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1 Introduction

The Erlang B formula is perhaps the most classical result&uging theory, representing
the steady-state blocking probability in the Erlang lossdet@r M /M /s/s queue. De-
rived by A.K. Erlang in 1917, it has been the subject of extenstudy ever since. Its
wide range of applications made many researchers invéstige Erlang B formula from
various angles. This paper deals with the open problem eftimg the Erlang B formula.

The reader is referred to the elucidation of Erlang’s world ama in Brockmeyer et
al. [2], and to Cooper [3], Kosten [11], Riordan [12], SyskB] and Whitt [18] for some
more of the historical flavor. The Erlang loss model ha®mogeneous servers working in
parallel and no extra waiting space. Customers that fine sdrvers busy upon arrival are
blocked (lost). It is further assumed that customers aat@rding to a Poisson process
with rater and that the service times are independent and expongrdiattibuted with
meanl/u. We define the offered load as= v/u, and the service utilization gs= \/s.
The Erlang B formula is then given by

A% /sl
B(s,\) = m. (1.2)

The work of Jagerman [8] contains a large variety of exagtgsotic and approxima-
tive representations dB(s, \), and serves as a standard reference. As a desirable further
investigation, Jagerman mentions in the conclusion oftj8litiversion ofB(s, A), which
boils down to finding the load such that

B(s,A\) =p, 1.2)
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for somep € (0,1) ands € N. A few years later, Jagerman [9] himself developed an
efficient numerical algorithm based on Newton’s method.tRerstrongly related problem
of solving (1.2) fors given A andp, Jagerman [9] also proposed Newton's method, and
bounds ons were derived in [1] and [6]. An exact and comprehensive neat of the
inversion problem, though, seems still largely missingxfithe literature.

As pointed out by Jagerman and many others, the Erlang B faroan be expressed
in terms of the incomplete gamma function. Temme [15] hassidemed the inversion
problem for the incomplete gamma function based on a unifasymptotic expansion
developed in [14]. We shall derive various asymptotic espams for the inverse\ of
the Erlang B formula using asymptotic expansions for th@nmglete gamma function.
We also show how these asymptotic techniques can be tregcsfer a similar inversion
problem for the Erlang C formula, which represents the stestate probability of delay
in the Erlang delay model a¥//M /s queue. That the same machinery can be applied is
not surprising, since the Erlang B and C formulae are intaily intertwined, cf. (7.1).

Of fundamental importance in the performance analysisafiststic systems, the Er-
lang B and C formulae have found numerous applications. mherse is of concern in
dimensioning problems. The results in this paper may duuitei to future investigations
in two ways.

First, we derive asymptotic expansions of which the first tewns serve as highly
accurate approximations. Such approximations may redurggtation time in large op-
timization problems or simulation settings, or may allow &m exact, formal, solution of
an optimization problem in which the true inverse is reptblog its approximation. More-
over, the second terms in the asymptotic expansions reontleghantitative and qualitative
insight into the speed of convergence to the asymptotierregit hand.

Second, while the first few terms of the expansion yield slaggroximations already,
even sharper results may be obtained by either including tewsms, or using Newton'’s
method; see (6.1) and (7.16). The starting value of Newtoréshod, depending op,
follows from our asymptotic framework. This avoids unfeaolle situations like large
errors in successive approximations and, even worse, dpmations that are found outside
the definition range of the variable to be computed; see [&p&n 10] for more examples.
Then, Newton’s method, with at most 4 iterations, yieldsitiverseup to at least 10 digits
precision irrespective ok andp.

2 Outline

The main objective of this paper is to find the-value of Equation (1.2) for a large value
of s, whereB(s, \) is the Erlang B formula defined in (1.1). Throughout, we shaé the
representation

B(s,\) ' =1+ s1e?A°Q(s, \), (2.1)

with Q(s, \) the incomplete gamma function given by

F(3>)‘) 1 > -1 _—t
Q(s,\) = = / t* e " dt. (2.2)
=T T
Clearly, (2.1) has meaning for non-integral Fig. 1 shows graphs aB(s, ps) for 0 <
p < 5ands =1, 3, 5, 10, 25, 50, 100, 1000 (the far left curve is fos = 1, the far right
one fors = 1000). These graphs suggest the consideration of three regionesponding
to small, medium and large blocking probability. The tréiosi from small to medium
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Figure 1: Graphs oB(s, ps) for 0 < p < 5ands = 1, 3,5, 10, 25, 50, 100, 1000 (the far
left curve is fors = 1, the far right one fos = 1000.

p, as\ increases, can occur rather abruptly. A smatypically corresponds to < s,
while a largep corresponds ta > s. To further investigate this relation, we derive from
asymptotic properties @(s, ), sees5 or [8, p. 540],

6
- 4—{—3\/271‘8’

and the relative error of this estimate is less than one pefoes > 5. Whenp in (1.2) is
less (larger) than the right-hand side of (2.3), we have s (A > s), approximately.

We shall derive various asymptotic expansions for the se&rof (1.2), using existing
asymptotic expansions for the incomplete gamma functicaised on the above observa-
tions, we shall consider three asymptotic regimes:

Large blocking probability This typically corresponds to an overload situatiors> s,
in which case the Erlang B formula is well approximated Bgs, \) ~ (A — s)/A and
hence, for givers andp, A ~ s/(1 — p). In §3 we derive the higher terms of the expansion
for A\ using two standard asymptotic expansions for the incomglamma function.

