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Summary. We show the importance of the error function in the approximation of
the solution of singularly perturbed convection-diffusion problems with discontinu-
ous boundary conditions. It is observed that the error function (or a combination
of them) provides an excellent approximation and reproduces accurately the effect
of the discontinuities on the behaviour of the solution at the boundary and interior
layers.

1 Introduction

We consider the model convection-diffusion problem −ε∆U +−→v · −→∇U = 0 in
Ω where Ω is an open set in R2 or R3, ε > 0 and −→v is a constant vector. Be-
sides the small perturbation parameter ε, other sources of singular behaviour
for the solution of singular perturbation problems are the discontinuities of
the boundary data. We consider for this problem Dirichlet boundary data
piecewise constant: U |∂Ω = 0 or 1 with jump discontinuities (of height 1) at
some points in ∂Ω.

In [1, 2, 3, 4, 5, 6, 7], we have analyzed this problem in a number of two
and three-dimensional unbounded and bounded domains Ω with discontinuous
boundary data at ∂Ω. For all these problems, we have found that the solution
in the singular limit ε → 0+ and away from the discontinuity points of the
boundary data can be approximated in the form

U = U0(1 +O(
√

ε)), (1)

where U0 is an error function or a combination of error functions. In the next
section we describe the asymptotic approximation and layer structure of the
solutions found in examples considered in our earlier papers. In the conclusion
section we discuss the (in our opinion) universality of the complementary error
function as basic approximant of the solution of this kind of problems.
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In what follows, we will consider the polar coordinates x = r sin φ, y =
r cosφ, −→r := (x, y), w := 1/(2ε) and ζ(x, y) :=

√
r − x sin β − y cosβ. In all

the problems analyzed we consider U ∈ C(Ω̃) ∩ D2(Ω) and U bounded on
bounded subsets of Ω̃, where Ω̃ is the closed set Ω̄ indented at the disconti-
nuity points of the boundary conditions.

2 Examples in two-dimensional domains

In this section we consider −→v = (sin β, cos β), with β ∈ [0, π/2).

2.1 A quarter plane

For (x, y) ∈ Ω̃1 := Ω̄1 \ {(0, 0)} and 0 ≤ β < π/2 the solution of the problem
{
−ε∆U +−→v · −→∇U = 0, (x, y) ∈ Ω1 := (0,∞)× (0,∞),
U(x, 0) = 0, U(0, y) = 1,

(P1)

can be approximated in Ω̃1 by (1) with U0(x, y) = erfc[
√

wζ(x, y)] for β = 0
and

U0(x, y) =
1
2
erfc

[√
wζ(x, y)

]
, for 0 < β < π/2.

Then, the first order approximation is a complementary error function that
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Fig. 1. (a) Indented region Ω̃1 (b) First order approximation U0
π/4(x, y) to the

solution of (P1) for ε = 0.1 and β = π/4. Near the half-line t−→v , t > 0 an internal
parabolic layer occurs.

exhibits an interior layer of width O(
√

ε) and parabolic level lines of equation
r −−→v · −→r = C · ε near the half-line t−→v , t > 0 (see Figure 1 (b)). For further
details we refer to [1].

2.2 An infinite strip

For (x, y) ∈ Ω̃2 := Ω̄2 \ {(a, 0), (b, 0)} and 0 ≤ β ≤ π/2, the solution of
{
−ε∆U +−→v · −→∇U = 0, (x, y) ∈ Ω2 := (−∞,∞)× (0, 1),
U(x, 0) = χ[a,b](x), U(x, 1) = 0, a < b,

(P2)
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in Ω̃2 is of the form (1) with

U0(x, y) =
1 + δβ,π/2

2

{
sign

[
β − arctan

(
x− a

y

)]
erfc

(√
wζ(x− a, y)

)

− e2(y−1)w cos βsign
[
β − arctan

(
x− a

2− y

)]
erfc

(√
wζ(x− a, 2− y)

)

− sign
[
β − arctan

(
x− b

y

)]
erfc

(√
wζ(x− b, y)

)

+ e2(y−1)w cos βsign
[
β − arctan

(
x− b

2− y

)]
erfc

(√
wζ(x− b, 2− y)

)}

+
1
2

[
χA(x, y) + χA0(x, y)− e2(y−1)w cos β (χB(x, y) + χB0(x, y))

]
.

