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INTRODUCTION

The main scope of these notes is to review and to discuss several
aspects of implementations for the numerical computation of special functions.
In this tract we consider functions which are related to the Euler gamma
function, the exponential integrals and the error functions. For each of
these groups we give
1. definitions, analytic properties and fundamental formulas;

2. algorithms, implementations, error analysis, references to tabulated

coefficients, and testing aspects.

We have limited ourselves to discuss the most important implementations,
although we aimed at giving a complete survey. With respect to testing we
have enumerated the techniques in use; no systematic testing has been done,

although occasionally weak points or expensive methods have been observed.

We feel that these notes fill up a gap in the existing literature, and
we consider them as an addition to the Handbook of Special Functions
(Abramowitz & Stegun) and to the various books of Luke. Furthermore we
mention in this respect Hart: Computer Approximations and Lyusternik et al.:

Handbook for Computing Elementary Functions.

At the beginning of this project we intended to include more groups of
functions, such as elliptic integrals, incomplete gamma functions and
Bessel functions. However, the present notes grew out and the other groups
are intended for a possible subsequent volume. Much depends on the need for
it. We invite the readers to inform us on this point. Also, is the present
form and set-up all right? Reactions are very welcome and will give us the

motivation to continue, or to stop.

The first two chapters contain general information on the computation



of special functions. The first one gives an annotated introduction to the
literature and to several program libraries. Some local program libraries
are surveyed when sufficient information happened to be available to us.

No systematic search is made in checking more Computer Centres.

The second chapter gives a theoretical background on error analysis,
recurrence relations, continued fractions and generalized hypergeometric

functions.

This tract originated from regular meetings of the Working Group
Approximation of Functions, i.e., the Dutch group on the subject. We kindly
acknowledge and appreciate the contributed sections of our colleagues
Dr. R.M.M. Mattheij of the University of Nijmegen (section II. 3.2: The
general aspects of three term recurrence relations), and Drs. J.P. Hollenberg
of the University of Groningen (section II. 4: Continued fractions). Further-
more, we like to thank the members of the working group for their much
appreciated comments and criticisms and for the patience for waiting on this

final version.



I. INTRODUCTION TO THE LITERATURE AND SOFTWARE

This chapter.provides an introduction to the literature on the compu-
tation of (special) functions and to the available software. We give an
annotated selection of relevant books and papers on the subject, which in-

cludes papers on general aspects of software and software engineering.
1. LITERATURE

ABRAMOWITZ, M. & STEGUN, I.A. (1964), Handbook of mathematical functions
with formulas, graphs and mathematical tables, Nat. Bur. Stan-
dards Appl. Math. Series, 55, U.S. Govermment Printing Office,
Washington, D.C.

A standard for general properties. A good starting point for claésify—
ing special functions, standard notation and definition. Contains many
analytical properties, not always the most useful properties for numerical
computation. No algorithms are provided for the evaluation, although now
and then a polynomial or rational approximation is given. Tables are in-
cluded with detailed information on how to use them in order to obtain
values which are not tabulated. The numerical data are useful for the oc-
casional (desk) calculator, which is actual because of the growing populari-
ty of hand-hold calculators and the break-through of personal computers. It

contains material up to 1960.

ABRAMOWITZ, M. (1954), On the practical evaluation of integrals. 175-190,
in: Ph.J. Davis, Ph. Rabinowitz, (1967), Numerical Integration,
Blaisdell.

Important with respect to the recognition of special functions in in-
tegrals with parameters. Examples concern: a disguised erfc, reduction to

a known form, evaluating by a limiting procedure, use of functional



relationships and termwise integration, extraction of singular part, reduc-
tion to a differential equation, Laplace transformation, saddle point approxi-

mation, inversion of order of integration.

ACTON, F.S. (1970), Numerical methods that work, Harper & Row Publishers.

In ordexr to find approximations to a function and to choose between
them on experimental grounds, trial and error is examplified in chapter 1.
A priori transformation of an approximation problem in order to remove
singularities is treated in chapter 15 by means of: substraction of the
singular part, substitution of trigonometric functions, and substitution of

Jacobian elliptic functions. Complex arguments are not considered.

BAUER F.L. (1973), Software and software engineering, SIAM Rev, 15,
469-480.

The development of software, in the past, now, and in the future, is
discussed, exposing‘the weaknesses at that moment. Suggestions are given

to overcome the ‘'software crisis'.

BAUER, F.L. (1980), A trend for the next ten years of software engineering,

in; H. Freeman, P.M. Lewis (eds.): Software Engineering.

A sequel to Bauer (1973) where the correctness preserving transforma-

tion technique is emphasized, The CIP-project is treated as an example.

BOEHM, B.W. et al. (1978), Characteristics of software quality, North--Hol--
land Publishing Company.

The aspects inherent to software quality are discussed.

BOEHM, B.W. (1981), Software engineering economics, Prentice Hall.

Given quality criteria of software, ways to produce software in an

economic way are discussed.

BRENT, R,P, (1980), Unrestricted algorithms for elementary and special

functions, in: S,.H. Lavington (ed.) Information Processing 80,

613-619, North Holland Publishing Company.

Unrestricted algorithms which are useful for the computation of elemen-

tary and special functions when the required precision is not known in
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advance are described. Discussed are: the evaluation of power series, asympr
totic expansions, continued fractions, recurrence relations, Newton itera-
tion, contour integration and transformation of power series into a better

conditioned form.

CLENSHAW, C.W. & F.W.J. OLVER (1980), An unrestricted algorithm for the ex-
ponential function, SIAM J. Numer. Anal., 17, 2, 310-331.

An algorithm is presented for the computation of the exponential func-
tion of real argument. There are no restrictions on the range of the argu-

ment or on the precision that may be demanded in the results.

BULIRSCH, R. & J. STOER, (1968), Darstellung von Funktionen in Rechenauto-
maten, 352-446 in: R. Sauer & I. Szabd, (eds.), Mathematische Hilfs-

mittel des Ingenieurs, Teil III, Springer Verlag.

Chebyshev polynomials (a lot of practical information), continued
fractions, elliptic integrals, Foarier analysis, and Bessel functions are

treated.

CODY, W.J. (1969), Performance testing of function subroutines, Proc. Spring

Joint Computer, Conf., 34, 759-763 AFIPS Press, Montvale, N.J.

A general approach with respect to testing is given. Experience with
testing of special functions is exposed and the test methods for special

functions are enumerated.

CoDY, W.J. (1970), A survey of practical rational and polynomial approxi-
mation of functions, SIAM Rev., 12, 400-423.

A good introduction to min-max approximations. Is partly overruled by
GAUTSCHI (1975).

CoDY, W.J., (1974), The construction of numerical subroutine libraries,

SIAM Rev., 16, 30-46.

How to develop and maintain a collection of optimal numerical software,

with respect to machine pecularities.

CoDY, W.J. (1975a), The FUNPACK package of special functions subroutines,
ACM Trans. Math. Software, 1, 13-25.

The design criteria of FUNPACK are exposed. FUNPACK is highly machine



dependent, but from the start it is implemented for three lines of (large
scale) computers: IBM 360-370, CDC 6000-7000, UNIVAC 1108. Important with

respect to advanced software engineering.

COoDY, W.J. (1975b), An overview for software development for special func-
' tions, in: G.A. Watson (ed.), Numerical Analysis, Lecture Notes

in Mathematics 506, 38-48, Springer Verlag.

Again important. It treats various number representations and their
influence on accuracy - transmitted error and generated error - as well as
how to do best. The concept of wobbling word length is introduced. Examples

are given with respect to the gamma function.

CODY, W.J. & W. WAITE (1980), Software manual for the elementary functions,

Prentice Hall.

Algorithms and test programs for the functions, SQRT, ALOG, ALOGI0O,
EXP, **, SIN,COS,TAN,COT,ASIN,ACOS,ATAN,ATANZ2,SINH,COSH are discussed. The
test programs are available in machine readable form from the authors and
IMSL.

A must for every one who does not trust the elementary function imple-
mentations in use or anyone who intends to provide some. Arithmetic peculari-
ties of computers and their consequences for designing optimal special func-

tion software are treated in a simple and coherent way.

CODY, W.J. (1980a), Basic concepts for computational software, 1-23. In:
P.C. Messina and A. Murli (eds.): Problems and Methodologies in
Mathematical Software production. Lecture Notes in Computer

Science 142, Springer Verlag.

The relation of numerical mathematics and software engineering is given
for the area of approximation of functions. Arithmetic pecularities which
ought not to occur are given in their simplest form. The software attributes
reliability, robustness and (trans«)portability are discussed. As an illu-
stration an implementation for |z| is derived under account of the discus-

sed criteria.
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CODY, W.J. (1980b), Implementation and testing of function software, 24-47
in: P.C. Messina and A. Murli (eds.), Problems and Methodologies
in Mathematical Software Production, Lecture Notes in Computer

Science 142, Springer Verlag.

An overview of proven techniques for preparing and testing function

software. The elefunt collection of CODY & WAITE (1980) is treated as an
example.

CODY, W.J. (1981), Funpack - a package of special function subroutines.
TM-385 Applied Mathematics Division, Argonne National Laboratory.

The package includes subroutines to evaluate certain Bessel functions,
complete elliptic integrals, exponential integrals, Dawson's integral, and
the psi-function. The paper reconstructs the events and decisions leading
to FUNPACK. It concludes with: "We also feel that special function programs

can now be written more portable than FUNPACK without sacrificing quality."
CALGO: Collected Algorithms of the ACM.

Nowadays the background of the algorithms, and how to use them, are
published in TOMS, with the complete listing of the code on microfiche.
Most of the implementations are in PFORT, a subset of FORTRAN. The imple-
mentations are refereed before publication. The implementations, supple-
mented with remarks and certifications, are issued in ACM's looseleaf ser-
vice CALGO. The machine readable versions of the algorithms can be obtained
via IMSL. CALGO provides an index to the above implementations as well as

implementations published elsewhere.

DITKIN, V.A., K.A. KARPOV & M.K. KERIMOV (1981), The computation of special
functions, USSR Comput. Maths. Math. Phys., 20, 3-12.

Gives a review of methods for computing special functions, with the
accent on methods used when tabulating the functions. An extensive list of

references includes a lot of Russian contributions on table making.

FORD, B. (1978), Parametrization of the environment for transportable nu-

merical software, ACM Trans. Math. Software, 4,2, 100-103.

In order to obtain better transportable FORTRAN 66 software the IFIP

Working Group 2.5 on mathematical software defined parameters for:



a. static arithmetic characteristics (i.e. radix, mantissa length, relative
precision, overflow threshold, underflow treshold, symmetric range);

b. basic input-output characteristics (i.e. standard input unit, standard
output unit, standard error message unit, number of characters per record
of the standard input unit, number of characters per record of the stan-
dard output unit);

c. miscellaneous characteristics (i.e. number of characters per word, page

size, number of decimal digits).

REMARK. Some of the suggestions in b) and c) are catered for in FORTRAN 77

(e.g. standard units are default, character data type is provided).

FOX, P.A., A.D. HALL & N.L. SCHRYER (1978), The PORT mathematical subroutine
library, ACM Trans. Math. Software, 4,2, 104-126.

A significant portable program library in the PFORT subset of FORTRAN 66.

FULLERTON, L.W. (1977), Portable special function routines, 452-483. in:
W. Cowell (ed.): Portability of numerical software, Lecture Notes

in Computer Science, 57.

Design criteria for his portable FNLIB are given and judged against
CODY's and SCHONFELDER's approach. In fact FORTRAN equivalents of those in

the 'handbook special functions' are treated.

FULLERTON, L.W. (1980), A bibliography on the evaluation of mathematical
functions. CSTR 86, Bell Laboratories.

Over 250 references on the evaluation of mathematical software have
been collected in this annotated bibliography. Because it includes a per-
muted index, one may easily find articles about specific functions. The
collection has been compiled with two groups of users in mind: Those who
frequently consult with scientists and engineers, and those who are devel-
opers of mathematical software and who need to examine past work before
writing programs. Papers of a highly theoretical nature have been excluded

from this bibliography.
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GAUTSCHI, W. (1967), Computational aspects of three-term recurrence rela-

tions, SIAM Rev. 9, 24-82.

How to work with three-term homogeneous recurrence relations is ex-
posed and illustrated with examples on: Bessel functions, incomplete gamma/
beta functions, Legendre functions, Coulomb functions, repeated integrals

of the error function, Fourier coefficients, a Sturm-Liouville problem.

GAUTSCHI, W. (1972), Zur Numerik rekurrenter Relationen, Computing 9,
107-126.

Systems of linear first-order recurrence relations as well as higher
order scalar recurrence relations are analyzed with respect to numerical
stability. Examples of severe numerical instability are presented involving
scalar first- and second-order recurrence relations. Devices for counter-

acting instability are indicated.

GAUTSCHI, W. (1975), Computational methods in special functions - a survey,
1-98 in: R. Askey (ed.) Theory and applications of special

functions, Academic Press.

Emphasis is put on methods for computing approximations such as: best
rational approximation, truncated Chebyshev expansion, Taylor series and
asymptotic expansions, Padé and continued fraction approximations, represen-
tation and evaluation of approximations, linear recurrence relations, non-
linear recurrence algorithms for elliptic integrals and elliptic functions.
A final paragraph is devoted to software for special functions (NATS, NAG

and others).
HANDBOOK SERIES SPECIAL FUNCTIONS

This project has been started by Numerische Mathematik in a similar
spirit as the series on Linear Algebra and Approximation. Published are:
Clenshaw, C.W. c.s. (1963), Algorithms for special functions I, 4, 403-419.
Miller, G.F. (1965), Algorithms for special functions II, 7, 194-196.
Bulirsch, R. (1965), Numerical calculation of elliptic integrals and ellip-

tic functions, 7, 78-90.
Bulirsch, 'R. (1965), Numerical calculation of elliptic integrals and ellip-

tic functions I1I, 7, 353-354.



Bulirsch, R. (1967), Numerical calculation of the Sine, Cosine and Fresnel
integrals, 9, 380-385.
Bulirsch, R. (1969), Numerical calculation of elliptic integrals and ellip-

tic functions III, 13, 305-315.

The series is not continued after these publications. However, see al-
so Temme, N.M. (1983), The numerical computation of the confluent hypergeo-

metric function U(a,b,z), 41, 63-82.
HART, J.F. et al, (1968), Computer approximations, John Wiley.

A good basis for developing an implementation of a special function.
Design phase, general methods, choice and application of approximation,
description and use of tables as well as examples are discussed. Provided
in appendices are: tables of constants, conversion routines, some decimal

and octal constants as well as a bibliography on published approximations.

HENRICI, P. (1977), Computational analysis with the HP~25 pocket calculator,
John Wiley.

Shows what kind of numerical analysis can be done on a hand-hold cal-
culator. Algorithms are given for (incomplete) gamma function, error func-
tion, complete elliptic integrals, Bessel functions (integer and arbitrary

order, of the first and second kind), Riemann zeta function.

HENRICI, P. (1974,1977), Applied and computational complex analysis,
John Wiley.

I. Power series, integration, conformal mapping, location of zeros.
II. Special functions, integral transformations, asymptotics, continued

fractions.

Basic material for those who apply mathematical analysis in order to
obtain the most suitable representation of a function for computation
(Volume III in the series has been published but it is not related to ap-

proximation of functions).
HOUSEHOLDER, A.S. (1953), Principles of numerical analysis, McGrawHill.

The first chapter The:art of computation is still of value.
In the chapters on approximation the mathematical description of the
problems is still relevant, while the treated algorithms are overruled by

more recent ones.
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IEEE P754/82 - 10.0(1982), A proposed standard for binary floating-point
arithmetic.
A nearly final proposal towards standardization. See also KAHAN (1983).
LUKE, Y.L. (1969), The special functions and their approximations, Academic
Press, 2 Vols.
F and the G-functions.

2F1r 1F1r g
Volume II is mainly concerned with approximations of these functions

Volume I develops the

with particular emphasis on expansion in series of Chebyshev polynomials of
the first kind, and with the approximations of these functions by the ratio

of two polynomials. Tables of coefficients are given.

LUKE, Y.L. (1975), Mathematical functions and their approximations, Academic

Press.

The author himself classified the book as a supplement to Abramowitz
and Stegun. Approximations for qu—named functions via analytical and
numerical methods (so, no Mathieu-like functions). Chebyshev and Padé ex-
pansions are provided as well as (recursion) recipes for the computation of
the coefficients of these expansions. Surveys numerical data in literature.
Contains theorems, no proofs. More attractive for numerical oriented people
than LUKE (1969). Emphasis is put on how to choose an expansion such that
the problem is practically solvable.

LUKE, Y.L. (1977), Algorithms for the computation of mathematical functions,

Academic Press.

As a sequel to the previous books FORTRAN programs are given in order

to calculate the coefficients of the approximations.

LYUSTERNIK, L.A. et al. (1965), Handbook for computing elementary functions,

Pergamon press.