Small blocking probability This corresponds to the underload situathost s, in which
case the Erlang B formula is well approximatedBys, \) ~ e~*)\*/s!, leading to a first
order approximation for the inverse~ pgs for s — oo, wherep = py solves

B(s,s) 5§ — 00, (2.3)

(pess!ss)l/s = pel . (2.4)

In §4 we identify some of the higher terms of the asymptotic egman\ ~ pgs + p1 +
p2s~ 14 ... using the connection betwe€(s, \) and the confluent hypergeometric func-
tion. All higher terms can be expressed in termg@f

General case For all other cases witph € (0,1) we employ a uniform asymptotic
expansion for the incomplete gamma function derived in,[i#jvhich the standard nor-
mal distribution function (or error function) is the leadiapproximant. In [15] the first
coefficients in the expansion were derived by using a peatioh method for a differential
equation, but this approach cannot be transferred diréztilye inversion of the Erlang B
formula. We describe an alternative method that uses Tayjmnsions and the connection
between the derivatives 6J(s, \) and Hermite polynomials. This is done{.
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Table 1: Numerical results of the approximation (3.4)fot % (¢ = %) and several values

of s.
s A B(s,\) rel. error

2.38910' 8.00610~! 7.53107*
10 4.89610' 8.00710~! 8.4510~%
25 1.24210%2 8.00710~' 9.1910*¢
50 2.49710% 8.00810~! 94710*
75 3.75210%2 8.00810! 9.5710~*
100 5.00710%2 8.00810~! 9.6210~4
250 1.25410%° 8.00810~! 9.7110%
500 2.50910° 8.00810~! 9.7410~4
1000 5.01810% 8.00810~! 9.7510~4

In §6 we discuss Newton’s method for further improving the aacyrof the approxi-
mation for the inverse found by our asymptotic techniquad,fanally, in§7, we apply the
same asymptotic techniques to address the inverse probletmef Erlang C formula.

3 Inversionforp T1

Whenp 7 1 the solution) of (1.2) satisfies\ > s (see§2), and we can use the standard
asymptotic expansion of the incomplete gamma function [(5gep. 280])

T(s,\) ~ A" Le™ i (_1)n§+‘9)" (3.1)
n=0

where(a),, is the Pochhammer symbol defined fay)o = 1 and(«),, = I'(a + n) /T'(«)
forn =1,2,3,.... Whena is a non-positive integer we use the following interpretati
of the Pochhammer symbol. We have farn = 0,1,2,. ..

0, if n > m,
(—m),, = . (3.2)
(=1)™m!/(m —n)!, if n <m.

It follows that fors = 1,2, 3, ... the series in (3.1) terminates and containerms, giving
an exact representation.
By using (2.2) and the asymptotic expansion, the asympitotersion problem reads

L-p s (=)"(1=9)n
—_— 3.3
Wheng is small we can find an asymptotic expansion of the solutiomterms of a series
in powers ofg, which holds whether or natis large. By inverting (3.3) we find
¢ (s-1)¢  (s=1)¢ (s—1(s*+1)¢*

Alao 2 - 3.4
s 52 + 52 54 + ’ (3.4)

and we see that it gives the exact result = ¢ whens = 1.



Table 2: Numerical results of the approximation (3.4)4et 100 and several values gf

P A B(s, \) rel. error
0.60 3.08210% 6.771110~! 1.29107%
0.70 3.43310% 7.099210~! 1.4210792
0.80 5.00710% 8.0077107' 9.6210%
0.90 9.99010% 9.000210~! 1.671079
0.99 9.99910° 9.900010~! 1.0410~10

In Table 1 we give the results of numerical computations. &iep = % (¢ = %) and
several values of. We have used the terms in (3.4) up to (and including) the teitimg?,
as shown in (3.4). We see a rather uniform error for the uskeksafs. The relative error
is |B(s,A)/p — 1|. In Table 2 we give the results of the approximation (3.4)sfe 100
and several values ¢f

3.1 Using an alternative asymptotic expansion

Next we try to solve (1.2) by using the asymptotic expansiohi(e, \) given in Appendix
A; see (A.6). It follows that we can write (1.2) in the form bietasymptotic identity

B > G (r) s
q—rnz;) W TE (3.5)

Because&y(r) = 1/(1 — r), the first term approximation gives

r q s(1+q)
= — A: 3.6
17 "Tiyg T P (3.6)

compare with (3.4). Note that this first term follows from gproximationB (s, \) ! ~
2= for A > s. In [9], Equation (46), it is proved that in fadt(s, \)* < 12-. To find
higher approximations we write

Ao = , (3.7)
q
which givesq = s/(\o — s), and Equation (3.5) can be written as
s 2. Go(r) s
)\O_S—rnzz;] W Ty (3.8)

In this section we have 1 1, henceg | 0, and we assume thay is large. Thus, we try to
find a solution\ ! of (3.8) of the form

PREEND TP PP VY R ED O WS ED V5 W B V0 S SR (3.9)
and we find by series manipulations
M=X=1 Ad=s, M=1—-s5+5> I=-4+7s—3s>+s> (3.10)

In Table 3 we give the results of numerical computations. &kep = % (¢ = %) and
several values of. We have used in (3.9) the terms up to (and including) the teitim
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Table 3: Numerical results of the approximation (3.9)foet % (¢ = %) and several values

of s.
s A B(s,\) rel. error

2.38244110' 8.00044910~1 5.6210°°
10 4.87934410' 8.00027710~1 3.4710°°
25 1.23773710% 8.00013610~' 1.7010°°
50 2.48766910% 8.00007310~' 9.1910°°
75 3.737646 102 8.00005010~! 6.3010°°
100  4.98763510% 8.00003810~! 4.7910°6
250 1.24876110% 8.00001610~t 1.9710°6
500 2.49876110% 8.00000810°1 9.9110°7
1000 4.99876010% 8.00000410~1 4.98107

Table 4: Numerical results of the approximation (3.9)4fcet 100 and several values @f

D A B(s,\) rel. error
0.60 2.48451210% 6.00159210~1 2.6510 %4
0.70 3.31950010% 7.00032910~! 4.7010-9%
0.80 4.98763510° 8.00003810~' 4.791079
0.90 9.98891310% 9.00000110~! 1.1910797
0.99 9.99899010% 9.90000010~! 9.9010713

A\o*. The relative error i$B(s,\)/p — 1|. We see a better performance compared with
the results in Table 1. In Table 4 we give the results of the@pmation (3.9) for fixed

s = 100 and several values ¢f. Again, we see a better performance compared with the
results in Table 2.

