
Computable Types for Dynamic Systems

Pieter Collins?

Centrum Wiskunde en Informatica
Postbus 94079

1090 GB Amsterdam
Pieter.Collins@cwi.nl

Abstract. In this paper, we develop a theory of computable types suitable for the study of
dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the
underlying computational model, but we quickly develop a type system which can be manip-
ulated abstractly, but for which all allowable operations are guaranteed to be computable. We
apply the theory to the study of differential inclusions, reachable sets and controllability.

1 Introduction

Dynamic systems which are used to model time-varying processes in almost all fields of sci-
ence. Such systems are studied by means of computer simulation of a mathematical model,
using approximate numerical schemes and inexact floating-point arithmetic. While this is
usually sufficient to obtain an understanding of the system evolution, such an approach
cannot be used to rigorously analyse the system behaviour. In order to perform a rigorous
analysis we can either resort to an algebraic approach, which is usually too inefficient to
be of practical use, or try to perform numerical computations with bounds on the errors.
This naturally leads to questions concerning the best representation of the data, and what is
actually possible to compute.

There are a number of existing approaches to continuous mathematics in which com-
putational issues are considered, from informal treatments in contructive analysis [BB85],
through more formal approaches using domain theory [GHK+03] or locale theory [Joh02],
to the low-level theory of type-two effectivity [Wei00]. Each of these approaches has its ad-
vantages and disadvantages. Constructive analysis is closest to “working mathematics”, and
thus is easiest to work with, but the relationship to computation is not explicit. The formal
approaches such as domain and locale theory are traditionally also not set up directly as a
theory of computation, but this relation can be formalised. While powerful, these theories
have their own terminology and development which make them hard to understand with-
out a background in logic. The theory of type-two effectivity provides a direct connection
with digital computation, and has been developed furthest in the direction of dynamic sys-
tems, but has a cumbersome notation which makes it unwieldy to work with for higher-level
mathematics.

The aim of this paper is to give an exposition of a theory of computation in analysis,
leading to results on computability of the evolution of some important classes of dynamic
systems. We use type-two effectivity to provide a direct link with real compuation, but aim

? This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Vidi
grant 639.032.408.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301651698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to hide the low-level details in a theory of data types which can then be manipulated in a
natural way using constructive mathematics. We avoid using notation and terminology from
domain theory and locale theory as much as possible, though the exposition is guided by
results in these fields. We address the concrete problems of computing the finite-time evo-
lution of nondeterministic finite-dimensional systems in both discrete time and continuous
time, the latter case being the theory of differential inclusions.

The paper is organised as follows. In Section 2 we provide a brief sketch of a topological
(non-computable) type theory. In Section 3, we develop a theory of computable types for
spaces of points, sets and functions. In Section 4 we apply this type theory to the study of
dynamic systems.

2 Type Theory and General Topology

In this section, we review existing results on topological spaces without any explicit compu-
tational structure. The main aim is to explore a topological type theory, in which the types
are topological spaces.

2.1 Type theory

In a standard type theory, we are most interested in products X × Y and exponentials
Y X . In the category of sets, products to the normal Cartesian product, and exponentials to
functions fromX to Y . The most important operations on these constructions are projection
πi : X1 × X2 → Xi, and isomorphism between the type Y A×X and the type (Y X)A via
the bijection f 7→ f̂ defined by f̂(a)(x) = f(a, x). We say a category is Cartesian closed
if we can form products and exponentials with the required properties.

2.2 Topological type theory

In the topological category, we identify the exponential type Y X with C(X;Y), the space
of continuous functions from X to Y . It remains to provide a topology on C(X;Y), and
it is here that problems arise. For it is well-known that it is not always possible to find a
topology on C(X;Y) such that the set of continuous function A ×X → Y is in bijective
correspondance with the set of continuous functions A→ C(X;Y) for all spaces A.