Provides basic formulae and some coefficients for approximating ele-

mentary functions.

OLVER, F.J.W. (1978), A new approach to error arithmetic, SIAM J. Numer.
Anal, 15,2, 368-393.

By modification of the standard definition of relative error, a form
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of error arithmetic is developed that is well-suited to floating-point com-
putations. Rules are given for conversion from interval analysis to the new
approach, and vice versa, both for real and complex variables. Illustrative
applications include accumulation of products, quotients, sums and inner
products, and the evaluation of polynomials. Also included are some new

error bounds for basic operations in floating-point arithmetic.

PARTSCH, H.& R. STEINBRUGGEN (1981), A comprehensive survey on program

transformation systems, TUM report I 8108, Munchen.

The important aspect of transformation of software is surveyed around

the CIP-L project of the Technical University of Munich.
RIVLIN, T.J. (1974), The Chebyshev polynomials, John Wiley.

A survey of the most important properties of Chebyshev polynomials are
given along with applications with respect to interpolation, approximation,

integration, and ergodic theory.

SCHONFELDER, J.L. (1976), The production of special function routines for

a multi-machine library, Software-Practice and Experience, 6,

71-82.

The design of the special function chapter of the NAG program library

is discussed.
STEGUN, I.A. & ZUCKER, R., Automatic computing methods for special functions.

So far four articles have been published in the Journal of Research of
the National Bureau of Standards B:
Part I. Error, probability and related functions, 74B, 211-224, 1970.
Part II. The exponential integral En(x), 78B, 199-216, 1974.
Part III. The sine, cosine, exponential integrals and related functions,
80B, 291-311, 1976.
Part IV. Complex error function, Fresnel integrals, and other related

functions, 81, 661-686, 1981.

Contains FORTRAN routines. Variable precision and multi-machine approach.
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TEMME, N.M. (1976), Speciale functies, 179-206 in: J.C.P. Bus, (red.)

Colloguium numerieke programmatuur, deel 1b, MC-Syllabus 29.1b,

Mathematisch Centrum, Amsterdam. (Dutch).

About integrals which can be recast as special functions and applica-

tions of routines, among others Bessel function routines.

VANDEVENDER, W.H. & K.H. HASKELL (1982), The SLATEC Mathematical subroutine

Library, SIGNUM, 17,3, 16-21.

A report is given of a cooperative effort to create a mathematical

subroutine library characterized by portability, good numerical technology,

good documentation, robustness and quality assurance. The result is a por-

table FORTRAN mathematical subroutine library of over 130,000 lines of code,

with on-line documentation and help facilities.

2. SOFTWARE

The construction of multi-machine program libraries gave rise to dis-

cussions on several software engineering aspects, such as

machine parametrization (FORD (1978)),

reliable arithmetic (IEEE P754/82-10.0),

computer aided design, computer-surveyed and intuition-controlled program-
ming (SCHONFELDER (1976), PARTSCH and STEINBRUEGGEN (1981)),

multi-machine testing (CODY (1969a), SCHONFELDER (1976), CODY and WAITE (1980))
(trans-)portability (FOX et al, (1977)).

In our opinion one should design an algorithm in a design language and

transform it by correctness preserving transformation software into a por-

table computer language. It should be possible to use the resulting imple-

mentations in any user language instead of to transliterate portable com-

puter language implementations into various user languages, e.g. PASCAL,

ALGOL 68 or Ada.

2.1. Multi-machine program libraries

The considered libraries are: NATS (FUNPACK), IMSL, NAG, PORT and

SLATEC. Summarized are: the target computers, the contents with respect

to special functions, and the design philosophy.
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FUNPACK (release II, 1976)

v designed for: IBM 360/370, CD 6000/7000, UNIVAC 1108/1110 and written in
FORTRAN 66.
contains implementations for:

- exponential integrals: Ei, E e* Ei(x),

'
- psi function: ¢y = TI''/T, '
- Dawson integral: D,

- Bessel functions: JO'Jl'Yv'

- Modified Bessel functions: IO'Il'KO'Kl'
- complete elliptic integrals: E,K,

- as well as routines for error handling.

» design criteria:

- modular, subroutine based structure (no multiple entry points),
- robustness (error handling can be overruled by the user),
- ultimate accuracy and efficiency,

- not portable under ultimate accuracy and efficiency requirement,

- accuracy profile testing and field validation.

IMSL (edition 9, 1982)
. available in FORTRAN for three categories of computers:
- supercomputers (CRAY 1, CYBER 200) ;
- mainframes and upper mini's (roughly 15 machine ranges)
- mini's (e.g. DEC PDP 11).
» contains impleméntations for:
- various probability functions and their inverses,
- various special functions of mathematical physics and some inverses,
some also in double precision or for complex arguments.
The complete list is too extensive to reproduce here.
s design criteria:
- to provide a general reliable and robust mathematical and statistical
library,
- high performance,

- converter portable.

REMARKS.
1. The error handling routine is called UERSET with input parameters:
ier and name;
name contains the name of the subroutine where the error is detected and

ier denotes either:
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. a hard failure (ier > 128),
. a warning with fix error (128 > ier > 64),
. a warning error (64 =2 ier > 32) or

. an undefined error (32 = ier).

More detailed information of the error is given in the documentation of

the specific routine: name.

NAG (mark 10, 1983)
NAG provides program libraries in FORTRAN, ALGOL 60 and ALGOL 68.

Her

. a

. C

e we concentrate on the FORTRAN library.

vailable on a wide range of computers.

ontains with respect to special functions implementations for:
circular function, tan
inverse circular sine and cosine, arcsin, arccos

hyperbolic sine, cosine, tangent and

their inverses, )

gamma and log gamma function, 'y InT
exponential integrals, El,Ci,Si

error function and probability functions, erf,erfc,D,P,Q
Fresnel integrals, S,C

Bessel and Airy functions (plus scaling), Ai'Bi'JO'Jl'YO'Yl'

modified Bessel functions, I K _,K

0'T1%07 %
elliptic integrals, Rc’RF’RD'RJ

. design criteria:

to provide a general, reliable and robust mathematical and statistical
library in a few major languages,

high performance and for special functions a uniform approximation
method via Chebyshev series,

proéessor portable.

REMARKS.

1. Error handling is done via the function PO1AAF.

2.

The special function implementations have two parameters: the argument
and an integer ifail.
ifail: entry O, haxd failure mechanism is used
1, soft failure
exit 0, no errors.
# 0, an error occurred; the value indicates the error

as given in the documentation.



3. In the documentation the condition of the function is displayed in clear

graphs.

PORT (version 1, 1977)
PORT is a general portable program library written in the PFORT-subset of
FORTRAN

. available on various machines, as the name indicates.
. contains special function implementations for

- tangent, inverse cosine and sine (single and double precision),

hyperbolic sine, cosine and their inverses as well as the inverse
hyperbolic tangent (single and double precision),

- complex double precision exponent and logarithm,

Bessel functions: Jk(z),
- modified Bessel functions: Ik(z).
. design criteria:

- to provide a general, reliable and robust mathematical library as trans-
portable as possible via parametrization of the environment: parameter
values are provided for various machines,

- dynamic storage allocation is simulated via an array in common,

- centralised error handling.

REMARKS.
1. Error handling is done via the principél error routine SETERR:
- just remember the error (recovery mode),
- print and stop,
- print, dump and stop.
The status of the recovery mode can be handled via ENTSRC.
2. The programs do not contain (in their calling sequences) a parameter to
“indicate, on a return from a subprogram, whether an error has occurred.
an error number can be retrieved via the function NERROR. Error messages
are enumerated in the documentation and provided via SETERR, where the

first 72 characters of the messages are printed.

SLATEC (version 1, 1982)

SLATEC stands for the cooperation of Sandia, Los Alamos, Air Force Weapons
Laboratory, Technical Exchange Committee. The computing centers of Sandia
National Laboratory, Lawrence Livermore National Laboratory and the Natio-

nal Bureau of Standards joined the project, VANDEVENDER & HASKELL (1982).
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With respect to special functions the library consists of FNLIB (FULLERTON
(1977)), FUNPACK and exponential and Bessel functions from AMOSLIB of SANDIA
Laboratories.
. design criteria:

- FORTRAN 66 portability based on the PFORT-verifier,

- good numerical technology, programming style and documentation,

reliable and robust,

- uniform processing of error conditions.

2.2. Local program libraries

From a historical point of view the multi-machine program libraries
emerged from local activities, e.g.: IMSL from SSP, FUNPACK (the NATS ac-
tivity) from Argonne National Laboratory, NAG from NPL and HARWELL. Below
we summarise some local program libraries with respect to their special

functions chapter.

ARGONNE
- Apart from FUNPACK they have made available on their IBM 360/370:

circular functions sin, cos, tan, cotan,
inverse circular functions arcsin, arccos
hyperbolic fuhctions sinh, cosh,
exponential integrals FUNPACK, also complex
gamma function FUNPACK, v, I'yIn T, x2
error function FUNPACK, erf, erfc,
Bessel functions Jr, Yr,

modi fied Bessel functions e'xxv, exKv

Coulomb wave function FL' GL

Coulomb phase shift oL

Legendre functions Qg, dQ:/dz

angular momentum coefficients

zeta function T, ¢-1,

elliptic integrals E,K.

CERN library (March, 1976)
- Available among others on CD-CYBER and contains FORTRAN routines, often
also in double precision, for:
exponential integrals El,Ei, si, Ci,

gamma function (R ,C) I'n In T, ¢, quotient I' functions
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error functions (C), probability

functions

Fresnel integrals

Bessel functions (R, C)
modified Bessel functions
Coulomb wave functions

Legendre functions

O-functions, Jacobi elliptic func-

tion

complete elliptic integrals
Whittaker functions
Fermi-Dirac function

Struve functions

HARWELL (August, 1977)

erf, D, P, Q
s, C,

J ., Y,

r r

I K
v T’

- Available on IBM 360/370 and contains FORTRAN routines for:

exponential integrals

gamma function

error function (C)

Fresnel integrals

complete elliptic integrals
incomplete elliptic integrals
Bessel functions

modified Bessel functions
spherical Bessel functions

Kelvin functions

angular momentum coefficients

NUMAL (see HEMKER (1981))

- Written in ALGOL 60 for CD-CYBER (elsewhere converted into FORTRAN under

inverse circular functions
exponential integrals
gamma function

error function

Fresnel integrals

Bessel functions

modified Bessel functions

El

r, B,
erf, D,
c, s,

E, kK, I,

1st and 2nd kind

Jor Tyr Ygr Yy
Io’ KOI Il' K1,
Igr

ber, bei, ker, kei, ber', bei',

ker', kei',

supervision of P. Wynn) and contains implementations for:

arcsin, arccos,

Ei, El’ En(x), o si, ci,
r, In T, vy, B, er

erf, erfc,

cl sl

J Y

rl rl

Iv’ Ky
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spherical Bessel functions 3. ¥

Airy functions (also: zeroes of) Ai, Bi, Ai', Bi'.

Implementations for the probability functions: binomial, X2, F, hypergeo-
- "metric, normal, Smirnov, Students T, non-central T, Poisson, and their in-

verses are provided in the Statistical library STATAL.

2.3. Published software

The Index to the Collected Algorithms of the ACM contains references
to software published in roughly ten journals. The ACM publishes software
in their Transactions-series, where Transactions on Mathematical Software
(TOMS) is of special concern for us. Software published in TOMS is validated,

and available in machine-readable form from the ACM distribution service.

Software related to special functions published in TOMS, up to 1983, is
listed below.

TOMS Algorithm number Item

1.4 498 Airy functions using Chebyshev series approxi-
) mations

3.1 511 CDC 6600 subroutines IBESS and JBESS for '

Bessel functions Iv(X) and Jv(X) , x20,v20

3.3 518. Incomplete Bessel function Io: The Von Mises!t
distribution

3.3 521 Repeated integrals of the coerror function

5.4 542 Incomplete Gamma function

6.3 556 Exponential integrals

7.2 571 Statistics for Von Mises' and Fisher's distri-

bution of directions: II(X)/IO(X)’ 11.5(X)/IO.S(X)

7.3 577 Algorithms for incomplete elliptic integrals

9.2 597 Sequence of modified Bessel functions of the
first kind

9.2 599 Sampling from Gamma and Poisson distributions

9.4 609 A portable FORTRAN subroutine for the Bickley
functions

9.4 610 A portable FORTRAN subroutine for derivatives of

the psi function
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REMARKS.

.If one intends to use software published in TOMS, we advise to look in the
loose-leaf collection of the ACM for additional REMARKS or CERTIFICATIONS,
done by the 'scientific community' after the implementation has been
published. On the other hand if one uses software published in TOMS and
detects some flaws it is worthwhile for the 'scientific community' to

contribute a REMARK or CERTIFICATION.

.An index to program collections is also provided by Guide to Available
Mathematical Software (GAMS). It is intended for the National Bureau of
Standards Staff and it gives an overview with respect to: NRS Core Math.

Libraries, Mathware and the libraries IMSL, NAG and PORT.

.A general bibliography on numerical software is published by EINARSSON (1977)

with an update of chapter 16 in EINARSSON (1979).

. (Added in print) IMSL has available a new FORTRAN library, the SFUN/
LIBRARY for evaluating the following special functions: elementary func-
tions, trigonometric and hyperbolic functions, exponential integrals, gamma
functions, error functions and Bessel functions. It will be available ini-
tially for FORTRAN 77 compilers on IBM, VAX, DEC 10/20, CDC and DG 32-bit
Eclipse.
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II. GENERAL ASPECTS OF COMPUTING FUNCTIONS

In this chapter we will discuss certain topics that play a fundamental
role in the subsequent chapters. In section ! we mention some aspects of
error analysis for the computation of functions, in section 2 we classify
algorithms and describe the general structure of implementations. Section
3 deals with recurrence relations where the first order recurrence relation
is treated in detail. Two-term recurrence relations are treated from a nu-
merical algebraic as well as from a pragmatic point of view, where peculari-
ties of recurrence relations, arising from computing special functions, are
exposed. Section 4 gives an introduction to continued fractions and section

5 pays attention to some basic properties of hypergeometric functions.

1. ERROR ANALYSIS

In this section we point out that a user needs only to consider careful-
ly the effect of perturbation of the argument of a function if the designer of
an implementation takes care of sufficiently accurate and well-conditioned

approximations and benign computational processes.

In discussing the sources of error in the computation of functions we
will consider:
a. the effect of perturbation of the argument;
b. the effect of approximation of a function by more elementary functions;
c. the effect of finite precision arithmetic.
Generally speaking, the designer of a function routine takes care of (b)
and (c) while a user has to be aware of (a). In order to understand this
and to be aware of the assumptions, we will pose the problem and quantify
the qualitative aspects (a), (b) and (c).

The problem is: given
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z, an approximation of z,
Af, a well-conditioned approximation of f depending on a set of coeffi-
cients {ak} and an argument z,
Afc, a benign implementation of Af,

then the value of Afc({ak};g) and an estimate of
(1.1) If(z)-Afc({ak};z)l or [f(z)—AfC({ak};z)l/lf(z)|
are desired. In the sections 1.2 and 1.3 we will return to well-conditioned
approximations and benign implementations.
To estimate (1.1) we consider
(1.2) lf(z)—Afc({ak};EM < [£2)-£@) | + |£(2)-af{a }:2) | +

+ ]Af({ak};z) - Afc({ak};Z) |-

The terms in the upper bound correspond to the qualitative aspects (a), (b)
and (c); they will be treated in the sections 1.1, 1.2 and 1.3, respectively.

1.1. Perturbation of the argument

For a function holomorphic within vy, y = {t | |t-z] = r}, we have the

Taylor formula

(1.3) £(Z) - £(z) = (2-2)£'(2) +

~ 2
(z-2) § £(t) at.

27i Y (t—E)z(t—z)

In first order we obtain for the absolute and relative errors the well-known

estimates
(1.4) |[£(B) - £(2)]| = |Z-z]||£" (2) |
|£(2) - £(2)|/|E(2) | = |Z-2||£" (2)/£(2) |,

with the relative error amplification

(£ -£(2) |/1£(2)| zf'(z)!
1%-21/1z2] £l=)
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EXAMPLE. Suppose z = 100, to three correct significant figures. Then the re-
lative error in f(z) = eZ is .5, or 50%. Hence the value of f(z) has no sig-

nificant figures. -

REMARK. In order to estimate the errors, an estimate of |f'(z)| must be avail-
able. The NAG library provides a graph of ]f'(x)l, for x in the relevant
parts of R.

1.2. Approximation of a function by more elementary functions

By approximation of a function we mean replacing the mapping

(1.5) f: z > £(2)
by
(1.6) Af: {ak},z > Af({ak};z).

Choices are to be made with respect to:

- approximating form and size (e.g. polynomial or rational form),

- representation of approximating form (e.g. representation of a polynomial
as a sum of Chebyshev polynomials or powers of the independent variéble).

