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Abstract

In Slater’s 1960 standard work on confluent hypergeometric functions,

also called Kummer functions, a number of asymptotic expansions of these

functions can be found. We summarize expansions derived from a differ-

ential equation for large values of the a−parameter. We show how similar

expansions can be derived by using integral representations, and we ob-

serve discrepancies with Slater’s expansions.
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1 Introduction

Large parameter problems can be presented in the form of integrals or differen-
tial equations, or both, but we also encounter finite sums, infinite series, differ-
ence equations, and implicit algebraic equations. In this paper we use integral
representations of the confluent hypergeometric functions, also called Kummer
functions, and we derive expansions of the Kummer functions 1F1(a; b; z) and
U(a, b, z) for large positive and negative values of a. The expansions are in

∗Emeritus researcher at Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098
XG Amsterdam, The Netherlands

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301651773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1306.5328v1


terms of the modified Bessel functions Iν(z) and Kν(z), and they are valid for
bounded values of z and b.

In the next section we summarize similar results given in Slater’s standard
work [7] on Kummer functions, which results are derived by using Kummer’s dif-
ferential equation. After we have derived our results for 1F1(a; c; z) and U(a, c, z)
in subsequent sections by using integral representations, we can compare the re-
sults of both approaches.

We observe that Slater’s large a−expansions of the U−function is not in
agreement with our result for this function, and the question arises which result
is correct, and why certain steps leading to wrong results can be explained.

We also mention other large a−expansions of Kummer functions available
in the literature. For information on the Kummer functions we refer to Adri
Olde Daalhuis’ chapter on these functions [2]1 in the NIST Handbook of Math-
ematical Functions [4], and we quote some of the formulas that are relevant in
our analysis.

2 Slater’s results

Slater’s expansions for large a are given in [7, §4.6.1], and are in terms of the
large parameter a written in the form

a = 1
4
u2 + 1

2
b, (2.1)

where u > 0 if a and b are real with a > 1
2b. Then,

e−
1

2
z2

zb1F1

(

a
b
; z

)

= Γ(b)u1−b2b−1 ×

(

zIb−1(uz)

(

N−1
∑

s=0

As(z)

u2s
+O

(

1

u2N

)

)

+

z

u
Ib(uz)

(

N−1
∑

s=0

Bs(z)

u2s
+

z

1 + |z|
O

(

1

u2N

)

))

(2.2)

and

e−
1

2
z2

zbU
(

a, b, z2
)

=
22−bub−1

Γ(a)
×

(

zKb−1(uz)

(

N−1
∑

s=0

As(z)

u2s
+O

(

1

u2N

)

)

−

z

u
Kb(uz)

(

N−1
∑

s=0

Bs(z)

u2s
+

z

1 + |z|
O

(

1

u2N

)

))

.

(2.3)

1See also http://dlmf.nist.gov/13.
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where Iν(z) and Kν(z) are the modified Bessel functions and the coefficients
are given by A0 = 1 and

Bs(z) = − 1
2
A′

s(z) +

∫ z

0

(

1
2
t2As(t)−

b− 1
2

t
A′

s(t)

)

dt,

As+1(z) =
b− 1

2

z
Bs −

1
2
B′

s(z) +

∫

1
2
t2Bs(t) dt+Ks,

(2.4)

and Ks is chosen so that As+1(z) → 0 as z → 0.
In fact2,

A0(z) = 1,

B0(z) =
1
6
z3,

A1(z) =
1
6
(b− 2)z2 + 1

72
z6,

B1(z) = − 1
3
b(b− 2)z − 1

15
z5 + 1

216
z9,

A2(z) = − 1
120

(5b− 12)(b+ 2)z4 + 1
6480

(5b− 52)z8 + 1
31104

z12,

B2(z) =
1
90
(5b− 12)(b+ 2)(b+ 1)z3 − 1

45360
(175b2 − 350b− 1896)z7+

− 7
12960

z11 + 1
933120

z15.

(2.5)

Slater claims that these expansions are valid uniformly with respect to z in
bounded domains. In the next sections we derive expansions of 1F1(a; b; z) and
U(a, b, z) for large a and compare these results with Slater’s expansions.

