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Universidad Pública de Navarra, 31006-Pamplona, Spain.

e-mail: jl.lopez@unavarra.es.

2 CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands.

e-mail: Nico.Temme@cwi.nl.

ABSTRACT. The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power series

in powers of z, z/(z − 1), 1 − z, 1/z, 1/(1 − z), (z − 1)/z. With these expansions 2F1(a, b, c; z) is not completely

computable for all complex values of z. As pointed out in Gil, et al. [2007, §2.3], the points z = e±iπ/3 are always

excluded from the domains of convergence of these expansions. Bühring [1987] has given a power series expansion

that allows computation at and near these points. But, when b− a is an integer, the coefficients of that expansion

become indeterminate and its computation requires a nontrivial limiting process. Moreover, the convergence becomes

slower and slower in that case. In this paper we obtain new expansions of the Gauss hypergeometric function in

terms of rational functions of z for which the points z = e±iπ/3 are well inside their domains of convergence . In

addition, these expansion are well defined when b− a is an integer and no limits are needed in that case. Numerical

computations show that these expansions converge faster than Bühring’s expansion for z in the neighborhood of the

points e±iπ/3, especially when b− a is close to an integer number.
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1. Introduction

The power series of the Gauss hypergeometric function 2F1(a, b, c; z),

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, (1)

converges inside the unit disk. For numerical computations we can use the right hand side of (1) to compute

2F1(a, b, c; z) only in the disk |z| ≤ ρ < 1, with ρ depending on numerical requirements, such as precision and

efficiency. From [[3], §§2.3.1 and 2.3.2] or [[7], eq. 15.2.1 and §§15.8(i) and 15.8(ii)], we see that the Gauss

hypergeometric function 2F1(a, b, c; z) may be written in terms of one or two other 2F1 functions with any of

the following arguments

1

z
, 1− z, 1

1− z
,

z

1− z
,

z − 1

z
. (2)
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As explained in [[3], §2.3.2], when these formulas are combined with the series expansion (1), we obtain a set

of series expansions of 2F1(a, b, c; z) in powers of some of the rational functions given in (2). The domains of

convergence of the whole set of the expansions obtained in this way are the regions

|z| ≤ ρ < 1,

∣∣∣∣1z
∣∣∣∣ ≤ ρ < 1, |1−z| ≤ ρ < 1,

∣∣∣∣ 1

1− z

∣∣∣∣ ≤ ρ < 1,

∣∣∣∣ z

1− z

∣∣∣∣ ≤ ρ < 1,

∣∣∣∣z − 1

z

∣∣∣∣ ≤ ρ < 1. (3)

These regions (interior or exterior of certain circles) do not cover the entire z−plane, the points z = e±iπ/3,

that are the intersection points of the circles |z| = 1 and |z − 1| = 1, are excluded for any value of ρ < 1 (see

Fig. 1).
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Figure 1. Regions given by formulas (3) for two particular values of ρ. The points e±iπ/3 are indicated by

black dots.

When ρ → 1, the set of points of the z−plane excluded from the union of these regions shrinks to the

exceptional points z = e±iπ/3, in addition, the convergence of those expansions becomes slower and slower when

z → e±iπ/3. To compute the Gauss hypergeometric function in a neighborhood of these points, other methods

are indicated in [3], the most useful one being Bühring’s analytic continuation formula [1]. Bühring’s expansion

reads as follows [[3], §2.3.2]. If b− a is not an integer, we have for |ph(z0 − z)| < π the continuation formula

2F1(a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(z0 − z)−a

∞∑
n=0

dn(a, z0)(z − z0)−n+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(z0 − z)−b
∞∑
n=0

dn(b, z0)(z − z0)−n,

(4)

where both series converge outside the circle |z − z0| = max{|z0|, |z0 − 1|} and the coefficients are given by the

three-term recurrence relation

dn(s, z0) =
n+ s− 1

n(n+ 2s− a− b)
{z0(1− z0)(n+ s−2)dn−2(s, z0) + [(n+ s)(1−2z0) + (a+ b+ 1)z0− c]dn−1(s, z0)},
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with n = 1, 2, 3, ... and starting values

d−1(s, z0) = 0, d0(s, z0) = 1.