This has to be done such that for some prescribed €:
(1.7) |£(z) - Af({aﬁ(};z)l <eor |E(z) - Af({ak};z)]/|f(z)[ < g,
the so-called residual or truncation error, and
(1.8) Af is well-conditioned with respect to {ak}.
As a measure of condition of a representation with respect to {ak} we

introduce the condition function C as the 1-norm of the vector of the re-

lative derivatives of Af with respect to the parameters, i.e.,

a BAf({ai};z)

(1.9) c{a, };z) := )}
% k_Af({ai},z) da

The maximum of the condition function times IAf({ak};z)| over all relevant

z is taken as the condition number k. (We suppose that for these definitions

Af({ak};z) is bounded away from zero in the z-domain.)
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Different approximations to f may yield different condition numbers.

If we have two approximations, say
Af({ak};Z) and Af({bk}:Z),

within the same z-domain, we can compare the condition numbers, say Ka and

Kb- If Ka < Kb

to {bk}. The best conditioned approximation of a number of approximations is

then we call Af better conditioned with respect tov{ak} than

characterized by the lowest condition number. A well-conditioned form is
characterized by a sufficiently low condition number, which possibly reflects

a compromise between accuracy, efficiency and portability.

In polynomial approximation, on [-1,1], the condition number of the

power sum representation, Pn(x) z akxk, equals the condition number of the
Chebyshev representation, Pn(x) = Ekak(x), if the coefficients {ak}, and

hence {bk}, are strictly alternating or of the same sign (NEWBERY (1974)).

The condition function (1.9) may be used for representations in terms

of an infinite set {ak}. As an example consider the expansions

e X = 2' (—1)nxn/nl, e X = 1/ 2 xn/n!, X € [O,xo],
n=0 n=0

where X, is a positive number. The condition functions for these represen-

X 2x . s
tations are e and 1, respectively, and the condition numbers are e and

1, respectively.

1.3. Finite precision arithmetic

Given an approximation Af({ak};z), a well-conditioned computational
problem, we must take into account the aspects of finite precision arith-
metic, in particular in view of different computational processes. Our
approach is inspired by BAUER (1974), who considers computational graphs in
computations. For instance, the evaluation of a2—b2 may be performed by
either of the processes (a-b) (a+b) and (a2) - (b2), yielding two different
computational graphs. Another example in point is the evaluation of a poly-
nomial by using Horner's rule. It gives a different computational graph
than the process that computes the polynomial straightforwardly. We write
Afc({ak};z) if the approximation Af is computed according to a given com-

putational graph c. In a graph several intermediate results arise, giving



II.1 ERROR ANALYSIS 23

intermediate rounding errors. Loosely speaking, we call a process (a compu-
tational graph) benign if the effect of intermediate rounding errors does
not spoil the computational aim. Intermediate results obtained by multipli-
cation or division need not to be considered.

As in the previous subsection it is possible to give a more rigorous
definition of the concept benign, as was done for the condition function C
of an approximation Af. First we introduce the condition function of a com-
putational process Afc as the 1-norm of the vector of the relative deriva-
tives of Af({ak};z) with respect to the intermediate results. Then we in-
troduce the condition number Ko of the computational graph Afc as the maxi-
mum of the condition function of Af A times |Afc({ak},z)‘ over all relevant
z. The computational graph is called benign if the condition number of the
computational graph Afc is smaller than the condition number of the compu-
tational problem Af.

REMARK. In numerical linear algebra the concept of growth of intermediate
results in a computation is used in order to decide upon which algorithm is

best with respect to error propagation.

EXAMPLE 1. Consider the evaluation of the polynomial
af ({a }ix) = Y a x
k=0

as an approximation for a function f. The condition function of the approxi-

mation is
3 3
k k
ca i) = ) lax|/| ) ax|
k k=0 k k=0 k

and the condition function of the computational graph based on Horner's
rule is given by
3 2 3 2 3 k
(]a3x +a2x | + |a3x +a2x +a1x])/]kzo a, x |.

2
EXAMPLE 2. The evaluation of a2—b . The condition function of this problem

is

2 .2 2.2 2 2
(Ia a(aa;b ) | + |b 8(a3k—)b ) |)/|a2—b2| =9 a 2+ 2 .
la®»%|
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The evaluation may be performed by the processes (a-b) (a+b) and (az) - (bz)

with condition functions
2 and (]a2| + |b21)/|az-b21r

which are both smaller than the condition function of the problem.

REMARK. The above ideas are candidates for automatization. Work in this
direction is indicated by BAUER (1974) and realized by MILLER (1975),
MILLER & SPOONER (1978) with respect to the behaviour of absolute errors

and LARSON et al. (1983) with respect to the behaviour of relative error.
2. SOFTWARE

In this section we classify algorithms and describe the general struc-

ture of implementations.

2.1. Algorithms and implementations

In mathematical software for function approximations algorithms may be

classified according to the input parameters:
(2.1) - the argument;
(2.2) - the argument and the precision.

In the (nearly) maximum precision class (2.1) the approximation Af({ak};z)
is determined such that the approximation error (1.7) is less than the
machine accuracy €. Commonly a uniform approximation is predetermined based
on an error bound for the worst case; when several approximation approaches
are combined - say Taylor series and asymptotic series - uniform approxima-
tions afe commonly used for each approach. We call this a nearly class be-
cause the resulting error (1.1), in general slightly exceeds the machine
precision due to finite precision arithmetic, even for exact z. In the
variable precision class (2.2) approximations are used for which the ap-
proximation error (1.7) is easily available. Often, (especially when the
approximating error alternates) the differences of the n-th and the

(n+1) -st approximation majorates the approximation error; this property is
commonly used as a stopping criterion. However, when dealing with monotonic
convergence or with finite precision arithmetic this criterion may not be

reliable.
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The implementations based upon (2.1) are generally structured in:
(2.4) - checking of argument z;

(2.5) - selection of appropriate {ak} as a function of z (segment or domain)

and initialization;
(2.6) - evaluation of appropriate approximation Afc({ak};z).
The implementations based upon (2.2) are generally structured in:
(2.7) - checking of argument z and the precision §,

(2.8) - evaluation of Afc({ak};z) such that an approximation of the trun-

cation error is less than §.

Two elaborations of module (2.8) are in use:

(2.8.1) - selection of appropriate {ak} as a function of z (segment or do-
main) and § (precision); one could think of evaluation of part of
a finite Chebyshev sum - for example as determined by the proce-
dure Set (CLENSHAW, c.s. (1963)) - or one could think of evalu-
ation of the appropriate minimax approximations while the coeffi-
cients of respectively the finite Chebyshev sum or the minimax

approximations are included in the program for the precision range.

(2.8.2) - no selection of appropriate {ak} as a function of z is made a
priori.

Further refinement of the modules with respect to portability may be
achieved with either a special target computer in mind (advantage may be
taken of, or measures may be taken against, some machine-environmental-
peculiarities; this approach was common in local program libraries) or for
a range of computers (standards and subsets are used; NAG approach). Of
course one could think of a range of computers as a sum of special target

computers (NATS approach) .
2.2. Testing

In our opinion testing of software is verifying by a human being the
correctness of different design stages of an implementation. RUTISHAUSER
(1976) distinguishes for the creation of mathematical software the design

stages:
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. formal algorithm: a description of the principal flow of a calcula-
tion;

. naive program: an unambigious definition of the calculation process
is given, where program correctness is empirically obtained via
checking of a limited number of argument values;

. strict program: apart from round-off error effects the program is
proven to be correct;

. numerically safe: the errors in the results are within proven bounds.

The various states of a program can be placed in the total activity of

mathematical problem solving in the following way.

Starting point Tasks Region of competence
mathematical problem analysis
discretisation
discrete mathematical algebra
problem
developing

numerical method

formal algorithm numerical calculation
in exact arithmetic

taking care of
finite precision

arithmetic
naive program numerical calculation
in finite precision arithmetic
strict program sequential safety
strict program with numerical safety

a priori or a posteriori
error bounds

< numerical mathematics - applied mathematics -+

Nowadays test activities, at least with respect to approximation of
functions, deal with the 'naive program'-level. On this level the tech-
nigue is automated by generation, via possibly different algorithms, of
multi-length tables by CODY (1973,1975b) and SCHONFELDER (1976) . Consisten-
cy tests are treated by NEWBERY & LEIGH (1971).

The creation of strict programs via pre- and postconditions and Hoare-

like loop invariants has not been done in the considered software.

The creation of numerically safe programs has not yet emerged, while

first order error bounds are provided in the documentation of some
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considered implementations;

With respect to error bounds one could think of a first order estimate
and a rigorous estimate, where the latter is generally pessimistic. During
the checking of obtained values one could classify the errors into the clas-
ses red, orange, green. Where red indicates a true error because it exceeds
the rigorous bounds, orange indicates a possible error because it is within
the rigorous bounds but exceeds the first order bounds, and green indicates

an acceptable error because it is within the first order bounds.

In our discussion of some special function implementations we wil} con-
centrate our efforts on the 'naive program'-level
. are the used approximations accurate enough?
. are the used stopping criteria provable correct?
. is the program readible; does it look correct?

. can we classify the implementations as 'good in principle'?

Only after positive answers on the above questions by an initiated
worker one can consider to
either
perform the costly job of stringent tests in the sense of Cody and
Schonfelder
or
proof the program correctness and to provide bounds for the numerical
errors.
Only in the last case a numerically safe program is obtained while for prac-

tical purposes the former approach is sufficient.
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3. LINEAR RECURRENCE RELATIONS

The behaviour of linear scalar recurrence relations in finite precision
arithmetic is described in terms of first order matrix-vector recursions.
We shall treat two-term recurrence relations (1xl-matrix) and three-term
relations (2xX2-matrix) separately. Our main tool is the concept of stabili-
ty of the problem: amplification of perturbations of input data into the
answer. For this class of problems it is convenient to consider rounding er-
rors as perturbations of the input data. The amplification is quantified by
the earlier introduced condition (§1.2.). Wherever appropriate we make use
of geometric concepts in order to abstract from details and to strengthen
the intuition. Furthermore, we shall make use of general knowledge of the
solution when it concerns special functions. A half page introduction with
practical information about stability directions for a few classical ex-
amples is given in ABRAMOWITZ & STEGUN (1964, p.XII); see also §3.3.

A state of the art survey is given in GAUTSCHI\(1975). See also WIMP (1984).

3.1. First order inhomogeneous scalar recurrence relations

A thorough treatment of the stability, with emphasis on the effect of
perturbations of the initial value, is given by GAUTSCHI (1972a). His graphs
of pn make clear whether we must prefer the forward to the backward recur-
rence or consider starting somewhere in between, eventually as a function
of the (real) argument of the approximated function. We shall introduce
Gautschi's p, as part of the condition of the problem; this quantity re-
flects the stability due to the initial value neglecting other effects.
Moreover, we shall introduce a new quantity Un, which reflects the stabili-
ty due to the initial value and the inhomogeneous terms while other effects
are neglected. The examination of the stability of a recursion can be done
by demonstrating that P, OT Un are large, an instable recursion, and if not

by proving that the condition is small.
Introduction

As an introduction we shall talk about

yj+1 = ajyj + bj' j=0,1,...

(3.1.1)

YO given.
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Recurrence relations of this type play a role, for example, in calculations
of the incomplete gamma function with the exponential integrals as a special
case. Sometimes recurrence relations are used in the forward direction, as
in (3.1.1), and sometimes they are used in the backward direction:

Yj = (yj+1_bj)/aj’ j =n,n-1,...

(3.1.2)

yn given,

provided of course that aj # 0. We like to stress that mathematically the
same values {yj}g are defined, but that the algorithms differ, especially
in finite precision arithmetic.

In order to decide a priori upon which algorithm is to be preferred
in finite precision arithmetic, we will derive macroscopic quantities which
govern the stability of linear first-order inhomogeneous recurrence rela-

tions.

The formulation of the problem

The recurrence relation (3.1.1) may be stated as: given
n-1 n-1
vor la i o, (b 1
obtain
n-1 n§1 n-1 \
(3.1.3) f = ( n a.) vyt ) ( n b,
P \ymo 3/ 70 425 Mk=ge1 %) 3

in finite precision arithmetic as accurate as possible. (This formula may
be derived from (3.1.1) by the variation of parameters technique (HAMMING
(1971)). The first term of the right hand side equals the solution of the

homogeneous problem; the second term is a particular solution).
Stability

The stability of the problem may be characterized by the condition as

introduced in formula (1.9), i.e.,

(3.1.4) M= v+
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with
n YO of n-1
(3.1.4a) ¢ = IE—-S—El = ﬂ a, I]yo/f |, due to the initial value,
Yo n Yo
n n— b af n-1 n-1
(3.1.4b) ¢ = | ab = ) I Ilb 7z I,
k k=0 k=0

due to the inhomogeneous terms,

n n— ak afn n-1 (n-l )y k-1 (
.1, = = m '
(3.1.4c) cak k=0 If Bak kZO l =0 aj 0 +jZO i=j+1 \b I/lf !

due to the coefficients {ak}.

The condition may macroscopically be represented in terms of the solu-

. (h)
tion of the homogeneous recurrence: fn , as

n _ (h) (h) (h)
(3.1.5) c = |£7/F |{1 + z { [b /fk+11 + |1+ JZ b /f]+1|}}.

The absolute value of the quotient of the homogeneous solution (with the
same initial value) and the inhomogeneous solution is Gautschi's Py- So

from the perturbation point of view pn reflects the stability of fn due to

a perturbation in the initial value, say g: Ph = c;. In the sequel we will
use pn as a symbol to denote the relative amplification of a perturbation of
the initial value into the answer fn, given a particular recurrence relation,
independent of whether we call it a forward or a backward recurrence. If we
consider pn large - a so called ill-conditioned initial-value problem -

we may pose another problem, for example by recurring in the opposite direc-
tion; the latter generally has a different P- For the calculation of fn by
(3.1.1) - we call this forward - we have for Pn of the forward problem

(superscripted by f)

£ I n-1
Pn = (jgo aj>y0/fn

while for the calculation of fn by (3.1.2) by starting at Yok = we call

’

this backward (superscripted by b) - we arrive at

n+k -1
b _ | m a_1 /£ l
°n j=n %3 ) Yn#x’tnl-
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From {p }n+k we may obtain pi, the backward amplification factor, as
b _ f/ £
Pn = Pu/Phax-

We appreciate Gautschi's graphs of pn, given a particular recurrence rela-
tion, because from these we may obtain by the above formula the p's of the
recurrence relation in the opposite direction.

Another representation of s obtained if we use the solution of the
absolute recurrence: f;a)
(3.1.4)

. n (a) (h) , nct (h)
(3.1.6) ¢ /e |+ g2 /e | Eo |1+ 50 b/E

(with input parameters lfol,{lak|},{lbk|}), in

(h)

with fj again not zero, of course.
In the sequel we will denote the quotient of the solution of the absolute

recurrence and the solution of the given recurrence by Un, i.e.

(3.1.6a) o= (a)/lf |-

From the perturbation point of view Gn reflects the stability of fn due to
perturbations of the initial value as well as perturbations of the inhomo-
geneous terms, because the sum of the right-hand sides of (3.1.4a) and
(3.1.4b) equals féa)/lfnl; so on is the symbol to denote the amplification
of perturbations of the initial value and of the inhomogeneous terms into
the answer fn' This amplification is realistic when all perturbations are

roughly equal. From these representations we easily obtain the inequalities
n (a) (h)
> 2 .
(3.1.7) c £ /fnl £ /fnl

If P, O O is large we have an ill-conditioned problem. Usually this is
stated in a geometrical sense (see also section II.3.2): an ill-conditioned
initial-value problem is characterized by the dominance of f( ) over f
(p is large); an ill-conditioned inhomogeneous (1n1t1al—value) problem is
characterlzed by the dominance of f( a) over fn (on is large). The latter is
not generally known, e.g. it is not mentioned in section II.3.2. Finally,
we will consider a problem suitably conditioned when <" is tolerable; this
introduces the context.

For an absolute recurrence relation, say the absolute version of

(3.1.3), an attainable upper bound for the condition is given by
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(3.1.8) ™ < n+l.

Derivation: (3.1.4a) + (3.1.4b) contributes 1
(3.1.4c) contributes at most n-times the contributions of

(3.1.4a) and (3.1.4b); a well-conditioned problem .

REMARK. With matrix recurrence relations the relative values of the solu-

tion of an absolute recurrence are of importance.

For the problem of evaluating a polynomial as a power sum: the condi-
tion may, after confluence of all aj into x, conveniently be bounded below

by

(a)

(3.1.9) &z (£
n

+ |x dfn(x)/dxl}/lfnl,

where we recognize the contribution of the derivative; for this particular

recurrence we have for the absolute recurrence and for Un

n-1
féa) = 2 |bn—k xkl
k=0
n-1 n-1
k k
o] = z b X |71 Z b X |.
n k=0 n-k -0 n-k

So, Gn equals the l-norm of the relative derivatives with respect to the

coefficients in the power sum representation.