It will appear that the expansion for the U−function is not correct; see (3.39).

3 Expansions for a → +∞

We derive the expansions of 1F1(a; b; z) and U(a, b, z) by using integral repre-
sentations. Because we want to compare our results with those of Slater we use
for a the form given in (2.1) and replace z with z2.

3.1 Expansion of U(a, b, z)

We summarize results from [9], but we use the notation used by Slater as in §2.
We start with

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt, (3.1)

valid for ℜa > 0 and ℜz > 0. By writing t/(1 + t) = e−s we obtain after a few
steps

U
(

a, b, z2
)

=
e

1

2
z2

Γ(a)

∫ ∞

0

e−
1

4
u2s−z2/ss−bf(s) ds, (3.2)

2In Slater’s formula (4.6.46) the x should be a z.
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where

f(s) = ez
2µ(s)

(

s/2

sinh(s/2)

)b

, µ(s) =
1

s
−

1

es − 1
−

1

2
. (3.3)

The function f is analytic in the strip |ℑs| < 2π and it can be expanded for
|s| < 2π into a Maclaurin expansion. We write an expansion with a remainder
in the form

f(s) =

K−1
∑

k=0

cks
k + sKrK(s), K = 0, 1, 2, , . . . . (3.4)

The coefficients ck are combinations of Bernoulli numbers and Bernoulli poly-
nomials3. We have

(

s/2

sinh(s/2)

)b

= e
1

2
bs

(

s

es − 1

)b

=

∞
∑

k=0

Bb
k(b/2)

k!
sk, (3.5)

and

µ(s) = −

∞
∑

k=1

B2k

(2k)!
s2k−1. (3.6)

The first ck are

c0 = 1, c1 = − 1
12z

2,

c2 = 1
288

(

z4 − 12b
)

,

c3 = z2

51840

(

72 + 180b− 5z4
)

,

c4 = 1
2488320

(

5z8 − (288 + 360b)z4 + 864b+ 2160b2
)

.

(3.7)

We substitute the expansion in (3.4) into (3.2) and obtain

U
(

a, b, z2
)

=
e

1

2
z2

Γ(a)

K−1
∑

k=0

ckΦk +RK(a, b, z), (3.8)

where

RK(a, b, z) =
e

1

2
z2

Γ(a)

∫ ∞

0

e−
1

4
u2s−z2/ssK−brK(s) ds, (3.9)

and, in terms of the modified Bessel function Kν(z),

Φk =

∫ ∞

0

e−
1

4
u2s−z2/ssk−b ds = 2

(

2z

u

)k−b+1

Kk−b+1(uz). (3.10)

This representation follows from4

Kν(z) =
1
2
(1
2
z)ν
∫ ∞

0

e−t−z2/(4t) dt

tν+1
, |ph z| < 1

4
π, (3.11)

3http://dlmf.nist.gov/24
4http://dlmf.nist.gov/10.32.E10
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which function is an even function of ν.
In [9] we have constructed a bound for the remainder RK and we have shown

that the sequence {Φk} constitutes an asymptotic sequence for u → +∞ in the
sense that

Φk

Φk−1
= O

(

1 + uz

u2

)

, u → +∞, (3.12)

uniformly in bounded b−intervals and bounded z−intervals (z > 0), but these
intervals can be extended to complex domains. This shows the asymptotic
nature of the expansion in (3.8).

We can obtain an expansion with only two Bessel functions by using the
recursion

Kν+1(z) = Kν−1(z) +
2ν

z
Kν(z). (3.13)

and rearranging the expansion. A more direct way follows from writing

f(s) = α0 + β0s+ s2g(s), α0 = c0, β0 = c1. (3.14)

Substituting this in (3.2) we obtain after integrating by parts

U
(

a, b, z2
)

=
e

1

2
z2

Γ(a)

(

α0Φ0 + β0Φ1 +
1

u2

∫ ∞

0

e−
1

4
u2s−z2/ss−bf1(s) ds

)