We say that a topology on C(X;Y) is exponential if for any space A, a function f :
A × X → Y is continuous if, and only if, f̂ : A → C(X;Y) is continuous. It turns
out that X is exponentiable if, and only if, it is core-compact (see [EH02]). In this case,
the exponential topology on C(X;Y) is the Isbell topology, which is generated by the
Scott topology on the open sets of X . If X is a Hausdorff space, then core-compactness is
equivalent to local compactness.

While most spaces which are commonly used as state spaces in dynamical systems
theory are locally-compact Hausdorff spaces the space of possible solutions, or trajectory
space is a function space, typically XN, XZ or C(R+;X). Such function spaces are decid-
edly not locally-compact; typically no compact set has an open subset. We therefore need a
theory which can handle non-locally-compact spaces.

Fortunately, there are subcategories of the category of topological spaces which are
Cartesian closed. Most interesting for us are the quotients of second-countable spaces,
sometimes known as the quotients of countably-based (QCB) spaces. It is known that the
full category of QCB spaces is Cartesian closed (see [Sch02,ELS04]), so we can define
topological types in this category. Even more promising, these spaces can be given a com-
putable structure by means of representations by infinite sequences on some finite alpha-
bet. Further, these spaces include all spaces encountered in the study of finite-dimensional
dynamics systems, including Euclidean space, manifolds, continuous functions on these
spaces, and hyperspaces of open, closed and compact sets.

2.3 Sets and maps in type theory

Starting from (topological) typesX and Y , we can define productsX×Y and exponentials
Y X , the latter corresponding to continuous functions C(X;Y). However, using these oper-
ations, we can also define subsets of spaces. The key to this construction is the Sierpinski
space S = {>, ↑} with open sets {{ }, {>}, {>, ↑}}. Here,> denotes “true”, and ↑ denotes
“divergent” or “don’t know”, and can be thought of as representing a computation which
never halts.

It is easy to see that the set of open subsets of X , denoted O(X), is in bijective corre-
spondance with the space of continuous functionsX → S, since a set U is open if, and only
if, the function fU : X → S defined by fU (x) = > ⇐⇒ x ∈ U is continuous. Hence we
should identify O(X) and SX in a topological type theory. The closed subsets A(X) are in
bijective correspondance with their complements.

Similarly, if A and C are sets, we can define functions gA : O(X) → S by gA(U) =
> ⇐⇒ A ∩ U 6= ∅, and hC : O(X) → S by hC(U) = > ⇐⇒ C ⊂ U . We
henceforth write A ./ U for A ∩ U 6= ∅. It is clear that the function gA satisfies gA(U ∪
V) = gA(U) ∨ gA(V), and hC(U ∩ V) = hC(U) ∩ hC(V). Further, given a “sufficiently
reasonable” topology on O(X), the functions gA and hC are continuous for A closed and
C compact, and further, any such continuous function gA satisfying the union condition
arises in this way from a closed set, and any such continuous function hC satisfying the
intersection condition arises in this way from a compact set. By “sufficiently reasonable”,
it suffices that inclusion x ∈ U is continuous in both x and U . Following [Tay08], we call
the space of closed sets with the topology defined by gA as the space of overt sets. We can
therefore identify overt sets and compact sets with subtypes of S(SX).

3 Computable Analysis

We now give a computational meaning to our purely topological theory. The theory is based
on the theory of type-two effectivity of [Wei00], though the development here is more ab-
stract, similar to that of Schröder [Sch02].

3.1 Machine-computability

We fix a finite alphabet Σ, and give the space Σω the product topology. In particular, Σω

is a second-countable, locally-compact zero-dimensional Hausdorff space. By considering

type-two Turing machines working on streams of data identified with Σω, we define a set
of machine-computable partial functions η :⊂ Σω × · · · × Σω → Σω. The domain of
a machine-computable function is always a Gδ set. (Recall that a Gδ-set is a countable
intersection of open sets.) The set of machine-computable functions is countable, and closed
under composition. We also define the uncountable set of machine-continuous functions
η :⊂ Σω × · · · ×Σω → Σω to be the continuous functions with Gδ-domain.