REMARKS .

1. We like to stress that so far we have considered the stability of the
problem and not yet any particular ccmputational graph nor the effects
of finite precision arithmetic. The condition of the problem gives
(first-order) information about the effect of perturbation of the input
data - initial value and recurrence coefficients - into the solution;
finite precision arithmetic or bad algorithms can only make things worse.
Even if the input data are exact representable in the machine and there
are no measurement errors in the picture, the above introduced concepts
are still of interest. Namely for the class of problems defined by
the recurrence algorithms, the intermediate rounding errors due to finite
precision arithmetic can be considered in a natural way as perturbations

of the initial data; backward analysis is easily applied.
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For example, the recurrence relation (3.1.1) in finite precision arith-

metic (the tilde denotes finite precision operations)

.. =a.*xy.+b., 3=0,1,...
YJ+1 3 y] 3 J ’
(3.1.10)

yO given,

may be stated (in first order) as (the tilde denotes the perturbated co-
efficients which yield the same result as (3.1.10))
yj+1 = aj * yj + bj' j=20,1,...
(3.1.11)
Yy given

in exact arithmetic, with aj = ;j(1+6+61), bj = J(1+61), where we as-

sumed for the machine operators (with tilde): x ¥ y = x * y(1+8), x ¥ v =
= (x+y)(1+61) with max(]G],léll) < € (= machine precision).
So the contributions (3.1.4b) and (3.1.4c) govern also the effect of in-

termediate rounding errors. Commonly, (3.1.11) is replaced by

Yyer T2y T ¥y TRy T Ay
with Aj the local error. We think our approach for this class of prob-
lems simpler, because, the local errors are absorbed in the recurrence
coefficients and so we only have to look at the effects of perturbations
of the input data; i.e., we only have to concentrate on the condition

of the computational problem and not on the condition of the computational
graph. The perturbations of the recurrence coefficients due to finite
preciéion arithmetic is of the order of the machine precision: the recur-

rence algorithm is benign.

2. One can ask whether the positive recursion with bound for the condition
(3.1.8) is well-conditioned or not. Such pin-point questions can easily
be circumvented by going back to the perturbation idea; the condition is
only a macroscopic tool. The condition as a l-norm is a suitable tool
when all perturbations, initial or due to interpretation of rounding
errors, are of equal order of magnitude. For rounding errors in recur-

rence relations this is the case, so we think this norm convenient. For
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example (3.1.9) only states that perturbations are linearly amplified.
Whether this is tolerable or not depends upon the circumstances. One has
to decide upon this oneself given the particular situation; generally a

linear amplification bound is considered harmless.

3. An example of a stable initial value problem but an unstable inhomogene-
ous problem, is given by

(...((6)—1(1-)7%1<2).—K3) +...+ K Ki ~K >0,

2n’
where Pon = 1 and °2n ~ 2nK/§; 0,, can be made as large as we please.

4. If the contribution to the condition is mainly due to (3.1.4a), and we
judge this intolerable, we can look for another problem formulation: a
terminal value problem for example; i.e., (3.1.2). In closed form the

solution may be represented by

_ -1 _ .} by
(3.1.12) £ =( O a )yn+k ) T % )%

(k=1 n+k-1 (n+k-1 a-1\
i=n =

with k suitable chosen. This is the so-called backward recurrence; yn+k
as starting value must be known or a perturbation of it is harmless in
fn' so that we can'take nearby values: (asymptotic) estimates or crudely
0. As a special class of problems we have the absolute recurrence rela-
tions with their stable properties. Absolute recurrences may just be
given or recognized as the opposite recurrence from a recurrence rela-
tion with all {ak} and {yk] positive and all {bk} negative. An error in
the starting value of an absolute (or positive) recurrence is damped be-
cause the (inhomogeneous) solution dominates the solution of the homo-

geneous recurrence relation. The effectiveness of this damping determines

k: fast damping induces a small k; slow damping needs a large k.

5. In estimating the condition of a problem defined by a recurrence relation
with non-constant coefficients, we can sometimes - for the so defined
slowly-varying recursions - consider the general problem as a perturba-
tion of a problem with constant coefficients. On the other hand some
recurrence relations have variable coefficients which exhibit a high
regularity; for these recurrence relations one can look for - and we
will in the sequel - handsome representations of (3.1.4a), (3.1.4b) or

(3.1.4¢).



II.3.1 FIRST ORDER RECURSIONS 35

6. When dealing with a polynomial it is convenient to have a tool which can
be used in order to decide upon its representation. In this remark we re-

strict ourselves to the problem of evaluation of the representations:

n
a power sum PP (x) = ] a X
n
k=0
n
a Chebyshev sum . Pn(x) = kZo bk Tk(x).

Our tool is: the representation with smallest l-norm of the coefficient
vector is best. (Indeed, the relative perturbations are amplified by

k
Z;=O |ak X | or XE=O Ibk Tk(x)], which in turn are uniformly bounded by
the 1-norms.) With this tool we easily understand Newbery's (1974) ex-
perimental result (see §1.2) as well as some spread results:
CLENSHAW (1962) :

12

z 3? 2k
J.(x) ~ )" b, T (x/8) = a,, (x/8)°,
0 k=0 2k "2k k=0 2k

where the Chebyshev sum representation is to be preferred because

k“l = 1< Ila2k||1 = 427.

llb2
HART c.s. (1968):

T6(x) = 32x6 - 48x4 + 18x2 -1,

where the explicit power sum representation is not to be preferred,

“ l" Ila " = 99,
1 < k

RUTISHAUSER (1968) ; (T;(x) = T, (2%-1)) :

1 - 13.7x + 67.5x° - 153x° + 162x" - 64.8x° =

* * *
= —(.522T1(x) + .352T3(x) + .126T5(x)),

where the shifted Chebyshev sum representation is to be preferred, be-

cause
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Ip 1 =1<ﬂakil=462.

NEWBERY (1974): If {ak} are of the same sign or strictly alternating then

ﬂbkﬂ1 = “akﬂl; no preference, so for efficiency reasons the power

sum can be used.

GAUTSCHI (1972b) introduced the condition number of the coordinate map asso-

ciating to each polynomial its coefficients with respect to a system of

orthogonal polynomials. Let

: -
Mn' R Ph-1’

. . . n-1 . ©
i.e., with (uo,...,un_l) we associate 2k=0 uk pk(x), with {pk}k=0 a set

of orthogonal polynomials. Then
-1
cond M =1lImll IMm "I .
®© 'n no n o

From the perturbation point of view we have

lap__I
ap_ . Teul

>
Te. T = conam Tul -
n-1 « © n ©

We did not follow Gautschi's approach because it concentrates on uniform
results for a class of problems, while we are more concerned with tools
for particular problems which do reflect the (known) qualitative beha-
viour. Gautschi's ideas are worked out in GAUTSCHI (1972b, for orthogo-
nal polynomials; 1979a, for polynomials in power form; 1978, for poly-

nomials) .

Software for roundoff analvsis (MILLER (1975), MILLER & SPOONER (1978),
LARSON & SAMEH (1978), LARSON, PASTERNAK & WISNIEWSKI (1983)) might be
of use in order to decide upon stable representations. The merits of this

software with respect to special functions software has not yet been con-

sidered.

The second term in (3.1.9) is inherent in the polynomial and cannot be
minimized. We like to remark, however, that a perturbation of the argu-
ment of the function, which is approximated by a polynomial, was already
considered (see §1.1). But, because of confluence of all a, into x we

k
are not surprised to see again the derivative of the approximating func-
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tion - the polynomial - in the stability of the problem of evaluating

the approximation.

9. For the homogyeneous recurrence relation the condition is

n
c = n+l.

For this sihple case the effect of relative perturbations of the input

data Gfo and {Gak}, is in first order easily given by
n-1
Ian| = IGfo + kgo 6ak| <c * g,

where € = max{SfO,Gak}. We see at once that the bound is attained if all
relative perturbations of the input data are the same. Rounding errors
behave not that systematic. In order to get a more realistic estimate
of the effect of rounding errors we could think of an effective machine

precision or introduce an effective condition notion.

EXAMPLES.

1. The following example about evaluating a polynomial is theoretical. It is
constructed in order to elucidate the use of different algorithms or
properly speaking: to contrast the forward problem with the backward
problem. Let ‘

(3.1.13) y]+1 =2 % Yj-ll ] = 011121'~’In_1

-2
with initial value Yo = 1-2"" 4 €.
The solution is given by
. j-1 k .
(3.1.14) £, =2y -} 2°=(y-1)27+¢1, 3=0,1,2,...,n.
J Y k=0 Y
The backward formulation is given by

(3.1.15) yj = (yj+1+1)/2, j = n+k-1,...,n+l,n

+
n k+

with initial value y_ . = (e-272%) 2 1;
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we have taken k = n, so the (terminal) starting value is

2n
y2n =€2 .

In table 3.1 we have enumerated the results of: the direct method (3.1.14),

f;d); the forward problem (3.1.13), f;f); and the backward problem

(3.1.15), f;b). We have taken n = k = 10, € = machine precision, and re-
lative perturbated starting values: ;0 =1 - 2—2n and ;Zn = e22n(1—e).

The erroneous digits with respect to the direct method are underlined.

(d)

direct: fj &2

forward: fj ()

backward: fj

.

.99999 90463 2569 | .99999 90463 2568 | .99999 90463 2569
.99999 80926 5138 | .99999 80926 5137 | .99999 80926 5138
.99999 61853 0276 .99999 61853 0273 | .99999 61853 0276
.99999 23706 0553 .99999 23706 0547 | .99999 23706 0552
.99998 47412 1105 .99998 47412 1094 | .99998 47412 1105
.99996 94824 2210 .99996 94824 2188 | .99996 94824 2210
.99993 89648 4420 | .99993 89648 4375 | .99993 89648 4420
.99987 79296 8841 .99987 79296 8750 | .99987 79296 8841
.99975 58593 7682 .99975 58593 7500 .99975 58593 7682
.99951 17187 5364 .99951 17187 5000 .99951 17187 5363
10| .99902 34375 0728 .99902 34375 0000 .99902 34375 0727
11{.99804 68750 1455 .99804 68750 0000 .99804 68750 1455
12].99609 37500 2910 .99609 37500 0000 .99609 37500 2910
13} .99218 75000 5821 .99218- 75000 0000 .99218 75000 5820
14).98437 50001 1642 .98437 50000 0000 .98437 50001 1641
15].96875 00002 3283 .96875 00000 0000 .96875 00002 3283
16| .93750 00004 6566 -93750 00000 0000 .93750 00004 6566
17| .87500 00009 3132 .87500 00000 0000 .87500 00009 3132
18| .75000 00018 6265 . 75000 00000 0000 .75000 00018 6264
19 .50000 00037 2529 .50000 00000 0000 .50000 00037 2529
20| .00000 00074 5058 | .00000 00000 0000 .00000 00074 5058

YWONOUDd WO

Table 3.1

Discussion

The contribution to the condition of fj due to a perturbation in yO is
(3.1.16) o ~ 27, j=0,1,2,...,n,

so we expected the forward recursion to grow erroneously. A perturbation of

ho =¥y~ 1, the linearly transformed initial value, is amplified by

(3.1.17) oy ~ 23-2n,

(Note the difference in the condition due to the simple change of variable!l)

The backward problem is a positive recurrence, so we expected it benign;



II.3.1 FIRST ORDER RECURSIONS 39

is Gamped by 2 (P*k=J)

an error in £
n+k

in £,.
J

For the problem of evaluating a polynomial other algorithms can be
considered, TRAUB & SHAW (1974) introduced a family of splitting algorithms
for the power sum representation.

In stead of

(3.1.18) Pn(x) = (...((anx+an_1)x+an )x+...+a1)x + a

-2 0

they considered

(3.1.19) P (%) = (...((a x%a  x3 4. . .4a Hx3 .
n n n-

1 n-q

x%4a xq-1+...+a ))

g+1
2g+1% T2q g+’

+ (a +

g-1
+aq_1x +.-.+ao)l

+ (aqxq
with g+1 a divisor of n+l. The advantage of this approach is that the linear
amplification factor, say n, can be reduced to the sum of factors of n+l.
Furthermore, this approach is also advantageous when all derivatives are
needed because the number of multiplications is of order ((n), while the
complete Horner is of 0(n2). The problem of summation of numbers may be
considered as a special case of polynomial evaluation. BABUSKA (1972)
reported the benign nature, 2log n, of the repeated splitting-summation

computational graph. However, his example
n
s_ = ) 1/k
should have been compared with the "backward" process
(... ((1/n+1/(n-1)) + 1/(n=2))+...+1/2)+1.

n
The conditions of Sn with 1 as starting value, oy

. . n . . .
creasing terms - and with 1/n as starting value, cl/n - i.e. summation of in-

- i.e. summation of de-

creasing terms - behave as
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n v g
(c;, =1+ ) 1/k}/s) >

! 3=2 k=1
n n j-1
(€)= 1 +{_{2 kXO 1/(n-k)}/s ) ~ 14n/log n.
J= =l

This illustrates the general rule of thumb: keep intermediate results
small. Another elaboration of this general rule is the summation tech-
nique of HAMMING (1971): order the positive terms and negative terms;
merge these rows by keeping the intermediate results as close to zero

as possible.

2. This example is given by GAUTSCHI (1972a). Let

x
(3.1.20) fn = n! (e —en(x)), n=20,1,2,..

with

T ok
(3.1.21) e = ) x /kt.

k=0

Gautschi enumerates illustratively for x = 1 the horrible results ob-

tained by the forward recurrence

yj = 3j % yj_1 - x7, i=1,2,...

(3.1.22)
yO =e -1.
The condition of this initial value problem is bounded below by

ex-l
(3.1.23{ I

e*-e (x)
n

For x away from zero we see immediately lim

- pn = ®; an unstable ini-

tial value problem.

The recurrence relation (3.1.22) is easily posed backwards

iy /s

.1, = +

(3.1.24) Y54 (yj x~)/3,
which for x > 0 is an absolute recurrence and so a benign problem.
Moreover, a perturbation in the (terminal) starting value Yo is damped
by j'/t! in fj' As an illustration we have depicted pn for x = 5, 10, 15,
20, 25, 30. See Figure 1.
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8.

10

To,

S

3

o

)
S

1

L

=)

[ETRETIT

FERRTI

Figure 1. °n of (3.1.23)

3. Calculation of exponential integrals

The exponential integrals
©
(3.1.25) E (2) = J t e T at
1
obey the recurrence relation

-z
Vg = -z/k Yy + e “/k, k=1,2,3,...
(3.1.26)

y1 given.

The contribution to the condition due to perturbations in the initial
value is given by

anl(z)

(3.1.27) o ~ |z|® | ntz+1|/nt .

n!En+1(z)

41
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For some X € R+ GAUTSCHI (1972a) depicted the graphs as given in

Figure 2.

Figure 2.,pn of (3.1.27)

The stability for z € € is similar, because pn is approximately a func-
tion of Izl. So the above graphs may be seen as iso—]z|-curves. The
curves have a maximum for & = [|z]|]. The graphs suggest to start at Y,
and recur down the pn—hill on either side. So we obtain from (3.1.26)

either of the problems

L
1

(3.1.282) y ., = -z/k y,_+ e %/, 2,8+, ...,n

(3.1.28p) y, = -k/z Ve e %z, «k

2-1,2-2,...,1

with

[lz]1].

1]

Y, given, L

After some calculations we arrived at the bound for the condition
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n
¢’ < Yn-2] * (In-2]+1).

A class closely related to the exponential integral is

<]
o = f % %%, Rez>0,n=0,1,2,...
1

The integrals obey the recurrence relation

Q
|

-z
K+l = ((k+1)ak+e )/z, k =0,1,2,...

-z
o e /z.

0
+ R . . :
For z € R this is a positive recurrence relation and thus a benign
problem. For {z | Re > 0, z € ¢} we obtained with respect to the condi-

tion

Q
I

en(lzl)/len<z) .

Namely,

n+1

Q
1]

e nt en(z)/z

and the solution of the recurrence relation with absolute values equals

n+1

o' = 1e™Int o1z /121",

n

with
2 n
en(z) =1+2z+ 2 /2 +...4 z /n'.
The limit
i lz] , x .
limo_ = e /e”, z = x+iy,
s O

is a growing function of y, so we expect the recursion to become un-
stable when |y| increases. As an illustration we have depicted o, as

iso-[im z|-graphs with Re z = 1 and Im z = 1,5,10,15,20,25,30. See Fig.3s
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/// Im z = 10
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n

Figure 3. o for the computation of o

The integrals

obey the recurrence relation

By = (K+DB - (-D¥e®e™®/z, Kk =0,1,...

B = (e%-e7%) /z.



Ir.3.1 FIRST ORDER RECURSIONS

In closed form the solution can be represented by

n!
B =

z -z
0 zn+1 (e en(—z)—e en(z)).