, (3.15)

where

f1(s) = 4sbez
2/s d

ds

(

e−z2/ss2−bg(s)
)

. (3.16)

Considering the behavior of f (defined in (3.3)) at infinity, and that of g1
and successive gn, fn, we observe that f(s) = O(exp(−bs/2)) as s → ∞ when
ℜb < 0; when ℜb ≥ 0, f is bounded. It follows that the integrated term at
infinity will vanish if ℜ(u2s) > 0 and u is large enough. When u is complex, we
may turn the path of integration into the complex plane over an angle θ with
|θ| < 1

2π. This is possible if −π + δ ≤ ph(u2) ≤ π − δ, with δ a small positive
number.

At the origin f and g1 (and successive fn and gn) are analytic, and the
integrated term will vanish if ℜ(z2/s) > 0. Again, when z is complex, we may
achieve this by integrating from the origin in a suitable direction, and deform
the contour to get a suitable direction at infinity.

The integration by parts procedure can be continued, and we obtain

U
(

a, b, z2
)

=
e

1

2
z2

Γ(a)

(

Φ0

N−1
∑

n=0

αn

u2n
+Φ1

N−1
∑

n=0

βn

u2n
+

1

u2N

∫ ∞

0

e−
1

4
u2s−z2/ss−bfN (s) ds

)

,

(3.17)

where the Φk are defined in (3.10) and αn, βn, fn follow from the recursive
scheme

fn(s) = αn + βns+ s2gn(s),

fn+1(s) = 4sbez
2/s d

ds

(

e−z2/ss2−bgn(s)
)

,
(3.18)
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with f0 = f .
We can express the coefficients αn and βn in terms of the ck used in (3.4).

We write

fn(s) =

∞
∑

k=0

c
(n)
k sk, c

(0)
k = ck, (3.19)

and after substituting this into (3.18) we find for the coefficients c
(n)
k the recur-

sion

c
(n+1)
0 = 4z2c

(n)
2 , c

(n+1)
k = 4

(

z2c
(n)
k+2 + (1− b+ k)c

(n)
k+1

)

, (3.20)

where k ≥ 1 and n ≥ 0. The first coefficients are

α0 = 1, β0 = c1,

α1 = 4z2c2, β1 = 4z2c3 + 4(2− b)c2

α2 = 4z2(4z2c4 + 4(3− b)c3),

β2 = 16z4c5 + 32z2((3 − b)c4 + 16(b− 2)(b− 3)c3.

(3.21)

In general, for αn we need cn+1, · · · , c2n and for βn we need cn+1, · · · , c2n+1.
To compare the expansion in (3.17) with Slater’s expansion in (2.3), we

observe first that Φ1 = 2(2z/u)2−bK2−b(uz), and we use the relation in (3.13)
to rearrange our expansion. This gives (we have used Kν(z) = K−ν(z))

e−
1

2
z2

zbU
(

a, b, z2
)

=
22−bub−1

Γ(a)
×

(

zKb−1(uz)

N−1
∑

n=0

an(z)

u2n
−

z

u
Kb(uz)

N−1
∑

n=0

bn(z)

u2n
+

2b−2zbu1−b

u2N

∫ ∞

0

e−
1

4
u2s−z2/ss−bfN (s) ds

)

,

(3.22)

where
a0(z) = 1, an(z) = αn + 4(1− b)βn−1, n ≥ 1,

bn(z) = −2zβn, n ≥ 0.
(3.23)
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This gives the first coefficients

a0(z) = 1,

b0(z) =
1
6
z3,

a1(z) =
1
6
(b− 2)z2 + 1

72
z6,

b1(z) = − 1
3
b(b− 2)z − 1

15
z5 + 1

1296
z9,

a2(z) = − 2
3
b(b− 1)(b− 2)− 1

120
(b+ 2)(5b− 12)z4+

1
6480

(5b− 52)z8 + 1
31104

z12,

b2(z) = − 1
90
(5b+ 2)(b− 3)(b− 4)z3 − 1

45360
(175b2 − 350b− 1896)z7+

− 7
12960

z11 + 1
933120

z15.