In this paper, we do not need to concern ourselves with the exact definition of machine-
computable function. However, we will need to use some more abstract results on continu-
ous and computable functions, which can be found in [Wei00, Chapter 3].

Theorem 1.

1. There exists a surjective function δ :⊂ Σω → C(Σω;Σω) whose range consist of
all machine-continuous partial functions (with Gδ-domain) and a machine-computable
function ε : Σω ×Σω → Σω such that δ(p)(q) = ε(p, q) for all q.

2. There exists a computable function Σ∗ → Σω whose range consists of all elements of
dom(δ) corresponding to machine-computable functions.

3.2 Computable types

In this section, we show how to define computable stuctures on mathematical objects, in
particular, on topological spaces.

Definition 1 (Representation). A representation of a set M is a partial surjective function
δ :⊂ Σω →M .

Representations δ1 and δ2 of M are equivalent if there are machine-computable func-
tions η1, η2 such that δ1 ◦ η1 = δ2 and δ2 ◦ η2 = δ1.

A computable type is an equivalence class of pairs (M, δ), where (M, δ1) is equivalent
to (M, δ2) if δ1 and δ2 are equivalent. We shall usually denote a computable type with
underlying set M byM.

Note that the domain of a representation is an arbitrary set. Where possible, it is useful to
use topologically “nice” sets as domains to help checking whether a sequence is a valid
name. The following definition shows how representations induce a computable structure
on general sets.

Definition 2 (Computable function). Let f : M1 × · · · ×Mk → Y be a function, and
δMi :⊂ Σω → Mi and δY :⊂ Σω → Y be representations. Then a machine-continuous
function η :⊂ (Σω)k → Σω realises f if f(δX1(p1), . . . , δXk

(pk)) = δY (η(p1, . . . , pk))
for all pi ∈ dom(δi). We say f is computable if it is realised by a machine-computable
function.

Recall that a continuous function δ : A → X is a quotient map if δ is surjective and
whenever φ : A → Y is continuous and φ(p) = φ(q) whenever δ(p) = δ(q), then there
exists a map g : A→ Y such that φ = g ◦δ. A continuous function δ : A→ X is universal,
if whenever φ : A → X is continuous, there exists a continuous function η : A → A such
that φ = δ ◦ η.

Definition 3 (Admissible representation). An representation δ of a topological space
(X, τ) is admissible if it is a universal quotient map.

We require an admissible representation of a topological space to be a universal so that it
captures all the topological information about a space. We require it to be a quotient map
so that continuity on (X, τ) is reflected in Σω. The standard representations of a second-
countable Kolmogorov (T0) space as defined in [Wei00, Chapter 3] are always admissible in
the above sense. The following lemma (see [Sch02]) shows that we can extract the topology
of X from an admissible representation δ.

Lemma 1. There is at most one topology τ on X making δ :⊂ Σω → X an admissible
representation of (X, τ).

In general there are many non-equivalent representations admissible for a given topolog-
ical space. Not all spaces have admissible representations with “nice” names; there is no
admissible representation of C(C(R; R); R) with a Gδ domain.

Up to equivalence there is only one admissible representation on R making arithmetic
and comparison computable, so we can talk of a canonical typeR of real numbers [Bau00,
Theorem 5.5.18]; see also [Bra98]. Most other types used in analysis can be built from R
in a natural way.

Theorem 2. Let δX , δY be admissible representations of spaces X and Y .
1. If f : X → Y be continuous, then there exists a machine-continuous function η such

that dom(η) ⊃ dom(δX) and δY ◦ η = f ◦ δX on dom(δ).
2. Suppose f : X → Y , and there exists a machine-continuous function η with dom(η) ⊃

dom(δ) such that f ◦ δX = δY ◦ η on dom(δ). Then f is continuous.