For the case when b− a is an integer, the coefficients of expansion (4) become indeterminate and a limiting

process is needed (see [1] for further details). When we take z0 = 1/2, the series in (4) converges outside the

circle |z − 1/2| = 1/2, and both points z = e±iπ/3 are inside the domain of convergence. But, when b − a
approaches an integer value, the convergence of the expansion becomes slower and slower.

In this paper we investigate new convergent expansions of the Gauss hypergeometric function 2F1(a, b, c; z)

that include the points z = e±iπ/3 inside their domain of convergence and which do not require any further

computation when b− a is an integer. The starting point is the integral representation [[7], eq. 15.6.1]

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt, (5)

valid for <c > <b > 0 and |ph(1− z)| < π.

When we replace f(t) := (1 − zt)−a in this integral by the standard Taylor series expansion of f(t) at

t = 0 and interchange summation and integration, we obtain the power series expansion (1). The Taylor series

expansion of f(t) at t = 0 converges uniformly in z for any t ∈ (0, 1) (for any t in the integration domain of (5))

if |z| < 1. Then, the expansion (1) is convergent in the disk |z| < 1.

For purposes that will become clear later, it is more convenient to consider the above argument about the

region of convergence of the right hand side of (1) from a different point of view, which is the following. The

domain of convergence of (1) (the disk |z| < 1) is determined by the two following requirements: (i) The interval

of integration (0, 1) in (5) must be completely contained in the domain of convergence of the series expansion

of f(t), a disk Dr of center t = 0 and radius r ≥ 1, Dr = {t ∈ C/, |t| < r}. (ii) The branch point t = 1/z of

f(t) must be located outside that domain Dr, which means that z must be located in a region Sr = the inverse

to the exterior of Dr: Sr = (DEXT
r )−1 = {z ∈ C/, |z| < r−1}. Therefore, the smaller Dr is (the smaller r), the

bigger the domain Sr of validity of (1) is. But Dr must satisfy (i) and then the largest possible r is r = 1 and

Sr = {z ∈ C/, |z| < 1} (see Fig. 2).

In this paper we explore the following idea. Instead of the Taylor series expansion of f(t) at t = 0,

consider new different convergent expansions of f(t) in a certain domain D satisfying the two above mentioned

requirements:

(i) (0, 1) ⊂ D (The interval of integration (0, 1) must be completely contained in D);

(ii) z ∈ S := (DEXT)−1 (z must be located in a region S = the inverse to the exterior of D).

Then, replacing f(t) in (5) by this new expansion and interchanging summation and integration, we will

obtain an expansion of 2F1(a, b, c; z) convergent for z ∈ S. The larger S is, the better, and one expects that,

the smaller D is (containing the interval (0, 1) in its interior), the bigger S will be. The first possibility that

we explore in Section 2 is an expansion of f(t) at t = 1/2, halfway the interval of integration (0, 1). In Section

3 we generalize this idea expanding f(t) at a generic point t = w. In Section 4 we explore a two-point Taylor

expansion of f(t) at t = 0 and t = 1. In Section 5 we explore a three-point Taylor expansion of f(t) at t = 0,

t = 1/2 and t = 1. Some final remarks and comments are given in Section 6.
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Figure 2. The disk of convergence Dr of the Taylor expansion of f(t) at t = 0 is shown in figure (a) for a

certain r (> 1), and the region Sr, inverse of the exterior of Dr is shown in figure (b). The smaller Dr is, the

larger Sr is. The smallest possible value of r for which the integration interval (0, 1) ⊂ Dr is r = 1.

Before we conclude this section, we want to mention other methods for computing the Gauss hypergeometric

function. Continued fractions [[2], Chap. 15, Sec. 3] and Padé approximation [10], [[3], Chap. 9, Sec. 2.4], [[2],

Chap. 15, Sec. 4] give uniformly convergent expansions on compact subsets of C/ \ [1,∞). In both methods, the

approximation is only known explicitly for the exceptional case a = 1 and c > b > 0. A different approach using

optimal conformal mappings and re-expansions is considered in [10] to approximate the Gauss hypergeometric

function for |z| ≥ 1. A regularization and re-expansion method is used in [8] and [9] for computing F (a, b, c; z)

in the neighborhoods of singular points z = 1 and z =∞.