(3.24)
When we compare these coefficients with the ones in Slater’s expansion of the

U−function given in (2.5) we see differences in a2(z) and b2(z). In particular,
the condition An(0) = 0 (n ≥ 1) used in the construction of Slater’s coefficients
is not showing in our a2(z).

3.2 Expansion of 1F1(a; b; z)

For an expansion of the F−function we start with the integral5

1F1

(

a
b
; z

)

=
Γ(b)Γ(1 + a− b)

2πiΓ(a)

∫ (1+)

0

eztta−1(t− 1)b−a−1 dt, (3.25)

where ℜa > 0 and b− a 6= 1, 2, 3, . . .. The contour can be the circle |t− 1| = 1.
The transformation t = s/(s−1) transforms this circle into itself. To verify this
we write s = t/(t − 1). With t = 1 + eiθ, θ ∈ [0, 2π), we obtain s = 1 + e−iθ.
The result of the substitution is

1F1

(

a
b
; z

)

=
Γ(b)Γ(1 + a− b)

2πiΓ(a)

∫

C

ezs/(s−1)sa−1(s− 1)b ds, (3.26)

where C is the circle |s− 1| = 1.
Next we take s = ew. With s = 1 + eiθ, θ ∈ [0, 2π), we see that the circle C

is described by

w = σ + iτ, σ = ln(2 cos τ), − 1
2
π < τ < 1

2
π. (3.27)

After some manipulations we obtain

1F1

(

a
b
; z2
)

=
Γ(b)Γ(1 + a− b) e

1

2
z2

Γ(a) 2πi

∫

L

e
1

4
u2s+z2/ss−bf(−s) ds, (3.28)

5http://dlmf.nist.gov/13.4.ii
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where a = 1
4u

2 + 1
2 b (as in (2.1)), f is the same as in (3.3) and L can be taken

as a loop around the negative axis that encircles the origin in a positive (anti-
clockwise) direction. Below and above the branch cut along the negative axis
the phase of s is −π and +π, respectively. This representation is valid for all
complex z and ℜ(a+ b) > 0.

Upon substituting the expansion in (3.4) we obtain

1

Γ(b)
1F1

(

a
b
; z2
)

=
Γ(1 + a− b)e

1

2
z2

Γ(a)

K−1
∑

k=0

(−1)kckΨk + SK(a, b, z), (3.29)

where

SK(a, b, z) = (−1)K
Γ(1 + a− b)e

1

2
z

Γ(a) 2πi

∫

L

e
1

4
u2s+z2/ssK−brK(−s) ds, (3.30)

and, in terms of the modified Bessel function Iν(z),

Ψk =
1

2πi

∫

L

e
1

4
u2s+z2/ssk−b ds =

(

2z

u

)k+1−b

Ib−k−1(uz). (3.31)

This representation follows from6

Jν(z) =
(12z)

ν

2πi

∫ (0+)

−∞

et−z2/(4t) dt

tν+1
, (3.32)

with z replaced with e
1

2
πiz.

In the above results we can give z any finite complex value, and we require
ℜa > 0, 1 + a − b 6= 0,−1,−2, . . .. For b = 0,−1,−2, . . ., the left-hand side of
(3.29) can be interpreted by using

lim
b→−m

1

Γ(b)
1F1

(

a
b
; z

)

=
(a)m+1 z

m+1

(m+ 1)!
1F1

(

a+m+ 1
m+ 2

; z

)

. (3.33)

The expansion in (3.29) can be written in the form with two Bessel functions.
We need the relation

Iν−1(z) = Iν+1(z) +
2ν

z
Iν(z), (3.34)

and an integration by parts procedure as used for the U−function gives a form
comparable with Slater’s result in (2.2). In this way we obtain the result written
in the form of (2.2)

e−
1

2
z2

zb1F1

(

a
b
; z2
)

=
Γ(b)Γ(1 + a− b)

Γ(a)
ub−121−b ×

(

zIb−1(uz)

N−1
∑

n=0

an(z)

u2n
+

z

u
Ib(uz)

N−1
∑

n=0

bn(z)

u2n
+

2b−1zbu1−b

u2N 2πi

∫

L

e
1

4
u2s+z2/ss−bfN(−s) ds

)

,

(3.35)

6http://dlmf.nist.gov/10.9.E19
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where the coefficients an(z), bn(z) and the functions fn are the same as for the
expansion of the U−function in (3.22).