The first part of the theorem says that any continuous function is realised by a machine-
continuous function. The second part of the theorem says that any function realised by a
machine-continuous function (in particular, by a machine-computable function) is continu-
ous.

3.3 Types of continuous functions

We now give the main results of computability of operations on continuous functions. The
next result asserts that function evaluation is computable.

Theorem 3. LetX and Y be spaces with admissible representations δX and δY . Then there
is a canonical representation δ[X→Y] of C(X;Y) such that evalution C(X;Y)×X → Y
is computable. This representation defines a canonical type C(X ;Y).

The next theorem asserts computability of the fundamental operations on types.

Theorem 4. Let W , X and Y be spaces with admissible representations δA, δX and δY
respectively. Let W , X and Y denote the types of (W, δW), (X, δX) and (Y, δY). Then
there is a computable bijection between the types YW×X and YXW taking f to f̂ .

The following theorem shows that if we can effectively evaluate a function f : X → Y ,
then we can compute a name. We will repeatedly use this result to prove computability of a
function type by showing that it can be effectively evaluated.

Theorem 5. Suppose X and Y are computable types, and f : X → Y . Then if we can
effectively evaluate f(x) for all x ∈ X , we can effectively compute f in C(X ;Y)

3.4 Point and set types

We now use the computable function types to derive the set types we need to study systems.

Definition 4 (Types of open, closed and compact sets).
1. We identify the type of open sets, denoted O(X) with the space of continuous function
X → S by fU (x) = > ⇐⇒ x ∈ U .

2. We identify the type of closed sets, denotedA(X) with the space of continuous function
X → S by fA(x) = > ⇐⇒ x 6∈ U .

3. We identify the type of overt sets, denoted V(X) with the space of continuous functions
fA : O(X)→ S satisfying fA(U ∪ V) = fA(U) ∨ fA(V).

4. We identify the type of compact sets, denoted K(X) with the space of continuous func-
tions fC : O(X)→ S satisfying fC(U ∩ V) = fC(U) ∧ fC(V).

Concrete representations for these types in the case of Euclidean/metric spaces are given
in [BW99,BP03]. Most of the basic set-theoretic operations, including union and intersec-
tion, are computable without additional assumptions on the space X . However, we will
sometimes need to work in Hausdorff spaces in which the apartness relation is computable.

Definition 5. We say X is a effectively separated if the function s : X ×X → S defined by
s(x, y) = > ⇐⇒ x 6= y is computable. We say X is a effectively separable if there is a
computable function r : N → X whose range is dense in X .

Note that although any singleton set in a T1 space is closed, singleton function is only
continuous in a Hausdorff (T2) space.

We have the following computability results on types. Note that having developed the
basic theory, and shown that computing a function type is equivalent to being able to evalu-
ate it, the rest of the theory is almost trivial.

Theorem 6. The following operations on sets are computable:
1. Finite intersection O ×O → O and arbitrary union ON → O.
2. Finite union A×A → A and arbitrary intersection AN → A.
3. Complement O → A and A → O.
4. Countable union VN → V and finite union K ×K → K.
5. Finite intersection V ×O → V and K ×A → K.
6. Singleton X → V , X → K.
7. Closure O → V if X is effectively separable, and identity K → A if X is effectively

separated.
8. Preimage C(X ;Y)×O(Y)→ O(X).
9. Image C(X ;Y)× V(X)→ V(Y) and C(X ;Y)×K(X)→ K(Y).

Due to the strong conditions on admissible representations, and application of Theorem 5,
the proofs are almost deceptively straightforward.

4 Computability for Dynamic Systems

We now use the computable type theory developed in the previous section to give some
results on computable properties of dynamic systems.

4.1 Spaces of multifunctions

When considering solutions of nondeterministic systems, we are often interested in function
spaces with set-valued types, or hyperspaces of functions.

