971). Some expansions in this reference are 

subject to loss of accuracy. However by using elementary analytical 

operations this always can be settled. 

3. ALGORITHMS AND IMPLEMENTATIONS 

In this section algorithms and implementations are considered for: the 

error function (erf), the complementary error function (erfc) and repeated 

integrals (inerfc), the probability functions {P and Q), wof z (w), Dawson's 

integral (F) and the Fresnel integrals (C,S). 

3.1. w(z) considered as basic module 

The fl,nctions to be considered can be expressed in terms of w(z) (see 

(1.22)) .For the important special case z E :n/, it follows that w(z) is 

needed for z E JR+, z = ix with x E JR+ and z = t7r/2(1+i)x with x E JR+. 

~- In those cases where a subtraction occurs care has to be taken for 

small values of z in order to preserve sufficient relative precision. 

3.2. Implementations for w(z) 

In order to calculate w(z) for all z E ~ we only need to consider 

z E Q1 with Q1 = {z I Re z ~ O, :cm z ~ O}, because of the symmetry relations 

(1.14) and (1.15). 

3.2.1. The implementation of GAUTSCHI (1970a,b) 

The aim of Gautschi is: To propose a single algorithm which is 

uniformly effective for all complex arguments. Current practice attempts 

to achieve the desired economy by adopting different methods in different 

regions of the complex plane. 

The computational procedure is 

(3 .1) 

N 

l (2h)ku~µJ(z+ih) 
k=O 
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with N, µ, dependent on z and h, chosen such that 

where 

and 

lw(z) - cr~µ](z,h) I <£(an a priori fixed precision) 

2 k-1 [µ] 
~ . II 1 r. (z) 
Y1T J=- J 

[µ] 
0, rk-l (z) 

(h, N andµ are chosen empirically, such that the routine is as efficient 

as possible). 

REMARKS. The source text is given in ALGOL 60 and therefore the complex 

arithmetic is handled by real data types and by programming the operations in 

real arithmetic. FORTRAN transcriptions of this code should have cleaned up 

this unnecessary coding, unless double precision is aimed at in FORTRAN 77; 

Several libraries have not done this in their single precision FORTRAN 

version. It is desirable and more comprehensive to use complex data types 

and complex arithmetic in the FORTRAN code. 

The implementation is designed for 10 digits absolute accuracy. For machines 

with a different accuracy the implementation should be adapted. For 

machines with a higher accuracy, x0 , g0 , h0 and N should be increased, 

whileµ should be decreased; the amounts must be determined experimentally. 

Furthermore, it is desirable to use names for the constants: 4.29(=y0), 

s. 33 (=x0 l, 1.6 (=h0 ), 6 (=N0 J, 23 (=N1 J, g (=µ 0J, 21 (=µ 1 l, 1.12s •.• (=2/lirl, 

and to provide tabulated optimal values for (some of) these parameters for 

various (machines) accuracies, in order to facilitate transportability. 

In Gautschi's paper it is indicated how to adapt the constants in order 

to meet 14 digits accuracy near the origin. Strangely enough several librar

ies copied just the original version of the algorithm, although they generally 

aim at 14 digits accuracy. 

A warning in the paper is given when the algorithm is used for w(-z) via 

the symmetry relations, because of loss of relative precision near the 

zeros of w(-zj; an expansion is needed for that region. 

The programming should have taken into account the representation 
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[ µ] ( h) 
CfN z, 

for h > O, as a modification of formula (3.12) as given in the paper. 

3.2.2. The recurrence relations of ACTON (1974) 

Acton considered a.a. recurrence relations for the integrals, 

I (c) 
n 

J (c) 
n 

f"' -ct2 ( 2 )n _e _____ t_ dt 

(l+t2) l+t2 
0 

J -ct2( t2 )n 
e --2 dt, 

l+t 
0 

Re C > 0. 
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I 0 is proportional to erfc (see 1.10); because of the relation between erfc 

and w (see (1.22)), we have 

w(z) 

so the recurrence relations of ACTON can be used to compute w(z). 

In and Jn obey the recurrence relations 

(2n-l)In-l 2n I + 2c J n n 

Starting from (IN,JN) (1,0), N sufficiently large, I 0 is approximated by 

where I 0 , J 0 are obtained from the recursion and J 0 = .SITI/c. In section 

4.2. an explanation of ACTON's technique as well as improved starting 

values are given. 
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3.2.3. The approximation of OLDHAM (1968) 

OLDHAM provides an approximation aimed at small machines for 

x2 
x e erfc (x) xw(ix), 

which is not robust for x + O+ because of overflow. 

3.3. The error function and the complementary error function: arf and erfc 

3.3.1. erf and erfc for complex argument 

STEGUN and ZUCKER (1981) have provided an implementation for the error 

function of a complex argument, as an extension of their earlier work -

STEGUN and ZUCKER (1970) - where an implementation for real argument is given. 