4 Inversionforp | O

Another relatively simple asymptotic inversion is possitMherp is small. In that case we
expect a solution of (1.2) fox < s (see§2). We use the relation

(s, A) =D(s) = 7(s,\) (4.)
and the convergent expansion (see [17, p. 279] or Theorend&german [8])

o An

(s, A) = Ae Z
n=0

— (8)nt1’

4.2)

which can also be viewed as an asymptotic expansion for halyes ofs, with A fixed.
For the asymptotic inversion, however, it seems better &éthe asymptotic expansion
given in Appendix B, see (B.6). When we use this in (2.1) weetthe asymptotic inversion
problem

1 o
S =14sIA% = Z _gn(p)’ p= é (4.3)
p ! s™ S
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The expansion holds for large valuessptniformly for fixedp € (0, 1).
When\ is small compared with, the first term in the right-hand side of (4.1) is much
larger than the second term. Hence, first we consider thesioreof

1
— = s\ (4.4)
p
We write
sl=T(s+1)=V2mse *s°T"(s), (4.5)

with, according to Stirling’s formula,
IM'"s)=14+0 (5_1) , §— 00. (4.6)

Equation (4.4) can thus be written as

(p\/%F*(s)) e = pel ™. 4.7

Whenp is small we consider the solutignof this equation in the intervaD, 1) and denote
it by po. Observe that the right-hand side of (4.7) has a maximume=atl (that is, when
A = s), and a real solution is only possible wheis small enoughp should satisfy

1
PS JomsTo(s) (“9)

It follows that the method of this section fails if the eqoatin (4.7) does not have a
real solution. In that case it is better to use a differento@tor the transition area ~ s
(seet5). In Fig. 4 the lower curve indicates where in (4.8) the ¢gign holds. For pairs
(s,p) properly below this curve the method of this section can leelus

To solve equation (4.7) and to obtain higher approximatibisconvenient to introduce
the quantityn defined by

sn”P=p—1—Inp, p>0, sign(n) =sign(p—1). (4.9)

This relation plays a role in later sections also, and we defails on the inversion (that
is, finding p whenn is given) in Appendix C.
It follows from (4.9) that

2

e 55T = 290 ) (4.10)
and that we can write (4.4) in the form

2

pV2rsT™(s) = ¢35 (4.12)

We denote the solution of this equation iy Since we assume thatsatisfies (4.8) and
that the corresponding—value belongs t@0, 1] , we havey, < 0, that is,

Ny = —\/—g In <p\/%I’*(s)). (4.12)

The corresponding value gffollows from inverting the relation in (4.9) fgy < 1, and is
denoted bypg.



We next turn to the inversion of (4.3). By using (4.5) and (4, Xhis equation can be
written in the form

=1+ V2rsT¥(s)es™” — gn(np). (4.13)
n=0

S

SR

We eliminatey/27s I (s

~—

by using (4.11) withy = ny and obtain

— gn(p) Ls(n2—n2)

Y et =p-1 ) 4.14
pn—o sn P e ( )
We assume that) — | is small, and expangd as

p=po+ Y paln—m0)", (4.15)

n=1

where the first few coefficients are given by

_ 100 - 100(77(2) —(1— p0)2)
p1=— . pa= £ ’
i 30 (4.16)
py — P (L+ 2p0) = 3(1 = po)?)
6(1 — po)?

These values reduce to the first coefficients given in (C.4wh — 0. However, when
no = 0 we havepy = 1, and the given valugs; cannot be computed straightforwardly. In
fact, we need a limiting process fgs — 0, or a series expansion for small values;pf
For example, by using (C.4) withandp replaced withyy andpg, respectively, we have

pr=1+2n0+00R), p2=1%+ 1m0+ 0mn). (4.17)

In this section we assume thai is strictly less than unity, and we don’t need these expan-
sions.

It turns out, after formal asymptotic series operationgt thcan be expanded in the
form

n=mo+ms ' +ms i 4. (4.18)
After substituting (4.15) and (4.18) into (4.14), and conmmaequal powers of, we find
1
m=—In (1 + ﬂ) , (4.19)
7]0 1 — po

and
1y = (L= po)*(1 = po + ppo) + 2ppo(1 + 10m1) . (4.20)
210(1 = po)*(1 = po + ppo)

By using these values in (4.19), we invert (4.9) to obtaindeesponding—value, from
which we finally obtain an approximation for= sp.

In Table 5 numerical results are given of the approximatibag) of Equation (4.3) for
p = 0.0005 andp = 0.0001 and several values af These values gf ands satisfy (4.8).
We see that the results become worse im€reases. To explain this, we observe that in the
table the ratio\ /s approaches unity for larger values©fin that case the approximation
(4.18) is not valid. It holds whep is strictly less than unity.

To see the effect of smaller valuespfvith s fixed we give in Table 6 the results with
s = 100 ands = 1000, andp = 27", n = 10,11,12,...,20. We see, as expected, that
the relative errors become smallerjadecreases.
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Table 5: Numerical results of the approximation (4.18) ot&ipn (4.3) forp = 0.0005
andp = 0.0001 and several values of
p = 0.0005

p = 0.0001

A

rel. error

A

rel. error

10
25
50
75
100
250
500
1000

0.64858 10°
2.80279 10°
1.22636 10
3.12920 10!
5.18767 10!
7.32486 10"
2.08287 102
4.42547 102
9.21730 102

4651076
8.0210°
1.57107°
2.62107°
3.55107°
4.40107°
8.80107°
1.5410%
2.7210~*

0.4519510°
2.2601210°
1.08800 10!
2.88661 10!
4.86150 10"
6.92647 10!
2.01034 102
4.31411 102
9.04829 102

5.1310°7
8.9010~ 7
1.691076
2.72107°
3.591076
4.381076
8.301076
1.36107°
2.24107°