The set of solutions of a dynamic system is the space of continuous functions ξ : T →
X , where T is the time domain, and X is the state space. For an autonomous system, we
require time-invariance, that if ξ is a solution and s ∈ T , then the function defined by
η(t) = ξ(t + s) is also a solution. We also require the property of state, that if ξ and η
are solutions with ξ(s) = η(s), then there is a solution ζ with ζ(t) = ξ(t) for t 6 s, and
ζ(t) = η(t) for t > s.

For a deterministic system, there is only one trajectory through a given initial state. The
solution space may be represented either as a function φ : X × T → X , or as a function
φ̂ : X → C(T ;X). By the exponentiation property, these representations are equivalent.

In a nondeterministic system there may be may different trajectories with the same initial
state. If the time domain is R, we call the resulting dynamics a multiflow. In this case, there
are many different ways of representing the solution space. The simplest way of representing
the solution space is as the behaviour of the system, which is simply the set of all solutions,
Φ ∈ P(C(T ;X)). However, we can also represent the solution space as a function Φ̂ :
X → P(C(T ;X)) such that ξ(0) = x for all ξ ∈ Φ̂(x). Another useful representation is
in terms of the finite reachability operator, Φ̃ : X × T → P(X). We shall see that while
Φ and Φ̂ are classically equivalent, in a computational setting Φ may be hard to define and
contains less information. Further, Φ and Φ̃ are classically and computationally equivalent
for compactly-generated systems, but not for others.

The following result gives relationships between multiflow representations:

Lemma 2. The function B : K(X) × O(Y) → O(C(X ;Y)) defined by B(K,V) = {f |
f(K) ⊂ V } is computable, as is the function B : K(X) × A(Y) → A(C(X ;Y)) defined
by B(K,A) = {f | f(K) ⊂ A}.

We now consider multiflows taking values in the class of overt and compact sets.

Lemma 3.

1. The types Φ̂ : X → K(C(T ;X)) satisfying ξ(0) = x for all ξ ∈ Φ̂(x), and the types
Φ̃ : X ×T → K(X) are equivalent. We can also compute Φ̂ from Φ, and Φ from Φ̂ if X
is compact.

2. if T = R, the type Φ̂ : X → V(C(T ;X)) is strictly stronger than both Φ ∈ V(C(T ;X))
and Φ : X × T → V(X). The latter are uncomparible.

The proofs of the above results are straightforward.

4.2 Computability theory for multivalued maps

A multivalued map is a function F : X → P(Y). For a set A ⊂ X , we define F (A) =⋃
{F (x) | x ∈ A}. For B ⊂ Y , we define F−1(B) = {x ∈ X | F (x) ∩ B 6= ∅} and

F⇐(B) = {x ∈ X | F (x) ⊂ B}. Note that F⇐(B) = X \ F−1(Y \ B). For F : X →
P(Y) and G : Y → P(Z), we define G ◦ F : X → P(Z) by G ◦ F (x) = G(F (x)).
We say that F is lower-semicontinuous if F−1(V) is open whenever V is open, and upper-
semicontinuous if F−1(B) is closed whenever B is closed.

We are interested in the case that F is a continuous function from X to a hyperspace of
subsets of Y ; in particular, for F : X → V(Y) and F : X → K(Y). In this case, we have
the following properties. The proof is in [Col05].

Theorem 7. The following types are computabably equivalent:
1. F : X → V(Y), F−1 : O(Y)→ O(X) and F : V(X)→ V(Y).
2. F : X → K(Y), F−1 : A(Y)→ A(X) and F : K(X)→ K(Y).

We can therefore compute the forward-time evolution of discrete-time multivalued systems.
We denote the type of non-negative integers by N .

Corollary 1. The behaviour of a discrete-time system F is computable in the following
cases:
1. If F : X → X , then Φ̂ : X → C(N ,X) is computable from F .
2. If F : X → V(X), then Φ̂ : X → V(C(N ,X)) is computable from F .
3. If F : X → K(X), then Φ̂ : X → K(C(N ,X)) is computable from F .