The solution of the recurrence relation with absolute values can be

bounded below by

L]
éa) > T;?éif 2 sinh(x) en(lzl), z=x + iy.

As a consequence Gn can be bounded below by

en(IzH

(3.1.29) 0 = 2|sinh(Re 2z)| .
n z -z
le en(—z)—e en(z)l

For the second factor in the lower bound we have

e (zDh

oDt 2]

(3.1.30) !z|n+1

Z = for n & «;
lee (-z)-e “e (2)]
n n

so the recurrence is (ultimately) unstable. As an illustration we have

45

depicted (3.1.30) for |zl = 1,2,3,5,7 with Re z = 1, as iso-|z|-graphs,

in Figure 4.

lzl=2.0f1z1=3.0

—0n

Figure 4. Graphs of (3.1.30}
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REMARK. In STEGUN & ABRAMOWITZ (1956) it is suggested that forward recursion
is stable if the function is increasing as the index increases. According
to this principle the calculation of En(x) for small arguments should be

stable in the backward direction. This is not the case.

4. Let
f(a,b) = [l'(a) - T'(atb)1l/b, a >0, b = 0.

The computation of f(a,b) is straightforward if b is bounded away from
zero. If b is small, however, the above representation of £ is not
stable. For an application of f(a,b) we refer to GAUTSCHI (1979b), where
it is needed in the computation of the incomplete gamma functions.
Gautschi computes f(1,b) by using a Taylor expansion of the gamma func-

tion. Here we analyse the recursion, of which y0 = f(a,b),

Y = (yk+1+r(a+b+k))/(a+k), k = N-1,N-2,...,0

(3.1.31)
_ T(a+b+N) [ T (a+N) _1\
N b \T(atb+n) )"

Y

The starting value may accurately be obtained by (III 2.12) or its modi-
fications. The stability with respect to the initial value, Yy is given

by

= XE.EZQ. - I'(a) F(a+N)'P(a+b+N%/ T'(a) -T (a+b)
o Yo oy T(a+N) b b

(This may be obtained via (3.1.12) with aj = a + j and bj = =T (a+b+3) .)

For small b we arrive at
0 ~ V@) /(@ | = 0(log M, N > o,

The stability which also accounts for the inhomogeneous terms, for

b + 0, is given by

9, ~ P + N/l¢(a)l.

The conclusion is that (3.1.31) is a mildly unstable inhomogeneous problem.
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3.2. General aspects of three-term recurrence relations

We give a survey of problems and methods involved with recursions,
with the emphasis on three-term recurrence relations. Stability of solutions
is discussed and some algorithms are given for the computation of minimal

(or dominated) solutions.
3.2.1. Introduction

Recursions play an important role in special functions. Of course, the
three term recurrence relation is a well-known tool for calculating func-
tions of mathematical physics, such as Bessel functions. But also processes
like determining partial sums of a series or evaluating polynomials with
Horner's scheme, exploit recursions.

In this section we consider several aspects of recursions which are in
particular important from a computational point of view. The general second

order scalar recursion (or difference equation) has the form

. = + i > 1.
(.0 Bier =338 v RE gt 120

This recurrence relation is called homogeneous if Vici = 0 and inhomogen-
eous otherwise. A solution of (1.1), i.e. a sequence {&O,E } satisfying

(1.1) for all i, will be denoted by {Ei}.

EARE

In order to be able to study more general recursions we introduce

matrix vector recursions, viz.

v
o

(1.2) Xy = BX trL i
where Vixi € lfl (for some fixed integer n) and ViAi is a square matrix. As
for the scalar case {xi} will denote a solution of (1.2).

In §3.2.2 we shall consider the constant scalar recursion, which can be
used as a kind of model problem. In order to get insight into the problems
which are involved in the numerical computation of solutions, it is very
useful to study the growth of solutions of (1.1) or (1.2), which is there-
for the subject of §3.2.3. Armed with such information it will be possible to
understand the effect of (rounding) errors made during the recursion, as
will be shown in §3.2.4. As it will turn out that straightforward use of (1.1)
or (1.2), for i.e., the initial value problem, is unstable for certain solu-

tions (which are of great interest), other methods have to be used. In §3.2.5
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we shall give a brief discussion of several such methods.
For general papers dealing with this subject, see e.g. GAUTSCHI(1967,
1972a, 1975), MATTHEIJ (1977) & OLIVER (1968a).

3.2.2. The scalar second order constant recursion

Consider the recursion

= i >
(2.1) Ei+1 agi + bgi—l' ix1.
As is known (N6RLUND (1924, p.295) the general solution can be found using

the so-called characteristic equation, given by
2
(2.2) T = aT + b.

Let (2.2) have roots a and B with o] < {B8], then the general solution of

(2.1) is
(2.3) £, = pa’ + gB, p,gd € R.

Obviously the solutions {¢i} = {a"} and {wi} = {8} constitute a basis for

the two dimensional solution space. We have

¢

(2.4) lim f= 0.

i T
Therefore {wi} is called a dominant solution and {¢;} a dominated (or mini-
mal) solution, c¢f. GAUTSCHI (1967).

It is immediately clear that any solution of (2.1) written in the form
(2.3) and with g # 0 will dominate {¢i}. If we use the recursion (2.1) in
practice, we inevitably make rounding errors. A complete and detailed analy-
sis of their effects on the computed solution is a tedious and laborious
task. However, investigating the effect of a single rounding error, made
during the computation, at stage j say, is often satisfactory to get in-
sight into the well - posedness of the problem. For simplicity we take
j = 0; so assume EO is perturbed by a quantity €. . Denote the solution of

0

(2.1) with initial values EO = EO + €, and §1 = El by {£.}, then we clearly
i

0
have

(2.5) Eipp = Eigg = aEmE(E -k ).
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Hence the error {Ei—gi} is propagated as a solution of (2.1), so we have

(2.6) E, - & =po, +ai,.

Substituting EO - & =6, and El - & = 0 it can be seen that & # 0. This

means that the pertgrbatgon 80 gener;tes a dominant solution.

A similar statement also holds for perturbations made at other stages.
Therefore (2.1) is not an appropriate recursion to compute a dominated
solution, at least if relative precision is desired. In order to show that
(2.1) is suitable for computing a dominant solution, we have to take con-
taminations of errors into account. Thinking of a computer with floating
point arithmetic, however, the rounding errors generally are relatively
small with respect to a computed iterand (i.e. if no serious cancellation
occurs) and therefore only generate small additional components of {¢i};
whence the total relative error will remain small.

The previous analysis also applies to inhomogeneous recursions. Con-

sider

v

(2.7) 13 = agi + bgi_l +tcy i

i+l 1.

Let {Xi} be a particular solution of (2.7), then the general solution will
be given by

(2.8) By =0y v Xy

Perturbing Eo as above, we see that the difference between the computed
Ei and gi itself also obeys (2.5) for all i and that the perturbations are
propagated as solution of the homogeneous part! Therefore (2.7) can be
suitable for the computation of {Ei}, if {Ei} is not dominated by {¢i} or
{v, 1.

3.3.3. General linear recursions; estimating the growth of solutions

The three—term recursion of the previous section can also elegantly

be described using some linear algebra. Define

g,
(3.1) x; = ( 1 >
£
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and

0 1
(3.2) A= ( ).
b a

Then (2.1) can be written as
(3.3) X, = Axi, i 0.

Using this relation, we see that (2.1) is mathematically equivalent to powér
iteration with the matrix A and initial vector Xq- It is known that x, will
asymptotically have the direction of the subdominant eigenvector; the latter
problem, however, is known to be numerically unstable. Now if the coeffi-

cients are varying (cf. (1.1)) then we can define

0o 1
(3.4) A, = ( ) .
. b, a
i

i

It will not be surprising perhaps that if the coefficients are only mildly
varying, there also exists a solution of which the iterands are direction-.
ally close to successive dominant eigenvectors of the Ai and likewise a
solution close to successive subdominant eigenvectors, cf. MATTHEY (1975),
VAN DER SLUIS (1976).

The special form of the Ai - viz. the companion matrix - is of no im-
portance of course. More generally, if the Ai are slowly varying n-th order
matrices then it can be shown that under some conditions there exist solu-
tions whose directions are close to successive eigenvectors corresponding
to a certain eigenvalue of the Ai; cf. MATTHEIJ(1976), VAN DER SLUIS (1976),
SCHAFKE (1965). We give a qualitative formulation below. Consider the re-

cursion

(3.5) X = Aixi' i

v
o

PROPERTY 3.6. For each i let Ai(l),...,Ai(n) denote the eigenvalues of Ai
with lAi(1)|>...>lAi(n)] and ei(l),...,ei(n) the corresponding eigenvectors.
If for each j and all i, Ai(j) is close to Ai+1(j) and sufficiently separ-
ated from Ai+1(£), L # j, and a similar statement holds for the directions
of the eigenvectors, then there exists solutions {xi(l)},...,{xi(n)}with

Xi(j) ~ Ai(j)...ko(j)ei(j).



II.3.2 GENERAL ASPECTS OF RECURSIONS 51

For the solutions {xi(j)} of (3.5) we have

PROPERTY 3.7. For each j and £ for which 1 £ j < £ £ n we have

Ix, ()l
1

o =T = 0
1

e

i.e., {xi(j)} dominates {xi(ﬂ)}.

The solutions {xi(l)},...,{xi(n)} in 3.6 constitute a basis of the
solution space, and are called a fundamental system. It is often convenient
to think of such a basis in terms of eigenvalues and eigenvectors. The re-
quirements of 3.6 may be weakened such that only a separation between
Ai(l),...,xi(k) on one hand and Ai(k+1),...,Ai(n) on the other hand, and
likewise of the corresponding invariant subspaces of Ifl,is assumed. The
solution space can then be divided in a subspace whose elements dominate
the elements of the complementary subspace (cf. MATTHEIJ (1980)).

For the inhomogeneous recursion

(3.8) X4 = Aixi + T

the general solution is lying in a linear variety to be found from a fun-
damental system of the homogeneous part, in matrix notation {¢i} (i.e.,
successive columns of the @i constitute a solution of (3.5)) on one hand

and some particular solution of (3.8), {yi} say, on the other hand, so
(3.9) X, = @iv + Y0 v € r" a constant vector.

By considering all possible v in (3.9) we can try to find out if there
is any particular solution which has a growth character different from
any complementary solution (i.e. of the homogeneous part) . Of course this
depends on the r, - We give a simple first order example.
Consider
1

(3.10) xi+1 = —-xi + ri, i=0,1,... .

w

The solution of the homogeneous part equals {(%ﬂl}, apart from a constant

factor being the initial value. The general solution of (3.10) is given by
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o 1.i-j 1.4
(3.11) X, = ] PR NC R

j=1
If e.qg. r, = 1, then the homogenfozs solution is domi;ated by an particu-
lar so}ution. But if e.g. r, = (§0 then with.x0 == xi will be equal to
- %{%ﬂl, which is therefore dominated by {(%91}.

In order to find out what the growth character is of such a more or less
"pure" particular solution the following trick may be helpful in cases where
solutions can be expected with an exponential growth type (as in the slowly

varying case above) (cf. MATTHEIJ (1977,§4)). In relation to (3.8) define

nr0||2
(3-12)  mp =T
1
X Al xo
(3.13) (_}) =l- - 4 —
Url
J %
|
£ : HriH N
i Tr [ ri\ X
(*i+1 rooi-t
(3.14) \————) P l _
Ni+1 Lol
g “——i—r n.
| r. 1
| i-1

The recursion (3.13), (3.14) is of order n+l. The corresponding matrices
have the eigenvalues of Ai plus an eigenvalue equalling the factor to which
"ri" increases with respect to “ri_lﬂ. If this recursion is slowly varying
then there certainly are solutions corresponding to the eigenvalues as in-
dicated in the beginning of this section. Note that the additional eigen-
value in the examples above equals 1 and %—respectively, which nicely cor-
responds to the results above.

So far we have tried to bring some ordering in the solution space.
Generally it will be very difficult for a certain solution of which e.g.
only xO is given, to find out whether it is a dominated solution or not,
at least theoretically. For computational methods cf. MATTHEIJ (1982, §6).
However even though a certain solution may be classifiable from purely ma-
thematical point of view, as a dominant one, it may have a subdominant

character if one just looks at the first few iterands (cf. (3.9) with such
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a choice of v, having only very small coordinates corresponding to the do-
minant solutions). Although such situations may seem pathological one should
be warned since any numerical procedure that is only suitable either for

dominant or for dominated solutions, will fail then.

REMARK. With respect to special functions one often knows the behaviour of

the solutions of the related recurrence relations.

3.2.4. The effect of errors made during the recursion

We saw in §3.2.2 for the second order scalar recursion that (rounding) er-
rors are propagated as solutions of the homogeneous part of the recursion,
in first order. In the general case the situation is the same. For the sta-
bility of the recursion we may distinguish between absolute and relative
stability, by which we mean that the effects of small perturbations are
not large or not large with respect to the solution respectively. A more
precise definition would require a specification of "small" and "large".
However, it is not unusual to have such a more or less qualitative notion
only, and it is quite suited for our (limited) purposes. In order to find
out whether or not the recursion is good natured we either have to investi-
gate the solutions of the homogeneous part absolutely, or in relation to
the desired solution. Absolute stability then means that the solutions of
the homogeneous part are bounded (have growth factors not exceeding 1), cf.
stability theory for discretizations of O.D.E. Relative stability then im-
plies that no complementary solution dominates the desired solution, or even
nicer, any complementary solution is dominated so that errors are damped

out relatively. We shall give some examples.

EXAMPLE 4.1. The recursion (3.10) is absolutely stable since the solutions
of the homogeneous part damp out. If ri = 1, then it i? élso relatively
stable for any particular solution. However, if r, = (5)1, then Fhe recur-
sion is not relatively stable for the dominated solution {- %{éﬁl}.

EXAMPLE 4.2. "Summation of a strongly decaying series."” Let S = ZO a; i

assume that S is of order unity. We are interested in S(N) = Zg ai, which

is a sufficient approximation to S (both in absolute and relative sense).
Consider the following two algorithms

(4.3) s. = 0, S, =8, +a,, S(N) =S
i i

i+l N+1
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(4.4) T =0, Ti+1 = Ti + aN—i' S(N) = TN+1'

For the desired solution of (4.3), viz. {Si}§=0' we have Si ~ 1, whereas

for the solution of (4.4), viz. {Ti}?=0' we see that T, is strongly increasing.
In both cases the solutions of the homogeneous part are {1}. Hence the sta-
bility properties of (4.3) make it preferable to use (4.4). This once more
explains why one should sum up such a series with the smallest term (cf.

also II.3.1).

For a more quantitative analysis one has to add up all effects of the
rounding errors and their contaminations. This may be a laborious job. How-
ever, the order of the error (and this is usually sufficient for a practical
user) is often predictable. If we denote the relative computer accuracy by
£, then the relative error in the computed xi (for the stable case) is of

the order & Z§= max("Aj",“rj"). If the a, and r, resp. do not differ too

0
much in norm for i varying we therefore may say that the rounding error

is realistically estimated by mgx("Aj“,ﬂrj")iE.
J

3.2.5. Methods to approximate solutions for which the initial value problem

is not stable

We shall restrict ourselves, for shortness sake, to relative stability
questions from now on. Those who are interested in absolute stability can
easily adapt the subsequent results using the remarks made about this sub-
ject in 83.2.4. Another reason for considering the relative case especially
is that the slowly varying recursions that we introduced in §3.2.3 have solu-
tions of exponential type, which makes relative precision in the approxima-
tions to a more natural guestion.

Now assume that a solution {xi} satisfying
(5.1) i < Aixi + Ty
and X, given, is dominated by complementary solutions (i.e. of the homo-
geneous part). We shall consider several algorithms for the computing (or

rather approximating) such a solution.
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3.2.5.1. Miller's algorithm

We return to the tree term recursion, cf. §3.2.2. As is known many spe-
cial functions obey such a relation, which however often is unstable for
increasing index. An extensive study can be found in GAUTSCHI (1967). The
classical approach to overcome this is Miller's algorithm, named after
MILLER (1952), who first introduced backward recursion for the computation
of Bessel functions. The basic idea can easily be demonstrated with the

help of the constant recursion of §3.2.2. From (2.1) we obtain (if b # 0)

1
(5.2) Ei g = 2 & * 5 iy

or in matrix notation

(Ci-1) _ -1(51
(5.3) \El ) = A \gi+1/ .

