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PREFACE 

In this treatise we mainly discuss supercompact spaces and super

compact superspaces of arbitrary topological spaces. The class of super

compact spaces was defined by DE GROOT [54]. This class naturally arose 

from investigations of DE GROOT & AARTS [57] on complete regularity and 

compactification theory. 

The last years many people became interested in this part of the 

mathematical inheritance of DE GROOT (for a beautiful exposition of 

i 

DE GROOT'S topological works see BAAYEN & MAURICE [10] or BAAYEN [8]). 

Many conjectures of DE GROOT are proved now, new techniques have been 

developed and it is the author's expectation that this is still the begin

ning. Some of the best-results of the last years are that 

a) every compact metric space is supercompact (cf. STROK & SZYMANSKI [116]); 

b) aJN is not supercompact (cf. BELL [14]); 

c) every compact metric space is regular supercompact (cf. VAN DOUWEN [42]); 

d) supercompact spaces can be characterized by means of interval structures 

(cf. SCHRIJVER [24],[81]); 

e) every connected space with a binary normal subbase has the fixed point 

property for continuous functions (cf. VAN DEVEL [118]). 

This treatise consists of five chapters. In chapter Owe present some 

notational conventions, some definitions and some simple results which are 

collected for easy reference throughout the remaining part of this mono

graph. Chapter I is captioned "supercompact spaces"; here we discuss super

compact spaces in general. The next chapter deals with superextensions, 

which are natural supercompact superspaces of topological spaces. Super

extensions are constructed in about the same way as Wallman compactifica

tions; we regard superextensions as (generalized) Wallman spaces. Chapter 

III contains the main results; among others, we show that the superexten

sion of the closed unit interval is homeomorphic to the Hilbert cube, which 

proves a conjecture of DE GROOT [59]. The results of chapter IV deal with 

compactification theory. A final chapter is added to give a survey of some 

recent results. 

Throughout this treatise, SCHRIJVER's interval structures are used 

extensively. Many good ideas are also taken from VERBEEK [119]. 
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CHAPTER 0 

BASIC CONCEPTS 

This short chapter contains some notational conventions and some 

simple facts for easy reference. In [A] some general remarks about sub

bases are made. Then, in [BJ, [c] and [D] we collect some notions from 

topology; our notation is standard, cf. DUGUNDJI [44], ENGELKING [48]. 

[A] General remarks about subbases 

In this treatise all topological spaces under discussion are assumed 

to be T1 . If in a statement we write Hausdorff then this is to indicate 

that it is used essentially in the proof of the statement. 

A compactification of a topological space Xis a compact Hausdorff 

space ax in which X can be densely embedded. At two places we deviate 

from this convention, namely in the notes following theorem 2.2.4 and in 

corollary 2.2.6. 

We often deal with subbases. A collection of closed subsets Sofa 

topological space Xis called a closed subbase provided that for each 

closed set Ac X and for each point xi A there is a finite F c S such 

that xi UF ~ A. If Sis a closed subbase for X then U = {X\S s E S} 

is called an open subbase. In this treatise "subbase" will always mean 

"closed subbase". 

0.1. LEMMA. Let X be a compact topological space and let S be a collection 

of closed subsets of X such that for all distinct x,y EX there is ·an 

SES such that xi Sandy E intX(S). Then Sis a subbase for X. 

PROOF. Let A be a closed subset of X and let x E X\A. For each a EA let 

Sa ES such that xi Sa and a E intX(Sa). By the compactness of X there 

is a finite F c A such that Ac UaEF Sa. Clearly xi UaEF Sa. D 

Let S be a collection of subsets of a set X. We will write v.S for 
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the family of finite unions of elements of Sand A,S for the family of 

finite intersections of elements of S. The family A.v.S = V.A.S is closed 

both under finite intersections and finite unions; it is called the ring 

generated by S. If Xis a topological space then Sis called a separating 

ring provided that Sis a subbase and that S = A.v.S. In addition, Sis 

called normal provided that for all s 0 ,s 1 ES with s 0 n s 1 =¢there are 

so,si ES with soc So\Si, s1 c Si\So and sou Si= x. A normal base is a 

normal separating ring; a normal subbase is a subbase which moreover is 

normal. 

0.2. LEMMA. Let X be a compact topological space and let S be a subbase 

for X. Then for all disjoint closed sets A0 ,A1 c X there are disjoint 

T0 ,T1 E A.v.S such that Ai c Ti (i E {0,1}). 

PROOF. Let F :={TE A.v.S AO c T}. Then, since Fis closed under finite 

intersections, the compactness of X implies that some member F0 E F does 

not intersect A1 • Similarly one can choose F1 E A.v.S such that A1 c F1 

and F 1 n F0 = ¢. □ 

0. 3. COROLLARY. Let X be a compact topological space and let S be a sub

base for X which is closed under finite intersections. Then for all clopen 

subsets Ac X there is a finite FA c S such that A= UFA. D 

A subbase S for a topological space Xis called binary provided that 

forall L C s with nL ¢ there are LO,L1 E L with Lo n L1 ¢. In addition , 

the subbase Sis called a T1-subbase if for all X E X and s ES with 

X f_ S there is an s 0 e S with XE SQ and s 0 n s ¢. 

0.4. LEMMA. A binary subbase is a T 1-subbase. 

PROOF. Let S be a binary subbase for x. Let SES and let x EX such that 

xi S. Since Xis a T1-space, there is an F c S such that {x} nF. Then 

nF n S =¢and consequently, by binarity of S, there is an FE F such that 

F n S = ¢. 0 

A space which admits a binary subbase is called supercompact. The 

proof of the following simple lemma is left to the reader. 

0.5. LEMMA. 

(i) Any product of supercompact spaces is supercompact; 



(ii) a space X admits a binary (normal) subbase iff it admits a binary 

(normal) subbase closed under arbitrary intersections. D 

The following leDDDa is used frequently in the sequel. 

0.6. LEMMA. Let S be a normal T 1-subbase for x. Then for all distinct 

x0,x1 € X there are s0 ,s1 e S such that x0 € s0\s1 , x1 € s1\s0 and 

s0 u s1 x. 

PROOF. Obvious. D 

[BJ Some conventions 

3 

A cardinal number is an initial ordinal number, and an ordinal number 

is the set of all smaller ordinal numbers; the symbol w denotes the least 

infinite cardinal and e is 2w. If we want to index a set X of cardinality 

K we usually write X = {xa I a e K} or X = {xa 

A is indexed as A= {a I a€ w} or as A= {a a n 

a< K}. A countable set 

n e JN} ; here lN denotes 

the set of natural numbers. The cardinality of a set Xis denoted by IXI; 

its powerset by P(X). 

The domain of a function f is dom(f). If A and Bare sets, then AB 

is the set of all functions from A to B; recall that each f e AB is a sub

set of Ax B. If f e AB then if C c A then f ~ C denotes the restriction of 

f to C. So if f ,g e AB then f c g means f = g ~ dom(f). 

If Xa (a e K) are sets then TTaeK Xa denotes their cartesian product. 

In addition, X~ or Xw is the product of countably many copies of x. 

Let S be a collection of subsets of a set X; then for any Ac X we 

write Sn A= {s n A I s e S}. 

[C] Some definitions 

We recall some definitions. 

(a) For any topological space x, let 

C(X) := {f € XlR f is continuous}; 

* C (X) := {f € C(X) f is bounded}; 

C(X,I) := {f € * C (X) f[X] c I= [0,1]}. 
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* (b) If Y c X then Y is called C -embedded in X provided that for any 

* * f EC (Y) there is a g EC (X) such that g ~Y = f. 

(c) A zeroset in Xis a set of the form {x EX I f(x) = O} with f E c*(x). 

A cozeroset is the complement of a zeroset. 

Define Z(X) := {Z c X I z is a zeroset}. It is well known that Z(X) 

is a normal base iff Xis a Tychonoff space and that Z(X) is closed 

under countable intersections. 

(d) An F-space (cf. GILLMAN & JERISON [52]) is a space in which every 

cozeroset is c*-embedded. It is known that 8X\X is an F-space if Xis 

a noncompact locally compact and a-compact topological space (cf. 

GILLMAN & JERISON [52]). 

(e) A pseudocompact space is a space for which every real valued contin

uous function is bounded. 

(f) IF Ac x then aA denotes the boundary of A, i.e. aA 

(g) Kcontinuum is a compact connected Hausdorff space. 

(h) A Peano continuum is a compact connected and locally connected metriz

able space. It is well known that the class of Peano continua coincides 

with the class of continuous images of the closed unit segment [0,1]. 

(i) The Hilbert cube I 00 is the topological product of countably many copies 

of the closed unit segment I= [0,1]. 

A Hilbert cube is a topological space which is homeomorphic to the 

Hilbert cube. 

Q denotes the countably infinite product of copies of [-1,1]. Clearly 

Q is a Hilbert cube. Sometimes we will call Q also the Hilbert cube. 

The pseudo-boundary B(Q) of the Hilbert cube Q is {x E QI 3i E IN: 

Ix. I = 1}. 
1 

A pseudo-boundary is a subset A of the Hilbert cube Q for which there 

is an autohomeomorphism ~= Q ➔ Q such that ~[A]= B(Q). 

The pseudo-interior of Q is the complement of B(Q) . 

. A pseudo-interior is the complement of a pseudo-boundary. It is known 

that a pseudo-interior of Q is homeomorphic to i 2 , the space of all 

square summable sequences in lR (cf. ANDERSON [3]). 

(j) An AR (Absolute Retract) is a space which is homeomorphic to a retract 

of Q. 



(k) If (Y,d) is a compact metric space and if f,g: X + Y are continuous, 

then the distance between f and g is defined by 

d(f,g) = sup{d(f(x) ,g(x)) I x E x}. 

(1) Let X be a topological space. We denote by 2X the collection of non

void closed subsets of X. For all nonvoid Ai c X Ci s n) define 

A A A 2X by C Q~ 1••••• n> C 

5 

<A0 ,A1, ... ,An> :={BE 2x I B c UiSn Ai and B n Ai,;,¢ Ci s n}. 

As a (closed) subbase for a topology on 2X we take the collection 

{<B> I BE 2x} u {<s,x> I s E 2x}. 

With this topology 2X is called the hyperspace of x. The space 2X is 

compact iff Xis compact (cf. MICHAEL [75]) and moreover 2X contains 

a homeomorph of X; the mapping i: X ➔ 2X defined by i(x) := {x} is 

easily seen to be an embedding. The spaces X and i[X] are often 

identified. 

If f: X ➔ Y is a closed continuous mapping, then there is a natural 

extension 2f: 2X-+ 2Y off defined by 

2f (A) := f[A]. 

This mapping is easily seen to be continuous. 

[D] Set theoretic axioms 

In this treatise we assume the axiom of choice; the only exception is 

made in section 2.1. 
w The Continuum Hypothesis (CH) states that 2 = w1 (the first uncount-

able cardinal); in section 2.8 only we have some results depending on CH. 

Martin's axiom (MA) (cf. MARTIN & SOLOVAY [74]) states that no compactccc 

Hausdorff space is the union of less than c nowhere dense sets. Clearly 

CH implies MA; however MA is weaker than CH (cf. SOLOVAY & TENNENBAUM [108]) 

and in particular it is consistent to assume MA and the negation of the 

Continuum Hypothesis (MA + 7CH). Results depending on MA are to be found 

in section 1.2 and section 2.8; MA +7CH is used in example 2.8.28 only. 
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CHAPTER I 

SUPERCOMPACT SPACES 

The class of supercompact spaces - first introduced by DE GROOT [54] -

is easy to define, but in general it is hard to decide whether or not a 

certain space belongs to it. A topological space is called supercompact if 

it possesses a binary subbase for its closed subsets where a collection of 

subsets Sofa set Xis called binary if for each subsystem Mc S with 

nM = ¢ there are M0 ,M1 E M_ such that M0 n M1 = ¢. Equivalently a space X is 

supercompact if there is a subbase for its closed sets (a closed subbase) 

such that each linked subsystem (a subsystem any two members of which meet) 

has a nonvoid intersection. Supercompactness of course can also be defined 

in a dual form: a space Xis supercompact iff there is a subbase U for its 

open sets such that each covering of X by elements of U contains a subcover 

consisting of at most two elements of U. 

Clearly, by the lemma of ALEXANDER, each supercompact space is compact. 

In addition the class of supercompact spaces is closed under products. 

However closed subspaces of supercompact spaces need not be supercompact 

(cf. BELL [14]) and it is unknown whether Hausdorff continuous images of 

supercompact Hausdorff spaces are supercompact (VERBEEK [119] has given 

a simple example of a nonsupercompact T1 space which is the continuous 

image of a supercompact space). 

Hausdorff continuous images of supercompact Hausdorff spaces are 

natural generalizations of dyadic spaces (Hausdorff continuous images of 

generalized Cantor discontinua). It is known that 

and 

every compact metric space is supercompact (cf. STROK & SZYMA..'\/SKI 

[116]) 

if ax is the continuous image of a supercompact Hausdorff space 

then Xis pseudocompact (cf. cor.1.1.7). 
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There are supercompact spaces that are not dyadic but we do not have an example of 

a dyadic space that is not supercompact. As a consequence of our results 

a compact infinite Hausdorff space in which no sequence converges is not 

the continuous image of a supercompact Hausdorff space. Thus BIN and 

SIN\lN are not supercompact. We also present a "small" nonsupercompact 

compact Hausdorff space: there is a separable first countable compact 

Hausdorff space that is not the continuous image of a supercompact Hausdorff 

space (cf. also VAN OOUWEN & VAN. MILL [43]). 

As noted before STROK & SZYMANSKI [116] have shown that every compact 

metric space is supercompact (a simpler proof of this fact was given recent

ly by VAN OOUWEN [42]). This theorem implies that every separable metric 

space admits at least one supercompact compactification. It seems reasonable 

to try to generalize this corollary for a larger class of spaces, for example, 

for the class of all separable semi-stratifiable spaces. Unfortunately this 

is not possible: we will show that Martin's axiom implies that there exists 

a countable stratifiable space no compactification of which is supercompact. 

Our example also shows that not every countable space admits a supercompact 

compactification, a result which is of independent interest. 

DE GROOT [55], [56] and DE GROOT & SCHNARE [60] demonstrated that 

certain classes of supercompact topological spaces can be characterized by 

means of a binary subbase of a special kind. These results now can be 

derived using a more general method. We also discuss other classes of 

topological spaces which can be characterized by means of special binary 

subbases. As an application, using a result of ANDERSON [2], we give a 

new internal characterization of the Hilbert cube Q (cf. also VAN MILL & 

SCHRIJVER [81]). 

An interesting subclass of the class of supercompact spaces consists 

of those spaces which possess a binary subbase which also is normal (two 

disjoint subbase elements are separated by disjoint complements of subbase 

elements). Such spaces are surprisingly nice, for example in this class of 

sp~ces connectedness implies local connectedness (cf. VERBEEK [119]) and 

(generalized) arcwise connectedness (see section 1.5) and the fixed point 

property for continuous functions (cf. VAN DEVEL [118]), while metrizabil

ity and connectedness imply contractibility and local contractibility (see 

section 1.5). Moreover such a space is a retract of the hyperspace of its 

nonvoid closed subsets and a retract of its superextension. 
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1.1. Supercompact spaces 

In this section we study "topological properties" of Hausdorff contin

uous images of supercompact Hausdorff spaces. Of course, being the contin

uous image of a supercompact Hausdorff space is itself such a topological 

property. However we want properties which are easier to recognize. As a 

consequence of our results it will follow that a compact Hausdorff space 

in which no sequence converges is not the continous image of a supercompact 

Hausdorff space. Several examples will be given. The results of this sec

tion were obtained in collaboration with E. VAfJ DOUWEN, cf. [43]. 

1.1.1. Let X be a supercompact Hausdorff space which admits a continuous 

mapping, say f, onto the topological space Y. Let S be a binary closed 

subbase for X. Without loss of generality assume that Sis closed under 

arbitrary intersection. For Ac X define I(A) c X by 

Notice that clX(A) c I(A), since each element of Sis closed, that I(I(A)) = 

= I(A) and that I(A) c I(B) if Ac B, for all A,B c X (the operator I defined 

in this way will play an important role in our investigations; see sections 

1.3, 1.5, 2.5, 2.6, 2.7, 2.10, 3.1, 3.2 and 3.4). 

1.1.2. LEMMA. Let p EX. If U is a neighborhood of p and if A is a subset 

of X with p E clX(A), then there is a subset B of A with p E clx(B) and 

I (B) C u. 

PROOF. Since Xis regular, p has a neighborhood V such that clx(V) CU. 

Choose a finite F C S such that clx(V) C UF C u (lemma 0.2). Now F is 

finite, and A n V C UF, and p E clx(A nv); hence there is an S E F with 

p E clx(AnVnS). Let B :=An V n s. Then p E clx(B), and BC A, and 

I(B) Cs C UF Cu. □ 

1.1:3. DEFINITION. If Tis a subspace of Y, a family A of subsets of Y is 

called a network for Tin Y, if for each p ET and each neighborhood U of 

pin Y there is an A EA with p EA c U (if T = Y, then A simply is a net

work for Y). 

1.1.4. LEMMA. Let Y be a Hausdorff space which is a continuous image of a 

supercompact Hausdorff space. If K is any countable infinite subset of Y, 
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then the subspace 

E := {yEY y E cly(K\{y}), and no nontrivial sequence 

in Y converges toy} 

of Y has a countable network in Y. 

PROOF. Let X be a supercompact Hausdorff space X with binary subbase S; 

without loss of generality we may assume that Sis closed under arbitrary 

intersection. Suppose there is a continuous surjection f: X + Y. Choose 

any countable subset J of X such that f[J] = K. Since J has only countably 

many finite subsets, the family 

A:= {f[I(F)] I Fis a finite subset of J} 

is countable. We claim that it is a network for E in Y. 

Let y EE be arbitrary, let Ube any neighborhood of yin Y, and let 

J* := J\f-l[{y}J. 

Since f is a closed map (Y is Hausdorff), and f[J*] = K\{y}, and 

* . y E cly(K\{y}), there ip an x E clX(J) with f(x) = y. Then lemma 1.1.2 

implies that there is a B c J* such that x E clx(B) and I(B) c f- 1[u]. 

We will show that there is a finite F c B such that y = f(x) E f[I(F)]. 

Since y and U are arbitrary, and f[I(F)] c f[I(B)] c U, it would follow 

that A is a network for E in Y. 

Enumerate Bas {bk k E w}, and for each n E w define Zn and Tn by 

CLAIM. There is an n0 E w such that f[Zn] = {y} for all n ~ n0 . 

Indeed, first observe that nb I({x,b}) = {x}. Evidently x E I({x,b}) 
EB 

for all b EB. Lett E X\{x} be arbitrary. By lemma 1.1.2 there is a 

Cc B such that x E clX(C) and I(C) c X\{t}. Choose any b EC. Then 

ti I({x,b}), since {x,b} c clx(C) c I(C), which implies that 

I({x,b}) c I(I(C)) =I(C). 

To proceed with the proof of the claim, notice that, since x E clx(B) c 

cI(B), it follows from the fact that nb I({b,x}) = {x} that n T = {x}. 
EB nEw n 
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But Zn c Tn for each n € w, and {Tn n € w} is a decreasing collection of 

closed sets in a compact space, hence 

if Vis any neighborhood of x in X, then there is an 

m0 E w such that zk c v for all k ~ m0 . 