4.3 Computability theory for differential systems

In this section we consider the computability of systems defined by differential equations or
differential inclusions. For simplicity, we assume that X is a Euclidean space Rn, though
these results also extend to differential manifolds and locally-compact Banach spaces. We
state the results in this section without proof, as we need to go back to first principles to
solve the differential systems. In particular, we need to resort to the classical Arzela-Ascoli
theorem to assert the existence of solutions. We denote the type of real numbers byR.

Theorem 8. Let f : X → X be locally-Lipschitz continuous. Then the solution operator
of ẋ = f(x) is computable C(X ;X)×X → C(R,X).

The proof is essentially standard [DM70], though is too long to include here. A simple proof
can be found in [CG08]. Note that we can weaken the locally-Lipschitz condition to simply
requiring uniqueness of solutions [Ruo96].

We now turn to nondeterministic differential systems as defined by differential inclu-
sions ẋ ∈ F (x). For an introduction to differential inclusions, see [AC84]. Following the
well-known Filippov solution concept, we may first need to compute the convex hull of the
right-hand side.

Lemma 4. Closed convex hull is a computable operator V → V and K → K.

We can now state the main theorems on computability of solutions of differential inclusions.
The continuous case was first proved in [PVB96], but easily splits into the lower- and upper-
semicontinuous cases. The one-sided Lipschitz condition was developed in [Gab07].

Theorem 9.
1. Let F be one-side locally-Lipschiz closed-convex-valued lower-semicontinuous. Then

the solution operator of ẋ ∈ F (x) is computable C(X ;V(X))×X → V(C(R,X)).
2. Let F be compact-convex-valued upper-semicontinuous. Then the solution operator of
ẋ ∈ F (x) is computable C(X;K(X))×X → K(C(R,X)).

4.4 Computability theory for infinite-time properties

We now apply the results of Section 4.2 to prove computability of some infinite-time opera-
tors in discrete-time dynamical systems. The results can be found in [Col05]. We will need
the following result, which shows that we can separate compact and closed sets.

Lemma 5. There is a recursively enumerable set D of pairs (A,B) ∈ O × K such that
A ⊂ B such that for any compact K and open U , there exist (Ai, Bi) such that K ⊂ Ai
and Bi ⊂ U .

We define the reachable set of a system F with initial state set X0 as

reach(F,X0) = {x ∈ X | ∃ solution ξ and t ∈ T with ξ(0) ∈ X0 and ξ(t) = x}.
Theorem 10. The reachable set operator reach is computable as a function C(X ;V(X))×
V(X)→ V(X), but not as a function C(X ;K(X))×K(X)→ K(X).

We define the chain-reachable set of F as limit of all ε-orbits, or equivalently as

chain reach(F,X0) =
⋂
{U ∈ O(X)|cl(U) is compact, and X0 ∪ F (cl(U)) ⊂ U}.

Theorem 11. If chain reach(F,X0) is bounded, then chain reach : C(X ;K(X)) ×
K(X) → K(X) is computable, and is the optimal K(X)-computable over-approximation
to reach.

4.5 Computability theory for control systems

A noisy control system with state space X , input space U and noise space V is a function
f : X × U × V → X . We assume that U is an overt space and V a compact space, and
define FU : X → X × U , FU (x) = {(x, u) | u ∈ U}, and FV : X × U → X by
FV (x, u) = {f(x, u, v) | v ∈ V }.

The controllable set of ctrl(f, T, S) with target set T and safe set S is determined
recursively by T0 = T∩S and Ti+1 = Ti∪{x ∈ X | ∃u ∈ U, ∀v ∈ V, f(x, u, v) ∈ Ti}∩S.

The following result was proved in [Col08]:

Theorem 12. The controllable set operator ctrl : C(X ,U ,V;X)×O(X)×O(X)→ O(X)
is computable.