Their main concern was to provide accuracy over the entire domain of 

definition while the methods employed were selected in order to ensure ef

ficiency, portability and ease of programming and modification. If one sup

plies approximate values for the maximum machine value, minimum machine 

value, the upper bound of the sine, cosine routine, and the upper bound to 

the acceptable relative error and gives the square root of TI to the required 

number of significant figures, the detailed methods are designed to work for 

computations ranging from very low precision to multi-precision. The algorithm 

used in the first quadrant is a combination of: the Taylor series for erf, 

the asymptotic expansion and the even contraction of a continued fraction 

representation for erfc. 

3.3.2. erf and erfc for real argument 

3.3.2.1. The implementation of STEGUN & ZUCKER (1970) 

They implemented in ANSI FORI'RAN 66 in double precision the error 

function with parameters: 

input 

output 

x - the independent variable 

erf - the value of the error function at x 

erfc - the value of the complementary error function at x. 
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In the routine the machine dependent parameters: 

NBC - the number of binary digits in the characteristic of a floating 

point number; 

NBM - accuracy desired or maximum number of binary digits in the 

mantissa of a floating point number. 

The used computational procedure reads 

the series (2.2) for erf x, with O < x s 1, 

the even contraction of the continued fraction (2.12) for erfc x 

with 1 < x S ULCF, 

erf x = 1 and erfc x = 0 for X > ULCF, 

the symmetry relations for x < O, 

where ULCF is a machine dependent constant. 

The summation of the series (2.2) is terminated if the next term as 

an estimate of the remainder is smaller than 2-NBM, the relative truncation 

error. 

The even contraction of the continued fraction is evaluated in the 

forward direction (see :u:. 4.8); the evaluation is terminated if either 

or 

with c. the i-th convergent of the even contraction. 
l. 

REMARKS. 

• In the note on the parameters for transportable numerical software of 

IFIP WG-2.5 the parameter NBM is called SDiGiT. For the parameter NBC 

SRANGE can be used. 

• we doubt the used termination criterion of the evaluation of the contin

ued fraction because of the following. After an equivalence transforma

tion the continued fraction reads 

a, <\ 
C = W -

k=1 1 ' 

2x --2-, 
2x +1 

- (2k-3) (2k-4) 
2 2 . 

(2x +4 (k-1)-3) (2x +4k-3) 
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The convergence behaviour resembles the continued fraction 

00 -.25 
C = ~ - 1- = -.5, 

k=1 

For the last fraction we have 

with the k-th convergent ck -.5k/(k+1). 

the estimated truncation error, 

1/ (k+1) , the truncation error; 

so 

From the above, we consider the implemented criterion 

not correct, because it is possible that the actual truncation error 

exceeds TOLER: 

(We expect that again a counter example can be obtained for the actual 

continued fraction as was the case for the exponential integral, where we 

demonstrated for the used continued fraction 

Furthermore, it is remarkable that here the quantity 

is considered, while in their publication about exponential integrals 

1 - ck_ 1/ck is considered. However, for practical purposes the stopping 

criterion may be sufficient; by introducing a factor it can become robust). 

3.3.2.2. Some implementations from CALGO 
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CALGO 180, 181 (THACHER) for erf and erfc 

These ALGOL 60 implementations are intended for large arguments. The 

algorithm used is the evaluation of the (Lagrange) continued fraction (2o12) 

for the complementary error function via a method due to Maehly. 

This method for the evaluation of the even convergents of a continued 

fraction is a variant of (4.33 in Il.4). 

Given the continued fraction 

and the recursion 

then the even convergents, c2k, are given by 

k 
}: 

l=1 

For the case of erf and erfc overflow was reported near x = 1, and because 

the use was intended for large x no attention was paid to scaling. 

Because scaling, in the method due to Maehly, can be of general impor

tance, one can introduce scaling factors {fk}, as follows. 

k 2l-1 
* I * c2k ( II aj)b2.l 

with .l=l j=l 

* * a. f. 1f.a., 
J J- J J 

b. flj' J 

f. 1/(a.f. 1+b.), j = 1,2, •.• , fo 1. 
J J J- J 

This representation can be derived from the representation of the even 

convergents of the equivalent continued fraction 

~ 
k=l 

* where fk is chosen such that qj 1, i.e. the partial denominators equal one. 
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CALGO 209 (IBBETSON) for normal distribution function erfc 

The used algorithm in ALGOL 60 is Horner's rule for the evaluation of 

some peculiar polynomial approximation, while for \ x \ ~ 6 the value 1 is 

taken. The number of decimals in the coefficients suggest a more accurate 

approximation, which is misleading. 

REMARK 

This implementation is overruled by the more concise approximation 7.1.26 

in Abramowitz and Stegun, which also yields ±7 digits accuracy. Furthermore, 

one could consult HENRICI (1977b), when an approximation for a pocket 

calculator is desired. 