Now assume the claim to be false. Then for each k € w there is a z(k) ~ k 

with f[Zz(k)] r {y}. But Zn r ~ for all n € w since Sis binary (this is 

the only point in the proof where ·we use the fact that Sis binary). Con

sequently, for each k € w we can choose a yk E f[Zz(k)]\{y}. Then the 

sequence <yk>k converges toy. Indeed, let Ube any neighborhood of y = f (x) • 
€W -1 

Then there is an m0 E w such that zk c f [u] for all k ~ m0 • Since z (k) ~ k 

for all k € w, it follows that yk € U for all k ~ m0 • Since yk r y for all 

k E w, this contradicts y EE. 

Now define F := {bk I ks n0}, where n0 is as in the claim. Then Fis 

a finite subset of J such that y € f[I(F)] cu. D 

Now we can formulate the main result of this section. 

1.1.5. THEOREM. Let Y be a Hausdorff space which is a continuous image of 

a supercompact Hausdorff space, and let K be a countably infinite subset 

of Y. Then 

(a) at least one cluster point in K is the limit of a nontrivial convergent 

sequence in Y (not necessarily in K), and 

(b) at most countably many cluster points of Kare not the limit of some 

nontrivial convergent sequence in Y. 

~- Let Y and K be as in theorem 1.1.5 and let Ebe as in lemma 1.1.4. 

We will first show that Eis countable. Let A be a countable network for 

E in Y. In order to show that Eis countable it suffices to show that for 

each p EE there is a finite F c A such that nF 
p p 

{p}, since A as only 

countably many finite subfamilies. 

, Let p € E be arbitrary. List {A€ A I p € A.} as {An I n € w}. We claim 

that n.< Ai= {p}-·for some n E w. For assume not. Then we can pick for each 
l.-n 

n E w cm an E cniSn Ai)\{p}. Since each.neighborhood of pin Y contains 

some An, it follows that the sequence <an>nEw converges top. Since an r p, 

for all n E w, thi.s _contradicts p € E. 

We next show that (a) holds. Suppose not. Then cly(K) =Ku E, hence 

cly(K) is countable. But each compact countable Hausdorff space is metriz-
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able, hence each cluster point of K is the limit of a nontrivial convergent 

sequence of points in K. Contradiction. D 

1.1.6. COROLLARY. (:llN, and (:llN\lN and (:lJR\JR, or, more generally, any infinite 

cowpact Hausdorff F-space, or, yet more generally, any infinite compact 

Hausdorff space in which no sequence converges, cannot be a continuous image 

of a supercompact Hausdorff space. 

1.1.7. COROLLARY. If (:lX is the continuous image of a supercompact Hausdorff 

space, then Xis pseudocompact (cf. also M. BELL [14]). 

PROOF. If Xis not pseudocompact, there is a continuous f: (:lX + JR such that 

f(x) > 0 for all x € X, while f(x) = 0 for some x € (:lX\X. Let 
-1 

1/n; y := f [(0, 00)] and for each n 2: 1 pick pn € Y with f(pn) < let 

p := {pn I n2:l}. Then Y is er-compact, and p is a countably infinite subset 

of (:lX all cluster points of which are in (:lX\Y. In view of theorem 1.1.5 it 

now suffices to observe that no point of (:lX\Y is the limit of a nontrivial 

convergent sequence in (:lX. For completeness sake, we give the (known) proof. 

Suppose that p € (:lX\Y is the limit of a nontrivial convergent sequence. 

Then there is a countably infinite D c (:lX such that (*) every neighborhood 

of p contains all but finitely many points of D, while also pd D. Then 

Dis closed and discrete in Du Y. But Du Y is normal, being er-compact, 

and (:l (Du Y) = (:lX since X c D u Y c (:lX; hence D is c* -embedded in (:lX. This 

contradicts (*). D 

Theorem 1.1.5 suggests some questions we can not answer at the moment. 

1.1.8. QUESTION. Let Y be a Hausdorff continuous image of a supercompact 

Hausdorff space (or even a supercompact Hausdorff space). If K is a count

able subset of Y, then is every cluster point of K the limit of a nontrivial 

convergent sequence in Y? Equivalently, is a point of Y the limit of a non

trivial convergent sequence iff it is a cluster point of a countable subset 

of' Y? 

1.1.9, QUESTION. Is there a nonsupercompact Hausdorff space which is a con

tinuous image of some supercompact Haudorff space? 

We do not even know the answer for irreducible maps or for retrac

tions. Indeed, we do not even know if Xx Y supercompact implies that X and 



Y are supercompact. 

1.1.10. QUESTION. Is there a nonsupercompact Hausdorff space X and a 

Hausdorff space Y such that X x Y is supercompact? 
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We know that the answer to the above question is affirmative if we 

replace "supercompact" by "having a normal binary subbase". SZYMANSKI [117] 

recently has given an example of a (compact metric) AR which admits no 

binary normal subbase. However, by a recent result of EDWARDS [45], each 

AR is a Hilbert cube factor, that is a space whose product with the Hilbert 

cube is homeomorphic to the Hilbert cube. Hence SZYMANSKI's [117] example 

multiplied with the Hilbert cube admits a binary normal subbase. 

With respect to question1.1.9we only have the information that 

VERBEEK's [119] example cited in the introduction of this chapter is the 

continuous image of a supercompact Hausdorff space. 

Corollary 1.1.7 generalizes the fact that Xis pseudocompact if BX is 

dyadic (recall that a dyadic space is a Hausdorff continuous image of some 

product of a family of two-point discrete spaces). Corollary 1.1.6 was also 

(essentially) known for dyadic spaces, cf. ENGELKING & PELCYNSKI [50], 

footnote 2; see also ENGELKING [47] theorem 1.5. This suggests which other 

theorems on dyadic spaces generalize. None of the theorems on dyadic spaces 

recorded in EFIMOV & ENGELKING [46], ENGELKING [47] or ENGELKING & PELCYNSKI 

[SO] which are not related to corollary 1.1.6 or 1.1.7 can be generalized 

for Hausdorff continuous images of supercompact Hausdorff spaces, see the 

examples below, with the possible exception of the theorem that closed 

G0-subspaces of dyadic spaces are dyadic ([SO], theorem 2). This leads to 

the following question. 

1.1.11. QUESTION. Is a closed G0-subspace of a supercompact Hausdorff space 

supercompact? a continuous image of a supercompact space? 

We now sketch some examples. Note that the first three of our examples are 

compact linearly orderable spaces, while all four are supercompact. 

1.1.12. EXAMPLES. (a) The Alexandroff double arrow line A, i.e. 

[0,1] x {0,1}\{<0,0>,<0,1>}, topologized by the lexicographic order. 

If TT: A+ [0,1] is the "projection", then TT is a continuous surjec

tion, yet there is no (closed) metrizable Mc A with TT[M] = [0,1], cf. 

[SO], cor. on p.56. Also, A is a nonmetrizable supercompactification of 



14 

a metrizable space (any countable dense subspace), cf. [50] appendix, 

and A is first coutanble but not second countable, cf. [46], theorem 4. 

(b) w1 + 1, the space of all ordinals less than or equal to w1 • 

The point w1 is not the limit of a nontrivial convergent sequence in 

w1 + 1, cf. [47], cor. 2 to theorem 1.5. (Note however that theorem 1.1.5 is 

a partial generalization of the theorem that every non-isolated point of 

a dyadic space is the limit of a nontrivial convergent sequence.) 

(c) An Aronszajn line. 

An Aronszajn line, L, can be constructed from an Aronszajn tree in the 

same way one constructs a Souslin line from a Souslin tree, cf. RUDIN [97]. 

It is known that there is a collection {u a< w1} of dense open sets in 
a 

L such that u :::, us if a< 13, and n u !21- So [46] theorem 3 does not 
a a<w 1 a 

generalize. 

(d) The Alexandroff double D of the product P = {0,1}C (see ENGELKING [49]). 

The underlying set of Dis P x {0,1}. Points of P x {O} are isolated 

in D. A basic neighborhood of <x,1> has the form U x {0,1}\{<x,O>}, where 

U is a neighborhood of x in P. 

It is a straightforward exercise to show that Dis supercompact. Let 

B be any closed subspace without isolated points of P which is not the 

continuous image of a supercompact Hausdorff space, e.g. a homeomorph of 

SIN\JN. Then Bx {0,1} is the closure of the open subset Bx {O} of the 

supercompact space D, yet it is not supercompact, not even the continuous 

image of a supercompact Hausdorff space, since the "natural" map from 

Bx {0,1} to Bis continuous. 

1.1.13. Examples of compact Hausdorff spaces which are not supercompact, 

obtained from theorem 1.1.5, are not first countable and have cardinality 

at least 2c. This suggests two questions: are first countable compact 

Hausdorff spaces supercompact? and: are "small" compact Hausdorff spaces 

supercompact? These questions are answered in the negative by examples 

1:1.17 and 1.1.18. 

1.1.14. Let a be an ordinal less than or equal tow. We are interested in 
a · a 

2. An element of 2 can be considered to be an a-sequence of O's and 1's. 

As usual we denote U n2 the set of finite sequences of O's and l's, by n<w 
~2. For each f € w2 we define 

I (f) := {g € ~2 J g c f}, 



the set of initial sequences off; I(f) can be seen as the set of finite 

approximations to f. It is clear that 

(1) if f,g E w2 are distinct, then I(f) n I(g) is finite. 
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In other words, {I(f) I f E w2} is an almost disjoint collection of subsets 

of the countable set ~2. 

The set T := ~2 u w2, partially ordered by inclusion, is a tree (in 

the sense of JECH [66]), the so-called Cantor tree, cf. RUDIN [98]. We give 

T the usual tree topology by using the set of all open intervals as a base. 

To be specific: points of ~2 are isolated, and a basic neighborhood of 

f E w2 contains f and all but finitely many points of I(f). The topological 

space Tis first countable, and every subspace is locally compact, by (1). 

The set w2 can be viewed as a product of countably many two-point 

discrete spaces. Under the product topology w2 is nothing but the Cantor 

discontinuum, a basis for this topology is 

{{f E w2 I f ~ g} I g E ~2}, 

as the reader can easily verify. We start with a simple but useful lemma 

on the almost disjoint family {I(f) I f E w2}. 

1.1.15. LEMMA. Let G be any uncountable subset of w2. Then there are a 

g E G and an infinite H c G\{g} such that I(h) n I(h') c I(g) for any 

two distinct h,h' EH (then also (I(h) u {h}) n (I(h') u {h'}) c I(g)). 

PROOF. In this proof we provide w2 with the topology of the Cantor dis

continuum. Then G is an uncountable separable metric space, hence we can 

find a nonisolated point gin G. Basic neighborhoods of gin G have the 

form 

{h E G 3f E I(g) n n2 f Ch}, n € W 

hence we can find H = {h 
n 

n E w} c G\{g} such that 

min{k E w J g(k) f hn(k)} < min{k E w I g(k) f hn+l (kl} 

for all n E w. Then g and Hare as required. D 

This lemma implies the following 
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1.1.16. PROPOSITION. Let L c w2 be uncountable. Then no Hausdorff compac

tification of the subspace ~2 u L of Tis the continuous image of a super

compact Hausdorff space. 

PROOF. Denote the subspace 1!12 u L of T by z. Let aZ be any Hausdorff com

pactification of Z. Let X be a supercompact Hausdorff space with binary 

subbase Sand assume that there is a continuous surjection ~= X + aZ. 

Also assume that Sis closed under arbitrary intersection. 
. -1 

For each g € ~2 choose an a(g) € ~ [{g}]. If f € L then the set 

I(f) u {f} is open in Zand compact, hence it is clopen in aZ. Consequent-
-I ly ~ [I(f) u {f}] is clopen in X and hence it is the union of some finite 

subfamily of S (cf. lemma 0. ) • It follows that for each f e L we can choose 

an S(!) e S such that 

(2) S(f) c ~-l[I(f) U {f}] and S(f) n {a(g) I g e I(f)} is infinite. 

Since L is uncountabl~ and 1!>2 is countable it follows that for some p € ~2 

the set 

G = {f €LI a(p) € S(f)} 

is uncountable. By lemma 1.1.15 there is a g € G and an infinite H c G\{g} 

such that 

(3) (I(h)u{h}) n (I(h')u{h'}) C I(g) for distinct h,h' € H. 

Since (I(a)u{a}) n (I(b)u{b}) is finite for distinct a,b e w2 it follows 

from (2) and (3) that 

(4) {S(h)\~-1[I(g) u{g}] I he H} is a disjoint collection of 

nonempty subsets of X. 

Since ~-1:I (g) u {g} J is a clopen subset of X, so is its complement in x. 

I{ence X\(~-1[I(g) u {g}]) is the union of a finite subfamily of S. It now 

follows from (4) that there is an S € S with 

(5) S n cC1[I(g) u {g}]) = ¢ 

such that there are distinct h,h' € H such that S intersects both S(h) 

and S(h'). But S(h) and S(h') intersect, since a(p) € S(h) n S(h'), con

sequently {S,S(h) ,S(h')} is linked. However, it follows from (2), (3) and 



(5) that 

s n 1;-1[(I(h)u{h}]) n (I(h')u{h'})] 

c Sn /;-l[I(g)] 

¢. 

This is a contradiction, since Sis binary. D 
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REMARK. This lemma is similar to the proof in BELL [14]. It was discovered 

independently, but only after learning about BELL's result (i.e. not every 

compact Hausdorff space is supercompact). 

Now we can describe the examples promised in 1.1.13. 

1.1.17. EXAMPLE. A separable first countable compact Hausdorff space which 

is not the continuous image of a supercompact Hausdorff space. 

We will describe a first countable Hausdorff compactification of 

T = ~2 u w2. Then proposition 1.1.16 implies that this compactification is 

the desired example since it is not the continuous image of a supercompact 

Hausdorff space. The basic idea is to identify the points of the subset 

w2 of T with the isolated points of the Alexandroff double (cf. ENGELKING 

[49]) of the Cantor discontinuum, in the "natural way". It will be tech

nically convenient to change the underlying set of T to {O} x ~2 u 

{1} x w2, and the underlying set of the Cantor discontinuum to {2} x w2, 

if only to tell the two w2's apart. 

Let K be {O} x ~2 u {1,2} x w2. We topologize K by assigning to each 

x €Ka neighborhood base {U(x,n) I n € w}. For <i,k> € K define r,.,,} if i O; 

U(<i,f>,n) = {<i,f>} u {<O,f~k> I k ~ n} if i 1; 

{ < j , g> € K I j € 3 , fln c g}\U(<l ,f>) ,0) if 1 2. 

The straightforward check that this is a valid neighborhood assignment 

for a Hausdorff topology is left to the reader. Note that the subspace 

{1,2} x w2 of K is the Alexandroff double of the Cantor discontinuum, and 

that {O} x ~2 u {1} x w2 is a dense subspace of K which is homeomorphic 
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to T. Hence if K is compact proposition 1 .1 .16 will imply that K cannot be 

the continuous image of a supercompact Hausdorff space. 

It remains to show that K indeed is compact. For <i,f> EK let 

n(i,f) E w be arbitrary. We have to show that the open cover 

U = {U(<i,f>,n(i,f)) I <i,f> EK} 

of K has a finite subcover. Since the subspace {2} x w2 (which is homeo

morphic to the Cantor discontinuuin) is compact, there are for some p E w 

functions f 0 , •.. ,fp E w2 such that 

u0 = { u c < 2, f. > , n c 2, f. i i I o s i s p} 
J. J. 

covers {2} x w2. Then u0 covers {1} x w2, with possible exception of the 

points <1,fi>, 0:,; i:,; p. Let 

ul = {U(<l,f.>,n(l,f.)) I OSiSp} 
]. ]. 

and define m by 

m := max{n(j,f.) I j € {1,2}, OSiSp}. 
]. 

A straightforward check shows that U0 u U1 covers all points of K with 

possible exception of the points of the finite set Uk 2k. It follows <m 
that Uhas a finite subcover. D 

1.1.18. EXAMPLE. A separable compact Hausdorff space with w1 points which 

is not the continuous image of a supercompact Hausdorff space. 

Choose any subset L of w2 with cardinality w1 • Then the subspace 

S = ~2 u L of Tis a locally compact space with w1 points, hence the one

point compactification of S has all properties required. D 

1.1.19. We now show that examples 1.1.17 and 1.1.18 are close to being 

s~percompact. Note that if Xis compact, then any open base for X consist

ing of clopen sets is a closed subbase for X. 

1. 1. 20. PROPOSITION. Let E be either example 1. 1 .1 7 or example 1 .1 .18, 

and let I be the (countable) set of isolated points of E. Then 

(a) E\I is supercompact; 

(bl E has a base B consisting of clopen sets such that for any Ac B 
with nA =¢there are A0 ,A1 ,A2 € A with A0nA1nA2 = ¢. 



PROOF. We prove this for example 1.1.18 and leave the proof for example 

1.1.17 to the reader. Notice that (a) is trivial since E\I is the one

point compactification Du {p} of a discrete space D. 

To prove (b), for f EL and n E w let 

B(f,n) := {f} u fl(w\n) 

and let 

T := {B(f,n) j f EL, n E w}. 

Let 

LJ := {E\U{B(f,0) j fEF} j FcL is finite}. 

19 

Evidently U is a neighborhood base for the point pat infinity. Consequent

ly B : = U u T u 192 is a base for E. Clearly the elements of B are clopen. 

Let A be any subfamily of B such that A0nA1nA2 ~¢for all A1 ,A2 ,A3 
EA. Define F and F by: 

F := {f EL I 3n E W B(f,n) EA} 

F := A n T. 

CASE 1: F =¢.Then A contains a singleton or Ac U which implies p E nA. 

CASE 2: IFI = 1. Let F {f}. Clearly, if U EU, g EL and g i U then 

B(g,n) nu=¢ for all n E w. It follows that f E nA. 

CASE 3: IF I > 1. We claim that 

(*) there are B(a,p) and B(b,q) in F such that B(a,p) n B(b,q) nF. 

For any f,g E w2 we can define d(f,g) $ w by 

d(f,g) := max{a $ w 

Let·B(f,m) and B(g,n) be any two members of F with f ~ g. Then for any 

h E w2, if j ~ d(f,g) then B(h,j) can not intersect both B(f,m) and B(g,n). 

Since any two members of F intersect, it follows that 

p := max{n E w I 3hEF: B(h,n) EF} 

exists. Choose any a E F such that B(a,p) E F. Let 
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s := min{n E w / 3h E F: (h # a and d(a,h) = n)} 

and choose any B(b,q) E F such that d(a,b) = s. Since q s pone easily 

verifies that B(a,p) n B(b,q) c nF. This completes the proof of(*). 

Let j = d(a,b). Then a~j E B(a,p) n B(b,q), and if f E B(a,p) n B(b,q), 

then f a~i for some is j. It is clear from the form of the members of 

U that u EU and a~j i u, then a~i i u for any is j. Since A0nA1nA2 # ¢ 
for any A0 ,A1 ,A2 EA, it follows that a~j E nA. 0 

1.2. A countable stratifiable space no compactification of which is 

supercompact *) 

In section 1.1 we gave an example of a locally compact separable 

first countable space of cardinality w1 that admits no supercompact com

pactification (see proposition 1.1.16 and example 1.1.18). It now is 

natural to ask whether there is a countable space without supercompact 

Hausdorff compactification. Obviously such a space cannot be first count

able, since a (regular) first countable countable space is metrizable and 

has an orderable compactification. By the same argument the example cannot 

be locally compact. Under MARTIN's axiom there exists a countable space 

with only one nonisolated point which admits no supercompact Hausdorff 

compactification. Hence this example is locally compact and first countable 

in all points but one. 