5 Conclusions

In this paper, we have developed a computable type theory sufficient for allowing the anal-
ysis of dynamic systems. Further extensions involve to infinite-dimensional systems and
stochastic systems, which require additional work to prove computability of the evolution.

Additional work is also required to understand the function space topologies involved, es-
pecially the topology on O(C(X;Y)).

Acknowledgement The author would like to thank Martı́n Escardó for useful advice and
suggestions regarding function space topologies, and the anonymous referees.

References

[AC84] Jean-Pierre Aubin and Arrigo Cellina. Differential inclusions, volume 264 of Grundlehren der
Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1984.

[Bau00] Andrej Bauer. The Realizability Approach to Computable Analysis and Topology. PhD thesis,
Carnegie Mellon University, 2000.

[BB85] Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1985.

[BP03] Vasco Brattka and Gero Presser. Computability on subsets of metric spaces. Theoretical Comp.
Sci., 305:43–76, 2003.

[Bra98] Vasco Brattka. Recursive and Computable Operations over Topological Structures. PhD thesis,
FernUniversität Hagen, 1998.

[BW99] Vasco Brattka and Klaus Weihrauch. Computability on subsets of Euclidean space. I. Closed and
compact subsets. Theoret. Comput. Sci., 219(1-2):65–93, 1999. Computability and complexity in
analysis (Castle Dagstuhl, 1997).

[CG08] Pieter Collins and Daniel Graça. Effective computability of solutions of ordinary differential equa-
tions — the thousand monkeys approach. In Proceedings of the 5th International Conference on
Computability and Complexity in Analysis (CCA’08), Electronic Notes in Theoretical Computer
Science, pages 53–64. Elsevier, Amsterdam, The Netherlands, 2008.

[Col05] Pieter Collins. Continuity and computability of reachable sets. Theoret. Comput. Sci., 341(1-
3):162–195, 2005.

[Col08] Pieter Collins. Computability of controllers for discrete-time semicontinuous systems. In Proceed-
ings of the 18th International Symposium on the Mathematical Theory of Networks and Systems,
Blacksburg, Virginia, 2008.

[DM70] J. W. Daniel and R. E. Moore. Computation and Theory in Ordinary Differential Equations. W. H.
Freeman & Co Ltd, 1970.

[EH02] Martı́n Escardó and Reinhold Heckmann. Topologies on spaces of continuous functions. In Pro-
ceedings of the 16th Summer Conference on General Topology and its Applications (New York),
volume 26, pages 545–564, 2001/02.

[ELS04] Martı́n Escardó, Jimmie Lawson, and Alex Simpson. Comparing Cartesian closed categories of
(core) compactly generated spaces. Topology Appl., 143(1-3):105–145, 2004.

[Gab07] Grzegorz Gabor. Continuous selection of the solution map for one-sided Lipschitz differential
inclusions. Nonlinear Anal., 66(5):1185–1197, 2007.

[GHK+03] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. Continuous lattices
and domains. Cambridge University Press, 2003.

[Joh02] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1, volume 43 of
Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, 2002.

[PVB96] Anuj Puri, Pravin Varaiya, and Vivek Borkar. Epsilon-approximation of differential inclusions. In
Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, volume
1066 of LNCS, pages 362–376, Berlin, 1996. Springer.

[Ruo96] K. Ruohonen. An effective Cauchy-Peano existence theorem for unique solutions. Internat. J.
Found. Comput. Sci., 7(2):151–160, 1996.

[Sch02] Matthias Schröder. Admissible Representations for Continuous Computations. PhD thesis, Fach-
bereich Informatik, FernUniversität Hagen, 2002.

[Tay08] Paul Taylor. A lambda calculus for real analysis. http://www.monad.me.uk/, 2008.
[Wei00] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS Series.

Springer-Verlag, Berlin, 2000. An introduction.