CALGO 272 (Mac LAREN) for normal. distribution function erfc 

This ALGOL 60 implementation combines the Taylor series expansion of 

erf around suitable points for small x and the asymptotic expansion for 

erfc for large x. "Small", "large" and the required precision can be 

adapted by a modification of the named variables B, N and EPS, respectively. 

REMARKS 

Although this implementation is characterized by the parameters B, N and 

EPS, we consider it not worthwhile to implement this procedure on a 

machine with a larger machine precision than 210-8, especially in view of 

IMSL, NAG and published coefficients of rational approximations. 

CALGO 304 (HILL & JOYCE) for normal curve integral erfc 

The ALGOL 60 implementation combines the series expansion (2.2) of 

erf and the (Lagrange) continued fraction (2.12) of erfc. The continued 

fraction is evaluated by the forward algorithm (see 4.3.1. in JI. 4). In the 

remarks the odd contraction of the (Lagrange) continued fraction is 

proposed as a faster algorithm. Furthermore intermediate overflow can 

occur and so scaling must be introduced, as proposed in a remark by 

Holmgren. 

3.3.2,3 The representation of MA'ITA & REICHEL (1971) 

For real argument values their series representation reduces to the 

trapezoidal integration rule (2.14). 
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3.3.2.4. The implementation in IMSL and CERN 

The implementations with multiple entry points can deliver either the 

value of the error function, or the value of the complemented error 

function or the value of the normal distribution function. 

The computational problem is 

2 
xl\m (x ) , 

-x2 
e l\m(x), 

-x2 
e 

X 

for 0.0 $ x < 0.477 

for 0.477 $ x $ 4.0 

for x > 4.0, 

where l\m(x) are rational function of degree kin the numerator and min 

the denominator. For negative values of the argument the problem is reduced 

to the above computational problem via the symmetry relations (1.13). The 

approximations and the coefficients for the various domains and a variety 

of relative precisions (down to 10-19 ) are given in CODY (1969b). 

The' implementations in NUMAL 

These implementations are variants of the IMSL and CERN implementations 

and also based on the approximations and coefficients given by CODY (1969b}. 

The difference concerns the language - ALGOL 60 - and that an auxiliary 

procedure is provided, which delivers the intermediate result 

x2 
e erfc(x). 

3.3.2.5. The implementations in NAG 

The implementation S15AE delivers erf(x). The computational problem is 

sgn x {1 -

sgn x, 

t = T2 (x/2), 

-x2 
e I 

lxlfi ~ bkTk(t) }, 
x-7 

t = x-3' 

for lxl $ 2 

for 2 < lxl < 

for xhi $ lxl. 

xhi 
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The implementation Si5AD delivers erfc(x). The computational problem is 

t (x-3.75)/(x+3.75), for Os x s xhi 

0, for xhi < x. 

For x < 0 the symmetry relations are used. 

REMARKS 

• xhi is machine dependent. The number of terms of the Chebyshev series, N, 

as a function of the number of decimal digits in the machine precision, 

d, is given by the following tables, for erf and erfc respectively. 

I 
erf IX I s 2 2 :'., IX I s xhi 

N 8 12 15 17 8 11 15 18 

d 8 12 14 18 8 12 14 18 

erfc Os xhi 

N 12 18 21 23 26 

d 8 12 14 16 18 

The only parameters are the argument and the error indicator; the latter 

ls included for consistency reasons with other routines and has no 

meaning in these routines. 

• The ALGOL 68 library provides operators apart from the routines. 

The coefficients of the Chebyshev approximations are published by 

SCHONFELDER (1978). For the error function for 2 s Ix I :'., xhi, different 

coefficients in the Mobius transformation are used in the paper and in 

the library up to mark 7. 

• The original version of this algorithm as published by CLENSHAW c.s. (1963) 

is implemented in the library of the Boeing company, NEWBERY (1971). This 

version needs more terms in the Chebyshev approximation. 

3.3.2.6. The implementation for the TEXAS INSTRUMENTS 58/59 
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Implemented is formula 7 .1.26 of ABRAMOWITZ & STEGUN {1964, p. 299). 

3.3.2.7. The implementation for the HEWLETT PACKARD 67/97 

For x S 3 the series expansion {2.2) is used for erf. For x > 3 erf(x) 

is computed via the asymptotic expansion {2.5) for erfc{x). HENRICI {1977b) 

used for x s 2 the series expansion {2.2) and for x > 2 erf{x) is computed 

via the continued fraction for erfc{x). 

3.4. The repeated integral of the error function: inerfc 

For complex values of the argument no implementation is known to us. 

In GAUTSCH! (1977a) stability for the recurrence relation is reported in 

the forward direction for Re z > 0 and in the backward direction for 

Im z < 0. 