2. An expansion for <z < 1

Consider the Taylor expansion of the function f(t) = (1− zt)−a at t = 1/2:

f(t) =

∞∑
n=0

zn(a)n
n!

(
1− z

2

)−a−n(
t− 1

2

)n
. (6)

This expansion satisfies condition (i) for D = {t ∈ C/, |t−1/2| < 1/2} and (0, 1) ⊂ D (the disk D is the minimal

disk centered at t = 1/2 that contains the domain of integration of (5)); also, it satisfies condition (ii), that is,

1/z /∈ D, for S = {z ∈ C/, <z < 1} (see Fig. 3).

Then, for <z < 1, we can introduce the expansion (6) in (5) and interchange summation and integration to

obtain

2F1(a, b, c; z) =
(

1− z

2

)−a ∞∑
n=0

(a)n
n!

(
z

z − 2

)n
Φn(b, c), (7)

with

Φn(b, c) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− 2t)ndt = 2F1(−n, b, c; 2).

Therefore,

2F1(a, b, c; z) =
(

1− z

2

)−a ∞∑
n=0

(a)n
n!

(
z

z − 2

)n
2F1(−n, b, c; 2). (8)
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We have Φ0(b, c) = 1, Φ1(b, c) = 1 − 2b/c and, for n = 1, 2, 3, ..., the remaining Φn(b, c) may be obtained from

the three-terms recurrence relation [[7], eq. 15.5.11]

(c+ n)2F1(−n− 1, b, c; 2) + (2b− c)2F1(−n, b, c; 2)− n2F1(1− n, b, c; 2) = 0.

It is straightforward to show that Φn(b, c) also satisfies the contiguous relation

Φn(b, c) = Φn−1(b, c)− 2b

c
Φn−1(b+ 1, c+ 1).

The functions Φn(b, c) are polynomials of b and rational functions of c.
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Figure 3. The minimal domain of convergence D of the standard Taylor expansion of f(t) at t = 1/2 containing

the interval (0, 1) is a disk of radius 1/2 (figure (a)). The region S, inverse of the exterior of D is the region

shown in figure (b): S = {z ∈ C/, <z < 1}.

The following table shows some numerical experiments comparing the accuracy of Bühring’s expansion and

expansion (8). For values of z near the exceptional points e±iπ/3, expansion (8) is more competitive than

Bühring’s expansion. Away from these points, Bühring’s expansion becomes more competitive.

Parameter values: a = 1.2, b = 2.1, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.263E+2 0.879E+1 0.103E+1 0.955E-1 0.803E-2

Formula (8) 0.290E+0 0.995E-2 0.431E-3 0.223E-4 0.118E-5

Parameter values: a = 1.2, b = 2.5, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.596E+1 0.193E+1 0.228E+0 0.211E-1 0.178E-2

Formula (8) 0.467E+0 0.228E-1 0.126E-3 0.734E-4 0.437E-5

Parameter values: a = 1.2, b = 2.1, c = 3, z = −1, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.155E+2 0.330E+0 0.248E-2 0.148E-4 0.796E-7

Formula (8) 0.130E+0 0.338E-3 0.876E-6 0.304E-8 0.100E-10



6

Parameter values: a = 1.2, b = 2.1, c = 3, z = −1 + I, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.114E+2 0.972E-1 0.291E-3 0.690E-6 0.149E-8

Formula (8) 0.170E+0 0.192E-2 0.216E-4 0.326E-6 0.466E-8

Parameter values: a = 1.2, b = 2.1, c = 3.5, z = −5, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.475E+1 0.407E-3 0.619E-8 0.852E-13 0.1156E-13

Formula (8) 0.974E-2 0.153E-2 0.419E-3 0.167E-4 0.934E-5

Table 1. The first row represents the number n of terms used in either Bühring’s expansion or expansion (8).

The second row represents the relative error obtained with Bühring’s approximation. The third row represents

the relative error resulting from approximation (8).