Table 6: Numerical results of the approximation (4.15) fo= 100 ands = 1000, and
p=2""forn=10,11,...,20.
s =100

s = 1000

n

A

rel. error

A rel. error

10
11
12
13
14
15
16
17
18
19
20

7.51710!
7.318 10!
7.138 10"
6.97210!
6.818 10!
6.674 10"
6.53910!
6.412 10"
6.291 10!
6.177 10!
6.067 10"

1.24104
4.25107°
1.54107°
5.771076
2.241076
8.8710° 7
3.5910~7
1.4810°7
6.1810°8
2.611078
1.1210°8

9.300 102
9.215102
9.138 102
9.067 102
9.003 102
8.942 102
8.885 102
8.831 102
8.780 102
8.73210?
8.685 102

8.801074
2.62107*
8.57107°
3.00107°
1.10107°
418107
1.641076
6.54107
2.671077
1.101077
4.631078

5 Using theuniform asymptotic representation of Q(s, A)

The expansions used for the incomplete gamma funefién ) (or I'(s, \)), see (3.1),
are valid when) is large with respect te. The expansion in (A.6) is more powerful; it
holds whenr = s/\ belongs to an intervaD, ro], wherer is a fixed numberr, < 1.
Next we consider an approximation (s, \) that is valid for larges, and which holds
uniformly with respect to\ > 0.

Let
f 2 /OO ar
eric 2 = —— e
N

denote the complementary error function. We use quanjiteegln defined by the relation
in (4.9) (see also Appendix C). Then we have

Q(s, \) = gerfe (n\/ﬁ) + Ry(n),

9
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whereR;(n) has the asymptotic representation

e
Ry(n) = —=Ss(n),  Ss(m) ~ > — o0. (5.3)
n=0

This asymptotic expansion is valid fgre R, that is, forp > 0, or A > 0. A few details
on the coefficient€”,, () are given in Appendix D.
The inversion problem (1.2) is written in the form (for thenfition '™ see (4.5))

B(s,\) "' =1+ 2rs F*(s)e%‘mz@(s, A), (5.4)
or as
ez’ Q(s,A) = q= 1;10 (5.5)
\/27TSF*( )’ D

Next we use (5.2), in which the complementary error funct®the main approximant.
We try to find a numben, defined by the equation

(5.6)

1
%e 25 erfe (770

/2
) V21s F*( )
The left-hand side is a function of one variable, and, hetieinversion of this equation
is simpler than that of (5.5).

Lety = np+/s/2. The inversion problem (5.6) then reads

= 1eVerfey — k = 1127(1 . .
We have ) )
F'(y) = ye¥ erfey — Z= =Wl +r) - = (5.8)

Equation (5.7) can easily be solved numerically, for exanigyl using Newton’s method.
When we have computegdandn, = y\/% we can compute a first approximation gf
say o, from (4.9) withn replaced withyy andsign(ng) = sign(po — 1). After finding po,
we have a first approximation of say\g, from Ay = spg.

In Table 7 we give the results of this first approximatidg for fixed s = 100 and
several values gb. We see a better performance for valueg ofear0 and1. In Table 8
we give the results for fixed = 0.1 andp = 0.01 and several values 6f We see that
larger values of do not give a better approximation.

5.1 Bounds
From (5.4) and (5.2) we obtain

B(s,\)™! 2¢(\/_ erfe(ny/s/2), (5.9)

with ¢(z) = \/%e‘%”ﬁz. Including more terms ofR(n) in (5.2) is expected to yield
sharper approximations. The approximation (5.9) can bgtemmented by bounds derived
in [10]:

_ Vs 2 NG

B(s,\)7! < 2¢( erfc (nv/s/ § SVa) s = 1) (5.10)
_ 2

B(s,\)™' > 2¢( erfc (nv/'s/ § (5.112)
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Table 7: Numerical results of the approximation based ointregsion of (5.6) fors = 100
and several values ¢f

P Ao B(s, \o) rel.error
1.000107% 6.92610' 1.0000410~* 3.64107°
1.0001071 1.04710%> 1.0341110~' 3.41102
2.00010~1 1.23010% 2.1351210"' 6.761072
3.00010~" 1.46410% 3.2989710~' 9.971072
4.00010"" 1.80210% 4.5150110~! 1.2910°!
5.0001071 2.34210% 5.7611210~! 1.5210°!
6.00010~" 3.31610%> 6.9968010~' 1.66107!
7.000107" 5.40410% 8.1536710~! 1.6510!
8.00010~! 1.14410% 9.1267510°! 1.41107!
9.00010~1 4.53710% 9.7796510~! 8.66102
9.99010~" 4.998107 9.99998 10! 9.9910~*

Table 8: Numerical results of the approximation based oimtrersion of (5.6) fop = 0.1
andp = 0.01 and several values of
p=0.1 p=0.01
s Ao rel. error Ao rel. error
512929107 3.991072 | 1.36210° 4.481073
10 | 7.59710" 3.731072 | 4.46410° 4.051073
25| 2.30110° 3.531072 | 1.61310' 3.731073
50 | 4.98810" 3.461072 | 3.79110' 3.581073
75| 7.71810" 3.4310~2 | 6.07410' 3.531073
100 | 1.04710%> 3.41102 | 8.40810' 3.491073
250 | 2.70910° 3.381072 | 2.28310% 3.421073
500 | 5.49010° 3.371072 | 4.74110% 3.391073
1000 | 1.10610° 3.361072 | 9.713102 3.3710°3

These bounds, and hence (5.9), are particularly sharp éocdker < s (n < 0). The
accuracy deteriorates witf) but improves when is increasing. Examples fer= 10 and

s = 20 are depicted in Figures 2 and 3, respectively. In the presady we refrain from
using the bounds for inversion purposes, since the asyimopiwersion introduced g5
already leads to highly accurate results in the case s. Bounds similar to but sharper
than (5.10) and (5.11) can be found in [10].