3.4.1. The implementation of GAUTSCH! (1977a): inerfc x for x € lR 

+ For x € :R this implementation is an improvement in efficiency over 

the algorithms which use backward recurrence, based on relation {1.9), 

alone. The repeated integral of the error function is for x > 0 a (weakly) 

minimal solution of the recurrence relation in the forward direction, while 

for x < 0 it is a dominant solution. The minimal solution is computed for 

x > 0 whenever this can be done within the desired correct significant 

decimal digits specified by the user, because for small x the quotient of 

the dominant and minimal solution is not too large. In order to start the 

forward recursion the Taylor series is used. The backward recursion is 

elaborated via the continued fraction variant of the Miller algorithm, where 

the starting index is first estimated via GAUTSCH! {1961b) and refined, if 

necessary,byincreasing the index by 10 and comparing the results with 

the previous results. 

REMARKS 

• To the authors opinion the series (2.2) should have been used instead 

of the Taylor series. (An experiment on the HP-97 showed that up to 

x = 5 no more terms are needed while a more accurate answer is obtained. 

Furthermore for larger values of K c~e has to be taken with the 
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alternating series with respect to underflow. and overflow as well as the 

stopping criterion). 

• The used truncation error criterion for the termination of the summation 

of the Taylor series is not robust, because the series is not an 

absolutely monotonely decreasing series and therefore the first neglected 

term does not majorate in absolute value the remainder. Alternating 

series with in absolute value monotonically decreasing terms, can be ob

tained by the repeated expansion as used in CALGO 123. 

• The repeated integral of the error function can be expressed as a 

confluent hypergeometric function (see below 1.9), and calculated by the 

algorithms given in TEMME (1983). For small positive values of the argu

ment x, effi~iency is obtained by the use of asyrnptotic expansions. The 

used backward recurrence relation has a larger domain of stability and is a 

modification of (1.9) by introducing the derivative. For the special case 

of the repeated integral of the error function this is not necessary. 

3.5. The probability functions: P and Q 

These functions are strongly related to the error fnnt::':.ion. In li tera

ture Q is also called: normalarea (BERGSON (1966)) and normaltail (ADAMS 

(1969)). These implementations are overruled by respectively HILL & JOYCE 

(1967) and CODY's work (1969b) and the entailed implementations e.g. in IMSL, 

GAUTSCHI's (1970a) implementation of w(z) and the formula (1.22) provide 

a general, modular starting point for an implementation. On the other hand 

the algorithms and implementations in TEMME (1983) for the confluent 

hypergeometric function could be used as basis. 

In NUMAL the relations between P and Q and erf and erfc is indicated 

in the documentation, and so the calculation is referred to the implementa

tion of erf and erfc. 

In NAG explicit routine headings are provided for P and Q (S15AB and 

S15AC) which call erfc (S15AD). 

3.6. Dawson's integral: F 

The material given below is strongly related to the error function, 
- 2 

namely,F(z) = ie z erf(-z). Although in (1.22) the relation between w 

and Fis given, it is advised to circumvent 'the subtraction' only once, 

while the above formula couples F and erf. 
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The computation of F{z) can be based on various series representations 

for the error function (see (2.1), (2.2)). Besides these series represen

tations various continued fractions are used in literature: 

• the continued fraction associated with the Taylor series: 

• the asymptotic series: 

• the continued fraction associated with the asymptotic series; 

• the continued fraction 

z 4z2 sz2 12z2 __ 2 ____ 2 ____ 2 ____ 2-··· 
1+2z - 3+2z - 5+2z - 7+2z -

(The last fraction converges reasonably fast for small as well as large 

argument values z E lR+. Truncation error estimates were provided by 

MC CABE (1974); references for the truncation error for the other continued 

fractions are mentioned). DIJKSTRA (1977) considered a similar continued 

fraction for the generalization of Dawson's integral. (Truncation errors 

were derived for z E a: and estimated for z E JR+ in the paper; the published 

continued fraction restricted to Dawson's integral is equivalent to 

McCabe's version). 

Furthermore, the following representations are mentioned in literature. 

the recurrence relation of ACTON (1974), see section 3.2.2; 

the series representations of MATTA & REICHEL (1971), see (2.9); 

the Chebyshev expansions of LUKE (1969, chapter IX). 

3.6.1. Dawson's integral for complex argument: F(z) 

No specific implementation is known to us. 
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3.6.1.1. The representation of MATTA & REICHEL (1971) 

Matta & Reichel represent F(z), z x + iy, by 

1~ {1.·e-z2 } 2 + K(y,x) - i H(y,x) 

where the series representations of Hand Kare given in the paper. This 

representation is based on (2.14). 