For N suitably large and

(EN ) # K(;): (k € R)
N+1

we would find a (20) which has almost the direction of the subdominant
eigenvectors of A,lviz. (;). Mathematically this inverse iteration is equi-
valent to backward recursion. Again we have a counter part for the variable
case by considering dominated and dominant solutions rather than sequences
of iterates of the eigenvectors. If some suitable "end" vector xéN)
a nonzero component of the dominated solution then backward recursion im-

, say, has

plies a relative decrease of the undesired component as i - 0. Historically

one used to take xéN) = (é). We shall write out the results for the recur-
sion in (2.1) (cf.§3.2.2) and {¢i} the solution to be determined. So assume
that a sequence {E;N)}ﬁzé is computed satisfying

Ny _ . Ny _
(5.4) €N+1 = 0; EN =1,

We find (cf. (2.3))

(N) _wwu¢{wwuwi_

5.5 L - -
©-2 f1 Unat O OtV Y.

pN¢i + qui,
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since |q /p. | = |¢.../¥ .. | it follows that, at least for large (N-i), E(N)
NN N+17 "N+1 ) ! i

is almost proportional to ¢i. Hence Ei /pN would be a nice approximant for

¢i (the better the larger (N-i) is). The quantity Py itself is hard to

determine. But if a relation of the form

(o]

(5.6) Lowe, =1,

i=

is given (possibly H, = 0 for i > 0, so ¢O is given), then a satisfactory ap-

proximant for Py is given by

e

(5.7) i7i
0

Il &~>2

i
For more detailed analysis of the error see GAUTSCHI (1967), MATTHEIJ &
VAN DER SLUIS (1976), OLVER (1967a), ZAHAR (1977). From the geometrical in-
terpretation of this algorithm as inverse iteration, it is immediately
clear that one can often fasten the convergence by choosing a better approxi-
mation for the direction of (igﬁ) than just (J) (cf. MATTHELJ & VAN DER
SLUIS (1976), OLVER & SOOKNE (1972)); therefore one needs estimates for
this dominated solution. For more general situations than this trivial
constant case one can consult the cited literature. From §3.2.3 it follows

X 1
that a good guess will also be (“N) where o is the absolutely smallest

N
eigenvalue of AN.
The generalization of this algorithm for the matrix vector and/or high-
er dimensional cases is similar. Success is only assured if the desired
solution is dominated by all solutions of a well determined (n-1) dimension-
al solution space (i.e., loosely speaking, where no dominant solutions are
directionally close to the dominated one). The computed sequence has to be
normalized and this may be done with a similar relation as (5.6) (cf. MATTHEIJ
& VAN DER SLUIS, (1976)). The algorithm can also fruitfully be applied to in-
homogeneous recursions if all solutions of the homogeneous part are dominant.
Since the desired particular solution is unique then, no normalization of
the computed sequence is necessary.
The choice of N depends on the accuracy required. We shall investigate
1

_"U.=Ori>0.

the relative error, TiN) say, in our example. Suppose Uy = oo’ Mi
0
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We obtain:

(N) (N)
5.8) O TR I A I A S A T /¢N+1)///wN+1>
. b, R O NN \ vy
The last estimate in (5.8) equals (%ON—i.

Hence we see - in agreement with power method theory - that the rela-
tive error almost decreases with a factor %—at each iteration step. For
slowly varying recursions (§3.2.3) we have a similar error behaviour, viz.

AL(n
IO RN 5™
i R Aj(n—l) .

Again, knowledge of the order of magnitude of the solutions of the recur-

sion is very useful to estimate the error cf. (5.8).

As far as rounding errors concerns it has been shown in MATTHEIJ &
VAN DER SLUIS (1976) that the relative error in x, is almost proportional
to i and not to (N-i) or N, cf. §3.2.4. In the inhomogeneous case the error
even is independent of the number of steps. Anyway the actual choice of N

has no influence on the accuracy of X, with respect to rounding errors.

3.2.5.2. Olver's élgorithm

If the recursion is third order or second order inhomogeneous or even
higher order there may be a situation where both forward recursion and
backward recursion (Miller's algorithm) will be unstable. Viz. if the de-
sired (possibly particular) solution is dominated by some solution of the
homogeneous part and dominates some other complementary solution in turn.
A well-known scalar example is given by the recursion for the Struve func-

tion Hi(x) (cf. ABRAMOWITZ & STEGUN (1964, p.496))

(hx)

(x) + 3
%Fr(i-+§0

2i
(5.9) Hi+1(x) =5 Hi(x) - Hi—l
The homogeneous part of (5.9) is also satisfied by the Bessel functions of
the first and second kind, viz. {Ji(x)} and {Yi(x)} respectively.
An efficient algorithm for stable computation of "intermediate" solu-

tions like {Hi(x)} was developed by OLVER (1967b);we shall deduce it in

Iy

such a way that generalizations may be easily understood, (cf. MATTHEIJ(1977)) .

Consider the general second order scalar recursion
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(5.10) £, = aigi + bigi—l + c,.

i+l i

Define a solution {pi} of the homogeneous part of (5.10) by

(5.11) Po = 0; Py = 1.
By substituting
(5.12) EiPis1 ~ Bi41Py T My

we find a first order recursion for {ni}:

(5.13) n; =-b.n. -

This recursion can be derived using Abel's transformation trick (NORLUND (
1924 p.289)); in his paper Olver employs a somewhat unconventional elimina-
tion method for a system of equations that was found by considering recur-

rences for EO,...,EN and imposing boundary values. The recursion (5.13) is
(N)
(N N+1
proximation to EN' a sequence of approximating values {Ei )} (to {51}) is

used in forward direction whereas after choosing an end value £ as ap-

computed by

(N) _ (N)
(5.14) g = (ni+£i+1 pi)/pi+1,

(cf. (5.12)), i.e., in backward direction.
In order to understand why this is a fruitful approach it may be help-

ful to remark that the substitution (5.12) and the result (5.13) in fact
are equivalent to reducing the order of a recursion when some solution (of
the homogeneous part) is known. If this reduction solution was a dominant
one, then there is hope that after the order reduction the transformed sub-
dominant solution will become dominant, in particular the desired solution
{ni}; hence forward recursion for {ni} is expected to be stable. We shall
work this out later. Assume that {pi} is a dominant solution (this is true,
except for the singular case that the direction of the first iterand of the
dominated solution (of the companion matrix vector recursion) has the direc-
tion of (?)) and let {0;} be a solution of the homogeneous part dominated

by {£,}. Let the solution of the homogeneous part of (5.13) be defined by
i
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(5.15) £y T 93Pi41 T T541Py -

Then

(5.16) b zi.[pi+1/pi_oi+1/°i]
PR CHRVEI VN

The factor between brackets in (5.16) will be bounded if for all i the
growth factors pi+1/pi are larger than Ei+1/€i (which is reasonable since
{pi} dominates {Ei}). Hence {n.} dominates {Ci}.

For the approximant {E;N)} we find

E_(N) (N)

(5.17) i _ i+l - i
Pi Piyr PiPig
Hence
(N)
N n. p.&
N N+1
i P3P5+1 N+1

which also holds without the superscript (N). On account of the dominance
we therefore have by a limit argument

® n.
. —J

Py .

(5.19) E. =p
. iP5+1

1 7
1

If the solutions are of exponential type (e.g. growing like eigenvalues of

a suitable associated matrix cf. §3.2.3), then (5.19) will be of geometrical

type and thus has fast convergence. In fact we then have

n.
(5.20) —3 I,
pjpj+1 p. J

where Kj is almost independent of j.

Comparing (5.18) and (5.19) we find for the relative error
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(N)
n. g
o 3j N+1
w| |2, —3 N ()
(5.21) R M1 psPayr Paerl Bt Bve1 s
& oo 3 Bt Bi Punr
1 P3Py

(N)
N+1
values of {ni} and {pi} by

Oon the other hand if & = 0 we can simply estimate (5.21) using computed

£;78 | & l N+1 l/ . Ny
| PP

(5.22)

Pn+1PN+2 i+l

If one wishes to approximate EO,...,EP say, then (5.22) provides for an
easily accessible criterion to estimate the value of N, viz. by recurring
forwards with (5.13) until for a certain N > p and all i < p, (5.22) is
smalller than the required tolerance. Note that the algorithm can also be
used to approximate the dominated solution of a homogeneous three term re-

currence relation.

3.2.5.3. More general algorithms for approximating "intermediate" solutions

Above we have remarked that Olver's method was basically equivalent to
classical order reduction. Hence a generalization to higher order recur-
sions is straightforward. However, repeated use of such order reduction
might deteriorate the conditioning of the problem, whereas possible con-
vergence is hard to prove. On account of Olver's derivation, viz. via
a kind of LU decomposition of an associated large (and sparse!) system,
some authors (cf. OLIVER (1968b)) have proposed generaliéations based on
linear algebraic methods. A less attractive feature of such an approach is
that a fairly simple problem is translated into a usually more complicated
algebraic problem, with questions like pivotting, equilibration and loosing
sparseness.

A more general method, in some way also a generalization of Olver's,
was proposed by MATTHEIJ (1977, 1982).It deals with matrix vector recur-
sions: Suppose the solution {xi} of (1.2) is dominated by solutions of the

homogeneous recursion, that constitute a well defined k-dimensional sub-

space Sl’ say whereas {¢i} is not dominated by the solutions in the
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complementary space S, say. Let T, be an n-th order nonsingular matrix,

such that its first k2columns spag a subspace of IJ‘ that has an empty in-
tersection with the subspace spanned by initial values of elements of Sz.
(this is a harmless assumption and is comparable to the condition necessary
for successful use of the QR algorithm) . Given the recurrence (1.2) i.e.

X, =A,x, + 1,
i+l ii i

we can obtain a transformed decoupled recursion

(5.23) yi+1 = Viyi + Si

with {Ti} a sequence of nonsingular matrices chosen such that

, _ a1 . .
(5.24) Vi = Ti+1 Ai Ti' is block triangular
and
(5.25) s. =T}
. i i+1 Tif
(5.26) =t
. ¥y I

Partitioning the vectors into the first k and the last (n-k) coordinates

and the matrices Vi correspondingly, we find

1 11 1 12 2 1 k
(5.27a) yi+1 = Vi v + Vi ¥y + si 1

2 2.2 2 (n-k)
(5.27b) Yigp = Viyi + s, i .

It can now be shown (cf. MATTHEIJ (1980)) that the solutions of the homo-

geneous part of (5.27a), viz. the recursion
(5.28) z, = Vi z4

have a growth character corresponding to the solutions € Sl’ whereas the

solutions of the homogeneous part of (5.27b), viz. the recursion

(5.29) u, =V, u,,
i
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grow like solutions € S

2
Thus it turns out that a stable computation of {y } has to be done in

forward direction, whereas {y } has to be computed in backward direction;
the latter can be performed after {y } has been calculated. Of course we
have to find some approximation to y&, say for N large enough, before we
can start the backward algorithm (cf. Miller's and Olver's algorithm).
shall give an idea of the thus introduced truncation error for the case of
a slowly varying homogeneous recursion (cf.§3.2. 3), so let "x "/lx I ~
Ai(k+1) Denote the sequence of approximants of {y } by {y (N)} Then the

relative truncation error in ¥y is given by

N-1 _ 1
“y:. (N)—yiII LN i Bj) 1(y:I(N)—y:I) I N-1 )‘j(k”)' “yr (N) -y, I

(5.30) L AL ® 130 A Ty d )

If we know a good approximation of y; then this should be used of course.
If we do not have such an approximation at our disposal we may choose
y;(N) = 0. We remark that the error found in (5.30) again resembles the
power methed like results in §§3.2.5.1-2, As in Olver's algorithm we may
use computed quantities to estimate the error and thus equip the algorithm

with a self search device for determining an N necessary to obtain a cer-

tain relative precision: indeed, a good estimator for "(n?:; B.)_lu is given

by the inverse of the product of the absolutely smallest eigenvalues of the
Bj, whereas ¥y and y; can be estimated by yi. For refinements see MATTHEIJ
(1982,85) .

It can be shown that the relative rounding error in the computed re-
sult is proportional to i - as was also found in Miller's algorithm - and
even independent of i for inhomogeneous recursions with solutions of the
homogeneous part, that are sufficiently dominant and dominated resp.

A straightforward way to determine these {Ti} and {Vi} is by using
orthogonal matrices. The factorization step (5.23) is then performed via

OR-decomposition, which can be performed by Householder's or Given's

method (cf. WILKINSON (1965)). As a by-product the matrices Vil will be upper

triangular, which means that their eigenvalues are known (necessary to esti-
mate their norms) and moreover that inversion of the Bi - which is neces-
sary for the backward recursion - is simple and stable alike. Finally back-
transformation of the computed sequence {yi(N)/yﬁ} is simple, because in-
version of an orthogonal matrix is equivalent to transposing.

The algorithm of Olver in §3.2.5.2 can be considered as a special kind

of
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triangularizing the corresponding companion matrix wvector recursion, but
not via orthogonal matrices. For the general scalar problem the application
of the triangularization method to the companion matrix recursion using
orthogonal matrices, is likely to disturb the sparseness. Hence it is worth-
while to investigate whether there are special choices for the Ti which pre-
serve the scalar character of the recursion. A more detailed description is

still under construction.
3.2.6 Conclusion

In the previous sections we have tried to give a survey of problems
and methods involved with recursion. We did not go too much into details;
the interested reader can consult the papers indicated in the references.
There are many more related subjects, some of them are treated elsewhere
in this tract. Examples are the summation of series of dominated solution
(see the excellent method given in the papers by DEUFLHARD (1976,1977)) or
the problems encountered when there is no dominance phenomenon, and the

rounding errors may become important.
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3.3. Three-term recursions; some practical points of view

In this section we again consider three-term recursions. In the pre-
vious section general aspects of these recursions were considered. For
applications, especially for special functions, it is worth-while to have

information how to use the algorithms for practical problems.

3.3.1. On the growth of solutions of three-term difference equations

Let us consider the recursion

(1.1) Y1 + ay, + bnyn—l =0, n=1,2,...,
where a s bn are given sequences of real or complex numbers, bn # 0. The
general solution of (1.1) can be written as a linear combination of any

pair fn,gn linearly independent solutions, that is
(1.2) v, = Afn + Bgn

/
where A and B are complex numbers not depending on n. We are interested

in the special case that the pair fn'gn has the property

(1.3) lim fn/gn = 0.
nso

Any solution (1.2) with B # O then satisfies fn/yn + 0, n>wo, If B=0 in
(1.2) Y, is called a minimal solution of (1.1), if B # 0 it is called a

dominant solution. If we have two initial values Yqor¥Yy of (1.1) and £, £

1’
go, g1 are known, then we can compute A and B, viz.
_ 91¥ ~ 9o¥y _¥ofy - vy
= —— = — -
£091 ~ £19 9%F1 ~ 1%

The denominators are non-zero if fn’gn are linearly independent. When we
prescribe that the initial values Yqry, are intended for a minimal solu-
tion, then B = 0. It follows that in that case just one initial value can
be prescribed, the remaining one follows from the relation yof1 = ylfo.
In computations this leads to well known instabilities for the evaluation

of minimal solutions. If our initial conditions Yor¥y do not fulfil
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exactly the condition B = 0, then the computed solution (1.2) behaves
ultimately as a dominant solution (even when computing with infinite preci-

sion), although we intended to compute a minimal one.

For applications it is important to know whether a given recursion
(1.1) has dominant and minimal solutions. Sometimes this can be concluded
from the asymptotic behaviour of the numbers an,brl in (1.1). The following
theorem is quoted from GAUTSCHI (1967). For a proof the reader may consult

the references given there.
THEOREM. Let an,bn have the asymptotic behaviour

B

a -~ ana, bn ~ bn , ab # 0, o,B real, n-> o
and let t1,t2 be the zeros of the characteristic polynomial
d(t) = t2+at+b, |t1| > |t2].
(1) If o > 1B then the difference equation (1.1) has two linearly

independent solutions Y1 and Yo o0 for which
’ I

Yy Yy
+ —
n+l,1 | —ana, n+l,2 _gnB a' n > .
yn,1 yn,2

(ii) If a = 3B then (1.1) has two linearly independent solutions

yn,l'yn,2 for which
Y Yy
+ +
n+l,1 tlna, n+1,2 | tzna, n - o,
yn,1 yn,2
provided |t1| > It2]. If Itll = It2| then

—a.1/n
lim sup [lynl(n!) ] = ltll
n-ee
for all nontrivial solutions of (1.1).
(iii) If o < 3B then

_ 1/n
lim sup [Iynl(n!) 6/2] = lbli/z

n->e

for all nontrivial solutions of (1.1).

In both case (i) and the first part of case (ii) fn =Y, 5 is a min-
14

imal solution of (1.1). Furthermore, in the first part of case (ii)
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Y
lim ntl =t_, r=1, or xr = 2,

n>»® n
yn

where r = 2 for the minimal solution, and r = 1 for any other solution. To

see this we remark that from (i) we derive

n > o,

yn+1,2//yn,2 b _B-2a

S~ o ,
yn+1,1 Yn,l a

which tends to zero since B-20 < 0. Hence the sequence {yn 2/yn 1} tends
’ 14

to zero. In the first part of (ii) we have

Y Y
_____n+1,2/_____n,2 ~ty/tye el
Yn+1,1/ ¥n,1

since |t,] > |t,|, we again conclude that {y_ ,/y_ ,} tends to zero.
1 2 n,2"*n,1
The second part of case (ii) of the theorem and case (iii) give no
information about dominant and/or minimal solutions. As will become clear
from the examples below, we need extra information of the solutions of

(1.1) in these cases.