5.2 Higher order approximation

Itis possible to obtain higher approximations, as in [15}tFe asymptotic inversion of the
equation@(s,\) = ¢, 0 < ¢ < 1, for large values o§, by using the uniform asymptotic
representation of)(s, A) given in (5.2). Then the inversion problem (5.5) can be enitt

as
ezsn’ [%erfc (77\/3/—2> + Rs(n)} = \/ﬁs#lj*(s)’ q= 11'%1) (5.12)

11
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Figure 2: B(s, A) and lower and upper bounds fer= 10 and\ € [0, 30].
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Figure 3:B(s, A) and lower and upper bounds fer= 20 and\ € [0, 30].

We can derive an asymptotic expansion of the solutiaf this equation in the form

77N770+%+%+---, 5 — 00, (5.13)

wherer), is the solution of (5.6) and the higher order coefficiepjtsj > 1 can be obtained
by substituting the expansion (5.13) in to (5.12), aftedaeipg Rs(n) by the expansion
given in (5.3). Details of this analysis are given in Appenbi. The first coefficient is

found to be . Colrm)
NoCo(No

=—In(l+——--""-1, 5.14

= ( - noq/r*<s>> 614)

whereCy(n) is the first coefficient in the expansion in (5.3).

With n ~ ng + 11 /s the corresponding—value follows from solving (4.9) fop, from
which we obtain an approximatioh = ps. The argument of the logarithm in (5.14) will
become negative when? 1 (¢ | 0), because)yq/I'*(s) will approach unity in that case.
In Fig. 4 the upper curve corresponds to vals@sdp where the argument of the logarithm
in (5.14) vanishes.

12
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Figure 4: For values of andp above the upper curve the argument of the logarithm in
(5.14) is negative, and the expansion in (5.13) is useleslsaincase. The lower curve
corresponds with valuesandp where in (4.8) the equal sign holds.

In Table 9 we give the results of numerical computations. &es = 0.1 andp = 0.01
and several values of. We have used the termpy of (5.14) in the expansion (5.13).
Comparing the results with those of Table 8 we seepfer 0.1 an improvement for the
smaller values of. It appears that the argument of the logarithm in (5.14) bexsmaller
ass increases.

6 Newton’smethod for inverting B(s, \)

Jagerman [9] uses Newton’s method to derive an iteratidrigheell suited for determining
the inverse\ that solves the equatioB(s, A\) = p. In the context of the present study,
Newton’s method can be applied for computing even betteraopations of\ through

B(37 )\(n)) -Pp

Ant+D) — ()
(s/A0) — 1+ B(s, \)) B(s, AD)

n=0,1,..., (6.1)

with A(©) an asymptotic approximation.

For the asymptotic approximations givensiB.1, §4, and§5.2 we selected 30.000 ran-
dom pairs(p, s), with s € [5,1000] andp in intervals which depend on the method.

For the asymptotic approximation (3.9) forT 1 we used all coefficients; given in
(4.9). We tookp € (0.1,0.9999), and we found that the Newton process always converges
to at least 10 digits accuracy iy with at most 4 iterations. For the asymptotic approxi-
mation (4.18) for small values @fwe used the coefficients; given in (4.19)—(4.20). We
tookp € (3.05107°,1.81072), p ands such thapI™*(s)v/27s < 0.1 (see Equation (4.8)),
and found that the Newton process always converges to dtl@adigits accuracy imn,
with at most 3 iterations. Finally, for the approximation1(3), withn; given in (5.14),
we tookp € (0.30107°,0.5), and found that the Newton process always converges to at

13



Table 9: Numerical results of the approximation based onryersion of (5.12) fop =
0.1 andp = 0.01 and several values afby using (5.13), only withy; of (5.14).

p=0.1

p=0.01

S

Ao

rel. error

Ao

rel. error

5

10
25
50
75
100
250
500
1000

2.881 10
7.51010°
2.28310!
4.95510"
7.673 10"
1.041 102
2.695 102
5.464 102
1.100103

3.5010~4
4.1510~%
6.3210~%
9.2410~*
1.181073
1.431073
2.861073
5.421073
1.211072

1.361 109
4.46110°
1.61210"
3.790 10!
6.073 10"
8.406 10!
2.283 102
4.740 102
9.712 102

1.6710°
4.0110°6
1.3610°
1.341076
1.4910°6
1.6310°
2.201076
2.791076
3.6410°6

least 10 digits accuracy ik, with at most 5 iterations. The small valuespofequire only
2 iterations.

7 Theinversion of the Erlang C formula

The Erlang C gives the steady-state probability of delayhm Erlang delay model or
M /M /s queue. It can be expressed in terms of the Erlang B formula as

Cls ) = % + (1 - ﬁ) B(s,\)!, A<s. (7.1)

S
Note that we now impose the condition < s. For more background on the Erlang C
formula we refer to [3, 12, 13, 18]. In this section we consitliee inversion problem of
p=C(s,\),p € (0,1) for a given (possibly large) value of
Fig. 5 shows graphs af'(s, ps) for 0 < p < 1 ands = 1, 3, 5, 10, 25, 50, 100, 1000
(the far left curve is fos = 1, the far right one fos = 1000).