The region A is limited by the lines y = 0, y = 1, x = a + y tan β and x =
b+y tanβ. Region B is limited by the lines y = 0, y = 1, x = a+(2−y) tan β
and x = b + (2− y) tan β.
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Fig. 2. (a) Indented region Ω̃2 (b) Graph of the first order approximation, U0
β(x, y),

to the solution of the problem (P2) for ε = 0.1 and β = 0.

In this case, U0
β is a combination of four error functions plus step functions

multiplied by exponential functions of y, and it exhibits two interior layers of
width O(

√
ε) and level lines of equation ζ(x−c, y) = constant with c = a, b. It

presents a regular boundary layer of width O(ε) near the piece of the outflow
boundary situated between the points (a+tan β, 1) and (b+tanβ, 1) and it also
exhibits two corner layers of area O(

√
ε)×O(ε) near the points (a + tan β, 1)

and (b + tan β, 1) (see Figure 2 (b)). The reader is referred to [1] for further
information.

2.3 A rectangle

For (x, y) ∈ Ω̃3 := Ω̄3 \ {(0, 0), (πa, 0)} and β ∈ (0, π/2], the solution of




−ε∆U +−→v · −→∇U = 0, (x, y) ∈ Ω3 := (0, πa)× (0, π),∣∣∣∣
U(x, 0) = 1,
U(x, π) = U(0, y) = U(πa, y) = 0,

(P3)
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where 0 ≤ β < 2π and a > 0, can be approximated in Ω̃3 by (1) with

U0(x, y) = ewy cos β sinh[(π − y)w cos β]
sinh[πw cos β]

×
{

χA(x, y)− e2w(x−πa) sin βχB(x, y)

+

(
1 + δβ,π/2

)

2

[
sign

(
β − arctan

(
x

y

))
erfc

√
wζ(x, y)

−e2(x−πa)w sin βsign
(

β − arctan
(

2πa− x

y

))
erfc

√
wζ(2πa− x, y)

+e2(x−πa)w sin βsign
(

β − arctan
(

πa− x

y

))
erfc

√
wζ(πa− x, y)

]}
.

The regions A and B are defined by A := {(x, y) ∈ Ω3, y < x cot β} and B :=
{(x, y) ∈ Ω3, (πa− x) cot β < y < (2πa− x) cot β}.

Then, the first order approximation of the solution of (P3) is a linear
combination of error functions and elementary functions. The error functions
present interior/boundary layers of width O(

√
ε). The exponential factors are

giving boundary layers of width O(ε) (see Figure 3 (b)). For more details we
refer to [5].
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Fig. 3. (a) Indented region Ω̃3 (b) First order approximation U0
β(x, y) to problem

(P3) for ε = 0.1 and β = 0.

3 Examples in three-dimensional domains

3.1 An octant

For (x, y, z) ∈ Ω̃4 := Ω4 ∪ {(x, y, 0); x, y > 0} ∪ {(0, y, z); y ≥ 0, z > 0} ∪
{(x, 0, z); x ≥ 0, z > 0} (see Figure 4 (a)), the solution of the problem
{
−ε∆U + Uz = 0, in Ω4 := (0,∞)× (0,∞)× (0,∞),
U(x, y, 0) = 1, U(0, y, z) = U(x, 0, z) = 0, for (x, y, z) ∈ Ω̃4,

(P4)

can be approximated in Ω̃4 by (1) with
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Fig. 4. (a) Domain Ω4 and Dirichlet conditions of problem (P4) (b) Graph of the
first order approximation for the solution of problem (P4) for ε = 0.1.