3. An expansion for 2<(wz) < 1 with arbitrary w ∈ C/

We can generalize the expansion introduced in the above section considering a standard Taylor expansion

of the function f(t) = (1− zt)−a, not at t = 1/2, but at a generic point w = u+ vi ∈ C/, u, v ∈ R| :

f(t) =

∞∑
n=0

(a)nz
n

n!
(1− wz)−a−n (t− w)n. (9)

This expansion satisfies condition (i) for D = {t ∈ C/, |t − w| <max{|w|, |1 − w|}}. It also satisfies condition

(ii), that is, 1/z /∈ D, for S = {z ∈ C/, |1 − wz| > |z|max{|w|, |1 − w|}}. For u = <w ≥ 1/2 the domain S is

the semi-plane S = {z = x + iy;x, y ∈ R| , 2<(wz) = 2ux − 2vy < 1}. For u < 1/2 it is the disk S = {z ∈ C/,
|z + (1− 2u)−1w∗| < (1− 2u)−1|w − 1|} (see Figure 4).

Then, for <z ∈ S, we can introduce the expansion (9) in (5) and interchange summation and integration to

obtain

2F1(a, b, c; z) = (1− wz)−a
∞∑
n=0

(a)n
n!

(
wz

wz − 1

)n
Φn(b, c, w), (10)

with

Φn(b, c, w) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(

1− t

w

)n
dt = 2F1

(
−n, b, c; 1

w

)
.

Therefore we have

2F1(a, b, c; z) = (1− wz)−a
∞∑
n=0

(a)n
n!

(
wz

wz − 1

)n
2F1

(
−n, b, c; 1

w

)
. (11)

We have Φ0(b, c, w) = 1, Φ1(b, c, w) = 1 − b/(cw) and, for n = 1, 2, 3, ..., the remaining Φn(b, c, w) may be

obtained from the three-terms recurrence relation [[7], eq. 15.5.11]

(c+ n)2F1

(
−n− 1, b, c;

1

w

)
+

(
b+ n

w
− 2n− c

)
2F1

(
−n, b, c; 1

w

)
+ n

(
1− 1

w

)
2F1

(
1− n, b, c; 1

w

)
= 0.

It is straightforward to show that Φn(b, c) also satisfies the contiguous relation

Φn(b, c, w) = Φn−1(b, c, w)− b

cw
Φn−1(b+ 1, c+ 1, w).

The functions Φn(b, c, w) are polynomials of b and rational functions of c.
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Figure 4. The minimal domain of convergence D of the standard Taylor expansion of f(t) at t = w containing

the interval (0, 1) is a disk of center at t = w and radius max{|w|, |1− w|} (figures (a) and (c)). The region S,

inverse of the exterior of D is: the half-plane S = {z = x + iy;x, y ∈ R| , 1 − 2<(wz) > 0} if <w ≥ 1/2 (figure

(b)) or the disk of center w∗/(2<w − 1) and radius |w − 1|/(1− 2<w) if <w < 1/2 (figure (d)).

The following table shows some numerical experiments comparing the accuracy of Bühring’s expansion and

expansion (11) for w = (1 + i)/2. For values of z near the exceptional points e±iπ/3, expansion (11) is more

competitive than Bühring’s expansion. Away from these points, Bühring’s expansion becomes more competitive.

Parameter values: a = 1.2, b = 2.1, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.263E+2 0.879E+1 0.954E-1 0.101E+0 0.803E-2

Formula (11) 0.408E+0 0.606E-2 0.156E-3 0.476E-5 0.150E-6

Table 2. The first row represents the number n of terms used in either Bühring’s expansion or expansion (11)

with w = (1 + i)/2. The second row represents the relative error obtained with Bühring’s approximation. The

third row represents the relative error resulting from approximation (11) with w = (1 + i)/2.
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Parameter values: a = 1.2, b = 2.5, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.596E+1 0.192E+1 0.228E+0 0.211E-1 0.178E-2

Formula (11) 0.480E+0 0.127E-1 0.408E-3 0.138E-4 0.477E-6

Parameter values: a = 1.2, b = 2.1, c = 3, z = −1, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.154E+2 0.330E+0 0.248E-2 0.148E-4 0.796E-7

Formula (11) 0.400E+0 0.267E-2 0.300E-4 0.430E-6 0.677E-8

Parameter values: a = 1.2, b = 2.1, c = 3, z = −1 + I, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.114E+2 0.972E-1 0.291E-3 0.690E-6 0.149E-8

Formula (11) 0.419E+0 0.472E-2 0.937E-4 0.243E-5 0.663E-7

Parameter values: a = 1.2, b = 2.1, c = 3.5, z = −5, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.475E+1 0.407E-3 0.619E-8 0.852E-13 0.156E-14

Formula (11) 0.680E+0 0.560E-1 0.537E-2 0.104E-2 0.627E-3

4. An expansion for |z|2 < 4|1− z|

As has been pointed out in [6] (in a different context), the use of a multi-point Taylor expansion [4], [5] with

base points in the interval (0, 1) is preferable to using a standard Taylor expansion. With a multi-point Taylor

expansion we can avoid the singularity t = 1/z of f(t) in its domain of convergence in a better way, and, at the

same time, include the whole interval (0, 1) in its interior (see Fig. 5(a)).