The example also answers another natural question. As noted before the 

theorem of STROK & SZYMANSKI [116] implies that every separable metric space 

admits at least one supercompact compactification. It seems reasonable to 

try to generalize this corollary for a larger class of spaces, for example 

for the class of all separable stratifiable spaces or, more generally, for 

the class of all separable semi-stratifiable spaces. Unfortunately this is 

not possible since the space, constructed in this section, turns out to be 

stratifiable. 

1.2.1. The example depends on the existence of P-points in BlN\lN. A point 

p of a topological space Xis called a P-point if the intersection of count

ably many neighborhoods of pis again a neighborhood of p. MARTIN's axiom 

(cf. 0.D) implies that there is a P-point in BlN\lN [18], see also [99] 

and [40]. It is conjectured that there exist P-points in BlN\lN without 

* This section will also be published separately in Bull. L'Acad. Pol. Sci. 
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set-theoretic asswnptions; but this is as yet open. 

1.2.2. THEOREM. Let p be a P-point in i3lN\lN. Then the subspace lN u {p} 

of i3JN has the property that no Hausdorff compactification of it is super

compact. 

PROOF. Define X := lN u {p}, where p is a P-point in 13JN\ lN. Let ax be any 

Hausdorff compactification of X and let f: i3X = i3lN + ax be the unique 

mapping which extends idx. Notice that f- 1[{p}J {p}. 

Asswne that Sis a binary closed subbase for ax, closed under arbi

trary intersection, and as in section 1.1 for Ac aX let I(A) be defined 

by 

I(Al := n{s Es I Ac s}. 

Notice that claX(A) c I(A), since each element of Sis closed, that 

I(I(A)) = I(A) and that I(A) C I(B), for all AC BC ax. 

Let C be defined by 

C := {n E lN I I({p,n}) n (aX\X) ,f !I)}. 

For n EC choose an xn E I({p,n}) n (aX\X) and let B := 

CLAIM 1: pi clax(B). 

{x 
n In E c}. 

Indeed, as f- 1[BJ is a countable union of closed sets in 13:JN\ JN which not 

contains p, it follows that, since pis a P-point, 

-1 -1 
p i cli3JN\lN (f [BJ) = cli3JN (f [BJ) 

-1 -1 
and consequently pi f[cli3lN (f [BJ)J for otherwise f [{p}J would consist 

-1 
of more than one point. Now, as B c f[cli3JN (f [BJ)] and as f is a closed 

mapping we conclude that pi clax(B). 

Choose open sets U,V c ax such that p EU c clax(U) c V and 

V n clax(B) = !I). Let T = UiSn Si be an element of v.S (Si ES, is n) 

such that claX(U) c Tc V (cf. lemma 0.2). Then 

and consequently there is an i 0 s n such that p E cl (UnJNnS1.·) .Define 
ax 0 

M := U n lN n s • • Then M is infinite and io 
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p € cl x(M) c I(M) cs. c v 
a io 

(this is the same technique as used in lemma 1.1.2). 

CLAIM 2: For each m € M the set I({p,m}) is finite and does not inter

sect aX\X. 

The latter is trivial since I({p,m}) n B c I(M) n B c V n B = ¢. To prove 

the former assume thatll'I({p,m}) were infinite. Then I({p,m}) n lN were 

infinite and as I({p,m}) n lN is c*-embedded in X it does not converge to 

p; consequently 

¢ 'f cl (I({p,m}) n lN) n (aX\X) C I({p,m}) n (aX\X), 
ax 

which is a contradiction. 

Now for every ordinal Ks w1 define a finite subset A(K) of M such 

that 

(i) 

(ii) 

if p € cl (U A(µ)) then A(K) 
ax µ<K 

if pi cl x<U A(µ)) then A(K) 'f ¢ and I(A(K)U{p}) a µ<K 
and A(K) nu A(µ)=¢. µ<K 

A(K) u{p} 

Take a point m € Mand define A(o) := I({p,m}) n lN. Then A(o) has all 

desired properties. Suppose that all A(µ) have been constructed for 

µ<Ks w1 • Assume that pi cl X(U A(µ)). Using the same technique as a µ<K 
dbove there exists an infinite N0 c M such that p € clax(N0) c I(N0) and 

I(N0 ) n clax(Uµ<K A(µ)) =¢.Taken€ NO and define A(K) := I({p,n}) n lN. 

Then A(K) is as required. 

As there are only countably many finite subsets of M there exists a 

K < w1 such that p € cl X(U A(µ)). Then, since U A(µ) u {p} is not a µ<K µ<K 
a convergent sequence, there is a q € cl (U A(µ)) n (aX\X). Take an 

ax µ<K 
infinite L c Uµ<K A(µ) such that 

q € cl (L) c I(L) c ax\{p}. 
ax 

As Lis infinite there exist two different ordinals K0 ,K 1 less than K 

such that L intersects both A(K0) and A(K 1). Then the subsystem 

of Sis linked, but has a void intersection. This is a contradiction. D 
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1.2.3. A topological space Xis called stratifiable (cf. BORGES [19]) if 

to each open subset U of X one can assign a sequence of open sets {un}:=l 

such that 

(a) u:=l Un u:=l clX(Un) = U; 

(bl U c V whenever u c V (where {V }~ 1 is the sequence assigned to V). 
n n n n= 

It is easy to see that each metrizable space is stratifiable while the 

converse need not be true. 

If p € BJN\ lN then lN u {p} clearly is stratifiable. Consequently 

MARTIN's axiom implies that there is a countable stratifiable space no 

Hausdorff compactification of which is supercompact. We do not have a 

metrizable space no Hausdorff compactification of which is supercompact. 

This suggests the following question. 

1.2.4. QUESTION. Is there a metrizable space no Hausdorff compactification 

of which is supercompact? 

1.3. Subbase characterizations of compact topological spaces 

Often, an important class of topological spaces can be characterized 

by the fact that each element.of the class possesses a subbase of a special 

kind. For example compact spaces (ALEXANDER'S lemma), completely regular 

spaces (DE GROOT & AARTS [57]), second countable spaces (by definition), 

metrizable spaces (BING, cf. [86]), (products of) orderable spaces (VAN 

DALEN & WATTEL [39]; VAN DALEN [38]; DE GROOT & SCHNARE [60]). Such 

characterizations we shall call subbase characterizations. 

DE GROOT has observed that certain classes of supercompact spaces can 

be characterized by means of special binary subbases; among the results 

obtained by him were the nice internal characterization of In and I~ 

([55]) and the characterization of products of compact orderable spaces 

([~0]). Also he discovered the duality between supercompact spaces and 

graphs ([56]). DE GROOT represented a supercompact space with binary sub

base S by the intersection graph of S, i.e. the graph with vertex set S 
and an edge between s0 and s1 in S if and only if s0ns 1 ,f (ll. DE GROOT 

proved that the space under consideration is completely determined by this 

graph. 

We will derive DE GROOT's results using a slight modification: 
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a supercompact space with binary subbase Swill be represented by the non

intersection graph of S. This method, which of course is not essentially 

different, has some advantages; e.g. connectedness and bipartiteness of 

this latter graph imply interesting properties of the spaces under con

sideration; also product structures become trivialities. Moreover, our 

graph representation if often helpful to determine a subbase characteriza

tion. 

The results of this section are taken from the joint paper VAN MILL 

& SCHRIJVER [81]. 

1.3.1. Here we define the notion of an interval structure, and use this 

concept to characterize supercompactness. Next we demonstrate a correspond

ence between graphs and supercompact spaces. 

1.3.2. DEFINITION. Let X be a set and let I: xxx ➔ P(x). Write I(x,y) 

I((x,y)). Then I is called an interval structure on X if: 

(i) x,y € I(x,y) 

(ii) I (x, y) I (y ,x) 

(iii) if u,v € I(x,y) then I(u,v) c I(x,y) 

(iv) I (x,y) n I (x,z) n I (y ,z) ,f- !ll 

(x,y € X), 

(x,y € X) , 

(u,v,x,y € X), 

(x,y,z € X). 

Axioms (i), (ii) and (iii) together can be replaced by the following 

axiom: 

u,v € I (x,y) iff I(u,v) c I(x,y) (u,v,x,y € X). 

A subset B of Xis called I-convex if for all x,y € B we have I(x,y) c B. 

1 • 3. 3 ,. THEOREM. Let X be a topological space. Then X is supercompact if 

and only if Xis compact and possesses a (closed) subbase Sand an interval 

structure I such that each S €Sis I-convex. 

PROOF. Let X be a supercompact space and let S be a binary subbase for X. 

Define IS: xxx ➔ P(X) by 

Is( (x,y)) := n{s € s I x,y € s} (x,y € X). 

Then it is easy to show that Is is an interval structure on X and that each 

element of Sis Is-convex. 

Conversely, let X be a compact space with a closed subbase S consisting 

of I-convex sets, where I is an interval structure on X. We will show that 
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Sis binary. 

Lets• Cs such that ns• ~- Then, since Xis compact, there exists 

a finite so Cs such that nso =~-Hence it is enough to prove the fol

lowing: if s 1 , ••• ,ske Sand s 1 n ••• n sk =~then there exist i,j s k 

such that s.ns. =~-We will prove this by induction with respect to k. 
l. J 

For k = 1 or 2 there is nothing to prove. Therefore assume that k 2: 3 

and that the statement is true for all k' < k. Define 

s 2 n s 3 n s 4 n 

s 1 n s 3 ns4 n 

s 1 n s 2 n s 4 n 

If one of the Ti's is empty, then the induction hypothesis applies. 

Therefore suppose neither is empty and take x € T 1 , y € T 2 and z e T 3 • 

Then 

x,y € s3 n s 4 n n sk, 

x,z € s2 n s 4 n n Sk, 

y,z € s1 n s 4 n n sk, 

and thus 

I(x,y) C s 3 n s 4 n n Sk, 

I(x,z) C S2 n s 4 n n sk, 

I(y,z) C s 1 n s 4 n n sk. 

But 

~ r I(x,y) n I(x,z) n I(y,z) c (S 3ns4n ••• nSk) n (S2ns4n •.• nSk) n 

n cs1ns4n ••• nsk> 

This contradicts ~ur hypothesis. 0 

For some related ideas see GILMORE [53]. 

= s 1 n s 2 n .•• n sk. 

1.3.4. REMARK. As noted in the introduction, the notion of an interval 

structure is used extensively in the theory of maximal linked systems and 

of supercompact spaces. It is simple but useful and often is helpful to 

prove local properties of supercompact spaces. 
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1.3.5. Now we turn our attention to the announced correspondence between 

graphs and supercompact spaces. 

A graph G is a pair (V,E), in which Vis a set, called the set of 

vertices, and Eis a collection of unordered pairs of elements of V, that 

is E c {(v,w) v,w Ev, v F w}. Pairs in E are called edges. Usually 

a graph is represented by a set of points in a space with lines between 

two points if these two points form an edge. A subset V' of Vis called 

independent if for all v,w EV' we have {v,w} i E. A maximal independent 

subset of Vis an independent subset not contained in any other independent 

subset. By Zorn's lemma each independent subset of Vis contained in some 

maximal independent subset. We write 

I(G) := {V' c V / V' is maximal independent} 

and for each v EV 

B := {V' € I(G) I V € V'}. 
V 

Finally let B(G) be defined by 

B(G) := {B I v E v}. 
V 

The graph space T(G) of G is the topological space with I(G) as underlying 

point set and with B(G) as a (closed) subbase. 

If Sis a collection of sets then the non-intersection graph G(S) of 

S if the graph with vertex-set Sand with edges the collection of all 

pairs {s1,s2} such that sn s =¢.The following theorem follows from 

observations made by DE GROOT [56]: 

1.3.6. THEOREM. A topological space Xis supercompact iff it is the graph 

space of a graph, in particular 

(i) if X has a binary subbase S then Xis homeomorphic to the graph 

space of G (S) ; 

(i~) For any graph G, the graph space T(G) is supercompact with B(G) as 

a binary subbase. 

Let G. be a graph (j E J); the sum l • G.; of these graphs is the 
J JEJ J 

graph with vertex set a disjoint union of the vertex sets of the G. 
J 

(j E J) and edge set the corresponding union of the edge sets. These sums 

of graphs and products of topological spaces are related by the following 
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theorem: 

1.3.7. THEOREM. Let J be a set and for each j € J let Gj be a graph. Then 

T(L, G.) is homeomorphic to TTJ.EJ T(G.). 
JEJ J J 

PROOF. Straightforward. D 

1.3.8. DEFINITION. A collection S of subsets of a set Xis called weakly 

normal if for each s0 ,s1 ES with• s0 ns 1 =~there exists a finite covering 

M of X by elements of S such that each element of M meets at most one of 

s0 and s 1 . 

Weakly normal closed subbases for topological spaces play an import

ant role in characterizing complete regularity,,(cf. DE GROOT & AARTS [57]). 

They turn out to be the right natural generalizations to subbases of 

normal bases as defined by FRINK [51], STEINER [114] and many others. 

This will be discussed in chapter 4. 

Clearly weak normality of a collection S of subsets of a subset X 

must imply properties of the corresponding non-intersection graph G(S). 

We call a graph (V,E) weakly normal if for each {v,w} € E there are 

v1 , ••• ,vk,w1 , ••• ,wl EV (k,l ~ 0) such that: 

and in addition, whenever 

with 

then 

is not independent. 

1.3.9. THEOREM. Let X be a supercompact space with binary subbase Sand 

let X be the graph space of the graph G. The following assertions are 

equivalent: 
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(i) Xis a Hausdorff space; 

(ii) Sis a weakly normal subbase; 

(iii) G is a weakly normal graph. 

¢. As Xis normal (compact 

and Hausdorff) there exist closed sets C and Din X with 

and CUD= X. 

Since Xis compact and C and Dare intersections of finite unions of sets 

in S, we can take C and D to be finite intersections of finite unions of 

sets in S, or, what is the same, finite unions of finite intersections of 

sets in S. 
Since cns 1 =¢each of the finite intersections composing Chas an 

empty intersection with s1 . Now the binarity of S implies that we can re

place these finite intersections by single sets of S. Hence we may suppose 

that C is a finite union of elements of S. Similarly we can take Das a 

finite union of elements of S. 
(ii)• (1). By lemma 0.4 Sis a T1-subbase. Now the result follows from 

a theorem due to DE GROOT & AARTS [57]. 

(i) - (iii). The simple proof is left to the reader. D 

This theorem now implies the following remarkable fact, which was 

first observed by DE GROOT [56]. 

1.3.10. THEOREM. The following assertions are equivalent: 

(i) Xis compact metric; 

(ii) X has a countable weakly normal binary subbase; 

(iii) Xis homeomorphic to the graph space of a countable weakly 

normal graph. 

PROOF. Part (i) • (ii) follows from STROK & SZYMANSKI's [116] result and 

theorem 1.3.9. The other implications follow from URYSOHN's metrization 

theorem. D 

From this theorem we can derive a, in our opinion, remarkable charac

terization of the Cantor discontinuum. We call a graph (V,E) locally finite 

if for all v EV the set {w EV I {v,w} EE} is finite. 

1.3.11. THEOREM. The following assertions are equivalent: 



(i) Xis homeomorphic to the Cantor discontinuum; 

(ii) Xis homeomorphic to the graph space of a countable locally finite 

graph with infinitely many edges. 
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PROOF. (i) =>(ii). By theorem 1.3.7 Xis homeomorphic to the graph space of 

the following graph (cf. DE GROOT [56]); 

I I I 
Figure 1. 

ii)=> (i). We shall show that Xis a compact metric totally disconnected 

space without isolated points; hence it will follow that Xis homeomorphic 

to the Cantor discontinuum. 

Let G be a countable locally finite graph with infinitely many edges. 

We will first show that the closed subbase B(G) of T(G) consists of clopen 

sets. Take v EV. Since G is locally finite, there are w1 ,w2 , .•• ,wn EV 

such that 

Now for all i E {1,2, .•. ,n} the set Bwi is closed and consequently 
n 

Ui=l Bwi is closed too. It is obvious that 

and hence Bv is open. 

It now follows that T(G) is Hausdorff, by lemma 0.4; moreover it is 

compact totally disconnected and second countable. Hence T(G) is a compact 

metric totally disconnected topological space. 

Finally we show that T(G) has no isolated points. For suppose to the 

contrary there is a V' E I(G) such that {V'} = n:=l Bvi· That is, if 

V" E I(G) and {v1,v2 , ..• ,vm} c V" then V' = V". Let W be the set 

{w EV I {v.,w} EE for some i E {1,2, ••• ,m}}. 
l. 

Since G is locally finite, Wis finite. Now the set 
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E' = {{v,w} I w E w, v Ev} 

also is finite. Since Eis infinite there is an edge {a,b} € E\E'. It is 

easy to see that a i Wand bi W, hence {v1 , ••. ,vm,a} and {v1 , ••• ,vm,b} 

both are independent sets of vertices, and hence both contained in a maximal 

independent set, say in v; and Vb. As {v1, ... ,vm} c v; and {v1, ... ,vm} cvb 
it follows that v; =Vb= V'; hence a,b € V'. But {a,b} € E, hence V' is 

not independent; this is a contradiction. D 

1.3.12. We will now give a correspondence between spaces induced by a 

lattice and graph spaces obtained from bipartite graphs. Let (X,$) be a 

lattice with universal bounds O and 1. If a and bare elements of X then 

[a,b] will denote the set 

[a,b] := {x € X I a$ x $ b}. 

The interval space of Xis the topological space with underlying set X 

and with (closed) subbase the collection 

S := {[O,x] I x Ex} u {[x,1] I x Ex}. 

Spaces obtained in this way are called lattice spaces. According to a 

theorem of FRINK (cf. BIRKHOFF [17]) the interval space of a lattice 

(X,$) is compact iff (X,$) is complete. 

1.3.13. THEOREM. Every compact lattice space is supercompact. 

PROOF. Let (X,$) be a complete lattice and define an interval structure 

(cf. definition 1.3.2) I on X by 

I(x,y) := [xAy,xvy]. 

This is easily seen to be an interval structure while moreover the subbase 

S for X defined in 1.3.12 consists of I-convex sets; consequently Xis 

supercompact by theorem 1.3.3. D 

1.3.14. A graph (V,E) is called bipartite if V can be partioned in two 

sets v0 and v1 such that each edge consists of an element in v0 and an 

element of v1 • A well-known and easily proved theorem in graph theory, 

see e.g. WILSON [129], tells us that a graph (V,E) is bipartite if and 

only if each circuit is even, that is, whenever 



are edges in E, then k is even (this characterization uses a weak form of 

the axiom of choice). 

We call a collection S of subsets of a set X bipartite if the non

intersection graph G(S) is bipartite. 

1.3.15. THEOREM. The following assertions are equivalent: 

(i) Xis homeomorphic to a compact lattice space; 

(ii) X possesses a binary bipartite subbase; 

(iii) Xis homeomorphic to the graph space of a bipartite graph. 