7.1 Inversion of C(s,A)forp | O

We write the inversion problem in the form

gn
n=0

pr=p+(1-p) (1 +V2rs T (s)e2™ — gn(p)) , p= 3 (7.2)
where we have used (2.1), (2.2), (4.1), (4.5), (4.9), (4.26) (B.6). We try to find the
coefficientsy; in the expansion

n=10+ms st +s (7.3)

To obtain the first coefficienyy, we neglect in (7.2) the termh — go(p), the remaining
terms of the series, and the other two quantiigsvhenp is small, p is small as well).
Thus we consider (cf. (4.11))

p !l =+V2rs F*(s)e%sng, (7.4)

14
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Figure 5: Graphs of'(s, ps) for 0 < p < 1ands = 1, 3, 5, 10, 25, 50, 100, 1000 (the far
left curve is fors = 1, the far right one fos = 1000.

wherep satisfies the same condition as foiin (4.8). We obtain from (7.4) as a first
approximation to; the solution

o — _\/ 2 in (pvEm (). (7.5)

Proceeding as if§4 we eliminatey/2rsT*(s) by using (7.4), which gives for (7.1) the
relation

1 o0
pl=p+1-p) |1+ Zezs(P—mp) _ Z gn_(np) ) (7.6)
p n=0 5
Expandingp as in (4.15) we find after series manipulations
1
m = ——In(1 - po), (7.7)
Mo
i (1= po)® + 2n1p0m0 + 2ppo) -8
772 - 2 9 ( . )
2n0(1 — po)
and X )
_ G3My + comy + ity + Co (7.9)
2n2(1 — po)* 7
where
co = —pnopo(—6po + ppo — 2),
1 = 2p0(p(1 = po)* + 13 po + pporig + pd), (7.10)

ca = 1opo(2(1 — po)® + n3 (1 + po)),
c3 = (1—po)*.

When we have computed the valugswe use (7.3) for obtaining the approximation of
n, from which the correspondingfollows by inverting (4.9), which finally givea = ps.

In Table 10 numerical results are given of the approximati8) of equation (7.2) for
p = 0.0005 andp = 0.0001 and several values af We see that the results become worse

15



Table 10: Numerical results of the approximation (7.3) afia&tpn (7.2) forp = 0.0005

andp = 0.0001 and several values of
p = 0.0005

p = 0.0001

A

rel. error

A

rel. error

10
25
50
75
100
250
500
1000

0.28896 10°
2.6845710°
1.16831 10"
2.98508 10!
4.95860 10"
7.01351 10"
2.00682 102
4.28379 102
8.95836 102

2.43107°
2.831074
2.451073
8.221073
1.511072
2.251072
7.021072
1.49107!
291101

0.4428410°
2.1894110°
1.04748 10"
2.7801510!
4.68881 10!
6.68938 10!
1.95167 102
4.20576 102
8.85585 102

3.81107°
6.70107°
6.9910~4
2.451073
4.541073
6.761073
2.061072
4.291072
8.29102

ass increases. To explain this, we observe that in the tabledtie X /s approaches unity

for larger values of. In that case the approximation (7.3) is not valid. To seeeffext of
smaller values op with s fixed we give in Table 11 the results with= 100 ands = 1000,

andp = 27", n=10,11,12,...,20. We see, as expected, that the relative errors become
smaller ag decreases.

Table 11: Numerical results by using approximation (7.8)sfe= 100 ands = 1000, and
p=2"forn=10,11,12,...,20.

s =100
rel. error A

4181072 | 8.97910?
2.211072 | 8.957 102
1.261072 | 8.916102
7.721073 | 8.869 102
4951073 | 8.822102
3.311073 | 8.776 102
2.201073 | 8.731102
1.621073 | 8.687 102
1.181073 | 8.644 102
8.7810~* | 8.603 102
6.6310~* | 8.563 102

s = 1000

rel. error
5.301071
2.851071
1.60107!
9.521072
6.001072
3.961072
2.721072
1.931072
1.411072
1.051072
8.051073

n A

10 | 7.15910!
11| 7.008 10!
12 | 6.864 10!
13| 6.72710!
14 | 6.597 10!
15| 6.47410!
16 | 6.356 10!
17 | 6.24310!
18| 6.13510!
19| 6.03210!
20 | 5.93210!

When we compare the results of the casg 0 with the corresponding results for the
Erlang B formula ing4, we observe that the present results are worse, even whhawge
one extra term in the expansion (7.3) (cf. (4.18)). An exaleom might be that in the
simplified Equation (7.4), for computing the first teng, more terms are neglected in
(7.2) than in the corresponding case;df(cf. (4.3) and (4.11)).
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7.2 Inversonof C(s,A)forp 71

We use in (7.1) representation (5.3) and obtain the invengioblem
pl=p+(1-p) (1 + V27s F*(s)e%5”2 [%erfc(n\/s/Q) + Rs(n)D , (7.11)

which we solve fom given in (4.9). Wherp T 1 we have for the solution the estimate
A~ s, thatis,p ~ 1 ~ —n (see (C.4)), and we consider for a first approximatior) the
reduced equation (compare with (5.6) and (5.7))

LB et 7D .12

the solution of which will be calledy,. This gives the first coefficient of the expansion
(7.3).

To find higher coefficienty; we proceed as if5 and Appendix D. We expandas in
(4.15) and in this way we find the equivalent of (D.14), whiehds for the present case

ic (o)s™ + = ip(l)( )5 + (es)? ip@)( )5 +
= ) =0 (7.13)
e 2 { _ &e%swn%)] .

nOpI™*(s) p—1
The coefficientstf) (no) are given in (D.15). Expanding in powers ©f!, using (4.15),
and comparing terms with powes$, we find

1 70

m=—In , (7.14)

n  po—1

which, for small values ofi)y|, can be expanded as
M =—%+ 310+ 105570 — saggo +--- - (7.15)

In Table 12 we give numerical results with= 100 ands = 1000, andp = 1 — 27",
n=1,2,...,10. We see a rather uniform relative error for these valugsarids.

7.3 Newton’smethod for inverting C(s, A)

For computing better approximations »dthat solves the equatiafi(s, \) = p, Newton’s
method result in the scheme

1) _ oy CsA™) —p
C'(s, Am) 2 (7.16)
C'(s,\) = dC(s,A) _ A+ (s =N)?+ A1 - C(s5,1))C(s,A)
’ dA A — ) ’

with A(©) an asymptotic approximation.