Therefore, we consider the two-point Taylor expansion of the function f(t) = (1− zt)−a at t = 0 and t = 1

[4]:

f(t) =

∞∑
n=0

[An(a, z) +Bn(a, z)t]tn(t− 1)n. (12)

An explicit formula for the coefficients An(a, z) and Bn(a, z) is given in [4]:

A0(a, z) = 1, B0(a, z) = (1− z)−a − 1

and, for n = 1, 2, 3, ...,

An(a, z) =
1

n!

n∑
k=0

(n+ k − 1)!

k!(n− k)!
[(−1)nn− (−1)kk(1− z)k−a−n](a)n−kz

n−k.

Bn(a, z) =
1

n!

n∑
k=0

(n+ k)!

k!(n− k)!
[(−1)k(1− z)k−a−n + (−1)n+1](a)n−kz

n−k.
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Also, a recurrence relation for An(a, z) and Bn(a, z) may be obtained by using the differential equation

satisfied by f(t): (1− zt)f ′ = azf . Introducing expansion (12) and

f ′(t) =

∞∑
n=0

{[(2n+ 1)Bn(a, z)− (n+ 1)An+1(a, z)] + (n+ 1)(2An+1(a, z) +Bn+1(a, z))t}tn(t− 1)n,

in the differential equation (1− zt)f ′ = azf , and equating coefficients of tn(t− 1)n and tn+1(t− 1)n we obtain:

An+1(a, z) =
−z(a+ 2n)An(a, z) + [1 + n(2− z)]Bn(a, z)

n+ 1
,

Bn+1(a, z) =
z(2− z)(a+ 2n)An(a, z) + [z(a+ 2) + n(6z − z2 − 4)− 2]Bn(a, z)

(n+ 1)(1− z)
.

(13)

1/z
-6 -4 -2 2 4

-4

-2

2

4

Re z

Im z

z
Re t

Im t

0 1
1/2

Dr Sr

(a) (b)

Figure 5. The minimal domain of convergence Dr of the two-point Taylor expansion of f(t) at t = 0 and t = 1

containing the interval (0, 1) is a Cassini oval of radius 1/4 and foci t = 0 and t = 1 (figure (a)). The region Sr,

inverse of the exterior of Dr is the region shown in figure (b): Sr = {z ∈ C/; |z|2 < 4|1− z|}.

Expansion (12) converges inside a Cassini oval with foci at t = 0 and t = 1 and radius r > 0 of the form

Dr = {t ∈ C/, |t(t− 1)| < r}. The interval (0, 1) is completely contained in this Cassini oval if its middle point

t0 = 1/2 is contained. This happens for r ≥ t20 = 1/4 and then, expansion (12) satisfies condition (i) for r ≥ 1/4.

On the other hand, it satisfies condition (ii) if 1/z /∈ Dr [4], that is, for any

r <

∣∣∣∣1z
(

1

z
− 1

)∣∣∣∣ .
The smallest r we can take is r = 1/4 and then, the largest Sr we can choose is (see Fig. 5(b))

Sr = {z ∈ C/; |z|2 < 4|1− z|} = {x+ iy;x, y ∈ R| , y4 + (2x2 − 16)y2 + [x4 − 16x2 + 32x− 16] < 0}.