PROOF. (i) ~(ii). Let (X,S) be a complete lattice; the subbase 

S = {[O,x] Ix Ex} u {[x,1] I x Ex} 

is binary and bipartite._ 
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(ii)~ (i). Let X be a topological space with a binary bipartite subbase S; 

let S = S0 u S 1 , such that S0nS 1 =¢and ns0 f ¢ and nS 1 f ¢ (this is pos

sible since S is binary and bipartite). Define an order II s" on X by 

X $ y iffy ES whenever XE SE S 1 . 

The relation II s II is reflexive and transitive; 11 s II is antisymmetric too. 

For suppose that X f y and x sys x. Since the subbase Sis T1 (lemma 0.4) 

there are S,T E S such that x E s, y E T and Sn T ¢. From this it fol

lows that either SE S1 or TE S 1 . If SE S1 then y ES, since x $ y. But 

this is a contradiction. On the other hand if TE S 1 then x ET, since 

y S x. This also is a contradiction. 

We will show that II s II defines a complete lattice by proving that 

for each X' c X there is a z EX such that z = sup X'. 

Let X' c X. Define 

and 

respectively. 

Now nso n nsi I ¢, since nso f ¢ I nsi and also s n T I ¢ for all 

SE S0 and TE Si (notice that Sis binary!). Choose z E nS0 n nSi. This 
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point z is an upper bound for X', for let x EX' and let x ET E S1 ; then 

TE Si and consequently z ET. Therefore z $ x for all x EX'. 

Suppose now that x $ z' for all x EX' and that z i z'. Then there 

exists a TE S 1 with the properties z ET and z' i T. As Sis binary and 

bipartite there is an SE S0 such that S nT =¢and z' ES. Now, X' c S, 

since otherwise there must be an x0 EX' and a T' E S 1 with the properties 

x 0 ET' and T' ns =¢.Then, since x0 $ z' we have that z' ET', which 

contradicts the fact that Sn T' =¢.Therefore X' cs, which implies that 

s E so. Butz f s, which cannot be the case since z Enso n Si. 

Finally the topology induced by the lattice-ordering$ coincides with 

the original topology of the space X. Indeed, for x EX we have that 

[x,1] = n{s E sl J x Es}, 

as can easily be seen. 

Furthermore 

[O,xJ = n{s E s0 I x Es}, 

for suppose that y $ x and that y i S for some SE S0 with x Es. Then 

there exists a TE S 1 such thats n T =¢and y ET. Hence x ET, contra

dicting the fact that Sn T = ¢. 
Also if TE S 1 , let 

Then T n nS0 # ¢, since Sis binary. Choose z ET n nS0. We will show that 

[z,1] T. 

If z $ y, then y ET since z ET. If y ET and z ~ y, then there exists an 

SE S0 such that y ES and z f S. However, Sn T #¢and consequently 

SE S0 and z ES, which is a contradiction. 

Conversely, if SE S0 let 

Then Sn nSi # ¢, since Sis binary. Choose z ES n nSi. We will show that 

[O,z] = s. 



If y s z and y i S then y € T for some T € S with Sn T ¢. Hence z i T, 

which contradicts the fact that y s z. If y €Sandy~ z then there is 

some T € S 1 such that y € T and z i T. Thens n T f ¢ and T €Si.Hence 

z € T, contradicting the fact that z i T. 
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(ii)~ (iii). Let X be a space with a binary bipartite subbase S. By defi

nition G(S) is bipartite and, by theorem 1.3.6 Xis homeomorphic to the 

graph space of G(S). 

(iii)~ (ii). Let G be a bipartite graph. It is easy to see that the binary 

subbase B (G) for the graph space of G is biparti!te. D 

1.3.16. We now turn our attention to compact tree-like spaces, which also 

will be characterized with the help of weakly comparable subbases and 

graphs. 

A tree-like space is a ·connected space in which every two distinct 

points x and y can be separated by a third point z, i.e. x and y belong to 

different components of X\{z}. Obviously every connectJd orderable space 

is tree-like; however, the class of tree-like spaces is much bigger; see 

e.g. KOK [70]. 

A collection S of subsets of a set Xis called normal if for every 

s 0 ,s 1 € S with s 0ns 1 ¢ there exist T0 ,T1 € S with s 0n T1 ¢ = T0ns 1 and 

T0 uT1 = X. Clearly a normal collection is weakly normal, cf. definition 

1.3.8. In addition Sis called weakly comparable if for all s 0 ,s1 ,s2 € S 

satisfying s 0ns 1 = ¢ = s 0ns2 it follows that either s 1 c s 2 or s 2 c s 1 or 

s 1 n s 2 = ¢ (the notion "comparable" will be defined in 1.3.26). 

A collection S of subsets of a set X will be called connected (strong

ly connected) if there is no partition of X in two (finitely many) elements 

of S. 

1. 3 .17. PROPOSITION~ Let S be a weakly comparable collection of subsets 

of the set X. The following properties are equivalent: 

(i) S is normal and connected; 

(ii) Sis weakly normal and strongly connected. 

PROOF. (i) ~(ii). Let S be weakly comparable, normal and connected. 

Clearly Sis weakly normal. Suppose that Sis not strongly connected and 

let k be the minimal number such that there are pairwise disjoint sets 

s 1 , ..• ,Sk in S with union X. Since S is connected, k ;:: 3. As s 1 n s 2 = ¢ 

there exist, by the normality of S, T1 and T2 in S such that 
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s 1 n T2 = ¢ = T1 n s 2 and T1 u T2 = x. Now s 3 intersects either T1 or T2 . 

Without loss of generality we may suppose that s 3 n T1 #¢.Hence since 

s2 n T1 = ¢ = s2 n s3, by the weak comparability of S, s3 n T1 =¢or 

Tl C s3 or s 3 C Tl. Since the first two cases are impossible it follows 

that s 3 c T 1• In the same way one proves that for each j = 4, ..• ,k either 

Sj c T1 or Sj n T1 ¢. Hence there exists a smaller number of pairwise 

disjoint sets in S covering X. 

(ii)~ (i). Let S be a weakly normal, strongly connected, weakly comparable 

collection of subsets of X. We need only show that Sis normal. To prove 

this, let T0 ,T1 ES such that T0 n T1 =¢.Let k be the minimal number 

such that there are s 1 , ••• ,sk in S covering X and such that each Si meets 

at most one of T0 and T1 • By the minimality of k we may suppose that no 

two of these subsets s 1 , ••. ,sk are contained in each other. If k = 2 then 

we are done. 

Suppose therefore k ~ 3. We prove that the sets s 1 , ••• ,Sk are pair

wise disjoint. We only prove that s 1 n s 2 =¢.To the contrary assume that 

s 1 n s 2 were nonvoid. By the weak comparability of S they are neither both 

disjoint from T0 nor they are both disjoint from T1 . We may suppose there

fore s 1 n T0 f ¢ # s 2 n T1 • Since now s 1 n T1 ¢ = T1 n T0 it follows that 

either s 1 c T0 or T0 c s 1 . If s 1 c T0 then T0 n s 2 ~ s 1 n s 2 #¢,which 

cannot be the case. It follows that T0 c s 1 and similarly T1 c s 2 . We may 

suppose that s 3 n T0 =¢.Since also s 2 n T0 =¢we have s 3 n s 2 =¢.From 

this it follows that s 3 n T1 =¢and since also s 1 n T1 =¢,we have 

s 3 n s 1 =¢.Now from the weak comparability of Sit follows from s 3 n s 2 

= ¢ = s 3 n s 1 that s 2 n s 1 =¢,which is a contradiction. 

Since there are no pairwise disjoint sets s 1, ... ,Sk in S with union x, 
it cannot be the case that k ~ 3. Hence Sis normal. D 

1.3.18. A graph (V,E) is called normal if for each edge {v,w} EE there 

are edges {v,v'} and {w,w'} in E such that whenever {v' ,v"} and {w' ,w"} 

are edges then also { v", w"} is an edge ( see figure 2) . 

v" 

□ 
w" 

v' w' 

V w 

Figure 2. 
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Clearly each normal graph is a weakly normal graph (see 1.3.8). 

A graph (V,E) is called weakly comparable if for each "path" {v0 ,v1}, 

{v1,v2},{v2 ,v3},{v3 ,v4} of edges either {v1 ,v3} € E or {v0 ,v3} € E or 

{v1,v4} € E (see figure 3). 

- ;.... - ------ - .- ...:.. -
cf 

~' .... ,..._,_ 
0 'o 

Figure 3. 

A graph (V,E) is called contiguous (BRUIJNING [26]) if for each edge 

{v,w} € E there exist edges {v,v'} and {w,w'} such that {v',w'} t E. 

A graph (V,E) is connected if for each two vertices v,w € V there is 

a path of edges {v,v1},{v1 ,v2}, ••• ,{vk,w} (k € lN). 

Finally, we call a collection S of subsets of a set X graph-connected 

if the corresponding non-intersection graph G(S) is connected. 

We need a simple lemma. 

1.3.19. ~- Let S be a binary collection of subsets of the set X with 

non-intersection graph G(S). Then 

(i) Sis normal iff G(S) is normal; 

(ii) S is weakly comparable iff G(S) is weakly comparable; 

(iii) Sis connected iff G(S) is contiguous. 

PROOF. Notice that s1 u u sk = X (Si€ s, i S k) if and only if the fol-

lowing holds in G(S): for all s 1•, .•• ,Sk' such that {S. ,S'.} is an edge of G(S) 
· 1 1 

(is k) the set {Si,s2, ... ,sk} is not independent. D 

1.3.20. If Xis a tree-like space then a subset A of Xis called a segment 

if A is a component of X\{x0 } for certain x0 € x. KOK [70] has shown that 

every segment in a tree-like space is open. In particular any tree-like 

space is Hausdorff. 

1.3.21. THEOREM. Let X be a topological space. Then the following properties 

are equivalent: 
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(i) Xis compact tree-like; 

(ii) X possesses a binary normal connected (closed) subbase T such that 

for all T0 ,T1 ET we have that either T0 c T1 or T1 c T0 or 

Ton Tl=¢ or To u Tl= X; 

(iii) Xis homeoIOCJrphic to the graph space of a connected normal contiguous 

weakly comparable graph. 

PROOF. (i) ~(ii). Let X be compact tree-like and let U denote the collec

tion of segments of X. Since every two distinct points of X are contained in 

disjoint segments, the compactness of X implies that U is an open subbase 

for the topology on X. We will show that for all u0 ,u1E U either u0 u u 1 = 

x or ti0 n u 1 =¢or u0 c u 1 or u 1 c u0 . To prove this, take u0 ,u1 EU and 

suppose that U. is a component of X\{x.} (i E {0,1}). Without loss of 
1 1 

generality we may assume that x0 f,- x 1 • Suppose that x\{x.} = u. + u~ 
*1 1 1 

(i E {0,1}) (this means u. nu~=¢ and X\{x.} 
1 1 1 

sider two cases: 

U, 
1 

u U.). We have to 
1 

(a) Suppose first that x 1 E u0 . We again distinguish two subcases: 

(a) (i) * * x0 E u 1• It then follows that clx(u0 ) = u0 u {x0} c u 1 , 

* 

con-

since clx (U O) is connected. This implies U O u U 1 = X. 

(al (ii) x E u*1 . 
0 

Then clx(u1 ) c u0 , since clx(u1) is connected. 

Therefore u1 c u0 • 

* (bl Suppose that x 1 E u0 . We distinguish two subcases: 

(bl (i) x0 E u 1 . This implies that clx (u0) c u 1, since clx cu0) is 

connected. Hence u0 c u 1 • 

(bl (ii) x E u*1 . 
0 

* Now we have clx(u0 ) c u 1 , since clx(u0) is connected. 

* Therefore u0 c u 1 and consequently u0 n u 1 = ¢. 

Now define T := {X\U JUE U}, Then Tis a closed subbase for X such 

that for all TO,Tl ET either To u Tl= X or Ton Tl=¢ or To C Tl or 

T1 c T0 • In particular Tis weakly comparable. To show that Tis binary it 

suffices to show that each covering of X by elements of U contains a sub

cover consisting of two elements of U. Indeed, let A be an open cover of X 

by elements of U. By the compactness of X the cover A has a finite sub-

cover {u1 , ....... ,un}. In addition we may assume that ¢ f,- Ui ¢ uj for if,- j. 

We claim that for each ui E {u1 , ... ,un} there exists a uj E {u1, ... ,un} 

such that U. n U. f,- ¢; for assume to the contrary that for some fixed 
1 J 
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is nit were true that Ui n Uj = Ill for all i # j s n. As {u1 , ••• ,un} is 

a covering of x it would follow that Xis not connected, which is a contra

diction. Therefore Ui u Uj = x. Consequently Tis a binary subbase. 

As Xis Hausdorff, by theorem 1.3.9, Tis weakly normal, which implies 

that Tis normal by proposition 1.3.17, since trivially Tis strongly con

nected (notice that T consists of closed sets). 

(ii)• (i). Since Tis a binary subbase evidently Xis compact. Therefore 

we must prove that Xis tree-like. We will check the connectedness first. 

Suppose that Xis not connected. Then there are closed disjoint sets 

G and H such that Gu H = X and G #Ill# H. As G and Hare intersections 

of finite unions of elements of T and as G and Hare disjoint, the com

pactness of X implies that G and H both are finite intersections of finite 

unions of elements of T, or, what is the same, finite unions of intersec

tions. Let m be the minimal number such that there are G1, ••• ,Gm such that 

(i) G1 , ••• ,Gm are nonvoid and intersections of subbase elements; 

(ii) G1u ••• u Gm= x;· 
(iii) there is an I c {1,2, ••• ,m} such that 

u 
i€I 

We first prove 

some i # j. 

Gi #Ill# u G, and u 
jtl J i€l 

that G. n G. = Ill if i # j. 
l. J 

n{T € r I G. u G. c T}. 
l. J 

Gin u G. 
jiI J 

Suppose that 

¢. 

G. n G. # Ill for 
l. J 

Indeed, take xi G. u Gj. Then, since G. and G. are intersections of sub-
l. l. J 

base elements there are T0 and T1 in T such that Gi c T0 , Gj c T1 and 

Xi To u Tl. Now since Ton Tl~ Gin Gj # Ill and To u Tl# X it follows 

that either T0 c T1 or T1 c T0 • Therefore xi T for some T € T with 

Gi U Gj c T. 

Now it follows that mis not the minimal number of sets with the 

above properties, which is a contradiction. 

Second we prove that each Gi is an element of T. Suppose that some 

G. i T. Let j # L Then, since G. is an intersection of subbase elements 
l. l. 

and Tis binary, there is a T € T such that Gi c T and T n Gj =¢.The 

sequence G1, ••• ,Gi_1 ,T,Gi+l'"""'Gm is also a sequence with the above 

properties (i), (ii) and (iii). So again T n Gk= Ill if k # i, hence 

Gi c Tc X\Uk#i Gk, which implies that Gi = T and therefore Gi € T. 
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Hence there is a collection G1 , ..• ,Gm of pairwise disjoint subbase 

elements covering X and as Tis weakly comparable, and hence by proposi

tion 1.3.17 is strongly connected, this is a contradiction. This proves 

that Xis connected. 

We will now show that every two distinct points can be separated by 

a third. Let x,y € X such that x t y. As Xis a T1-space we have that 

{z} = n{T ET J z ET} for all z € X and consequently, since Tis binary, 

there exist T0 ,T1 ET such that x E T0 , y E T1 and T0 n = ¢ (cf. lemma 0.4). 

The normality of T implies the existence of T0,Ti € T such that TO U Ti = X 

and TO n Ti=¢= TO n T1• Define 

A:= {T €TI Tu To= x}. 

Since Xis connected we have that Au {T0} is a linked system and conse

quently T' n nA t ¢. We claim that this intersection consists of one point. 
0 

We assume to the contrary that z0 ,z1 € TO n nA with z0 # z 1. In the same 

way as above there exist s 0 ,s1 ET such that z0 E s 0\s1 and z 1 E s 1\s0 and 

s 0 u s 1 = X. Since z0 ,/. s 1 we have that s 1 ,/. A and consequently TO u s 1 # X. 

Hence To c s1 or s1 c To; notice that s1 n Tot¢. However this implies 

that s1 c T0, since z0 ,/. s 1 . With the same technique one proves that 

so C To; but this is a contradiction since Tot x. Let {zo} :=Ton nA. 

Then z0 is a separation point of x and y, since TO and nA are closed sub

sets of X such that TO u (nA) = X and x € TO and YE nA. This proves that 

Xis compact tree-like. 

(ii)• (iii). Let X be a space possessing a binary normal connected sub

base T such that for all T0 ,T1 ET we have that either T0 c T1 or T1 c T0 

or T0 n T1 =¢or T0 u T1 = X. We may suppose that¢,/. T and x ,/. T. Then 

the non-intersection graph G(T) is normal by lemma 1.3.19. Also G(T) is 

weakly comparable since Tis weakly comparable, as is easy to show. G(T) 

is contiguous since Tis connected (lemma 1.3.19). So we only need to 

prove that G(T) is connected. Let T0 ,T1 ET, then either 

(a) T0 n T1 ¢; hence there is an edge in G(T) between TO and T1; or, 

(b) T0 u T1 X; hence there are TO and Ti in T such that 

TO n TO= TO n Ti= T1 n T1 = ¢, forming a path in G(T) 

connecting T0 and T1; or, 

hence there is a T2 ETsuchthat T0 nT2 =¢ 

giving a path connecting T0 and T1 ; or, 

this case is similar to case (c). 



(iii)~ (ii). Let X be the graph space of a connected normal contiguous 

weakly comparable graph G = (V,E). We will prove that the subbase B(G) 

for the graph space satisfies the conditions of (ii). B(G) clearly is 

binary, normal and connected. Suppose now that Bv,Bw E B(G) (cf. 1.3.5), 

with v,w EV. Let {v,v1}, .•• ,{vk_ 1 ,w} EE be a path connecting v and w 

with minimal number k of edges. We will prove that always Bv n Bw = ¢ 
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or Bv u Bw X or Bv c Bw or Bw c Bv. The proof will be by induction to k. 

If k = 1 then {v,w} EE and hence Bv n Bw = ¢. Suppose that k > 1. There 

is a path of (minimal) length k-1 between v 1 and w, hence by induction 

hypothesis either 

(a) Bv1 n Bw = ¢; i.e. {v,v1},{v1 ,w} EE. It now follows that {v,w} i E 

(otherwise k = 1) and therefore Bv c Bw or Bw c Bv, 

for if not, there would be an edge {v,v'} EE and 

an edge {w,w'} E E such that {v,w'} i E and 

{w,v'} i E, contradicting the weak comparability 

(bl Bvl u B X; since B n Bvl ¢ it follows that B C B w; or, 
w V V 

(c) Bvl c Bw; now B n Bvk-1 ¢ and hence as in case (a) 
V 

B C B or B c B V;, or 
V w w 

(d) B C B then B n Bw = ¢, which implies that k w Vl V 
(contradiction) . 

Therefore always Bv n Bw =¢or Bv u Bw X or B c B or B c B. 
V W W V 

1.3.22. COROLLARY. Each compact tree-like space is supercompact. D 

1.3.23. COROLLARY. Let X be a topological space. Then the following 

properties are equivalent: 

(i) Xis a product of compact tree-like spaces; 

(ii) X possesses a binary normal connected weakly comparable 

(closed) subbase; 

(iii) Xis homeomorphic to.the graph space of a normal contiguous 

weakly comparable graph. 