We cannot yet compare this result with Slater’s result in (2.2), because of
the ratio of the gamma functions with large parameter in our results. We should
expand this ratio and multiply this expansion with the ones in (3.35). We have

Γ(1 + a− b)

Γ(a)
=

Γ
(

1 + 1
4u

2 − 1
2b
)

Γ
(

1
4u

2 + 1
2 b
) ∼

(u

2

)2−2b ∞
∑

n=0

dn
u2n

, (3.36)

as a → ∞. All coefficients d2n+1 vanish and the first even indexed coefficients
are

d0 = 1, d2 = 2
3 (b − 2)(b− 1)2,

d4 = 2
45

(

5b2 − 22b+ 24
)

(b− 1)4,

d6 = 4
2835

(

35b3 − 252b2 + 604b− 480
)

(b − 1)6,

d8 = 2
42525

(

175b4 − 1820b3 + 7124b2 − 12400b+ 8064
)

(b − 1)8.

(3.37)

See [10, §3.6.2] for expansions of this type.
When we perform the multiplications of the series we obtain Slater’s expan-

sion given in (2.2).

3.3 Remarks on both methods

Slater’s expansions in §2 are based on Olver’s method for differential equations;
see [3, Chapter 12] (Slater has referred to earlier papers by Olver). This method
is very powerful, it gives expansions valid in large domains of the parameters
and recurrence relations for the coefficients. Also, the method provides realistic
error bounds for remainders in the expansions. In the case of the Kummer
functions, the expansions are first given for two linear independent solutions of
Kummer’s differential equation

zw′′ + (b − z)w′ − aw = 0. (3.38)

Then the expansions of 1F1(a; b; z) and U(a, b, z) follow from linear combinations
of these solutions, and the coefficients in these combinations follow from certain
known limiting forms of the Kummer functions (in the present case for z → 0).

On the other hand, when the recurrence relations for the coefficients in the
expansions are derived, these recursions usually include constants of integration.
In the present case these are the quantities Ks used by Slater in (2.4). A certain
choice of these constants generates a formal solution of the differential equation.

These two steps have to be taken into account when constructing the expan-
sions of the functions 1F1(a; b; z) and U(a, b, z), and it appears that Slater has
not used the correct steps for the U−function.

When working with integrals these difficulties are not present: we always
start with a representation of the function to be considered. All right, we can

9



usually not construct recurrence relations for the coefficients, and the construc-
tion of error bounds or estimates for remainders is more difficult, but there will
never be a misunderstanding about the correct form of the expansions.

We can repair Slater’s expansion by dividing the series by the series in (3.36),
which gives the expansion given in (3.17). We can also repair by including a
ratio of gamma functions in the representation in (2.3), and modify powers of
2 and u. That is, we have

e−
1

2
z2

zbU
(

a, b, z2
)

=
2bu1−b

Γ(1 + a− b)
×

(

zKb−1(uz)

(

N−1
∑

s=0

As(z)

u2s
+O

(

1

u2N

)

)

−

z

u
Kb(uz)

(

N−1
∑

s=0

Bs(z)

u2s
+

z

1 + |z|
O

(

1

u2N

)

))

.

(3.39)

In the present case the construction of an error bound of the expansion given
for the U−function given in (3.22) is rather easy when we assume that we have
a bound of fN(s) for s ≥ 0. When ℜz2 ≥ 0, this bound may be independent
of z, which shows the uniform character of this expansion with respect to z.
More details on construction of a bound for the remainder in the expansion
given in (3.8) can be found in [9]. For the expansions of the F−function these
bounds should be obtained from complex contours of integration, which is a
more difficult matter; again, see [9].