For the asymptotic approximations givergin1,§7.2, we selected 30.000 random pairs
(p,s), with s € [5,1000] andp in intervals which depend on the method. For the asymp-
totic approximation (7.3) for small values pfwe used the coefficients; given in (7.7)—
(7.9). We tookp € (3.05107%,1.011072), such thapI™(s)y/27rs < 0.1 (see the remark
after Equation (7.4)), and found that the Newton schemeyawanverges to at least 10
digits accuracy in\, with at most 6 iterations. For the approximatign~ ny + 1, /a of
§7.2, withn; givenin (7.14), we took € (0.1,0.9999), and found that the Newton scheme
always converges to at least 10 digits accuracy,iwith at most 4 iterations.
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Table 12: Numerical results by using approximation (7.3hwi, given in (7.5) fors =
100 ands = 1000, andp =1 —-2""forn =1,2,...,10.
s =100 s = 1000

P A rel. error A rel. error
5.00010~! | 9.47010' 3.171072 | 9.83810%> 1.031072
7.500107! | 9.74810" 3.631072 | 9.92710°> 1.181072
8.75010" | 9.86310" 3.831072 | 9.96410> 1.241072
9.375107" | 9.91610" 3.921072 | 9.98110> 1.271072
9.68810~" | 9.94210" 3.971072 | 9.98910> 1.291072
9.844107" | 9.95410" 3.991072 | 9.99310> 1.301072
9.922107" | 9.96010" 4.001072 | 9.99510% 1.301072
9.961107" | 9.96410' 4.011072 | 9.99610%> 1.301072
9.980107! | 9.96510' 4.011072 | 9.99610%> 1.301072
9.99010~! | 9.96610' 4.011072 | 9.99610%> 1.301072

A An alternative asymptotic expansion of I'(s, A) for large A

The asymptotic expansion in (3.1) is of no use whdrecomes large as well. We give a
different expansion in which the range«oan be extended, say in the serse A— AV/\,
whereA is a fixed positive number andis large.

We write

[(s,A\) =X\° 5 le M dt = Ase A e MO (A.2)
1 1 t

where
Y(t)=t—rint—1, s=rA. (A.2)

We write fy(t) = 1 and integrate by parts

[(s,\) = A% / fOT(t)eWﬂ dt = -\l / {Oﬁdewt% (A.3)
1 1 -r

which gives
D(s,A) = A5 te™? [Go(r) + / e’\w(t)fl—(t)dt} , (A.4)
1 t
where . 4 fol®
o _ % Jo
Go(r)=1— h)=t— (A.5)

Continuing this we obtain

= Ga(r) 1
D(s, ) =2 "le ™ S ;n + i =By | N=012,.., (A.6)
n=0
where 2 fos (1) 1.0
n—1 n
=1 ——— = — == 1 2 o A-7
fn(t) T Gn(r) T, " 0,1,2, (A.7)
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and

_ 7 e ()
R, — /1 oI g (A.8)

The expansion in (A.6) holds for large values)ofwith » = s/ satisfyingd < r <
ro < 1, wherer is fixed.

We have the recursion for the coefficients
r—" i

GnJrl(T) = r— 1 d?“

[Tn+1Gn(T)] , n=123,..., (A.9)

and the first few are given by

1 1 91
Go(r) = , Gi(r) = ———— Ga(r) = 77"57

L= (I—r) 1—7) A 10
G()—_M G()_24+58T+22T —{—7’3 (A.10)
Ty TR 1—7r)

The expansion in (A.6) is the same as the one given in [7, B],(Where it is derived
for I'(s + 1, A). In Hwang'’s notation we have

fo(r) = Go(r), fi(r) = (=1)rG;(r), j=1,2,3,.... (A.11)

This relation follows fronT'(s+1, \) = sT'(s, A\)+A%e~*. The expansion in (A.6) follows
also from [16, Eq. (4.1)], where it is derived withreplaced with—s, with s as the large
parameter.

B An alternative asymptotic expansion of v(s, A) for large s

The convergent expansion in (4.2) for the incomplete gamumation (s, \) has an
asymptotic property for large values @f Whens and A are of the same order this prop-
erty is lost. We derive an asymptotic expansion 4¢s, \) that holds for larges and
0 < X < s(1—94), whered is a fixed positive number; < 1. This expansion is of the
same nature as the expansionffds, \) given in Appendix A, which holds for large and
0<s<A(1-9).

We start with the integral representation

v(s,\) = /0A t*le7tdt, Rs>0, (B.1)
and write it in the form
N5 (s, ) = /0 1 eV ® fo(t) dt, (B.2)
where
folt) = T2, U0 = pt+In(1—1), p=" (B.3)

We assume that € (0, 1). In that casey’(¢) # 0on (0, 1).
Integrating by parts gives (observe thg) = 0 andv’(0) = p — 1)

O _1f0) 1
; ‘ETHE/O VO L (D), (B.A)

19

1 d s
RRIOSE Y O



where

d fo(t)
= — . B.
Repeating these steps gives the expansion
— 1 9n(p) fn(0)
Ay—s - —
XTI (5, 0) ~ = nzo S alp) =T > (B.6)
which holds as — oo, uniformly for fixedp € (0, 1), and where
d fn(t)
=—— =0,1,2,... B.7
fn-l—l(t) dt 'l/}/(t)7 n 07 ) 4y ’ ( )
with fy(¢) given in (B.3).
For g,,(p) we have the recursion
) =——L—Lo (), n=012 (B.8)
In+1\P) = 1_pdp9npa — U L&y .
and the first few are
1 2p+1
ao(p) = ——, qilp) = ——L 50 92( )='O(p75)7
L=p (I-0p) . (-0 (B.9)
45(0) p(6p° +8p+1) a1(0) p(24p° 4+ 58p° 4+ 22p + 1)
3 = - ) 4 =
(1=p) (1—=p)?
The relation with the coefficients,,(r) given in Appendix 2 fod’(s, A) reads
p”“gn(p) =(-1)"Gn(1/p), n=0,1,2,.... (B.10)
C Ontheinversion of Equation (4.9)
We recall the relation
sn”P=p—1—Inp, p>0, sign(n) =sign(p—1). (C.1)

To invert this equation, we can use the Lambéftfunction, the solutioniV (x) of the
equationiVe"' = z. For example, we can write the equation in the form (uginrg 41?)