□ 

PROOF. Notice that each graph is the sum of its components. Then apply 

theorem 1.3.7 and theorem 1.3.21. D 

1.3.24. An interesting application of corollary 1.3.23 is the following. 

In [55], DE GROOT obtained a topological characterization of then-cell In 
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co 
and of the Hilbert cube I by means of binary subbases of a special kind 

(cf. theorem 1.3.31). ANDERSON [2] has proved th~t the product of a count

ably infinite number of dendra is homeomorphic to the Hilbert cube, where 

a dendron is defined to be a uniquely arcwise connected Peano continuum. 

It is well known, however, that a dendron is simply a compact metric tree

like space (cf. WHYBBURN [128]). Since the dimension of a dendron is 1, 

using our characterization of products of compact tree-like spaces, we are 

able to give a new characterization of the Hilbert cube, thus generalizing 

the result of DE GROOT mentioned above for the case of the Hilbert cube. 

1.3.25. THEOREM. A topological space Xis homeomorphic to the Hilbert 
co 

cube I if and only if X has the following properties: 

(i) Xis infinite dimensional; 

(ii) X possesses a countable binary connected normal weakly comparable 

subbase. 

PROOF. The necessity follows from corollary 1.3.23, since the Hilbert cube 

is a product of compact tree-like spaces. The sufficiency follows from the 

fact that by corollary 1.3.23 Xis homeomorphic to a countable product of 

dendra. As Xis infinite dimensional this must be a countably infinite 

product. Hence Xis homeomorphic to the Hilbert cube by the result of 

ANDERSON [2]. 0 

1.3.26. Now we will treat the relations between ordered spaces and com

parable subbases and graphs. Note that an ordered space is the interval 

space of a totally ordered set. Hence clearly every ordered space is a 

lattice spaca while moreover a connected ordered space is tree-like. 

Let X be a set and let S be a collection of subsets of X. The col

lection S is called comparable (cf. DE GROOT [55]) if for all s0 ,s1 ,s2 ES 

with s0 n s1 = ¢ = s0 n s2 it follows that either s1 c s2 or s2 c s1 • 

A graph (V,E) is called comparable if for each path {v0 ,v1},{v1 ,v2}, 

{v2 ,v3},{v3,v4} of edges it follows that either {v0 ,v3} EE or {v1 ,v4} EE 

(cf. figure 4). 

- - - ;-..... --_ 
', 

,,, 
' ' 

VQ vl v2 v3 v4 

Figure 4. 



1.3.27. LEMMA. 

(i) A graph G is comparable iff G is weakly comparable and bipartite. 

(ii) Each comparable graph is normal. 
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(iii) A collection S of subsets of a set X is comparable iff it is weakly 

comparable and bipartite. 

(iv) A comparable collection S of subsets of a set Xis normal if it 

satisfies the following condition: for each x EX and each SES 

with xi S there exists an s0 ES with x E s0 and s0 n S = ~-

PROOF. The simple proof is left to the reader. D 

1.3.28. THEOREM. Let X be a topological space. Then the following propert

ies are equivalent: 

(i) X is compact orderable; 

(ii) X possesses a binary graph-connected comparable subbase; 

(iii) X is homeomorphic to the graph space of a connected comparable graph. 

PROOF. (i),. (ii). Let (X,S) be an order-complete totally ordered set, 

with universal bounds O and 1. Clearly the subbase S = {[O,x] I x Ex, 

0 s x < 1} u {[x,1] I x EX, 0 < x s 1} is binary, graph-connected and 

comparable. 

(ii),. (i). Let X be a space with a binary graph-connected comparable sub

base S. Since Sis bipartite (lemma 1.3.27), S induces a lattice ordering 

11 s II on X, such as in the proof of theorem 1.3.15 (ii),. (i). We only have 

to prove that this order is a total order. Suppose II S 11 is not total, that 

is suppose that for some x,y EX we have x ~ y and y ~ x. Then there are 

S,T ~ S1 (see theorem 1.3.14) such that 

XE S, y i S, y ET. and Xi T. 

Since Sis graph-connected and bipartite there are s1 , ••• ,sk in S such 

that 

with k odd (cf. 1.3.13 and 1.3.17). Suppose that k is the smallest number 

for which such a path in G(S) exists. If k ~ 3 then s1 n s2 = ~ = s2 n s3 
and hence s1 c s3 or s3 c s1• If s1 c s3 then 
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which gives a shorter path from S to T. 

The case s 3 c s 1 can be treated similarly. 

Hence k = 1 and consequently s n s1 = ¢ = s 1 n T. Since Sis compar

able it now follows that Sc Tor Tc S. This means that either x ET or 

y ES, both of which are contradictory. 

(ii)=> (iii). Let X be a space with a binary graph-connected comparable 

subbase S. Then Xis homeomorphic to the graph space of the graph G(S), 

while moreover it is easy to se~ that G(S) is connected and comparable. 

(iii)=> (ii). Let X be the graph space of a con~ected comparable graph 

G = (V,E). The subbase B(G) is graph-connected since G is connected. Also 

B(G) is comparable, for suppose that 13v1 ,Bv2 ,Bv3 E I(G) such that 

and nevertheless Bv1 ¢ Bv3 and Bv3 ¢ Bv1 -

Then {v1 ,v2} EE and {v2 ,v3} EE; moreover there are V' and V" in 

I(G) such that V' E B \B and V" E B \B . 
v1 v3 v3 v1 

As v 3 i/. V' there is a v4 EV' such that {v3 ,v4} EE. As v 1 i/. V" there 

is a v 0 EV" such that {v0 ,v1} EE. Now 

and also {v0 ,v3} i/. E (because v0 ,v3 EV") and {v1 ,v4 } i/. E (because 

v 1 ,v4 EV'). This contradicts the comparability of the graph G. 

Hence the graph space T(G) of G has a binary comparable graph con

nected subbase. 

This completes the proof of the theorem. D 

1.3.29. COROLLARY. (DE GROOT & SCHNARE [60].) Let X be a topological 

space. Then the following statements are equivalent: 

(i) Xis a product of compact orderable spaces; 

(ii) X possesses a binary comparable subbase; 

(iii) Xis homeomorphic to the graph space of a comparable graph. 

PROOF. Apply theorem 1.3.28 and theorem 1.3.7. D 

1.3.30. COROLLARY. Let X be a topological space. Then the following 

statements are equivalent: 



(i) Xis connected compact orderable; 

(ii) X possesses a connected graph-connected comparable subbase; 

(iii) Xis homeomorphic to the graph space of a connected contiguous 

comparable graph. 

PROOF. Apply theorem 1.3.28 and theorem 1.3.21. D 

1.3.31. COROLLARY. Let X be a topological space. Then the following 

statements are equivalent: 

(i) Xis a product of connected compact orderable spaces; 

(ii) X possesses a connected comparable subbase; 

(iii) Xis homeomorphic to the graph space of a contiguous comparable 

graph. 

PROOF. Combine corollary 1.3.30 and theorem 1.3.7. D 
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Adding countability conditions on the subbases and graphs one easily 

obtains characterizations of (products of) (connected) compact subsets of 

the real line (cf. DE GROOT [56], BRUIJNING [26]). 

1.4. Regular supercompact spaces 

STEINER [114] defined a compact space to be regular Wallman if it pos

sesses a closed subbase T such that A.v.T is a ring consisting of regular 

closed sets, i.e. each element of A.y.T is the closure of its own interior. 

Regular Wallman spaces are Wallman compactification of each dense subspace 

(this will be discussed in chapter four) and many interesting classes of 

compact topological spaces turn out to be regular Wallman, for example 

the class of all compact metric spaces (AARTS [1], STEINER & STEINER [109]). 

Not all compact Hausdorff spaces are regular Wallman; SOLOMON [107] recent

ly has given an example of a compact Hausdorff space that is not so. 

It seems natural to define a topological space X to be regular super

compact provided that it possesses a (closed) binary subbase T such that 

A.v.T is a ring consisting of regular closed sets. Obviously a regular 

supercompact space is (super)compact and regular Wallman. The space SIN 

is a good example of a regular Wallman space (totally disconnected!) that 

is not regular supercompact. We do not have an example of a supercompact 

Hausdorff space that is not regular supercompact, or even of a supercompact 
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Hausdorff space that is not regular Wallman. 

Regular supercompact spaces behave similar to regular Wallman spaces; 

for example products of regular supercompact spaces are again regular super

compact, closed subspaces of regular supercompact spaces need not be regul

ar supercompact. But regular supercompact spaces have an additional property, 

they are not only a Wallman compactification of each dense subspace but they 

are also a superextension of each dense subspace (this will be proved in 

section 4.5). 

Many interesting classes of regular Wallman spaces are regular super

compact. VAN OOUWEN [42] recently has shown that every compact metric space 

is regular supercompact. As a consequence of our results every compact 

orderable space is regular supercompact, every compact tree-like space of 

small weight is regular supercompact, and the superextension of a Lindelof 

semi-stratifiable space is regular supercompact (section 4.5). 

1.4.1. A topological space Xis called regular supercompact provided that 

it possesses a binary subbase T such that A.v.T is a ring consisting of 

regular closed sets. 

The proof of theorem 1.4.2 will be postponed till section 4.5. For 

a precise definition and a discu.ssion of superextensions, see chapter II. 

1.4.2. THEOREM. A regular supercompact space is a superextension of each 

dense subspace. 

This theorem is of interest since intuitively superextensions are 

"big"; however theorem 1.4.2 tells us that superextensions can be compacti

fications as well. 

1.4.3. THEOREM. The topological product of regular supercompact spaces is 

regular supercompact. 

PROOF. Let X = TTaEI Xa be a product of regular supercompact spaces and let 

T be a binary subbase for X such that A.v.T is a ring consisting of 
a a a 

regular closed sets (a EI). A straightforward check shows that 

TE Ta (a EI)} 

is a binary subbase for X such that A.v.T is a ring consisting of regular 

closed sets. D 
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We now give some classes of topological spaces that are regular super

compact. 

1.4.4. THEOREM. Each compact metric space is regular supercompact. 

PROOF. See VAN OOUWEN [ 42] . 0 

1.4.5. THEOREM. A compact orderable space is regular supercompact. 

PROOF. Let X be a compact ordered space and let A denote the collection of 

isolated points of X. Then X\clx(A) is a locally,compact topological space 

without isolated points and therefore has disjoint dense subspaces (cf. 

HEWITT [64], theorem 47). So X has dense subspaces D and E, such that 

A= D n E and all points isolated from the left belong to D and all points 

isolated from the right belong to E. Let a be th~ smallest element of X 

and let b be the largest element of X. Then 

T := {[a,d] / d € D} u {[e,b] / e EE} 

is a binary closed subbase such that A.v.T is a ring consisting of regular 

closed sets. 0 

1.4.6. REMARK. HAMBURGER [62] has shown that a compact orderable space is 

regular Wallman. This theorem was generalized by MISRA [85] who showed 
V 

that the Cech-Stone compactification of a locally compact ordered space is 

regular Wallman. MISRA's theorem cannot be generalized for regular super

compactness since SlN, the ~ech-Stone compactification of the natural 

numbers, is not supercompact (cf. BELL [14] and corollary 1.1.7). Hence 

SlN is an example of a regular Wallman space that is not (regular) super

compact. 

1.4.7. In section 1.3 we showed that every compact tree-like space is 

supercompact (theorem 1.3.21). This result suggests the question whether 

every compact tree-like space is regular supercompact. Simple examples 

show that the structure of compact tree-like spaces is much more complic

ated than the structure of ordered compacta. Therefore the simple proof 

of theorem 1.4.5 cannot be generalized. However it is possible that a 

modification of the technique "works", since each compact tree-like space 

is the continuous image of an ordered compactum, by a result of CORNETTE 

[32]. We give a partial answer to the general question by showing that 
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each compact tree-like space of weight at most e is regular supercompact. 

1.4.8. THEOREM. A compact tree-like space of weight at most e is regular 

supercompact. 

PROOF. Let X be a compact tree-like space. Recall that the collection of 

complements of segments forms a closed subbase for X {theorem 1.3.21). 

Let T be a collection of complements of components which is a subbase 

and which in addition is of cardinality at most e. Define 

A:= {(S,T) I S,T e T ands n T = ~}. 

List A as {Aa I a e e}. By transfinite induction choose for each a~ e 
a point pa EX such that 

{i) if Aa = {S,T) then pa separates S from T; 

{ii) Pat {pe I e < a}. 

To define p0 , note that each element of Tis connected and hence that if 

A0 = {S,T) then there exists a separation point be X which separates S 

from T. Define Po:= b. 

Suppose that all Pe have been constructed fore< a. Notice that 

Let A 
a 

l{pe I e < a}I < e. 

{S,T) and take CE sand d ET. Define 

Z = {x EX x separates c from d}. 

It is well-known, cf. PROIZVOLOV [92], KOK [70], that z is a connected 

orderable subspace of X {Z is ordered by the usual cut point order). The 

connectedness of Z implies that U = Z\{SUT) is a nonvoid open subset of z, 

hence contains a nonvoid open order interval and consequently is of cardi

nality at least e. Also each x e u separates s from T. As I {pe I e < a} I < e 

there is an e e u such that et {pe I e < a}. Define pa:= e. This com

pletes the inductive construction. 

Now, if A = {S,T) let U be the component of X\{p} that contains T. a a a 
Define V := X\U {a e e). Then v n T =~and av = {p} (a E e). a a a a a 
Clearly V := {v 

a I a e e} is a closed subbase for X. This subbase also is 

binary since it is a subcollection of the collection of complements of 

segments which is binary (theorem 1.3.21). Finally A.v.V is a ring consist-



ing of regular closed sets. For take a0 < a 1 < ••• < an (ai Ee, i ~ n). 

Then Va n ••• n Van is regular closed since ava, n ava, =¢for all 
0 ]. J 

ai ~ aj and each Vai is regular closed. Each finite union of_ regular 

closed sets is regular closed and hence A.v.V is a ring consisting of 

regular closed sets. D 

Th_eorem 1. 4. 8 suggests the following question: 

1.4.9. QUESTION. Is every compact tree-like space regular supercompact? 
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1.4.10. We will now describe how to construct regular supercompact compac

tifications of discrete spaces. 

STEINER & STEINER [110] have shown the following theorem: Let X be 

an infinite discrete space and let K be a compact space with a dense sub

set of cardinality less than or equal to that of X. Then X has a (Hausdorff) 

compactification ax with K as remainder, i.e. aX\X is homeorrorphic to K. 

The construction o·f this compactification is very simple. Express X 

as the union of disjoint subsets Xi (i E w) each of cardinality lxl. Let 

D be a dense subset of K with cardinality less than or equal to lxl. Con

* struct a function f of X into K which maps each Xi onto D. Let X be the 

Alexandroff one point compactification of X. The closure of the graph of 

* fin X x K is a compactification ax of X with K as remainder. The 

restriction of the projection onto the second coordinate of the product 

* X x K to ax clearly is a retraction of ax onto K. 

1.4.11. THEOREM. Let X be an infinite discrete space and let K be a 

Hausdorff regular supercompact space with a dense subset of cardinality 

less than or equal to that of X. Then X has a Hausdorff compactification 

ax with the following properties: 

(i) K = aX\X; 

(ii) ax is regular supercompact. 

PROOF. Let ax be the "graph-closure" compactification of STEINER & STEINER, 

described above, and let r: ax ➔ K be a retraction. Let T be a binary sub

base for K such that A.v.T is a ring consisting of regular closed sets. 

Clearly 

S := {{x} I xE x} u {a.x\{x} I x e x} u {r-1[T] I TE T} 

is a closed subbase for the topology on ax. 
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CLAIM 1. S is binary. 

Indeed, let Mc S be a linked system with an empty intersection. By the 

compactness of ax we may assume that Mis finite. It is clear that M does 

not contain a singleton. Hence we may write 

Since Tis binary we have that ni~n Ti~¢ and consequently 

since r is a retraction. This is a contradiction. 

CLAIM 2. A.v.S consists of regular closed sets. 

Since A.v.T is a ring consisting of regular closed sets it suffices to 

show that 

is regular closed in ax for all T € T and xi€ X (i ~ n, n € w). But 

this is a triviality since it is easy to see that 

is a dense open set in r- 1[T] n (ax\{x0 , ... ,xn}) for all T € T and 

xi€ X (i ~ n, n € w). D 

This theorem implies that there are many Hausdorff compactifications 

of lN that are regular supercompact. Also it is easy to construct nonmetriz

able regular supercompact Hausdorff compactifications of :N. For example, 

let K be a separable nonmetrizable compact orderable space. Then theorem 

1.4.5 and theorem 1.4.11 imply that there is a Hausdorff compactification 

alN of lN with K as remainder and which is regular supercompact. 

We finish this section with an open question: 

1.4.12. QUESTION. Is there a supercompact Hausdorff space that is not 

regular supercompact, or, more generally, is there a supercompact Haus

dorff space that is not regular Wallman? 



1.5. Partial orderings on supercompact spaces 

Supercompact spaces which possess a binary subbase which also is 

normal (cf. 1.3.16) behave surprisingly nice. In some sense these spaces 

have much in common with (products of) compact tree-like spaces (section 

1.3). It is well-known that a compact tree-like space 

(a) can be partially ordered in a natural way (cf. WARD [123]); 

(bl is locally connected (cf. PROIZVOLOV [92]); 

(c) is (generalized) arcwise connected (cf. PROIZVOLOV [92]); 

(d) has the fixed point property for continuous functions 

(cf. WALLACE [120]). 
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We will show that a space with a binary normal subbase satisfies (al, 

(bl and (cl if it is connected. Property (b) for these spaces is original

ly due to VERBEEK [119] and property (d) was proved recently by VAN DEVEL 

[118]. Basic tools in the proofs will be partial orderings and nearest 

point mappings defined in 1.5.2. These mappings are fundamental and will 

from now on be applied everywhere in this treatise. 

Finally we show that a space with a binary normal subbase is a retract 

of the hyperspace of its nonvoid closed subsets. As a corollary it follows, 

using a result of WOJDYSLAWSKI [130], that if in addition such a space is 

connected and metrizable it is an Absolute Retract. 

1.5.1. Let X be a topological space and let S be a binary normal (cf. 

1.3.16) subbase for X. Notice that the normality of S implies that Xis 

Hausdorff since Sis a T1-subbase (lemma 0.4) and that each supercompact 

Hausdorff space possesses a binary weakly normal subbase (theorem 1.3.9). 

Without loss of generality we assume that XE S. 

For each subset Ac x let IS(A) be defined by 

IsCAl := n{s Es I Ac s}. 

Notice that clX(A) c IS(A), since Sis a closed subbase, that IS(IS(A)) = 

IS(A) and that IS(A) c IS(B) if Ac B, for all A,B c X. If A is a two point 

set, say A= {x,y}, then we usually write IsCx,y) in stead of Is({x,y}). 

The set IS(x,y) is interpreted as a "segment" joining x and y. The function 

I: xxx + P(X) defined by I((x,y)) := IS(x,y) is an interval structure 

(cf. 1.3.2 and 1.3.3). 

A partially ordered topological space (in the sense of WARD [122]) is 
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a topological space Y endowed with a partial order, s, which is contin

uous in the sense that the graph of sis closed in Y xY. A partial order 

"S" is called order dense if x < y implies that there is a z E Y such 

that x < z < y. A chain in a partial ordered set is a subset which is 

linear with respect to the partial order. A point is called minimal (max

imal) if it has no proper predecessor (successor). 