3.4 Other forms of the expansions for large a

We have already two forms of the expansions: one with a series of Bessel func-
tions, and one with only two Bessel functions. These forms are valid for bounded
and even small values of z. When z is such that uz → ∞ we can expand the
Bessel functions and use the well-known expansions of these functions for large
argument; see [5, §10.40]. In this way we can construct an expansion in terms
of elementary functions.

It may also be convenient to have expansions that show the parameter a
explicitly as the large parameter, and not the parameter u as in Slater’s expan-
sions. Slater’s form has some advantages because the coefficients are simpler
than expansions in terms of negative powers of a. This is the approach used in
[9], and it gives expansions with a series of Bessel functions. The integration by
parts procedure used in the present paper is easy to modify for obtaining expan-
sions with only two Bessel functions. And when we expand the Bessel functions
we find expansions with series in negative powers of a. For the F−function
Perron [6] has given an expansion in terms of elementary functions. For a more
recent publication, see [1], where an expansion is given for the Laguerre poly-
nomials for large degree. That expansion can also be used for the F−function

10



as a → −∞, because

L(α)
n (z) =

(

n+ α
n

)

1F1

(

−n
α+ 1

; z

)

. (3.40)

Szegő [8, §8.22, §8.72, Problem 46] has suggested several methods for these
polynomials.

Finally, when z is complex, it may be convenient to consider expansions of
the F−function in terms of the J−Bessel function by using7

Iν(z) = e∓
1

2
νπiJν

(

ze±
1

2
πi
)

, −π ≤ ±ph z ≤ 1
2
π. (3.41)

4 Expansions for a → −∞

For this case we use relations between the Kummer functions and the results
for a → +∞.

4.1 Expansion of 1F1(a; b; z)

This case has not been considered in Slater’s book, but we can use the results
for a → +∞ by using the relation

1F1

(

a
b
; z

)

= ez1F1

(

b− a
b

; −z

)

. (4.1)

We take this time
a = − 1

4
u2 + 1

2
b. (4.2)

Then b− a = 1
4u

2 + 1
2b and we have

1F1

(

a
b
; −z2

)

= e−z
1F1

(

1
4u

2 + 1
2 b

b
; z2
)

, (4.3)

For the F−function in the right-hand side we can use the results of §3.2. The
explicit result for the left-hand side is

e
1

2
z2

zb1F1

(

− 1
4u

2 + 1
2b

b
; −z2

)

=
Γ(b)Γ

(

1 + 1
4u

2 − 1
2b
)

Γ
(

1
4u

2 + 1
2b
) ub−121−b ×

(

zIb−1(uz)

N−1
∑

n=0

an(z)

u2n
+

z

u
Ib(uz)

N−1
∑

n=0

bn(z)

u2n
+

2b−1zbu1−b

u2N 2πi

∫

L

e
1

4
u2s+z2/ss−bfN(−s) ds

)

,

(4.4)

where the coefficients an(z), bn(z) and the functions fn are the same as for the
expansion of the U−function in (3.22).

7http://dlmf.nist.gov/10.27.E6
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4.2 Expansion of U(a, b, z)

Also in this case we can use connection formulas. We have

U(a, b, z) =
Γ(1 − b)

Γ(a− b+ 1)
1F1

(

a
b
; z

)

+
Γ(b− 1)

Γ(a)
z1−b

1F1

(

a− b+ 1
2− b

; z

)

, (4.5)

when b is not an integer, and

1

Γ(b)
1F1

(

a
b
; z

)

=
e∓πia

Γ(b− a)
U(a, b, z) +

e±πi(b−a)

Γ(a)
ezU

(

b− a, b, ze±πi
)

. (4.6)

The first form is useful because we have a real representation, but, although
the U−function is well-defined for integer values of b, a nasty limiting pro-
cedure is needed in that case. The best approach is using the second form
with a = − 1

4u
2 + 1

2b. Then we can use the expansion given in (4.4) and
for U

(

b− a, b, ze±πi
)

= U
(

1
4u

2 + 1
2b, b, ze

±πi
)

the expansion given in (3.22).

Observe that the K−Bessel function have arguments uze±
1

2
πi, which can be

expressed in terms of the ordinary Bessel functions Jν(z) and Yν(z); see [5,
§10.27].
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