Some insight in the above theorem can be obtained from the companion

matrix vector recursion:

el (Y% (M P
(Yk ST\ ) BT ( 1 Ok/'

The eigensystem of Ak is given by

{x+ A
: + - k k\
eigenvectors: E = (e Ve ) =
k VR Ny
+
eigenvalues: Ak = (Ak A-)'
kl

The quotients of the elements of each eigenvector behave as A; and A;, re-

spectively. The eigenvalues with a = ak® and bk = ka are given by

= (-aktak® /1-apkP"2%/52) /2

A

~ I+

and behave, for k large, as depicted in the following table.
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\\\\\Eggff + _
situation [Akl |Ak|

B < 2a |b/alk8—a lalk®

B = 2a lx’{lk“ 7 |x*

B > 2a /|b kP72 ]b]ks/z
If we assume

-1
BB 7 1

which is the case with the above specified coefficients then two independent
solutions of the matrix vector recursion are given by the eigenvectors

e; and e;. The quotient of successive elements of the independent solutions
behave as given in the above table for the eigenvalues as a function of the

relation between B8 and 2a.

Examples

1. Bessel functions.

Recursion: Yy = 0.

n+1 z ¥n Yn-1

Solutions: fn = Jn(z)’ g Yn(z), z #0.

Case of theorem: (i), = =

2
z’ a =1,

a
b=1 , B =0.

g f

Conclusion of theorem: ntl 22, o+l |z .

g z £ 2n

n n

. . -3 ez.n
Known asymptotic behaviour: fn ~ (2mn) (550 ’
n > o,
— -3 ez ™1
9n (Tn/2) (2n)

2. Legendre functions.

a) Recursion with respect to the order
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Recursion: y + 2mz(zz—1)_%ym + (m+a)(m—a—1)ym_1 = 0.

. m m
Solutions: f = Pa(z), I = Qa(z), Re z > 0O,

o€, o #-1,-2,... z ¢ (0,1].

22(z2-1)"8, 4 =1

Case of theorem: (ii), a =
b=1, B =2
t, = —[(z+1)/(z—1)]% ——
1 ! 2 1
|t1| > 1 > lt2].
£ 9
Conclusion of theorem: lim o1 =ty lim o tl'
m>o m me "y
b) Recursion with respect to the degree
Recursion: 2 2n+2a+1 + n+a-+m -0
: Yo nta-m+1 Yn | nta-m+l n-1 _ °°
Solutions: £ =9" (2) =p" (2), Rez>0
tons: n a+n 2’7 9n = “a+n'?r z :
Case of theorem: (ii), a = -2z, a =
=1, B =0
- 2_,,3 - 1
ty =z + (z°-1)%2, t2 = t1
|t1| > 1> It2l.

Conclusion of theorem: lim fn+1/f = t2, lim gn+1/gn = tl‘

n>o n->o
3. Coulomb wave functions
. 2, 243
Recursion: L (L+1) “+n“] Vi (2L+1)[n+L(L+1)/D]YL
2, 2.3
+ (D) [y, =0, L=1,2,...
Solutions: £, = Fp (), 9;, = G, (n,p), neR, p > 0.
Case of theorem: (i), a = - g, a =1
=1, = 1.
Conclusion of theorem: g_, . ./g -~ 2L £ /£~ £ L+
94/ T 5 +1/ L " on :
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+
Known asymptotic behaviour: £/ ~ CL(n)DL !

L-1
[2LCL(T1)D ]

9L
R e o
Incomplete beta functions
Recursion: Yoy - 1+ BT L gy 4 BB oy = 0.
Solutions: fn = Ix(p+n,q) . 9, = 1, 0 <x <1,
Case of theorem: (ii) a = -(1+x), a=0
b = x ’ B =0
t1 =1, t2 = X.
Conclusion of theorem: limn_)ﬁo f:;:l = X,

-1 _g-1 p+
Known asymptotic behaviour: fn ~ (l—x)q 1nq 1xp n/I’ (q).

Repeated integrals of the error function

1

. z _
Recursion: Yoot ¥ 541 Yo T @) Yn-1 T O
2 2
Solutions: fn = &2 i%ersfc z, 9, = (-1)"ez%i erfc(~2),
oo
.n .n-1 .0
i“erfcz = i erfct dt, i'erfcz = erfcz
z
-1 -1 —22
i "erfcz = 2w ‘e , 2z € C.
Case of theorem: (iii) a = z, a = -1
1
b == = =1,
1 %
Conclusion of theorem: lim suplly |(n!)l§] /n _ 2 &
n -> o« n
for both Y, = fn and Yo = 9,
-n -122_,/20"
Known asymptotic behaviour: i"erfcz ~ 27 e 2% TZ 2n/I‘ (%+ 1) hence

n
-t =~
gn

n £ -2zV2n
e ’

n > o

69
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6. Confluent hypergeometric functions U(a,b,z), M(a,b,z)

a) Recursion with respect to a

Recursion: (n+a+1—b)ym_1+(b—z-2a—2n)yn-l-(a+n—1)yn._1 =0.
. . _ I'(a+n)
Solutions: fn = -TQET_'U(a+n'b'Z)'
_ _ T(a+n)
9 = T(l+atn-p) M(@+0.Ds2).

Case of theorem: (ii) a = -2, a =0

b=1, B =0

ty =ty = 1.

1/n -

Conclusion of theorem: lim sup |y |
n > o n

for both yn = fn and Y, = 9,

Lb-% -2vVnz
Known asymptotic behaviour: fn c,n “e ’

1
kb-% +2v/nz
c,n e ’
n 2
fn -4vnz
hence — ~ c,e ’
g 3

e, not depending on n.

b) Recursion with respect to b

Recursion: zyn+1+(1—b-—n—z)yn+(b+n——a-1)yn_1 =0.
Solutions: fn = I%%%%i%l-M(a,b+n,z),
g, = U(a,b+n,z).
Case of theorem: (i), a = -1/z, o=1
b =1/z, B =1,
Conclusion of theorem: 1. n/z, 2+1 ~ 1.
n n

Known asymptotic behaviour: fn ~n®

o~ 2Y P (hin-1) /T (a) .
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7. Jacobi polynomials

Recursion: (2n+2)(n+ot+B+1)(2n+0L+B)Yn+1 =
(2n+u+8+1){(2n+u+8+2)(2n+a+B)x4~a2— 82}yn

—2(n+a)(n+B)(2n+a+B+2)yn_1

. A _ (a,B) _ ~l0,B)
Solutions: n = Pn (x), fn = Qn (x), X € C.
Case of theorem: (ii) a = -2x, a=20
b=1, B =0
t1 = x-foz—l, t2 = x-Vx2—1
e 1= lt,l =1 if x e [-1,1]
|t1| > 1, |t2| <1if x ¢ [-1,1]
. . 1/n
Conclusion of theorem: x € [-1,1]: lim sup |y | =1
n > o« n
for both y_ = P(a'B)(x) and
n n
o
v, = Qé 'B)(x),
P(Q'B)(x) Q(N'B)(x)
n+1 n+1
x ¢ [-1,1]: —WNtl’ WNtZ
P (%) 0 " (%)
n n
Known asymptotic behaviour: x € (-1,1), x = cos?®, 0<0 <
(a,B) - : 3 1
P (x) [2/(mn'sin ) J°cos[ (n+ )6 - w/4]

(a,B)

_1 n
x ¢ [-1,1], P (x) ~n 2¢(x)t1,

_1
Qéa’B) ~n 2w(x)t;

where ¢ and § are independent of n.

Examples 1 through 5 are extensively treated in GAUTSCHI (1967). For
ALGOL 60 implementations of the algorithms see Gautschi's references.
Example 6 is considered (with ALGOL 60 algorithm) in TEMME (1983).
(a'B)(x) and of’Q(a’B)

n n
Jacobi's function of the second kind, can be found in SZEGO (1974). The

Information on the Jacobi polynomials P (%),

Jacobi polynomials contain as special cases the important Chebyshev and

Legendre polynomials. It follows that for x not lying in the interval of
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(a,B)
n
(x) = %

(for numerical applications the most important case) the theorem is incon-

orthogonality the polynomials P (x) can be safely recurred from initial

(a,B) (o, B)
0

values P (x) =1 and P1 (a,B) + %—(a+6+2)x. For x € [-1,1]

clusive and also our formulas give no information. The point is that

olesB)
n

(x) is usually not considered for x € [-1,1]. It is a many-valued func-

tion of x and it can be made single-valued and regular in the complex plane

by cutting the plane along the segment [-1,1]. If x € [-1,1], the values
(a,B) )
1o (

x+i0) are not equal.

For the case o = B =0, SZEGO (1974, p. 224) gives the result

™ )éeii[(n+%)e+n/4]

+ i ~ (——
(cos® * i0) (2nsine

n > o,

Q(0,0)
n

where 0 < 6 < 7., It follows from his analysis that the result for the gen-

eral case can be obtained using the same method. It gives the same behaviour

(0,0)

as for Qn (cos 6 £i0) except for a constant factor depending on a, B and

6, but not on n. Thence we conclude that the asymptotic behaviour of
plarB) (o, B)
n n

the oscillatory part of the functions. It follows that for x € [-1,1] the

Jacobi polynomial Péa,B)

(x) and @ (x+i0) is the same, avart from a shift in the phase of
(x) is not a minimal solution of the recursion given
in Example 7. Rounding errors become important in this case when using the
recursion relation for computing successive Jacobi polynomials.

Other examples for the use of backward recurrence relations can be
found in CLENSHAW (1962) and CLENSHAW & PICKEN (1966), where the method is
used to generate coefficients for the expansion of many special functions
in series of Chebyshev polynomials of the first kind (in these cases higher

order recursions are involved).

3.3.2. The Miller algorithm

Let us suppose we want to compute the minimal solution {fn} of the
recursion (1.1) with the normalizing relation

o

(2.1) ) AE =s, s#0
n=0

where s and An are given numbers. Of course a finite number, viz.
fO""’fN' will be considered where N 2 0. As mentioned in earlier sec-
tions, Miller's algorithm is based on choosing v > N and computing a solu-

tion {yév)} of (1.1) with initial values
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(v) _ (v) _
Yoep = Or v, =1

(where the numbers O and 1 may be replaced by any other pair if at least
one of the numbers is not equal to zero; in some cases a different choice
may speed up the convergence). It follows (cf. (5.5) on p.55) that for

0 <n < v-1

g, £-f .g
(v) _ “v#l'n "v+1°n _
(2.2) y = — = pvfn-kqvgn, say.

n Iue1 5y Fo419y
(v) _ .
Hence Y, /pv = fn fv+1/qv+1 9, and from (1.3) we derive that for
0<n<N
. (v) _

1lim ¥, /Pv = fn'

V>0
It follows that, if v is large enough, fn can be computed from yév) and pv.

The latter is not known, in general, and we proceed using (2.1). We com-

pute

v
(v) _ (v) v) _ s v)
(2.3) s - Z Anyn ’ fn =7 Yn
n=0 S

then we have for the relative error in fn (if fn # 0)

(v) (v) _(v) (v)
.4 fn fn ) s/s n fn ) S(Pv+qvgn/fn) s
: £ £ (v)
n n S
Oy Pur1/Pn Ty
1-0 -1
v v
with
© p v
_1 _ _ v+l
(2.5) o, =3 _Z Afr Pp = £/9, T, =—— 1 A9, -
m=v+1 m=0

On account of (1.3) and the convergence of (2.1) it follows that the
left-hand side of (2.4) tends to zero (for v + «) if and only if T, tends
to zero. Also, (2.4) gives information on the relative error when the
quantities cv, pn, pv and Tv can be estimated.

To facilitate the error analysis, the quantities ov and Tv, represent-

ing sums, are replaced by the possibly most relevant terms in these sums, viz.
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.1 .
9% s Avr1fuer T s vIv

Then the relative error (2.4) is written as

(2.6) fn -fn . l-k £ + f\)+1 Avgv _ fv+1 %
fn s "v+1Tv+l g\)+1 s Iye1 fn
£ g
. 1 v+1 “n
== .f - -, (n=20,...,N).
s "v+lTv+l 91 fn

For obtaining an a priori estimate of v, which makes the right-hand
side of (2.6) smaller than a given quantity € > 0, GAUTSCHI (1967) consider-
ed only the case n = N (taking into account (1.3) this is a reasonable
step). In the examples in his paper he replaced the values fv+1' Fys1’ fn
and 9, by asymptotic approximations. Then, using an inversion process, he

obtained a first estimate of v. By computing successive values

+5] .
fév),fév+5),... (n=20,1,...,N) the values of fév 53) are accepted if they
+5 (-
agree with fév 5(3-1)) within the prescribed relative accuracy. An unpleas-

ant feature of this procedure is that computing time is wasted if either
the first estimate of v is much too low or much too high. Another diffi-
culty is a slight uncertainty associated with the acceptance criterion:
mere numerical agreement of solutions computed with two different values
of v(v and v+5) does not guarantee their accuracy. In §3.3.4 we describe a

different procedure for obtaining estimates of v.

3.3.3. Gautschi's modification of the Miller algorithm

In GAUTSCHI (1967) the computation of fév), n=20,...,N, follows a
different scheme. It is based on the ratios (we suppose throughout that

£, # 0)

(3.1) r, = fn+1/fn
and it originates from continued fractions for these ratios of minimal
solutions of three term recursions. From (1.1) it follows that the r satis-

fy the non-linear recursion

(3.2) r =
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and substituting for r, a similar equation a continued fraction arises.

For the partial sums of (2.1) we introduce

(3.3) s =

n Af,

Lo}
fn m=n+1 mm

hence for s, we have the recursion

\2
-

(3.4) Sp1 = rn_l(kn-+sn), n

If rv and Sv are known for some v > N the ratios T and the partial
sums can be obtained from (3.2) and (3.4) respectively, applying these re-

cursions for n = v,v-1,...,1. In particular we have

oo

1 1
Sy == ) AE == (s=Af)
0 fo m=1 m m f0 00
and so
(3.5) f0 = s/(xo+so).

This gives the initial value of the desired solution. The remaining values

follow from fn = £ 1’ n=1,...,N.

r

In the actualnaiggrithm the quantities x, and s, for starting the re-
cursions (3.2) and (3.4) are taken equal to zero. The infinite continued
fractions r and the infinite series s, are thus replaced by truncated
fractions and truncated series (n < v). In fact two sequences {rév)}, {sév)}

(0 £ n £ v) are defined according to the recursion scheme

vy _ vy _ _ (v)
r, =0, rq= bn/(an+rn )
n=~v,...,1
(3.6) s(v) =0, séﬁi = réfi(kn+s£v))
(v) _ (v) (v) _ ) (V) _
fO = s/(>\0+so ), fn = rn—lfn—l' n=1,...,N.

(v)
n
same (mathematically, perhaps not numerically) as those in (2.3) and, as a

It can be verified that the quantities f obtained in this way are the

consequence, the relative errors are as in (2.4).
While algorithm (3.6) and Miller's algorithm (resulting in the compu-

tation of (2.3)) are mathematically equivalent, they have different
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. v
computational characteristics. In many cases, e.g., the quantities yé ) of
(2.2) grow rapidly as v increases (especially those for small n), and may
cause "overflow" on a digital computer. In contrast with this, the quanti-

ties r(v) (v)
n n

in (3.6) converge to a finite limit as v + », and so does s
if the algorithm converges at all.

When applying the Miller algorithm or Gautschi's version (3.6) of it,
one should take care of two points. The first is (it is important for both
versions) to take a normalization (2.1) in which no cancellation of leading
digits occurs when summing it numerically. Sometimes one has some choice
in the selection of (2.1). Consider, for instance, for the computation of
the modified Bessel functions the two series

z_
e = Io(z) + 211(2) + 212(2) + ...

-z
e = Io(z) - 211(2) + 212(2) - e

for z € €. For Rez -+ « we have In(z) ~ ez/(2wz)%. It follows that the con-
dition function (see 8§II.1.2) of the first series is much smaller than that
of the second one (1 and ezz, respectively, for real positive z).

A second point is that we assumed fn # 0. In Gautschi's algorithm this
assumption is very important, in Miller's original algorithm it can be drop-
ped. Zero-values of fn can occur, for instance, in the case of ordinary

Bessel functions with

a = bn =1, fn = Jn(z),

Although exact values of zeros of Jn(z) are not representable on the com-

puter (except for z = 0) the algorithm may break down in this event. Con-

(v)
n

sider the first elements r computed according to (3.6):

£V LV _ oz v 2vz

=0,

v-1 2v V=2 4\)(\)_1)_22

The number v, the starting value of Miller's algorithm, is (for this case)
larger than |z| (GAUTSCHI (1967, p. 51). Hence, the value of réf;

defined. Values of rAV) (n < v-2) may become undefined, owing to a vanish-

is well-

ing denominator. Computer programs must be protected against this phenomenon,

According to Gautschi (see the discussion on p. 42 of his paper) the
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v
presence of zeros need be of no great concern for the computed values fé )

in the final step of algorithm (3.6).