For a given point p EX define a binary relation S on X by 
p 

In theorem 1.5.13 we will show thats is a continuous partial ordering 
p 

for X. The notation x s y is 
p 

not such a good notation, since the ordering 

S also depends on the choice of the subbase S, and a topological space p 
can have many totally distinct binary normal subbases. For notational 

simplicity we suppress the subindex Sin the ordering; from the context 

the meaning of x s y will always be clear. 
p 

1.5.2. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for X. Let Ac X. 

(i) For every x EX the set 

is a singleton. 

We denote the unique point of this intersection by r(x). 

(ii) r: X + Is(A) is a retraction. 

(iii) For all x EX, the point r(x) is the greatest lower bound with 

respect to Sx of A. 

PROOF. (i). Define B(A) by B(A) := naEA IS(x,A) n IS(A). Notice that the 

binarity of S implies that B(A) is nonvoid. Assume that p and q are two 

distinct elements of B(A). By normality of S there are s0 ,s1 ES such that 

p E So\Sl, q E Sl\So and sou sl = x. If An so=¢, then Ac sl and con

sequently 

which is impossible. Therefore A n so#¢. In the same way also An s 1 1 ¢. 

Now, as {so,s1} is a covering of X there is an i E {0,1} such that x E Si; 

say x E s 0 . Take a0 EA n s 0 . Then 
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which is a contradiction. 

(ii). To prove the continuity of r, let SES and take x t r-1[s]. Then 

r(x) t Sand as {r(x)} = naEA IS(x,a) n IS(A) we conclude, by the binarity 

of S, that either IS(A) n S =~or IS(x,a0 ) n S =~for some a0 €A.In 
-1 the first case r [SJ=~, hence is closed. In the second case, choose s 0 

and s1 in S such that Is(x,aol c son (X\S1) and Sc s1 n (X\So) and 
. ~ 

s 0 u s 1 = x •. Then U = X\S1 is a neighborhood of x which misses r [s]. 
-1 Hence once more r [SJ is closed; consequently r is continuous. Clearly 

r is a retraction. 

(iii). First of all, let us check that r(x) is a lower bound for A. Take 

a EA; then r(x) E Is(x,a), by construction, and consequently Is(x,r(x)) c 

Is<x,a). Hence, by definition, r(x) sx a. 

Now assume that p sx a for all a€ A. Then p sx r(x), for assume to 

the contrary that pix r(X). Then pt IS(x,r(x)) and by the normality of S 

there are s 0 ,s1 € S such that p € s 0\s1 , IS(x,r(x)) c S1\s0 and s 0 u s 1 =X. 

The set A is not contained in s 1 , for otherwise pt Is(x,a) for all a EA. 

Hence A intersects s 0 and, consequently, so does IS(A). Moreover IS(x,a) 

intersects s 0 for all a EA since p € IS(x,a) n s 0 • Therefore the system 

{so} u {s ES I Ac s} u {s € S I 3a €A: Is(x,a) cs} 

is linked. By the binarity of Sit has a nonvoid intersection; consequently 

which is a contradiction, since r(x) t s 0 • D 

1.5.3. COROLLARY. For all x,y,z € X the set IS(x,y) n IS(y,z) n IS(x,z) 

is a singleton. □ 

The greatest lowerbound of Ac X with respect to the binary relation 

sx is denoted by glbx(A). 

1.5.4. COROLLARY. For all Ac X and x € X we have that glbx(A) = glbx(Is(A)). 

PROOF. {glbx(A)} naEA IS(x,a) n IS(A) ~ naEIS(A) IS(x,a) n IS(A) = 

naEIS(A) IS(x,a) n IS(IS(A)) = {glbx(IS(A))}. 0 
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The following proposition indicates why we think of IS(x,y) as a 

segment joining x and y. It will be used in theorem 1.5.13 and theorem 

1.5.14. 

1.5.5. PROPOSITION. If y € IS(a,b) and x € IS(a,y) then y € IS(x,b). 

a X y b 

PROOF. Assume that y t Is(x,b). By the normality of S there are s0 ,s1 € S 
such that y € s0\s1 and IS(x,b) c s1\s0 and s0 U s1 = X. Now if a€ s1then 

Is(a,b) c s1 and consequently y € s 1 which is impossible. Therefore a€ s0 ; 

but since y € s0 it follows that x € s0 since x € IS(a,y) c s0 • This is 

a contradiction. D 

1.5.6. DEFINITION. A subset Ac Xis called S-closed if A= IS(A). 

Recall that a subset Ac Xis called S-convex if for all x,y €Awe 

have that Is(x,y) c A (cf. definition 1.3.2). Clearly each S-closed set 

Ac X also is S-convex. Simple examples show that the converse need not 

be true. For example, an S-convex set need not even be a closed set. The 

two concepts coincide on the collection of closed subsets of X, as the 

following theorem shows. 

1.5.7. THEOREM. Let X be a topological space which possesses a binary 

normal subbase S. For a closed set A in X the following assertions are 

equivalent: 

(i) A is S-closed; 

(ii) A is S-convex. 

PROOF. We only need to check (ii)• (i). Indeed, assume there is a closed 

set Bin X which is S-convex and not S-closed. Choose x € IS(B)\B. By 

theorem 1.5.2 (i) we have that {x} = nb€B IS(x,b) n IS(B) c nb€B IS(x,b). 

We claim that {x} = nb€B Is(x,b). Indeed, assume there is 

a z € nb€B IS(x,b)\{x}. Then z sx b for all b €Band consequently 

z sx glbx(B) = glbx(IS(B)) = {x}, by theorem 1.5.2 (i), (ii) and corollary 

1.5.4. Therefore z € IS(x,x) = {x} which is a contradiction. 

Define T := {IS(x,b) n BI b € B}. Then clearly T consists of subsets 

of B, closed in Band hence in X. We will show that Tis a linked system of 
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S-convex sets. Choose b0 ,b1 EB. Then, as Sis binary Is(b0 ,b1) n IS(b1 ,x) n 

Is(x,bal f ¢ (cf. 1.3.2 and 1.3.3) and as Is<ba,bl) c B, by assumption, 

IS(x,b0 ) n Band IS(x,b1) n B must intersect. As Bis S-convex, it is 

easily seen that T consists of S-convex sets too. 

As in the proof of theorem 1.3.3 it can be shown that nT #¢.However, 

this is a contradiction since nT = nbEB IS(x,b) n B = {x} n B = ¢. 0 

The following result follows from theorem 1.5.2. 

1.5.8. COROLLARY. Let X be a topological space and let S be a binary 

normal subbase for X. Then 

(i) Each S-closed set is a retract of X. 

(ii) If Xis connected, then each S-closed set is connected; in 

particular each interval Is(x,y) is connected (x,y EX). 

(iii) (cf. VERBEEK [119]). If Xis connected then Xis locally connected. 

PROOF. (i) and (ii) follow from theorem 1.5.2. 

To prove (iii), take x EX and let Ube any neighborhood of x. Choose 

finitely many s 0 ,s1 , •.• ,sn ES such that xi UiSn Si~ x\u. For each iSn 

choose Si ES such that x E intx(Si) c Si and Sin Si=¢. This is pos

sible since Sis normal and T1• Then V := nisn Si is a closed neighborhood 

of x, contained in U. Moreover it is clear that Vis S-closed, and hence 

connected ((ii)). D 

1.5.9. Let X be a topological space. A mean mis a continuous map 

m: xxx ➔ X such that m(x,x) = x for all x EX and m(x,y) = m(y,x) for all 

x,y EX. We will construct a mean on every supercompact space with a 

binary normal subbase. First we need a simple lemma. 

1.5.10. LEMMA. If Sis a binary normal closed subbase for X, then the 

mapping f: xxxxx ➔ X defined by 

is a continuous surjection. 

PROOF. Clearly f is well defined (cf. corollary 1.5.3). To prove the con
-1 

tinuity off lets ES and take (x,y,z) if [s]. Then 
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and hence, by binarity of S, without loss of generality Is(x,y) n S = ¢. 

Choose so Es such that Is(x,y) C intx(So) C so and sons=¢. Then the 

neighborhood 

-1 -1 u = rr0 [intx(s0JJ n rr1 [intx(s0)J 

-1 of (x,y,z) E xxxxx does not intersect f [s], as can easily been seen. 

Hence f- 1[s]is closed in xxxxx and consequently f is continuous. Also f 

is surjective, since for an arbitrary x EX we have that 

which completes the proof of the lemma. D 

1.5.11. PROPOSITION. Any topological space which possesses a binary normal 

closed subbase has a mean. 

PROOF. Let S be a binary normal closed subbase for the topological space X. 

Let f be defined as in lemma 1.5.10. Fix a point p EX and define 

m: xxx + X by m := ft{p}xxxx. Then m is a continuous map of Xx X onto X. 

Furthermore {m(x,x)} = IS(x,x) n IS(x,p) n IS(p,x) = {x} for all x EX 

and {m(x,y)} = IS(x,y) n IS(x,p) n IS(p,y) = IS(x,y) n IS(y,p) n IS(x,p) 

{m(x,y)} for all x,y EX. Therefore mis a mean. D 

1.5.12. Proposition 1.5.11 gives us many easy examples of spaces which 

are supercompact but which do not possess a binary normal subbase (recall 

that each supercompact Hausdorff space possesses a binary weakly normal 

subbase, cf. 1.3.9). For example the supercompact space 

Y = {(O,y) I -1 sys 1} u {(x,sin !) IO< x S 1} 
X 

possesses no binary normal subbase, since this space has no mean (cf. 

BACON [ 13]) • 

That Y is supercompact is not trivial; it follows of course from the 

theorem of STROK & SZYMANSKI [116] (see also VAN DOUWEN [42]), but the 

binary subbase obtained from their theorem cannot be described well. 

Therefore we will indicate another binary subbase for Y. For each n E w 

define 

2 
X := -,-,,---n (2n+1),r 
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Notice that sin(.l...) = 1 if n is even and that sin(.l...) = -1 if n is odd. 
xn xn 

Let r: Y + [-1,1] be the projection onto the second coordinate. It can be 

shown that 

-1 I -1 {(r [x,1])\C -1 s x s 1 and C is a component of r [x,1]} u 

-1 
-1 s x s 1 and C is a component of r [-1,x]} u 

u { (x,sin .!.) 
X 

u {(x,sin !i 
X 

is a binary closed subbase for Y. Moreover it is obvious that this subbase 

is not normal. 

That Y possesses no binary normal subbase also follows from corollary 

1.5.8 (iii) since Y is not locally connected. However, this argument cannot 

be used in the class of .connected and locally connected spaces. Then propo

sition 1 • 5. 11 applies. For example, the n·-spheres Sn are supercompact, but 

do not have a mean (cf. AUMANN [7]) and consequently they cannot possess a 

binary normal subbase. 

15.13. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for x. Let p EX. Then 

(i) s is a continuous partial ordering for X; 
p 

(ii) {y € X y s x} 
p = IS(p,x) for all X € X; 

(iii) {y € X X S y} is S-closed for all 
p 

X € X; 

(iv) {y € X X s y s z} = IS(x,z) for all x,z € X with x s z; 
p p p 

(v) if X is connected, then s is order dense. p 

PROOF. (i) From the definition IS it is clear that sp is reflexive. It is 

symmetric too, for take x,y EX with x s y and y s x. Then, by definition 
p p 

x E IS(p,y) and y € IS(p,x). But corollary 1.5.3 shows that 

is a singleton. Finally transitivity of s is obvious. 
p 

To prove that Sp is continuous, let (x,y) E xxx such that x ip y and 

yip x. Then {z} = IS(p,x) n IS(p,y) n IS(x,y) is not an element of {x,y}. 

Let Ube any neighborhood of z such that clX(U) n {x,y} =¢.By lemma 

1.5.10 there are disjoint neighborhoods v0 and v1 of x and y such that 
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(a) (VOUVl) n clx(U) = ¢; 

(b) for all a€ v0 and b € v1 we have that IS(p,a) n IS(p,b) n IS(a,b) c U. 

Then v0 xv1 is a neighborhood of (x,y) E xxx which has an empty intersec

tion with the graph of s. 
p 

(ii) The simple proof is left to the reader. 

X J x $ y} is closed in X 
p 

x $ y} is S~convex. Then, 
p 

(iii) Clearly {y € 

show that {y EX 

{y €XIX$ y} is S-closed. 
p 

(cf. WARD [124]). We will 

by theorem 1.5.7 the set 

Take a,b E {y EX I x $Py} and take c E IS(a,b). Assume that 

xi IS(p,c). Then take s0 ,s1 € S such that IS(p,c) c s0 \s1 and x € s 1\s0 

and s0 u s 1 = X. If a and bare both contained in s 1 then so is Is(a,b), 

contradicting c i s 1 • Therefore either a€ s0 orb E s0 • Assume that 

a E s0 . Then panda are both contained in s0 ; consequently IS(p,a) c s0 . 

This is a contradiction since x E Is(p,a). 

(iv) Notice that 

{y EX J x s y < z} p -p {y € X 

= {y € X 

x s y} n {y EX I y s z} 
p p 

which is an intersection of two S-closed sets (by (iii)) and hence is 

S-closed itself. Therefore IS(x,z) c {y EX 

Then x € IS(p,q) and q € IS(p,z), hence q € IS(x,z) by proposition 1.5.5. 

(v) Take x,y € X and assume that x < y. Define 
p 

and 

B := {z € X J y s z} 
p 

respectively; note that Bis S-closed by (iii). 

Then A and Bare two disjoint S-closed sets, since$ is a partial 
p 

ordering. By normality of S there exist s0 ,s1 ES such that Ac s0\s 1 and 

B c s 1\s0 and s0 u s 1 = X. Choose a point z0 in s0 n s 1 (Xis connected!); 

by 1.5.3 we can define q by 
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Then q € s 0 n s 1 n IS(x,y) and consequently qi. A u B; hence q f x and q f y. 

But as q € IS(x,y) it follows from (iv) that x SP q SP y. Therefore 

□ 

1.5.14. THEOREM. Let X be a topological space and let S be a binary normal 

subbase for X. Choose p,q € X. Then the orderings induces a lattice order
p 

ing on IS(p,q). Moreover 

(i) x S y iffy S x for all x,y € IS(p,q); 
p q 

(ii) {y € Is(p,q) I X Spy} = Is(x,q) for all X € Is(p,q); 

(iii) the family {Is(p,x) I X € Is(p,q)} u {Is(x,q) I X € Is(p,q)} is a 

closed subbase for IS(x,y); hence IS(x,y) is a compact lattice space 

(cf. 1.3 .12); 

(iv) if Xis connected, then SP is order dense on IS(p,q). 

PROOF. (i) Since X Spy iff x € IS(p,y) and y Sq x iffy€ IS(q,x), this 

follows from proposition 1.5.5. 

(ii) Since y € Is(x,q) iffy sq x, this is a restatement of (i). 

(iii) Indeed, choose x,y € Is(p,q) such that x f y. The system 

is a system of S-closed sets with an empty intersection, for IS(p,x) n 

IS(x,q) = {x}, by corollary 1.5.3 (x € IS(p,q)!) and similarly IS(p,y) n 

IS(y,q) = {y}. Therefore, by the binarity of S, either IS(p,x) n IS(y,q) =¢ 

or IS(p,y) n Is(x,q) =¢.Without loss of generality we may assume that 

IS(p,x) n IS(y,q) =¢.Choose s 0 and s 1 in S such that IS(p,x) c s 0\s 1 and 

IS(y,q) c s 1\s0 and s 0 u s 1 X. We will show that s 0 n IS(p,q) = 

Is(p,glbq(So)). 

Recall that glbq(s0) = ns€SO IS(s,q) n IS(s0) = ns€SO IS(s,q) n s 0 . 

Therefore, asp€ s 0 , glbq(s0) € IS(p,q); moreover as glbq(s0) € s 0 we 

conclude that {p,glbq(s0)} c s 0 n IS(x,p) and consequently 

Now assume that there is a YE: ((s 0nIS(p,q))\IS(p,glbq(S0)). Choose T0 ,T1 E:S 

such that y € T0\Tl and IS(p,glbq(S0)) c T1\T0 and TO U Tl X. Now, if 

q € T1, then IS(p,q) c T1 , which is a contradiction, since y € IS(p,q). 
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Therefore q E T0 . This, however, also is a contradiction since then 

glbq(SO) E T0 . We conclude that s 0 n IS(p,q) = IS(p,glbq(s0)). Similarly, 

using (i), we can derive s 1 n IS(p,q) = IS(glbp(S1) ,q). 

Now, by lemma 0.1, {Is(p,x) Ix E Is(p,q)} u {Is(x,q) Ix E Is(p,q)} 

is a closed subbase for IS(p,q) (note that IS(p,q) is compact!) 

It remains to establish (iv); this can be done using the same technique 

as in theorem 1.5.13 (v). D 

1.5.15. A point x in a topological space Xis called an endpoint if its 

complement X\{x} is connected. We call a topological space X (generalized) 

arcwise connected if for each two distinct x and yin X there is a totally 

ordered compact connected subspace of X containing both x and y. Then x 

and y are connected by an ordered continuum L such that L\{x,y} is connect

ed; i.e. x and y are the only two endpoints of L. 

1.5.16. THEOREM. Let X be a connected topological space and let S be a 

binary normal subbase ·for X. Then Xis (generalized) arcwise connected. 

PROOF. Choose x,y EX and consider the connected subspace IS(x,y) 

(corollary 1.5.8 (ii)). Then Is(x,y) is partially ordered by ~x and ~x 

is order dense (theorem 1.5.14 (iv)). An easy application of Zorn's lemma 

shows that there is a maximal chain Lin IS(x,y). But as ~xis order dense 

so is the induced (total) order on L. Moreover by a theorem of WARD [124], 

Lis closed and connected in IS(x,y) (this is very easy to show). There

fore, in virtue of theorem 1.5.14, Lis an ordered compactum that clearly 

contains both x and y. D 

1.5.17. For a topological space X, let 2X be the space of all nonempty 

closed subsets of X topologized by the Vietoris topology, i.e. a basis for 

the open sets consists of all sets 

where o0 ,o1 , .•. ,on is an arbitrary finite collection of open subsets of X 

(cf. MICHAEL [75]). The space 2X is called the hyperspace of X. For many 

strong results concerning hyperspaces, see WOJDYSLAWSKI [130], CURTIS 

& SCHOR! [36],[37], SCHOR! & WEST [102] and WEST [127]. 

Hyperspaces are widely used in general topology; for our purposes too 

they will turn out to be of great help. 
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1.5.18.THEOREM. Let X be a topological space with binary normal subbase S. 
Then the mappings: 2Xxx + x defined by s(A,x) := glb (A) is continuous. 

X 

-1 
PROOF. Let SES and suppose that (A,x) is [SJ. Then glbx(A) is. By the 

normality of S there are s 0 ,s1 in S such that glbx(A) E s 0\s 1 , Sc s 1\s0 

and s 0 u s 1 = x. Clearly A intersects x\s 1, for otherwise Is(A) c s 1 which 

would imply that glbx(A) E s 1 • If A¢ X\s1, then clearly xi s 1 • Let 

if Ac X\Sl 

and 

if A ¢ X\Sl. 