U0(x, y, z) = erf
√

wζ(x, z)erf
√

wζ(y, z).

The solution of this problem has boundary layers along the planes x = 0 and
y = 0 of size O(

√
ε) (see Figure 4 (b)). For further information consult [4, 6].

3.2 A cuboid

For (x, y, z) ∈ Ω̃5 := Ω̄5\{{(0, y, 0), (πa, y, 0); 0 ≤ y ≤ πb} ∪ {(x, 0, 0), (x, πb, 0); 0 ≤ x ≤ πa}}
(see Figure 5 (a)), the solution of the problem




−ε∆U + Uz = 0 in Ω5 := (0, πa)× (0, πb)× (0, π),
U(0, y, z) = U(πa, y, z) = U(x, 0, z) = 0,

U(x, πb, z) = U(x, y, π) = 0, U(x, y, 0) = 1,
for (x, y, z) ∈ Ω̃5.

(P5)

can be approximated in Ω̃5 by (1) with

U0(x, y, z) =
[
erfc

√
ωζ(x, z)− erf

√
ωζ(x− πa, z)

] [
erfc

√
ωζ(y, z)− erf

√
ωζ(y − πb, z)

]

× eωz sinh[ω(π − z)]
sinh[ωπ]

.
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Fig. 5. (a) Domain Ω5 and Dirichlet conditions of problem (P5) (b) Graph of the
first order approximation for the solution of problem (P5) for ε = 0.1.

Then, the first order approximation of the solution of problem (P5) is a
combination of products of error functions. See [7] for further information.
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4 Conclusions

It is clear from the above examples that the (complementary) error function
plays a fundamental role in the approximation of these problems in Ω̃ (away
from the discontinuities of the boundary conditions) as ε → 0+. It seems that
the error function shows up as a universal approximant. But this fact is not
surprising: the complementary error function

u(x, y; x̃, ỹ) :=
1
2

erfc
[

1√
2ε

ζ(x− x̃, y − ỹ)
]

, (x̃, ỹ) fixed, (2)

is an exact solution of the 2D convection-diffusion partial differential equation
with constant convection vector −→v and satisfies approximately the Dirichlet
data: consider the line defined by the convection vector −→v emanating from a
discontinuity point (x̃, ỹ) ∈ ∂Ω defined by {(x, y) | ζ(x− x̃, y − ỹ) = 0}, then
u(x, y; x̃, ỹ) ' 0 at one side of this line and u(x, y; x̃, ỹ) ' 1 at the other
side, approximating in this way the boundary condition that only takes the
values 0 or 1. Moreover, this function always lies between the values 0 and 1
and those limiting values are approached rapidly. It exhibits a rapid transi-
tion from one value to another when −→r crosses the above mentioned line. A
“maximum principle” states that the solution of this problem must have its
values between 0 and 1, so function (2) reproduces this property of the exact
solution. Furthermore, the arguments of the complementary error function
describe approximately the shape and size of the singular layers as well as
their location. The singular parameter ε controls the incline of the singular
layers: the smaller ε is, the steepest the shape of U is on the singular layer.
The size of the transition region (singular layer) is O(

√
ε).

The layer structure of the solution of these problems is described by the
(complementary) error function or combinations of error functions. From a
numerical point of view, these functions can be very useful to design stable
numerical methods. For the construction of local grids their arguments give
an idea about the mesh size and location of refined meshes. Moreover, in the
analysis of any numerical method it is important to derive sharp bounds for the
derivatives of the solutions in terms of ε. The derivation of the approximations
obtained in [1, 2, 3, 4, 5, 6, 7] may be used to obtain those bounds.
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6. J.L. López, E. Pérez Sinuśıa and N.M. Temme, J. Math. Anal. Appl. 328(2),

931-945 (2007).
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