—pe P =—e ¥V = p=e Wertyrl) Tyl (C.2)

which is given by Maple, although = —W (—exp(—y — 1)) can also be viewed as a
formal solution. The problem is the multi-valuedness o flainction, and we like to view
the solutionp(n) of (C.1) as one analytic function di (and in a certain domain of the
complex plane, which is not our concern at this moment).

It is not difficult to computep(n), for example by using Newton’s method, and it is
convenient to have reliable starting values for this mett@d £ 0 and letp(”) £ 1 be a
starting value. Then we can compute better approximatibpgiorough

n) _ p™ —1 —Inp — %772 (n) In p(™) + %772

= p\ 2,
1-— 1/p(") p(”) -1
20
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For obtaining a starting value for small valuesgf we can use the expansion
p=1+n+gn + 50 = g0 + mmn” +O (1) (C4)

The complete expansion converges|igr< 2,/m (as explained for a corresponding inver-
sion in [17, pp. 284-286])).
Whenn < 0 we have the convergent expansion
o 1 k—1gk
N (C5)
k=1 ’

This expansion converges very fast whga not close to zero, and it follows from applying
the Lagrange inversion formula (see [4, pp. 22-23].
Forn — 400 we can use

o Ck 1,2
P T+O’+Z:Tk’ T +2777 o nTr, ( )
where
c1 = o, CQZU—%UQ, C3 =0 — 302+103
(C.7)
04—0—30 +11 3 }104.
This expansion follows from a similar analysis as given ingRL5].
D Detailson the uniform expansion and its asymptotic inversion
The first few coefficients of the expansion in (5.3) are (s€@)[1
1 1
Co(n) = —= — -, Co(0) = —3,
p—1 7 (D.1)
1 1 1 1 or (0 . '
GO=E G o npony 0=
and the higher coefficients an be obtained from the recuereslation
Cul) = SCua )+ 5 m=1 0.2
77n77—d77 n—1\7] p_l'yna n =1, .

where the numberg, appear in the well-known asymptotic expansion of the Eweniga
function. That is, we use (see also (4.5)) the asymptotiaesion

[eS)
T*(s) ~ Y (=1)"yms ™", s — 0, (D.3)
n=0
where
_ _ 1 _ 1 _ 139 _ 571
Yo = 17 Y1 = 12 Y2 = 2887 Y3 = 51840’ Y4 = T 9488320 ° (D4)

Next we give the analysis of the asymptotic inversion of théarm expansion. We
consider (5.12) and substitute= ng + &, whereny is the solution of (5.6). We assume
thate is small and expand in Taylor series. In this way we obtain

o0 _Llgp2 _Llgp2
o et — e
2 Z K diy kerfc (1sr2) + Z ] d ar e =T e O
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where the derivatives are evaluatedat
We replace the derivatives dt.(n) by derivatives of the expansion in (5.3) (from
asymptotic analysis it follows that the expansion may biedihtiated). In this way,

dk 67%8772 S C(k)(n)
——Ry(n) ~ s* n ol D.6
g Re ) ~ 8 22% — (D.6)
where i -
COm) = Culn), n=0, ) =-nCS V), k=1, (D.7)
and J
072%)=—nc£’“—1><n>+%cé’:”<n>, kon > 1. (D.8)

Observe thaC") (n) is not thekth derivative ofC,,(n). The relation (D.8) follows easily
from the relations in (5.3).

The derivatives of the complementary error function in (j[z&n be replaced by deriva-
tives of the exponential function, see (5.1), and we can @eniie polynomials. We have
[17, p. 145]

Hy,(z) = (—1)"ezgd—e_22, n=0,1,2,..., (D.9)
dzm
and it follows that fork > 1
1 d* k(1 3k 6_%8772
3 d—nkerfc (77\/3/2> =(-1) <§3> WHk,l (77\/3/2> . (D.10)

We wish to write this in the same form as the right-hand sid@o8). This can be done by
using the explicit representation of the Hermite polyndmidhat is, we use [17, p. 153]

Ln/2] (2z)n72m
H,(z) =n! m D.11
(2) nm§zjo< ) 3 (D.11)
This gives
dk; e 23772 \_(k;_l)/QJ h(k)( )
1 k n 7]
1% — > .
2 dn erfc (77 3/2> s Norr 2 o k>1, (D.12)
where, fork > 1 andn =0,1,2,...,[(k —1)/2],
®) () _ (_q\ktno—n k-1-2n__ (K —1)!

Substituting (D.6) and (D.12) into (D.5), we obtain, aftenge manipulations, the asymp-
totic equality

ic (n) —n+§ip(1)( ) —n+@ip(2)( )5 +
n=0 ) n=0 n=0 (D14)

q(e_%‘% —sne __ 1)
I(s) ’
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with n = ny and where the coefficienta” (n) are given by

DP )y =CFm) +rF (), n>0, k>1. (D.15)

We assume an expansion«bdf the form (cf. (5.13))

5~m+n—§+..., 5§ — 00, (D.16)
s s

and collect coefficients of equal powers«fIn this way we can findy,.. Forn; we find
the equation

Xk —nom _
M (k) q(e 1)
=D, =~ D.17
Co(no) +kZ:1 1 Do (n0) T (s) (D.17)
From (D.7) and (D.13) we find
CP ) = (=n)*Colm), bV () = —(=n)*, k>1. (D.18)
This gives
D () = —(=n)* L (1 +0Co(m), k> 1. (D.19)
Evaluating the series in (D.17) we obtain
—nom q(efﬁom — 1)
1n0Co(no) + (1 + 10Co(no)) (e -1) =np—rn— (D.20)

I(s)

Solving forn; gives the value used in (5.14). That is,

_ L 10Co (o)
n = m 1 (1 + - qu/r*(8)> . (D.21)
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