Then, for z ∈ Sr, we can introduce the expansion (12) in (5) and interchange summation and integration to

obtain

2F1(a, b, c; z) =

∞∑
n=0

[An(a, z)Φn(b, c) +Bn(a, z)Ψn(b, c)] , (14)

with

Φn(b, c) := (−1)n
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb+n−1(1− t)n+c−b−1dt = (−1)n
(b)n(c− b)n

(c)2n
,

Ψn(b, c) := (−1)n
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb+n(1− t)n+c−b−1dt = (−1)n
(b)n+1(c− b)n

(c)2n+1
.
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Therefore, we have

2F1(a, b, c; z) =

∞∑
n=0

(−1)n
(b)n(c− b)n

(c)2n+1
[(c+ 2n)An(a, z) + (b+ n)Bn(a, z)] , (15)

with An(a, z) and Bn(a, z) given by the recursion (13) and A0(a, z) = 1, B0(a, z) = (1 − z)−a − 1. This

expansion is a series of elementary functions of z: a linear combination of 1 and (1− z)−n−a whose coefficients

are polynomials in z.

The following table shows some numerical experiments comparing the accuracy of Bühring’s expansion and

expansion (15). For values of z near the exceptional points e±iπ/3, expansion (15) is more competitive than

Bühring’s expansion. Away from these points, Bühring’s expansion becomes more competitive.

Parameter values: a = 1.2, b = 2.1, c = 3, z = −1, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.154E+2 0.330E+0 0.248E-2 0.148E-4 0.796E-7

Formula (15) 0.112E+0 0.242E-5 0.630E-10 0.143E-14 0.408E-15

Parameter values: a = 1.2, b = 2.5, c = 3, z = −2, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.181E+1 0.294E-2 0.175E-5 0.805E-9 0.339E-12

Formula (15) 0.221E+0 0.546E-3 0.187E-5 0.688E-8 0.261E-10

Parameter values: a = 1.2, b = 2.1, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.263E+2 0.879E+1 0.955E-1 0.101E+0 0.803E-2

Formula (15) 0.210E+0 0.142E-3 0.118E-6 0.104E-9 0.936E-13

Parameter values: a = 1.2, b = 2.5, c = 3, z = eiπ/3, z0 = 1/2.

n 0 5 10 15 20

Bühring’s formula 0.596E+1 0.193E+1 0.228E+0 0.211E-1 0.178E-2

Formula (15) 0.141E+0 0.753E-4 0.603E-7 0.522E-10 0.467E-13

Table 3. The first row represents the number n of terms used in either Bühring’s expansion or expansion

(15). The second row represents the relative error obtained with Bühring’s approximation. The third row

represents the relative error resulting from approximation (15).
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5. An expansion for |z|3 < 6
√

3|(1− z)(2− z)|

As has been pointed out in [6], the use of a three-point Taylor expansion [5] with base points in the interval

(0, 1) is preferable to the use of a two-point Taylor expansion in order to better avoid the singularity t = 1/z of

f(t) in its domain of convergence, and, at the same time, to include the whole interval (0, 1) in its interior (see

Fig. 6(a)). Therefore, we consider the three-point Taylor expansion of the function f(t) = (1− zt)−a at t = 0,

t = 1/2 and t = 1:

f(t) =

∞∑
n=0

[An(a, z)t+Bn(a, z)t+ Cn(a, z)t2][t(t− 1)(t− 1/2)]n, (16)

with A0(a, z) = 1, B0(a, z) = 4(1− z/2)−a − (1− z)−a − 3 and C0(a, z) = 2 + 2(1− z)−a − 4(1− z/2)−a. We

have that [6]

f ′(t) =

∞∑
n=0

[A′n(a, z) +B′n(a, z)t+ C ′n(a, z)t2][t(t− 1)(t− 1/2)]n, (17)

with

A′n(a, z) :=
n+ 1

2
An+1(a, z) + (3n+ 1)Bn(a, z) +

3n

2
Cn(a, z),

B′n(a, z) :=(3n+ 2)Cn(a, z)− 3(n+ 1)An+1(a, z)− (n+ 1)Bn+1(a, z)− 3(n+ 1)

4
Cn+1(a, z),

C ′n(a, z) :=3(n+ 1)An+1(a, z) +
3(n+ 1)

2
Bn+1(a, z) +

5(n+ 1)

4
Cn+1(a, z).

Introducing (16) and (17) into the differential equation (1−zt)f ′ = azf and equating coefficients of [t(t−1)(t−
1/2)]n we obtain