3.6.2. Dawson's integral for real arguments: F(x) 

3.6.2.1. The implementations in FUNPACK, IMSL and CERNLIB 

These implementations are based on CODY c.s. (1970). The computa

tional problem for F(x) is: 

!xi $; 2.5 

2.5 $; !xi $; 3.5 & 3.5 $; !xi $; 5 

1 -2 -2 
Zx {1 + x R!m(x )}, 

With R!m rational functions with numerator of degree land denominator m. 

For an accuracy of 15 digits, the degree of the polynomials in the rational 

functions are: (l,m) = (8,8), (7,7), (7,7) and (6,6), respectively. 

REMARK 

The coefficients of the equivalent Jacobi fraction are published, except 

for I x I $; 2 • 5 • 

3.6.2.2. The implementation in NAG 

The computational problem is 

' x l akTk(t), t T2 (x/4), !xi $; 4 

1 ' 
X - l bk Tk ( t) , t T2 (4/x), 4 $; Ix I. 
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For an accuracy of 15 digits the degree of the polynomials are 28 and 24, 

respectively. The Chebyshev sums are represented as power sums in the 

routines for efficiency reasons. 

REMARKS 
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• The coefficients could have been derived exactly, by the technique of 

HUMMER (1964), which comes down to partial integration of the integral 

representation of the coefficients and substitution of F'(x) = l-2xF(x). 

• LUKE (1969) has published coefficients of the expansion in odd degree 

Chebyshev polynomials with transition point x = 3. 

3.6.2.3. The representation of MATTA & REICHEL (1971) 

For reaL argument values their representations reduce to the 

trapezoidal integration rule (2.14). 

3.7. The Fresnel integrals: C and S 

These functions are closely related to w(z) as indicated in (1.22). 

The separate functions can be expres~ed in terms of w by writing 

( C(z)) 
S (z) 

with 

A(~) (w(i~)-W(s))/2 
B(~) (W(i~)+w(~))/2 

and 

~ lir/2 ( l+i) z. 

(This relation can be derived from (1.22) and the symmetry relations 

C(iB) iC(z), S(iz) -is (zl). 

REMARK 

The subtraction of w(i~) and w(~) has to be handled with care. 

On the other hand for large values of z the formulas (1.20) can be used, 

where f(z) and g(z) need to be evaluated. These functions can be evaluated 

by: 
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• the asymptotic expansions (2.11); 

the recurrence relations of ACTON (1974), especially for z E lR; 

• rational approximations of CODY (1968), for z E lR; 

• the representation given in MATTA & REICHEL (1971). 

3.7.1. The Fresnel integrals for complex argument: C(z) and S(z) 

No general implementation is known to us; so far no practical demand 

seems to exist. 

3.7.2. The Fresnel integrals for real arguments: C(x) and S(x) 

3.7.2.1. The implementation in NUMAL 

This implementation is based upon CODY (1968). The computational 

problem is 

lxl $ 1.2 and 1.2 $ lxl $ 1.6 

lxl $ 1.2 and 1.2 $ lxl $ 1.6 

and for the remaining argument values the representation (1.20) is used, 

where the functions f and g are approximated by 

-4 
f (x) :::: Rlm (x ) /x, for 1.6 $ lxl $ 1.9 and 1.9 $ !xi $ 2.4 

-4 4 
:::: (1/'rr+Rlm(x )/x )/x, for 2.4 $ lxl 

-4 3 
g (x) :::: Rlm(x ) /x , for 1.6 $ !xi $ 1.9 and 1.9 $ !xi $ 2.4 

2 -4 4 3 
:::: (1/1T +Rlm (x ) /x )/x, for 2.4 $ !xi. 

For an accuracy of 15 digits, the degree of the polynomials in the rational 

functions are given in the following table 
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Ix!< 1.2 1.2 $ !xi $ 1.6 1.6 $ lx I $ 1.9 1.9 $ lxl $ 2.4 2.4 s Ix I 
I 

Gil 4 5 I 
fll 4 5 5 

Im 4 5 Im 4 5 5 
I l,e. 

sll 4 5 
gl 

5 5 6 

Im 4 5 Im 5 5 6 
' 

3.7.2.2. The implementations in NAG and CERNLIB 

These implementations are based upon BULIRSCH (1967), and NEMETH (1965) 

for the recurrence relations for the coefficients. The computational problem 

for x 2 < 9 is: 

C (x) ::::: x}:crT 2r (x2 /9) 

x 3 2 
S (x) ::::: 9 }:crT2r (x /9) • 

For the remaining argument values representation (1.20) is used, with 

f(x) 

g(x) 
3 , 2 

(9/x )ld T2 (9/x). r r 

For an accuracy of 15 digits the degree of the polynomials are 

given in the following table. 

x2 < 9 x2 2': 9 

degree for C 21 degree for f 14 

degree for s 20 degree for g 17 

3.7.2.3. The recurrence relations of ACTON (1974) for f and g 

Acton considered, among others, recurrence relations for the integrals 
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Because 

I (c) 
n 

J (c) 
n 

K (c) 
n 

00 

J e-ct ( t2 )n 
2 \--2 dt 

0 (l+t ) v't l+t 

f e-ct ( t2 )n 
--\-- dt j It l+t2 • 

0 

the recurrence relations as given by Acton, can be used to compute f and g, 

and hence c ands. In section 4.2 an explanation of Acton's technique is 

given 

3.7.2.4. The representation of MA'ITA & REICHEL (1971) for f and g 

Matta & Reichel represent f and gas defined in {1.20} by 

f(x) Y2/(2~x) { H(xlir/2) + K(x/ir/2)} 

g(x) t'2/(2~x) { H(x/ir/2) - K(xlir/2)} 

with series representations for Hand K given in their paper. 