Then Vis an open neighborhood of (A,x) which, in addition, does not inter

sect s- 1[s]. For take (B,y) EV. In the first case, B c X\S 1, whence 

s(B,y) E X\s1 c X\S. In the second case, choose b EB n (X\s1). Then 

{b,y} C So; consequently s(B,y) € so C X\S. □ 

1.5.19. Recall that a topological space X can be embedded in 2X by the 

mapping i(x) := {x} (MICHAEL [75]). We will identify X and i[X]. A topolog

ical space X which possesses a binary normal subbase will be called, from 

now on, normally supercompact. 

1.5.20. COROLLARY. A normally supercompact space Xis a retract of its 
X 

hyperspace 2 • If, in addition, Xis connected and metrizable then Xis 

an Absolute Retract. 

PROOF. Let S be a binary normal subbase for X. Fix a point p EX and 

definer: 2X + X by r (A) := s(A,p), wheres is as defined in theorem 

1.5.18. Then r is a continuous retraction. For take x EX. Then 

{r(x)} 

If in addition Xis connected and metrizable, then Xis a Peano 

continuum (corollary 1.5.8 (iii)). Hence 2X is an Absolute Retract 

(WOJDYSLAWSKI [130]; even 2x Ri Q, the Hilbert cube, see CURTIS & SCHOR! 

[36]). Therefore Xis an Absolute Retract too. D 

1.5.21. If X has a binary normal subbase S then the subspace 

H(X,S) := {c E 2x I C is S-closed} of 2X is of particular interest. It 

will be discussed in section 2.10. From the results obtained there we 
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mention the following: 

(a) the mapping$: 2X + H(X,S) defined by $(A) := Is(A) is a retraction 

(hence H(X,S) is compact!) (theorem 2.10.5); 

(b) H(X,S) has a binary normal subbase (corollary 2.10.12). 

H(X,S) inherits a partial ordering (by inclusion) from 2x, which is 

order dense if Xis connected. 

1.5.22. THEOREM. Let X be a topological space which possesses a binary 

normal subbase S. Then H(X,S) is a densely ordered (by inclusion) compact 

subset of 2X if and only if Xis connected. 

PROOF. H(X,S) always is compact (cf. theorem 2.10.5). Assume that Xis 

connected. Choose A,B € H(X,S) such that A is a proper subset of B. Take 

x € B\A and let SO,sl € S such that Ac son (X\S), x € Sl\So and 

s 0 u s 1 = X. This is possible since Sis normal and since A E H(X,S). 

Then {s0 ,s1 ,B} is a linked system consisting of S-closed sets, hence 

s 0 n s 1 n Bi¢ since Sis binary. Take b E s 0 n s 1 n Band define 

C := SO n B. Then Ac Cc Band Ai C since b € C\A and Ci B since 

x € B\C. Clearly C € H(X,S). 

Conversely, assume that H(X,S) is a densely ordered (by inclusion) 

compact subset of 2x. Take A€ H(X,S) and let LA be a maximal chain, in 

H(x,S), that contains A. Notice that X € LA. Then, since H(X,S) is compact 

and densely ordered by inclusion, LA is compact and connected (WARD [124]). 

But then H(X,S) = U{LA j A€ H(X,S)} is connected too. As each singleton 

in Xis S-closed, X c H(X,S) and as Xis a retract of H(X,S) by corollary 

1.5.20 we conclude that Xis connected. D 

1.5.23. COROLLARY. Let X be a connected topological space which admits a 

binary normal closed subbase S. Then for each x € X there is a compact 

connected linearly ordered space J, with endpoints a and b, and a contin

uous "contraction" p: xxJ ➔ X such that p~X x {a} is constant with values 

on x and p~X x {b} is the identity mapping. If, in addition, X is metriz

able then so is J and consequently p becomes an ordinary contraction. 

PROOF. Choose x € X and let L c H(x,S) be a maximal chain that contains 

{x}. Then Lis densely ordered by inclusion (theorem 1.5.22) and con

sequently Lis a compact connected ordered space. Also {{x},X} are the 

only endpoints of Las can easily be seen. Now let p: Lxx + X be the 
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it is easy to see that p satisfies the required properties. 
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If in addition Xis metrizable, then 2X is metrizable (cf. ENGELKING 

[48], problem P.4H) and consequently so is its subspace J. But then J is 

homeomorphic to the closed unit interval [0,1] (WARD [124]). D 

The technique, used in the proof of the above corollary, is due to 

VAN DEVEL [118]. 

Finally, we present some questions which at the moment we cannot 

answer. In section 1.3 we showed that each compact tree-like space is 

supercompact. A compact tree-like space is rim finite (cf. PROIZVOLOV [92]), 

i.e. each point admits arbitrary small neighborhoods with finite boundaries. 

This suggests the question whether any rim finite continuum is supercompact. 

1.5.24. QUESTION. Are rim finite continua supercompact? 

It should be noticed that a rim finite continuum is the continuous 

image of a supercompact Hausdorff space; indeed, it is even the continuous 

image of an ordered continuum (cf. WARD [125]). Not all rim finite continua 

are normally supercompact, since the 1-sphere s1 is rim finite but not 

contractible (cf. corollary 1.5.20). 

1.5.25. QUESTION. When is a normally supercompact space the continuous 

image of an ordered compactum? 

Not all connected spaces with a binary normal subbase are the con

tinuous image of an ordered compactum. For example, re is not the contin

uous image of an ordered compactum, since it is not hereditarily normal. 

1.6. Notes 

DE GROOT [54],[55] conjectured that every compact metric space is 

supercompact (which was proved to be correct by STROK & SZYMANSKI [116]) 

and also that not every compact Hausdorff space is supercompact (which 

was proved by BELL [14]). Theorem 1.1.5 indicates why certain compact 

Hausdorff spaces are not supercompact, but there are still many questions 

left. 

After learning that not every compact Hausdorff space is supercompact, 

VAN DOUWEN and the author together improved BELL's result. These results 
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are included in the previous chapter; they fill section 1.1. They will also 

be published separately in a forthcoming paper (cf. VAN DOUWEN & VAN MILL 

[ 43] l • 

We also have some comments concerning section 1.3. As noted there, 

supercompact spaces can be characterized as being those spaces obtainable 

as the graph-space of a graph. This approach was developped by DE GROOT 

[56] and it turned out to be useful (cf. DE GRoor [56], BRUIJNING [26], 

SCHRIJVER [105]). BRUIJNING [26] used the graph-theoretical method's of 

DE GROOT by reproving an internal characterization of In and I 00 (cf. 

DE GROOT [55]). SCHRIJVER [105] used non-intersection graphs instead of 

intersection graphs and considerably simplified and generalized the 

techniques; among others he reproved in a simple way all the results in 

DE GRoor & SCHNARE [60] and obtained some new subbase characterizations 

of certain classes of topological spaces. The author proved the subbase 

characterization of (products of) compact tree-like spaces (cf. VAN MILL 

[76]); in particular that every compact tree-like space is supercompact, 

which was proved independently by BROUWER & SCHRIJVER [24] (cf. also 

BROUWER [23]) using a different method. BROUWER & SCHRIJVER [24] used 

interval structures (which were first used by SCHRIJVER). Finally 

SCHRIJVER and the author jointly wrote a paper in which we included the 

interval structures, results from [105] and [76] and also some new 

techniques (cf. VAN MILL & SCHRIJVER [81]). This paper was the basis for 

section 1 • 3 . 
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CHAPTER II 

SUPEREXTENSIONS 

In this chapter we will construct for each topological space X and 

for each suitable closed subbase Sa supercanpact superspace A(X,S) of X, 

in the same way as FRINK [51], SHANIN [106a], and others, constructed a 

canpactification w(X,S) of X. The underlying set of A(X,S) is the set of 

maximal linked systems in S; the topology is induced by a natural Wallman 

subbase for the closed subsets. The space A(X,S) is called the super

extension of X relative· the subbase S (cf. DE GROOl' [54]), and in case S 

consists of all the closed subsets of X we usually write AX instead of 

A(X,S), calling AX the superextension of X. 

The spaces A(X,S) are supercanpact, in a very natural way: their 

canonical defining subbases are binary. It is not surprising that one has 

to use sanething like the axian of choice to prove this (cf. FRINK [51], 

STEINER [114]). The first section in this chapter deals with the question 

what set theoretic assmnptions we have to make in order to extend arbitrary 

linked systems to maximal linked systems. We do this in the setting of 

Boolean algebras. We will reprove SCHRIJVER's [106] theorem that the 

statement 

each linked system in a Boolean algebra can be extended to 

at least one maximal linked system, 

is strictly weaker than Stone's representation theorem; also (*) is 

independent of the usual axians of set theory since, as SCHRIJVER [106] 

has shown, (*) implies that each product of sets containing at most two 

elements is nonempty (that is to say: (*) implies c 2 , the axian of choice 

for two sets, cf. JECH [66]). We will show that (*) is equivalent to a 

weaker form of the representation theorem of Stone; for this we define 

near~subalgebras of Boolean algebras. Each subalgebra is a near-subalgebra; 

(*) is equivalent to the statement that each Boolean algebra is iscmorphic 



66 

to a near-subalgebra of a P(X). 

The other sections in this chapter deal with topological properties 

of superextensions. Some properties are inherited fran the underlying 

space, such as: AX is connected if Xis connected (cf. VERBEEK [119]). But 

other properties are new and unexpected and they turn out to be fundamental, 

such as: AX is locally connected if Xis connected (cf. VERBEEK [119]). 

The superextension AX of a topological space X always is a "big" 

space, in case Xis normal, the dimension of AX either is zero (in case 
V 

Ind X = 0) or infinite. Also AX contains SX, the Cech-Stone compactifica-

tion of X, as a subspace (again we only consider normal spaces) (cf. 

VERBEEK [119]). This is a consequence of the fact that xis c*-embedded 

in AX and this can be shown using a result of JENSEN [59] (cf. also 

VERBEEK [119]). We will extend the result of JENSEN in such a way that 

it becomes applicable in more general situations. Here we apply ideas of 

STEINER & STEINER [111], [112]. 

Subspaces of superextensions often have rich structures. In section 

2.8 a first attempt is made to describe some subspaces which appear to be 

interesting. For a normal space X we define a subspace E(X) of A(X) which 

seems to behave as the "remainder" of the "extension" AX of X; as we will 

show E(X) has much in common with SX\X. In particular, as a consequence of 

our results E(X) is compact iff Xis locally compact iff E(X) is homeo

morphic to A(SX\X). Of particular interest is the space E(lN). This is in 

fact the space of all uniform maximal linked system on lN. The space E (lN) 

can be characterized in about the same way as PAROVI~ENKO [91] character

ized SlN\lN. This characterization is valid under CH, the Continuum Hypoth

esis. By an example of VAN DOUWEN [40] the Continuum Hypothesis is indeed 

essential here. There is a locally compact, separable, a-compact topolog

ical space M for which SM\M and SlN\:N are homeomorphic under CH but not 

under MA+ 7CH. VAN DOUWEN's example also shows that CH is essential in 

our characterization of E ( lN) • The spaces E ( lN) and E (M) are homeomorphic 

under CH but not under MA+ 7CH. 

In section 2.10 we try to define a general notion of convexity in 

topological spaces; convexity with respect to a certain closed subbase. 

This section has in fact little to do with superextensions; it is hyper

space theory. But to prove our theorems we use superextensions extensively. 

Some of the consequences of this section were used in 1.5.22 and the same 

results will also be used in section 2.7. There we show that the super-
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extension of a normal space, with the property that each finite subset 

is contained in a metrizable continuum, is contractible. This is really 

a nice theorem. As a consequence it follows that AlR., the superextension 

of the real line JR., is contractible, in contrast with SlR. (this space is 

not even path connected). The contractibility of AlR. was claimed previous

ly by VERBEEK [119]; his proof is incorrect however, since it relies on 

the contactibility of SlR.. The results about convexity in topological 

spaces and about contractibility of superextensions were obtained in good 

cooperation with M. VAN DEVEL (cf. VAN MILL & VAN DEVEL [82], [83]). 

2.1. Linked systems and the Stone representation theorem 

This section deals with logical independency of some axioms in Boolean 

algebra's. Our main interest is in (maximal) linked systems, which are 

natural generalizations of filters. We refer to the book of BALMOS [61] 

for general concepts concerning Boolean algebras. 

2.1.1. DEFINITION. Let 8 = <B,0,1,' ,A,V> be a Boolean algebra. A subset 

Mc Bis called a linked system if m0 A m1 # 0 for all m0 ,m1 EM. 

A maximal linked system is a linked system not properly contained in any 

other linked system. 

It is easy to verify that the lemma of Zorn implies that each linked 

system in a Boolean algebra can be extended to at least one maximal linked 

system. However, much weaker axioms imply this fact, cf. SCHRIJVER [106]. 

We deal with the following axioms: 

FA Each Boolean algebra contains an ultrafilter. 

FA': Each filter in a Boolean algebra is contained in at least 

one ultrafilter. 

LA: Each Boolean algebra contains a maximal linked system. 

LA': Each linked system in a Boolean algebra is contained in at least 

one maximal linked system. 

Again it is easy to see that FA and FA' are equivalent, forming quotient 

algebra's (cf. JECH [66]). Also, LA and LA' are equivalent (SCHRIJVER 

[106]; cf. 2.1.7 below) but this is less trivial. 

2.1.2. LEMMA (LA'). Let B <B,0,1,' ,A,V> be a Boolean algebra. Then for 
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all x,y £ B there is a maximal linked system L c B such that ILn{x,y}I =1. 

PROOF. If x equals y, then the linked system {x} is contained in at least 

one maximal linked system L, by LA'. 

If xis not equal toy, then we may assume, without loss of generality, 

that y t x. Clearly, x' Ay # 0. Then the linked system {x',y} is contained 

in at least one maximal linked system L c B. Then L n {x,y} = {y}, since 

XI €: L. D 

Let (X,~) be a partially ordered set; then each subset A of X will be 

partially ordered by the induced ordering ~A, defined by a ~A b iff a~ b 

(a,b £ A) . 

2.1.3. DEFINITION. Let 8 = <B,0,1,',A,V> be a Boolean algebra. A subset 

Ac Bis called a near-subalgebra of B provided that 

(i) (A,~A) is a distributive lattice; 

(ii) 0,1 £ A; 

(iii) Va £ A: a' £ A. 

For any two elements a0 and a1 of the near-subalgebra A of B write 

for the greatest lower bound (least upper bound) of a0 and a 1 . We then 

have 

2.1.4. LEMMA. Let A be a near-subalgebra of the Boolean algebra B. Then 

a AA b ~ a Ab and a Vb~ a VA b for all a,b £ A. 0 

2.1.5. PROPOSITION. Let A be a near-subalgebra of Boolean algebra 

B = <B,0,1,',A,V>. Then A= <A,0,1,' ,AA,VA> is a Boolean algebra. 

Moreover each subalgebra of a Boolean algebra is a near-subalgebra. D 

The proof of this proposition is straightforward. 

Proposition 2.1.5 suggests the question whether each near-subalgebra of 

a Boolean algebra is a subalgebra (in the usual sense). The answer to 

this question is in the negative, as the following example shows. 

2.1.6. EXAMPLE. A near-subalgebra which is not a subalgebra. 

In P({l,2,3,4}) let A:= {¢,{1},{2},{3},{1,2,4}.,{1,3,4},{2,3,4},{1,2,3,4}}. 



It is easy to see that A is a near-subalgebra, which is not a subalgebra 

of P(X). For example {1} € A and {2} €Awhile {1,2} i A. D 

2.1. 7. THEOREM. The following statements are equivalent: 

(i) LA; 

(ii) LA'; 
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(iii) each Boolean algebra is isomorphic to a near-subalgebra of some P(X). 

PROOF. SCHRIJVER [106J has first shown that (i) is equivalent to (ii). We 

will present a different and simpler proof here. As obviously (ii),. (i), 

we need only prove (i) • (ii). Indeed, let B = <B,0,1,',A,v> be a Boolean 

algebra; let Mc B be a maximal linked system. If L c Bis a linked system, 

then define 

L' :={mEM I mAR.#0 (VR.€L)}u{m'lm€Mand3R.EL:mAR.=0}. 

Then it is easily seen that L' is a maximal linked system that contains L. 

(ii),. (iii). Let B = <B,0,1,',A,v> be a Boolean algebra. Define 

X = {L c B I Lis a maximal linked system}. 

Then Xis nonvoid, because of LA'. For any b € B define 

b+ := {L €XI b € L}. 

Define a function 

</>: B + P(X) by 

CLAIM. <j>[BJ is a near-subalgebra of P(X) and <j>: B + </>[BJ is an isomorphism. 

Indeed, first notice that </>(0) 

{L €XI Xi L} = X\{L €XIX€ L} 

a maximal linked system. 

!IS. Also <P (x') {L € X] x' € L} = 

<j>(x)c, since each element L €Xis 

We will proceed to show that </>[BJ is a near-subalgebra of P(X) and for 

this it only remains to be shown that (</>[BJ,c) is a lattice. 

Choose x+,y+ € <j>[BJ. Let us show that (xA y)+ is the greatest lower 

bound of x+ and y+ in [BJ. Trivially (xA y)+ c x+ n y+; therefore suppose 

that z+ c x+ n y+ Now, z+ c x+ implies that z ~ x, for suppose to the 

contrary that z t x. Then the linked system {x',z} is contained in a max

imal linked system L € X. Hence L € z+ and Li x+, since x' € L. This is 
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a contradiction. Hence z $ x and in the same way also z s y. Consequently 

z $ x A y; thus z+ c (xAy)+. 

In the same way (xv y) + is the least upper bound of x + and y+ in 

¢[BJ. Hence ¢[BJ is a near-subalgebra of P(X). Also it is clear that 

¢: B + ¢[BJ is an homomorphism, since for example ¢ (x A y) (x A y) + = 
+ + 

x A¢[BJ y = ¢(x) A¢[BJ ¢(y). Finally, ¢ is injective. For take x,y EB 

such that x ,f. y. By lemma 2.1.2 there is an LEX such that !Ln {x,y}J = 1. 

This implies that x+ ,f. y+ and consequently ¢(x) ,f. ¢(y). We conclude that 

¢: B + ¢[BJ is an isomorphism. 

(iii),. (i). Let B be a near-subalgebra of some P(X). Choose x0 EX and 

define 

L := {L E B 

we will show that Lis a maximal linked system. 

First of all notice that L ,f. ¢ since XE L. Also Lis a linked system. 

For suppose L0 ,L1 EL ·such that LO AB L1 =¢.Then LO SB (X\L1) and con

sequently L0 c (X\L1), since Bis a near-subalgebra. This is a contradic

tion. Finally Lis a maximal linked system, since for all BE B either 

BEL or X\B EL. 
This completes the proof of the theorem. D 

2.1.8. In [106J SCHRIJVER showed that LA follows from OEP, the order 

extension principle, which can be formulated as follows: 

OEP: Each partial order on a set can be extended to a total order. 

He also proved that LA implies c2, where 

c2 : Each product of sets, each containing at most two elements, 

is nonempty. 

It is unlikely that LA is equivalent to OEP, although LA is equivalent to 

a statement which seems to be very close to OEP. We define 

REP (relation extension principle): For each Boolean algebra B = <B,0,1,' ,A, V> 

there is a binary relation Ron B satisfying: 

(i) x $ y implies xRy 

(ii) xRy or yRK 

(iii) 7(xRK' and x'RK) 

(iv) xRy and yRz implies xRz 

(x, y E B) ; 

(x, y E B); 

(x E B) ; 

(x,y,z E B). 