An+1(a, z) =
1

2(n+ 1)
{2[3n(z − 2)− 2]Bn(a, z) + 4z(3n+ a)An(a, z) + n(5z − 6)Cn(a, z)},

Bn+1(a, z) =
1

2(n+ 1)(z2 − 3z + 2)
{4z(3n+ a)(26z − 3z2 − 24)An(a, z) + 2[48− 4z(18 + 5a) + 6z2(4 + 3a)+

3n(48− 96z + 50z2 − 3z3)]Bn(a, z) + [4(20− 6z(5 + a) + 5z2(2 + a))+

n(264− 516z + 262z2 − 15z3)]Cn(a, z)},

Cn+1(a, z) =
1

2(n+ 1)(z2 − 3z + 2)
{4z(3n+ a)(12− 12z + z2)An(a, z) + 2[2(6(3 + a)z − (6 + 5a)z2 − 12)+

3n(z3 − 24z2 + 48z − 24)]Bn(a, z) + [4(2z(9 + 2a)− 3z2(2 + a)− 12)+

n(5z3 − 132z2 + 276z − 144)]Cn(a, z)}.
(18)

Expansion (16) converges inside a Cassini oval with foci at t = 0, t = 1/2 and t = 1 and radius r > 0 of

the form Dr = {t ∈ C/, |t(t − 1)(t − 1/2)| < r}. The interval (0, 1) is completely contained in this Cassini oval

if the points t0 = 1±
√
3

2 , at which R(t) := |t(t − 1)(t − 1/2)| gets its maximum value, is contained in Dr. This

happens for r ≥ R(t0) = (12
√

3)−1 and then, expansion (16) satisfies condition (i) for r ≥ (12
√

3)−1. On the

other hand, it satisfies condition (ii) if 1/z /∈ Dr, that is, for any

r <

∣∣∣∣1z
(

1

z
− 1

)(
1

z
− 1

2

)∣∣∣∣ .
The smallest r we can take is r = (12

√
3)−1 and then, the largest Sr we can choose is (see Fig. 6(b))

Sr = {z ∈ C/; |z|3 < 6
√

3|(1− z)(2− z)|} = {x+ iy;x, y ∈ R| , 108[(1− x)2 + y2][(2− x)2 + y2] > (x2 + y2)3}.
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Figure 6. The minimal domain of convergence Dr of the three-points Taylor expansion of f(t) at t = 0,

t = 1/2 and t = 1 containing the interval (0, 1) is a Cassini oval of radius (12
√

3)−1 and foci at t = 0,

t = 1/2 and t = 1 (figure (a)). The region Sr, inverse of the exterior of Dr is the region shown in figure (b):

Sr = {z ∈ C/; |z|3 < 6
√

3|(1− z)(2− z)|}.

Then, for z ∈ Sr, we can introduce the expansion (16) in (5) and interchange summation and integration to

obtain

2F1(a, b, c; z) =

∞∑
n=0

(−1)n
[
An(a, z) +

b

c
Bn(a, z) +

b(b+ 1)

c(c+ 1)
Cn(a, z)

]
Φn(b, c), (19)

with

Φn(b, c) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tn+b−1(1− t)n+c−b−1(t− 1/2)ndt = (−1)n
(b)n(c− b)n

2n(c)2n
2F1(−n, b+ n; c+ 2n; 2).

Therefore we have

2F1(a, b, c; z) =

∞∑
n=0

[
An(a, z) +

b

c
Bn(a, z) +

b(b+ 1)

c(c+ 1)
Cn(a, z)

]
(b)n(c− b)n

2n(c)2n
2F1(−n, b+ n; c+ 2n; 2), (20)

with An(a, z), Bn(a, z) and Cn(a, z) given by the recursion (18) and A0(a, z) = 1, B0(a, z) = 4(1 − z/2)−a −
(1− z)−a − 3 and C0(a, z) = 2 + 2(1− z)−a − 4(1− z/2)−a.

A recursion relation for Φn(b, c) with respect to n can be obtained by using Zeilberger’s algorithm1

(e.g. via its Maple realization) for hypergeometric functions, and it follows that the functions Φn(b, c) satisfy

the three-terms recurrence relation

XnΦn−1(b, c) + YnΦn(b, c) + ZnΦn+1(b, c) = 0,

where

Φ0(b, c) = 1, Φ1(b, c) = − b(b− c)(2b− c)
2c(c+ 1)(c+ 2)

.