REMARK 

Cancellation occurs if first Hand Kare evaluated and then their sum and 

difference; one must first represent the sum and difference of Hand K 

analytically as infinite series. 

4. SOME ASPECTS OF ERROR ANALYSIS 

In this section we consider: the effect of perturbation of the argument, 

the reccurence relations of Acton. 
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4.1. The effect of perturbation of the argument 

The relative error amplification of a function f due to a perturbation 

lz of the argument z, is defined by 

f(z+lz) - f(z) I/ I f(z) 
z ¥ 0, f(z) ,f 0. 

I lz/z I 

In the following the relative error amplification is given for the functions 

related to the error function. 

function 

erf(z_) 

erfc (z) 

p (Z,) 

Q(z) 

F (z) 

C (z) 

s (z) 

first derivative 

n-1 -i erfc (z) 
2 

1/fi.ir e -z /2 
2 

-1/ili e -z 12 

1 - 2z F (z) 

1T 2 
COS 2 z 

• 1T 2 
sin 2 z 

relative error amplification 

z2 z t2 
Jz/(e J0 e- dt)I 

z 2 00 -t2 
Jz/(e J e dt) I z 

lzin-lerfc(z)/inerfc(z) I 
2 2 

lz/(,'2 ez 12 cJ~12 e-t dt+lrr/2')) I 

lz / ( fi ez 212 <J~12 e-t2 dt-lrr/2')) I 

lz/F(z) - 2z2 I 

lzcos f z 2/ C(z) I 

lzsin f z 2/s(:i:) I 

4.2. The recurrence relations of ACTON (1974) 

Acton considered the class of integrals 

F (c) = J exp (-ex) dt, 
0 tk/2 (l+Y) 

2 2 
with X =tort, Y =tort, k = 0, ±1, c > 0. For the calculation of 

these integrals via recursion the class of integrals is extended to 

F (c) _ f exp(-cX) ( Y )n 
n - j k/2 \7:+°Y dt. 

0 t (l+Y) 



210 

Moreover, the sum function (and sometimes repeated sum function) 

00 

G (C) = I exp(-cX) ( Y \ndt 
n k/2 \l+Yj 

0 t 

is used, with G0 (c) known. Note that 

or 

F (c) 
n 

G (c) 
n 

From these functions a homogeneous matrix vector recursion 

(4 .1) y(k-1) = A(k)y(k), y (k) = (y 1 (k) , ••• , y (k) ) 
p 

is derived, with A(k) ~ O. The order p equals 2,3 or 4. F(c) equals y1(0) 

{unknown) and ym(O) is given for a certain value of m, 1 ~ m ~ p. 

4.2.1. The Miller/Acton algorithm 

The M/A algorithm reads: 

•taken sufficiently large; rule of thumb n = [150/c], 

• take as starting vector a unit vector as given in the paper of Acton, 

calculate y(O) via the recursion, 

• calculate y, (0) = y, (0) y (0)/y (0) for the desired components. 
i i m m 

In the following we will explain the algorithm where the assumptions will 

be stated explicitly. 

Suppose, 

the eigensystem of B = rr~=l+lA(k) is given by {E,A}, i.e. BE= EA and 

each eigenvector is scaled such that the i-th component equals one, 

y(n) Ev, 

then for every r-th component of the vector y(l) we have 

(4. 2) 

with 

y (l) = (By (n)) 
r r 

£ = ( l E kAkkvk)/(E .A .. v.), 
r k#j r rJ JJ J 

and j free for choice. From (4.2) we obtain 
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(4 .3) 

Suppose furthermore, that for an arbitrary starting vector w a vectors 

exists with the property 

w Es, 

then 

(Bw) = E .A .. s.(1+o) 
r rJ JJ J r 

with 

o = ( 'i' E A s ) / (E . A .. s.) • 
r ~- rk kk k rJ JJ J 

krJ 

Substitution of 

Eij = (Bw) i (1+om) 

E . (Bw) (1+o,) 
mJ m i 

in (4.3) yields 

< 1+£ . > , 1 +a > 
J. m 

(4.4) y. <l> 
J. (1+£ > (1+o.> 

m J. 