3.3.4. Olver's algorithm

This algorithm is already mentioned on p.57 in the previous subsection
II.3.2. Here we consider a few practical aspects of it and we will indicate
how it can be used in combination with Gautschi's algorithm. In the latter

the estimate of v, see our remarks at the end of §3.3.2, is not very satisfact-
ory, whereas Olver's version is rather attractive for the estimation of v.
We only consider the homogeneous recursion (1.1); in OLVER (1967b) also the
inhomogeneous case is treated. The combination of the algorithms of Gautschi
and Olver is discussed in OLVER & SOOKNE (1972), where it is applied to the
well-used example of the Bessel functions. For the sake of completeness we
summarize Olver's algorithm.

Let the given difference equation be denoted by (1.1). We compute a
solution {pn} defined by

= = = - - >
pp=0, p =1, p ap -bp _, (n 2 1).

n+1 n n-

Furthermore we introduce sequences {en} and {En} with e, = s (see (2.1))

0
and e = bnen—l (n 21), and En defined as the (necessarily convergent)

series

© e
(4.1) E = ) —2%, n

n m=n pmpm+1

\"2
—

the process fails if, and only if, one of the numbers pn vanishes. The
above given quantities are used to compute a minimal solution {yn} of (1.1)

with initial value Yo = s-

PROPOSITION. The sequence {yn} given by

°z° n
? m=n PrPm+1

(4.2) y =pE =p

nz0
n n n ! !

where for n = 0 (4.2) -is to be interpreted as Y, = s, is a minimal solu-

tion of (1.1).
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PROOF. Substituting (4.2) in (1.1) gives (for n 2 1)

pn+1En+1 + anann + bnpn-—lEn—l

en en—l en
+——) +bp ( ———+E_ .).
n+l pnpn+1 n"n-1 Pn—lpn pnpn+1 n+l

= +
pn+1En+1 anpn(E

Since {pn} is a solution of (1.1) it is easily verified that this expression
vanishes identically. From its construction it follows that Y, is a minimal

solution., [

In Olver's algorithm the wanted solution {yn} is approximated by a

finite part of the series in (4.2), viz.

(v) Vit e
(4.3) yn = pn z —_—, 0 <n < v-1,
m=n pmpm+1
. . . (v) _ . . . V), .
with, again, the assumption Yo = s. It is easily verified that {yn } is

also a solution of (1.1) (for O < n £ v) with "boundary values"

(4.4) yé") = s, v <o,

The truncation errors and the relative errors are given by

<
<

[}
=
=

v
(4.5) Y, Y, =pE ., Y T EF '

=}
=}

both defined for n < v, but only of interest for O < n < N.

The value of v plays the same role as in Miller's algorithm and in
Gautschi's version of it, i.e., it is used for starting the backward pro-

v
cess for computing the solution {yé )} of which the values for n = 0,v are
given in (4.4) and the remaining follow from
(v) (v) _

(4.6) Ph+1¥n P¥n+t T ©n
applied successively for n = v-1,v-2,...,1. Here the quantities Ei are used
-to decide whether the error is satisfactorily small. If the infinite series
(4.1) are replaced by their first terms then the second of (4.5) reduces
to

(4.7)

e
(0]

|<
o
IA
=]
A
2
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Thus, the relative error is easily computed (approximately) by the quanti-
ties P, and e, - The right-hand side of (4.7) is computed for v = N+1,N+2,...
until they fall below the desired relative accuracy. Since the Ei in (4.5)
are replaced by approximations it is not proved that a value of v accepted
in this way is a correct value. To make the choice more rigorous one may
use bounds for the solution {pn} in order to obtain upper bounds for
IEv/Enl' Theorems and examples in OLVER (1967c) may be useful in this con-
nection.

For a full understanding of Olver's method we remark that (4.6) can be
conceived as a first order recursion for yév). As observed on p.58 in the
previous subsection II.3.2 the original recursion (1.1) is reduced in order:
the difficult problem for the second order recursion is reduced to a per-
haps less difficult problem for first order recursion. In this connection
the theory of subsection II.3.1 may be important.

The algorithm for the computation of yév) is not always well-condition-
ed. This may be analysed by using the results of II.3.1. In some cases in-
stabilities occur due to a loss in accuracy in the formation of the se-
quence {pn} (initially p may be like a multiple of the minimal solution,
although it increases ultimately in proportion to the dominant solution).
Therefore we remark that the two values (4.4) can also be used to compute
y(v) with the helplof Gautschi's algorithm (3.6) with the simple normaliza-

tion yé") =s (i.e., A\;=1, A_=0, m>1). In OLVER & SOOKNE (1972) this

device is followed forothe computation of ordinary Bessel functions.

It remains to give information for the computation of a minimal solu-
tion of (1.1) in the case of a general normalization (2.1).

One could reason as follows (however it will be a false reasoning) .
Suppose we have computed (within a given accuracyi a minimal solution {yn}
of (1.1) with initial condition Yyg=sasa simple normalization. As men-
tioned in §3.3.1 any other minimal solution {fn} (satisfying f.i. a general
normalization relation (2.1)) is a multiple of Yoo That is, by using (2.1),

we infer that
s
(4.8) £ =TV t= ) Ay.
For computations we suppose that in this series and in (2.1) the symbol =

is replaced by v. Then, for v we have two conditions

(i) to make the second of (4.5) or (4.7) small enough,
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(ii) to make both infinite series

(-] oo
T oAy and T OAf
m=v+1 © O m=v+1 m

small enough.
(v)

Moreover we suppose that the y, are replaced by v, e of which the computa-
tion is described earlier in this part.

This reasoning is used in OLVER & SOOKNE (1972, p. 945) (in fact only
condition (i) is mentioned) and we will show, as is done properly in OLVER
(1967, §11), how to obtain a correct condition on v. The point is that the
computed Y, (i.e., ;év)) is not an exact minimal solution, since it is com-
puted with two conditions given in (4.4). In §3.3.1 we remarked that for a
minimal solution one and only one value can be prescribed.

Let {fn} be the wanted minimal solution of (1.1) (to be computed for
n=20,1,...,N) with normalization (2.1). Let {yév)} be computed as above
with condition (4.4), and {yn} the exact minimal solution of (1.1) with

¥y = s- Then we have (compare (4.5))

(v)

- = < <
(4.9) Y, " ¥, anv’ 0 <n < wv.
Using (4.8) we obtéin
_5s, (v) __Ss (v)
(4.10) £ =%, +pE) = v, +RE)
v v
with
§ (v) E E

t = Ay , T =E Ap + ALY .

V. o n v v n=0 MM Ui BN
In (4.10), tv and yév) are known whenever a choice of v is made. The small

quantities Tv and anv are not known. We approximate fn of (4.10) by fév)

defined by

(v)

(v)
(4.11) fn

]
=~E——yn ’ n=0,1,...,N.
v
Then the relative error in this approximation is obtained by using (4.10)
and (4.11), that is,
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(v) (v)
— - +
fn fn _ syn Tv/tv sPnEv
f(v) f(v)(t +T )
n n AVRRIAY]
. o . (v) -
+ = =
To the first order of small quantities we have tv Tv tv' anv/yn

anv/yn = Ev/En (see (4.2)). Ve obtain for the relative error approximately

n n .
Lnn . -7 /t 0<n<NCX<uv.
Ev/En v/ !

(4.12)
The first part corresponds with condition (i) on page 79. The second part,
which does not depend on n, is connected with condition (ii). It is clear
that it contains more than the series mentioned there. Actually we have
Vv =)
EV nZO AnPn * n£v+1 Anann
(4.13) Tv/tv = .

Y
(v)
nZO Anyn

If more information on P, and En and the remaining quantities is available

this expression can be estimated further. For the present discussion the

only possible step is to replace the series by their most relevant terms,

viz. T /t = (A p E_+ A
v/ v ¢ vPu™y

i i (4.1
v+1pv+1Ev+1)/(AOS)' Using the first term of (4.1)

we obtain

(4.14) T/t 2 e /DLy + A

v+1 v+1ev+1/pv+2)/(los)

and this expression is easily computed.

CONCLUSION

Although Olver's algorithm gives a better control on error analysis
than the Miller algorithm, in the final stage of the above analysis approxi-
mations are used. In general one has to use such approximations for obtain-
ing the starting value v of the backward approximation process. For special
cases bounds for p; and Ei may be constructed in order to obtain more rigor-
ous and possibly strict error bounds. We believe, however, that the choice
of v based on testing the smallness of (4.7) and (4.14) is more reliable
than the estimations based on asymptotic expressions (as mentioned in

§3.3.2), whenever these are available.
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4. CONTINUED FRACTIONS

In this chapter we discuss continued fractions. In section 4.1 through
4.4 some basic theory about continued fractions is introduced. In sections
4.5 through 4.7 we treat the approximation of (infinite) continued fractions
and the evaluation of these approximations. This material can be found scat-
tered in the literature. New is an estimation for the condition in section

4.8. In section 4.9 we give some examples.
4.1. Introduction

In this section we introduce continued fractions and establish some

notations and definitions.

A mathematical function can often be represented by a continued frac-
tion. A continued fraction is defined as an ordered pair (({an},{bn}),{cn}).

where_al, a ... and bl' b ... are complex numbers with all a, # 0 and

2’ 2! k
where {cn} is a sequence in the extended complex plane defined as follows:

ck = Sk(O), k=1,2,... where

(4.1.1) SO(W_) =w, Sk(w) W) k=1,2,... and

= Sp_1 8

Sy (W) ak/(bk+w), k=1,2,... .
The continued-fraction algorithm is the function ¢ which assigns to each
pair ({an},{bn}) the sequence {cn}.

The prescriptions to perform the operations may be denoted by

typographically this is not convenient, so we write

), %, %, or 1 %2 %
1 2 3 b1+ b2+ b3+
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We also use

a,

4.1.2 3, =
(4.1.2) i=t b, '

in analogy to series and the I-symbol. From this continued fraction we call

a, the k-th partial numerator,
bk the k-th partial denominator,
a,
i
ck = 121 EZ— the k-th convergent.

A continued fraction is said to converge if the sequence {cn} converges.
The value, c, of the continued fraction is the limit of {cn}.

The analytic behaviour of continued fractions is treated in WALL (1948),
in PERRON (1950) and KHOVANSKII (1956) . More recent views on the matter and
the applications of continued fractions in numerical analysis are found in
HENRICI (1977a)and JONES & THRON (1980). This chapter leans heavily upon
the last book. Recent conference proceedings are JONES, THRON & WAADELAND
(1982) .

4.2. Some examples

In this section we demonstrate some methods to construct a continued

fraction.

In order to construct a simple example, which will be useful further

on, we look at the quadratic equation
2
(4.2.1) zZ =-bz-a=0,

where the roots, z1 and 22’ satisfy the two equations

+ =
z1 22 b
z,2z, = -a .
Eliminating z, we get

z, = -a/(b—zl).
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It is easily verified that, if we take in (4.1.1)
s (W) = s(w) = a/ (b+w) ,
the continued fraction, thus defined, has the convergents
¢ = s(s(...(s(0))...)
and the limit, c, (if existing) of {cn} has the property
c = s(c).
This enables us to write
(4.2.2) z, =-c=- 8 am.
As an illustration we take a = b = 1 and find for the golden ratio, r,

(4.2.3) z, = (/5-1)/2 = ¢ = i§1 /1 .

In a similar way, due to Gauss, we find for the quotient of two hyper-

geometric series a continued fraction

F(a,b+l;c+l;2) - 1 or
F(a,b;c;z) _ a(c-b)z | F(b+1,a+1;c+2;2)
c(c+l) F(b+l,a;c+l;z)
Flabicia) _ _ |, % 94
F(a,b+l;ctl;z) i=1 1

(b+k) (c-a+k)

(4.2.4) k™ Tct2k) (c+2k-1)

__(a+k) (c-b+k) k=0,1,... .

d2k+1 " (c+2k+1) (c+2k)

A more formal treatment of the convergence of this continued fraction and

various applications is given in JONES & THRON (1980, §6.1.1).
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4.3. Some relations

In this section we investigate the connection between continued frac-
tions and other parts of mathematical analysis, in order to be able to use

the theory developed elsewhere.

A well known and useful part of elementary continued fraction theory

is that if we introduce two sequences {pk} and {ak}, which are defined by

Py =1li py=0i p=Dbypy 4+ ap
(4.3.1) K =1,2,.0. ,
9L =0 qy=1ti q =baq , *aq

it can be proved that for ck, the k-th convergent of i§ ai/bi' holds

1

(4.3.2) ck = pk/qk k=1,2,... .

For the continued fraction (4.2.3) we get c, = Fk—l/Fk’ where {Fn} are the

Fibonacci numbers. g
More important is that we have connected continued fractions with re-
currence relations, see also JONES & THRON (1980, §5.2). Three-term recur-
rence relations (like (4.3.1)) are surveyed by GAUTSCHI (1967).
In order to link continued fractions with series we take (4.3.1) and
(4.3.2) and we get
i
141 381 3y

€3 T % = U g
94519

From this and c_ = E? (c.-c, .,) we get
n h| j i1

i

[}

. n . O, a,

i_ Z i+l j=1 73

B, T uh TV me,
i =1 i7i-1

(4.3.3)

e

i=1

Conversely, there is the identity of Euler

n i d0
4.3.4 d.x = .
( ) Z it n —(di/_di_l)X

1+ ¢ ————————
=1 10574 %
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A very much related and fertile part of the mathematical theory is
touched upon when we consider a continued fraction as a function, c, of
i .
a parameter, x, with (formal) power series expansion Zyix . We approximate

c(x) by a rational function
P (x)/Q (x) .,

where Pn is a polynomial in x of degree at most n and Qm of degree at most

m. We can choose the approximation so that
+
c(x) Qm(X) Pn(X)

has a (formal) power series expansion I Gixi, in which éi =0, 0<i<n+m.
If we impose a normalization condition and if we require that Pn and Qm
have no common factors, we can prove that Pn and Qm are unique.

Frobenius conceived Pn/Qm as an element of matrix and Padé developed
the theory; we say that Pn/Qm occupies the position (n,m) of the Padé table.
It can be proved (see JONES & THRON (1980, Theorem 5.19)) that the conver-

gents of a continued fraction c(x) occupy the stair step sequence
P0/90: Pl/QO’ Pl/Ql’ P2/91, P2/92. .o

of the Padé table of the power series & yixi of c(x). Theory about Padé
tables can be found in BAKER (1975), GILEWICZ (1978) and JONES, THRON &
WAADELAND (1982, §5.5). Recent conference proceedings are CABANNES (1976)
and WUYTACK (1979). Connections between Padé tables and numerical analysis
are surveyed in WUYTACK (1976). A bibliography of Padé approximations and
related matters like continued fractions is BREZINSKI (1976).

4.4. Some transformations

In this section we point out some ways to simplify a continued frac-

tion, without changing its value.

Different sequences {an} and {bn} can lead to the same sequence of
convergents. To establish some transformations of {an} and {bn} we conceive

{c_} as
n
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ck = Tk(O), k=1,2,... where

(4.4.1)
To(w) = w, Tk(w) = Tk_l(tk(W)), k=1,2,... .

In order to confirm (4.1.1) tn must have the form

_1
T (c.) + xw

k_11+k w < if Tkil(ck) <®
(4.4.2) £ (W) = ¥y

zk/w + x else,

k
where {xn}, {yn} and {zn} can be arbitrarily chosen.

Also it can be shown that if we take for tk the transform

o + Yy (w)

tk(W) = E;:TE;T;T ' k=1,2,... ,

we can construct a continued fraction in such a way that c, = Tk(O). For

proof and details see JONES & THRON (1980, §2.4) or THRON t WAADELAND (1982) .
These two theoretical results have the practical implication (especially
because the arbitrary construction of tk) that we have a certain degree of
freedom in the choice of {an} and {bn}. In fact we see immediately that we

can safely write instead of (4.1.2)

which leads, with a suitable choice for {ri}, to a continued fraction like

[ 3 1
21 1By er R e/t

Bernoulli found for the problem to construct a continued fraction with

known convergents

ag =c b1 =1 and (supposing ¢y = 0)
c_ ,-cC c_-c
-1 -
T ¢ - -c - ! bn T c - —2 : for m=2,3,...
n-1 "n-2 n-1 "n-2
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which is, essentially, the simplest form of (4.4.2).
In order to obtain another practical result we take for tk

tk(w) = S2k_1(52k(w)) .
Evaluating this and constructing a new continued fraction we get two new
* *
sequences {an } and {bn } with convergents {c2n}. This continued fraction
is called an even contraction of the original one. Of course many other con-
tractions are possible, for example odd contracti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>