The coefficients are given by

Xn := n(−c− 2n− 5nc− 6n2 − 4bc+ 4b2)(−n+ b− c+ 1)(n+ b− 1),

1We thank Dr. Raimundas Vidunas for his help.
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Yn := 2(2b− c)(p0 + p1n+ p2n
2 + p3n

3),

where
p0 :=16b(−1 + b)(b− c+ 1)(b− c),
p1 :=− 4 + 21c+ 40b2 − 17c2 − 32b2c+ 32bc2 − 40bc,

p2 :=24bc+ 24− 24b2 + 15c2 − 57c,

p3 :=18(c− 2),

and

Zn := 16(3n+ c))(3n+ 1 + c)(3n+ 2 + c)(−5nc− 6n2 + 10n+ 4b2 − 4bc+ 4c− 4).

On the other hand, it is straightforward to see that Φ0(b, c) = 1 and that Φn(b, c) satisfies the contiguous

relation

Φn+1(b, c) =
b(b+ 1)(c− b)
c(c+ 1)(c+ 2)

Φn(b+ 2, c+ 3)− b(c− b)
2c(c+ 1)

Φn(b+ 1, c+ 2).

Expansion (20) is a series of elementary functions of z: a linear combination of 1, (1 − z)−n−a and (1 −
z/2)−n−a whose coefficients are polynomials in z.

The following table shows some numerical experiments comparing the accuracy of Bühring’s expansion and

expansion (20). For values of z near the exceptional points e±iπ/3, expansion (20) is more competitive than

Bühring’s expansion. Away from these points, Bühring’s expansion becomes more competitive.

Parameter values: a = 1.2, b = 2.1, c = 3, z = eiπ/3, z0 = 1/2.

n 0 3 5 8 10

Bühring’s formula 0.263E+2 0.177E+2 0.879E+1 0.253E+1 0.103E+1

Formula (20) 0.330E-1 0.647E-5 0.180E-7 0.196E-11 0.527E-14

Parameter values: a = 1.2, b = 2.5, c = 3, z = eiπ/3, z0 = 1/2.

n 0 3 5 8 10

Bühring’s formula 0.596E+1 0.386E+1 0.193E+1 0.561E+0 0.228E-1

Formula (20) 0.351E-1 0.496E-5 0.137E-7 0.184E-11 0.523E-14

Parameter values: a = 1..2, b = 2.1, c = 3, z = −5, z0 = 1/2.

n 0 3 5 8 10

Bühring’s formula 0.841E+0 0.165E-2 0.206E-4 0.236E-7 0.238E-9

Formula (20) 0.171E+0 0.429E-2 0.316E-3 0.465E-5 0.361E-6

Parameter values: a = 1.2, b = 2.01, c = 3, z = −5, z0 = 1/2.

n 0 3 5 8 10

Bühring’s formula 0.269E+1 0.700E-2 0.860E-4 0.966E-7 0.973E-9

Formula (20) 0.919E-1 0.526E-2 0.391E-3 0.277E-5 0.216E-6
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Table 4. The first row represents the number n of terms used in either Bühring’s expansion or expansion

(20). The second row represents the relative error obtained with Bühring’s approximation. The third row

represents the relative error resulting from approximation (20).

6. Concluding remarks

In Sections 2 and 3 we have used a standard one-point Taylor expansion of f(t) = (1−zt)−a with the smallest

possible convergence region D containing the integration interval (0, 1): an expansion at the point t = 1/2 and

convergence radius r = 1/2 or at any point t = w and convergence radius r =max{|w|, |w − 1|}. Then, the

inverse of the complement of this disk D is the largest possible region that we can obtain with one-point Taylor

expansions of f(t): <z < 1 or, in general, the semi-plane 2<(zw) < 1 (when <w ≥ 1/2).

In Section 4 we have used a two-point Taylor expansion of f(t), with two base points located in the interval

(0, 1) and, in Section 5, a three-point Taylor expansion. One may consider the possibility of expanding f(t)

at four or more points located in the interval (0, 1). In fact, one gets new approximations valid in regions Sr

larger than the ones shown in Figs. 5(b) and 6(b); but the integrals defining the functions Φn(b, c), as well as

the recurrences of the coefficients (An(a, z), Bn(a, z),...) become more complicated.
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