, with y~(l) 
J. 
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By assuming£,,£, o., o negligible and taking l = 0 and w a unit vector 
i m i m 

the M/A algorithm is obtained from (4.4) with y(O) = Bw, Le,, y~ (l). 
J. 

REMARKS 

o 0 if w = E., the dominant eigenvector of B. 
J 

£ = 0 if y(n) = Ej, the dominant eigenvector of B. 

4.2.2. Estimating the starting index 

If we start with w = E. then the relative truncation error of the M/A 
J 

algorithm is in first order given by 

a 
Yi (0) - Yi (0) 

Yi (0) I 

Let for each A(k) the eigensystem be given by {E(k}, A(k)} with E(k) non

singular, and let M(k) be defined by 
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then 

E(k)M(k) 

B 
n 

E(l) II 
k=l 

E(k+l) 

-1 (A (k) M (k)) E (n+l) • 

Furthermore, if M(k) = I in first order (a so-called slowly varying 

recursion) then the eigensystem of Bis given by {E(p), A(k)}, p E [1,n]. 

If we furthermore assume that the magnitude of Ei is determined by the 

subdominant eigenvector with index s say, and v /v. = 1 
s J 

then 

n 
II 

k=l 
A (k) / A (k) ..• 

55 JJ 

The truncation error is governed by Ei and Em; if we concentrate on Ei 

then the starting index can be estimated, given a desired relative accuracy 

eps, by 

(4. 5) 

REMARKS 

n 
{n I II 

k=l 
I A(k) /A(k) .. I 

55 JJ 

n-1 
~ eps < II 

k=l 
I A (k) / A (k) . . I }. 

55 JJ 

• Although the above theory orginated from the desire to understand and to 

apply Acton's recurrence relations for the parameter c E ~,Rec> 0, it 

is possibly of use in other matrix vector relations, such as those 

which result from three-term recurrence relations by considering the 

companion matrix, or the matrix vector recursions for a function and its 

derivative, e.g. as used by TEMME (1983) for the calculation of the 

confluent hypergeometric function. 

• Acton proposed to start with a unit vector; we propose to start with 

E.(n) the dominant eigenvector of A(n). 
J 

• Intermediate scaling must be implemented to circumvent overflow. For a 

matrix of order two a direct formulation, with implicit scaling, can be 

obtained by the recurrence relation for the quotients y1 (k)/y2 (k), where 

y 1 (0) is to be calculated. 
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5. TABULATED COEFFICIENTS 

For a more complete list, especially through 1969, see LUKE (1969). 

BULIRSCH (1967) 

C(x), S(x) coefficients of the Chebyshev expansions up to 17d on 
2 2 

X < 9, 9 S X • 

CLENSHAW, MILLER, WOODGER (1963) 

erf(x) 

erfc(x) 

CODY (1968) 

coefficients of the Chebyshev expansions up to 16d on 

x2 < 16. 

coefficients of the Chebyshev expansions up to 19d on 

X ~ 4. 

(In CLENSHAW (1962) the above coefficients are provided 

for the same intervals up to 20d). 

C(x), S(x) rational approximations up to 19d on [0,1.2], [1.2,1.6], 

[1.6,1.9], [1.9,2.4] and [2.4, 00). 

CODY (1969):>) 

erf(x), erfc(x) rational approximations up to 22d on [0,.5], 

[.46875,4.0] and [4,co). 

CODY, PACIOREK, THACHER (1970) 

F(x) rational approximations up to 22d on [0,2.5], 

[2.5,3.5], [3.5,5], [5, 00). 

various rational approximations. 
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HART c.s. (1968) 

erfc(x) 

HUMMER (1964) 

F(x) coefficients of the Chebyshev expansions up to 16d on 

[0,5]; recurrence relations for the coefficients are 

also provided. 

LUKE (1969) 

The Chebyshev expansion of erf(ax) and the Fresnel 

integrals is given in chapter IX, 9.3. 

Coefficients of the Chebyshev expansion up to 20d are 
x2 

given for: /ir'/2erf(x), lxl < 3 (table 22); e F(x), 

lxl < 3 (table 22) and x > 2 (table 23); /.ii'/2erfc(x), 

x ~ 3 (table 23); iliC(Mx), 0 s x s 8 (table 24); 

ili S(/27ir'x), 0 S x S 8 (table 24). 
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NEMETH (1965) 

C(x), S(x) 

SCHONFELDER (1978) 

Main diagonal Pade approximations up to 22d and the 

approximation errors for z = 1, i, - 1, are given for 
2 

erf(z), ez F(z), C(z) + iS(z) in table 65.1 and 65.2. 

coefficients of the Chebyshev expansions up to 12d on 

[0,8]; recurrence relations for the coefficients are 

also provided. 

erf(x), erfc(x) coefficients of the Chebyshev expansion up to 30d on 

[0,4], [4,oo). 

SHEPHERD & LAFRAMBOISE ( 1981 ) 

erf(x) 

6. TESTING 

coefficients of the Chebyshev expansion up to 22d on 

[ 0 I oo) • 

The testing with respect to accuracy of algorithm 363, w(zl 

implemented by GAUTSCHI (1970b) in ALGOL 60, consisted of: 

• a comparison with a 14d implementation of the same algorithm, 

• a comparison with tabulated values. 

In both cases the aimed 10 decimal accuray has been obtained. In the certification 

of algorithm 363 Kc5lbig performed more elaborate tests on a FORTRAN transcrip

tion of the algorithm extended to the complex plane. 

STEGUN & ZUCKER (1970) compared their implementation of erf with those 

obtained by using various polynomials or rational approximations. Further

more, special values were checked by asymptotic expansions and numerical 

integration; moreover, single precision results were checked against double 

precision results. They reported that in all cases the obtained accuracy 

agreed within NBM-(I+3) binary digits, where I is the number of binary 

digits representing the integer part of x2 (Because of the reduction of 

the argument x 2 of the exponential function I binary digits are 'lost'). 

The correctness of the coefficients for functions related to the error 

function as published by CODY (1968,1969b) and CODY, PACIOREK & THACHER (1970) 

was verified by comparison of subroutines based on the coefficients and the 

'master routines' using 5000 pseudo-random arguments. 
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The NAG implementations have been tested with automatic portable test 

software (see introduction). 

GAUTSCHI (1977) compared his FORTRAN implementation with: 

• a mixed-precision variant (single and double), 

• numerical tables, 

• numerical integration, 

• results from various asymptotic expansions. 

7. APPLICATIONS 

We mention a few examples only. Applications in statistics and in 

physics are abundant. For a list of integrals of error functions see 

NG & GELLER (1969). 

7.1. Inverse error function 

Implementations are available in IMSL, NUMAL and CERNLIB. In principle 

an implementation for erf, erfc and a zerofinder will do, because 

inverf: y + {x Jy erf x}. 

This general approach has the following pitfalls 

a. For y away from zero - x large - the problem is sensitive for perturba

tions in y, because 

2 
X 

e 

For large x, change of the dependent variable into y 

erfc x - y = 0. For the relative perturbation we have 

1 ~ -- I X 4- oo. 

2x2 

1-y yields 

Therefore, in terms of y the problem is better conditioned. To circum

vent underflow one should consider (BLAIR et al. (1976)) 

½ - -½ f;(-lnerfcx) -1=0,f;=(-lny). 
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b. Efficiency considerationso 

In the zerofinder use of the cheap derivative must be made. Therefore 

the Newton-Raphson algorithm or another routine where use is made of 

derivatives must be considered. Furthermore, the problem can be approxi

mated by considering a truncated asymptotic series or continued fraction 

approximation of erfc x. On the other hand if erfc is approximated by a 

series expansion,a priori inversion of the series can be considered: 

erfc x - y 0-+ P (X) + X 
n ~ (y), 

where 9,n(y) can be represented in terms of Chebyshev polynomials (see 

STRECOK (1968))0 In IMSL the inverse function inverf is implemented via 

near minimax rational function approximations. BLAIR et alo (1976) have 

published the coefficients, in± 23d, of the rational approximation and 

the algorithm by which these coefficients were obtained 

REMARK 

The implementation in CERNLIB did not circumvent pitfall a), so for large 

x values the algor_ithm is ill-conditioned. 

7.2. Cornu's spiral 

In the theory of Fresnel diffraction in optics the intensity of the 

light behind a slit is governed by Cornu's spiral. The coordinates of any 

point (x,y) on cornu's spiral are given by the Fresnel integrals 

V 

x J cos nt2/2 dt 

0 
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V 

y I sin 1rt2 /2 dt, 

0 

where tis the lenght along the spiral. The lenght v determines the width 

of the diffraction slit. The intensity of the diffracted light is equal to 

x 2 + y 2 , which needs the evaluation of the integrals. 

7.3. Integrals in terms of the error or related functions 

Sometime~ it needs some skill to recognize integrals. In Abramowitz 

and Stegun the integral 

I -xt 2 e sin(t )/tdt, X > 0 

0 

is expressed in C and Sas 

2 2 1r /2 ( (. 5-C (y)) + (. 5-S (y) ) .) , y x/ili. 

However, for large values of x cancellation occurs, because C(x) and S(x) 

behave as .5 + 0(1/x) for large x. After some manipulation the integral can 

be expressed in the function f and g, as given in (1.20), as 

2 2 1r/2(f (y)+g (y)). 

If only the function w is available the last expression is easily expressed 

in terms of w via (1.22). 

7.4. Error integral in computing literature 

In FORSYTHE, MALCOLM & MOLER (1977} the exercises of each chapter 

start with a problem related to the error function. 
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