(Notice that Risa total pre-ordering.) 



2.1.8. THEOREM. LA is equivalent to REP. 

PROOF. Let B = <B,0,1,',A,V> be a Boolean algebra and let M be a maximal 

linked system in B. Then the relation Ron B defined by xRy iff (x' EM 

or y EM) satisfies all requirements. 
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On the other hand, let B <B,0,1,',A,V> be a Boolean algebra and 

let R be a binary relation on B satisfying (i)-(iv). Let M := {x EB I x'Rx}. 

We will show that Mis a maximal linked system. To prove that Mis linked, 

take a,b E M. Suppose to the contrary, that a Ab = O. Then a $ b' and 

b $ a' • Therefore 

aRb'RbRa'Ra, 

since a,b EM. But then aRa' and a'Ra (by (iv)), which contradicts (iii). 

Finally Mis a maximal linked system since for all x EB either x'Rx or 

xRx' and consequently x EM or x' EM. D 

REMARK. The proof of the implication REP~ LA is the same as SCHRIJVER's 

[106] proof OEP ~ LA. 

As clearly OEP implies REP we conclude that OEP implies LA and hence, 

as OEP is weaker than FA (JECH [66]), that LA if weaker than FA. 

2.2. Superextensions; some preliminaries 

In this section we will describe how to construct superextensions of 

topological spaces; we give some simple lemma's which we frequently use 

without explicit reference. Moreover we will characterize the class of all 

superextensions of a given topological space. 

2.2.1. Let X be a topological space and let S be a subbase for the closed 

subsets of X. Recall the following definitions; Sis defined to be 

(i) a T1-subbase if for each x0 EX and SES with x0 i S there exists 

a TES with XO ET and T n s ¢ (cf. 0.A); 

(ii) a weakly normal subbase if for each S,T ES with Sn T =¢there 

is a finite cover M of X by elements of S such that each element 

of M meets at most one of Sand T (cf. 1.3.8); 
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(iii) a normal subbase if for each s 0 ,T0 ES with s 0 n T0 =¢there exist 

sl,Tl ES with sl n To=¢= Tl n so and sl u Tl= X (cf. 1.3.16). 

Finally we define S to be 

(iv) a supernormal subbase if Sis normal while moreover for all SES 

and closed G c X with Sn G =¢there exists an s 0 ES such that 

G c s 0 ands n s 0 = ¢. 

A maximal linked system, or briefly mls, in Sis a linked system of S 

not properly contained in any other linked system of S. Usually we do not 

explicitly mention S. 
The simple propositions 2.2.2 and 2.2.3 and the proof of theorem 2.2.4 

can be found in [119]. 

2.2.2. PROPOSITION. Let M0 , M1 be mls's in S. Then 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

,p i Mo; 

if S E Mo, TES 

if s E S\Mo then 

M0 # M1 iff 3s E 

if S,T E Sand s 

ands c T then TE M0 ; 

3T E M0 : s n T ¢; 

M0 , 3T E M1: s n T = ¢; 

u T = x thens E M0 or TE M0 • □ 

The above proposition shows that maximal linked systems in some 

respects behave like ultrafilters. Define 

>.. (X,S) := {Mc S I M is a maximal linked system in S}. 

If Sis a T1-subbase then for each x EX we have that 

Mx := {S E S x E s} is an mls in S; the function i: X + >.. (X,S) de,f;ined by 

!(x) := Mx is one to one. 

For Ac X we define 

A+:= {ME >..(x,SJ j A contains a member of M}. 

2.2.3. PROPOSITION. For any A,B c X we have 

(i) A C B implies A+ + 
C B 

(ii) A n B = ¢ implies A 
+ + 

= ¢; n B 

(iii) if A,B E s then A n B ¢ iff A+ n B+ ¢; 

(iv) if A,B E $ then Au B X iff A+ u B 
+ 

>.. (X,S); 

(v) if A E S then A+ u (X\A) + =>..(x,SJ. 
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As a closed subbase for a topology on A(X,S) we take 

s+ , = { s + J s E s} • 

With this topology A(X,S) is called the superextension of X with respect 

to the subbase S. In case S consists of all the closed subsets of X, then 

A(X,S) is denoted AX and is called the superextension of X. 

Zorn's lemma implies that each linked system Mc Sis contained in at 

least one maximal linked system M• c S. This proves theorem 2.2.4 (iv). 

2.2.4. THEOREM. 

(i) If S is a T1-subbase then i: X + A(X,S) is an embedding; 

(ii) A(X,S) is Tl; 

(iii) A(X,S) is Hausdorff ifs is norma.l, since s+ is normal if 

S is norma.l; 

(iv) A(X,S) is supercompact; in facts+ is binary; 

(v) for alls ES: i-1[s+J = s. 

In case i is a topological embedding we will always identify X and 

i[X]. Because of theorem 2.2.4 (iv), if Sis a T1-subbase the closure of 

X in A(X,S) is a compactification of X, the so called GA (de Groot-Aarts) 

compactification S(x,S) of X with respect to the subbase S. These compac

tifications were introduced by DE GROOT and AARTS in [57]. They showed 

that if Sis weakly norma.l then S(X,S) is a Hausdorff compactification 

of X; consequently Xis completely regular. The counterpart of this 

theorem is also true: if S(X,S) is Hausdorff then Sis weakly normal 

(cf. 4.6.2). The GA compactifications will be discussed in detail in 

chapter four. 

The following theorem is simple but useful; it will be used frequent

ly in chapter 3. 

2.2.5. THEOREM. Let S be a binary subbase fo.r the topological space X. 

Let Y be a subspace of x such that for all s0 ,s1 ES with s0 n s1 # ¢ 
also s0 n s1 n Y # ¢. Then Xis homeorrorphic to A(Y,SnY). 

PROOF. Define a function¢: X + A(Y,SnY) by ¢(x) := {s n Y J s ES and 

x ES}. We will show that¢ is a homeomorphism. 

To prove that¢ is well defined, choose x EX. Then clearly ¢(x) is 

a linked system. Assume it were not maximally linked. Choose s0 ES such 
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that <f,(x) u {s0nY} is linked but s 0 n Yi <f,(x). Clearly xi s 0 • Choose 

T € S such that x € T and T n s 0 =¢(this is possible since Sis a T1-

subbase). But then T n YE <f,(x) and (TnY) n (s0nY) =¢,which is a contra

diction. Hence</> is well defined. 

Also</> is one to one and surjective. For take x,y € X such that 

x # y. Choose Sand Tin S such that x € S, y € T such that Sn T = ¢. 

But then Sn Y € </>(x) and T n Y € <f,(y) and as (SnY) n (TnY) ¢ it follows 

that </> (x) # </> (y). To prove that </> is surjective, take M € A (Y ,SnY). Define 

L = {s € S j Sn YEM}. Then Lis a linked system (in S) and consequently, 

since Sis binary, there is an x E nL. It now is not hard to see that 

</>(xl = M. 

Finally </> and </>-l are continuous. This is trivial since for all SES 

we have x E ¢-1[(SnY)+] iff <f,(x) € (SnY)+ iff Sn YE <f,(x) iff x € S. 

Therefore <t>- 1[(SnY)+] s. 

We conclude that</> is a homeomorphism. D 

2.2.6. COROLLARY (VERBEEK [119]). Every superextension of a topological 

space X can be regarded as a superextension of a compactification of X, 

viz. 

A(X,S) R1 A(B(x,S),S'), 

where 

+ PROOF. Let SO,sl € s. If son 
+ + 

+ s 1 t- ¢ then s 0 n s 1 'f- ¢ and consequently 

(Son 13 (X,S) l n (Sl n 13 (X,S) l 'f- ¢, since Sics: n 13 (X,S) (i E {0,1 }) . Now 

apply theorem 2.2.5. □ 

Theorem 2.2.5 implies much more; it was the starting point for the 

author's proof that AI R1 100
• Also theorem 2.2.5 allows us to construct 

nice superextensions of topological spaces. Let us demonstrate this by 

an example. It is clear that the canonical subbase of right- and left-tails 

of a linearly ordered compact space is binary and also that if Tis a 

binary subbase for X then A(X,T) is homeomorphic to X (in the obvious 

way). In particular the subbase S = {[O,x] 

is a binary subbase for the unit segment I 

x E I} u { [x, 1 J I x E I} 

[0,1], and consequently 

A(I,S) is homeomorphic to I. Hence the unit segment is a superextension 

of the unit segment, VERBEEK ([119], p.136) gives a list of superexten

sions of the unit segment, but none of the examples is homeomorphic to 
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the unit square or to a higher dimensional hypercube. Theorem 2.2.5 gives 

us for each n E N an easily described subbase Sn for which A(I,Sn) is 

homeomorphic to In. Let us describe S 2 • To this end define an embedding 

of I into [o,½] 2 as suggested in the following figure. 

2 
3 1--------~ 

(0,0) 0 

Figure 5. 

Define a binary subbase T for [o,½] 2 by 

-1 T := {-rri [O,x] 

1 
3 

O < <1 { }} -X- 3, iE 0,1 • 

That Tis a binary subbase is easily checked (of course this is also shown 

in lemma 0.5). Also it is clear that for all T0 ,T1 ET with T0 n T1 i ¢ 
we have that T0 n T1 n ¢[I] i ¢. Hence theorem 2.2.5 implies that 

A(¢[I],Tn ¢[I]) RI [o,}J 2 Therefore 

2 is a subbase for I such that A(I,S2) RI I. 

3 [0,-17]3 To get I as a superextension of I we must embed I in as 

suggested in figure 6. 
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Therefore 

0 

3 
7 

4 
7 

I 

)------------

Figure 6. 

7 

5 
:; 

3 4 S3 := {[O,x] u [ 7-x, 7+x] u [1-x,1] 

4 u {[7-x,1 J 1 1 6 0 s x s 7} u {[0, 7+x] u [:;-x,1] 

2 5 
u {[7-x, 7+x] 

2 
7 

3 is a subbase for I such that A{I,S3) Pd I • It is clear that with a simple 

induction we now can construct the subbases S {n E lN) • 
n 

00 

Using an embedding of I in I we can also construct a subbase S 
00 

for 

I for which A{I,S) Pd I 00
• We will not describe the subbase S as there 

00 00 

are much nicer subbases for I for which the corresponding superextension 

is homeomorphic to the Hilbert cube Q, cf. chapter 3. But it must be 

noticed that the first subbase for the closed unit segment with a super

extension homeomorphic to the Hilbert cube was constructed in the indicate 

manner. 



2.3. Extending continuous functions to superextensions 

In this section we deal with the question under what conditions 

continuous functions can be extended over superextensions. This is of 

importance of course, since several properties of superextensions can be 

derived by considering the space to be a quotient of a superextension 

with a richter subbase (cf. VERBEEK [119]). 
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G.A. JENSEN [59] gives a solution of the extension problem but for 

some purposes her solution is not satisfactory. We will extend JENSEN's 

result, but our result still is not really satisfactory because we cannot 

give a necessary and sufficient condition for extension of continuous 

functions. 

2.3.1. DEFINITION. Let Sand T be two families of closed sets in the 

topological space x. We way that S separates T if for any T0 ,T1 E T with 

TO n Tl ¢ there exist _s 0 ,s 1 E S such that T. CS. (i E {0,1 }) and 
1. 1. 

s 0 n sl ¢. 

Notation: TC S. 

2.3.2. DEFINITION (VERBEEK [119]). Let S be a T1-subbase for the topolog

ical space X. Then a linked system Mc Sis called a pre-mls if Mis con

tained in precisely one mls M• E >. (X,S). 

The following lemma will be used frequently without reference. It is 

straightforward to prove. 

2.3.3. LEMMA (VERBEEK [119]). Let S be a closed T1-subbase for the topo

logical space X and let ME >.(x,S). Then 

(i) a linked system Pc Sis a pre-mls iff VS,S' ES: (Pu {s} and 

Pu {S'} are linked~ Sn S' # ¢); 

(ii) if Pc Sis a pre-mls, contained in M, then 

M = {s ES I Pu {s} is linked}. 

The unique S-mls that contains a pre-mls Mc Sis denoted by M. We 

say that M is a pre-mls for ~-

We now can formulate the main result in this section. 

2.3.4. THEOREM. Let S be a T1-subbase for X, let T be a normal T1-subbase 

for Y and let f: X ➔ Y be a continuous map satisfying 
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Then f can be extended to a continuous map f: A(X,S) + A(Y,T). 

Moreover, if f is onto, then f is onto. 

If f is one to one and {f[S] S € S} CT then f is an embedding. 

PROOF. Define 

A:= {Ac XI A€ Sor 3T € T: A= f- 1[T]}. 

Then A is a T1-subbase for X. Choose M € A(X,S). 

CLAIM 1. M is a pre-mls in A. 

Indeed, assume to the contrary that M were not a pre-mls in A. Then there 

exist A0 ,A1 € A with AO n Al=¢ and Mu {Ai} is linked (i € {0,1}). 

Without loss of generality we may assume that Ai i S (i € {0,1}) for if, 

say AO€ S, it would follow that, since Mis a maximal linked system, 

A0 € M, which is a contradiction since A0 n A1 =¢.Hence 

A € {f-1[T] I T € T} (i € {0,1}). Take S. € S such that A. c S. 
i 1 1 1 

(i € {0,1}) and s 0 n s1 =¢.Now Mu {Ai} is linked implies that Mu {si} 

is linked and therefore Si€ M (i € {0,1}). This contradicts the linked

ness of M. 
Now, let M be the unique mls in A that contains M. 

CLAIM 2. P~ := {T 6 TI f-1[T] €~}is a pre-mls in T. 

Clearly PM is linked. Suppose that P~ were not a pre-mls. Then there 

exist T0 ,T1 € T such that PM u {Ti} is linked (i E {0,1}) but T0 nT1 = ¢. 

The normality of T implies the existence of T'. 6 T (i € {0,1}) such that 
~1 -1 

TO u T1 = Y and TO n T1 =¢=TO n Tl. Then f [T0] u f [T1] = X and 

consequently, by proposition 2.2.2 (v), either f- 1[T0] €~or f-l[T1]€ ~

Without loss of generality assume that f- 1[To] 6 M- But then To 6 PM, 

which is a contradiction since TO n T1 = ¢. 

Now define 

f: A(X,S) +A(Y,T) byf(M) :=PM. 

CLAIM 3. f is continuous. 

--1 + 
It suffices to show that f [T] is closed in A(X,S) for all T € T. 



--1 + 
Therefore choose T1 € T arbitrarily and assume that Mt f [T1]. Then 

f(M) t T; and consequently PM u {T1} is not linked, by claim 2. Choose 

T0 € PM such that T0 n T1 =~-Also choose T1 € T (i € {0,1}) such that 

To u Ti = X and Tb n Tl=~= Ton Ti- As To€ PM also To€ PM and con

sequently Mu {f-1[To]} is linked. Now as {f-1[T] IT€ T} Cs there are 
-1 -1 

s 0 and s 1 in S satisfying f [T0J c s 0 and f [Ti] c s 1 and s 0 n s 1 = ~-

Define U = X\s1• We then have 

f-l[To] C so Cu C f- 1[To]· 

Now, T0 € PM implies that Mu {f-1[T0 J} is linked and therefore also 

Mu {s0 } is linked. Hence s 0 €Mand consequently M_E u+. We claim that 
+ -1 + U is a neighborhood of M which does not intersect f [T1]. For take 

+ --1 + 
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L € U n f [T1]. Then there is an L € L such that L cu. Hence 

{f-l[T0]} u Lis linked and therefore TO€ f(L). This is a contradiction, 

since T1 n TO=~-

It now follows that f-1[T+] is closed and hence that f is continuous. 

f 
CLAIM 4. The diagram X y commutes. 

~1 l !y 

>.Cx,S) 
f >. (Y, T) -

Indeed, let x € X. Then !(x) is the S-mls {s € S I x € s} and f(!(x)) is 

the unique T-mls containing the pre-mls 

{T €TI {f-1[T]} u {s € S Ix€ s} is linked}. 

Let us show that i(f(x)) contains this pre-mls. It then follows that 

f(!(x)) = !Cf(x))~ Choose T1 € T such that {f-1[T1]} u {s € S I x € s} is 

linked, while moreover f(x) t T1 • Now, by the fact that Tis a T1-subbase, 

there is a T0 € T such that f(x) € T0 and T0 n T1 =~-Choose s 0 and s 1 
in S satisfying f- 1[T.] cs. Ci e: {0,1}) and s 0 n s 1 =~-Then 

-1 1 1 -1 
x e: f [T0J c s 0 which implies that s 0 n f [T1] f ~- Contradiction. 

CLAIM 5. If f is onto then f is onto. 

Let K € >.(Y,T) and define 

I -1 
L := {s € s 3T e: K: f [TJ c s}. 
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Since f is a surjection, Lis a linked system. Choose ME A(X,S) such that 

L c M. We assert that f(M) K. For this it suffices to prove that K con-

tains the pre-mls P~. Let us assume, to the contrary, that for some 

TOE P~ we have that T0 i K. Then there is a T1 E 

Choose s 0 and s 1 in S such that f- 1[T.] cs. (i E 

K such 

{0,1}) 

that T0 n T1 

and s 0 n s 1 = 
-1 J. J. 

As f [T0 ] E ~ also s 0 E ~ and consequently s 0 E M. But Tl E K implies 

that s 1 EL c M. This contradicts the linkedness of M. 

= !I). 
!I). 

CLAIM 6. If f is one to one and {f[S] S E S} C T, then f is an embedding. 

First notice that f: A(X,S) + A(Y,T) is a closed mapping, since A(X,S) is 

compact and A(Y,T) is Hausdorff (theorem 2.2.4 (iii)). 

It suffices to show that f is one to one. For this take 

M0 ,M1 E A(X,S) such that M0 i M1 • Choose s 0 and s 1 in S such that 

Si E Mi (i E {0,1}) and s 0 n s 1 = !I). Clearly f[s0 J n f[s 1J = !ll and hence 

there exist T0 and T1 in T such that f[Si] c Ti (i E {0,1}) and T0 n T1 = !I). 

As Sic f- 1[Ti] it follows that Ti E P~i (i E {0,1}) and therefore 

f(M0 J i f(M 1J. 

This completes the proof of the theorem. D 

As noted in the introduction of this section theorem 2.3.4 does not 

give a necessary and sufficient condition for extension of continuous 

functions over superextensions. But if we, moreover, assume that the 

closed subbase S for Xis a separating ring (cf. O.A) and that f is a 

surjection, then the condition mentioned in the theorem is necessary and 

sufficient. 

2.3.5. COROLLARY. Let S be a separating ring of closed subsets of X, and 

let T be a normal T1-subbase fox Y and let f: X + Y be a continuous sux

jection. Then the following assertions axe equivalent: 

(i) there is a continuous suxjection f: A(X,S) + A(Y,T) such that 

f fX = f. 

Ciil {f-1[TJ I T E n c s. 

PROOF. We only need to show that (i) implies (ii). 
-1 

Choose T0 and T1 in T and assume that f [T0] 
-1 

n f [T1 ] = !I). 
-1 -1 

Without loss of generality we may assume that both f [T0 ] and f [T1] 

nonvoid. As A.v.S+ is a separating ring in A(X,S) there are S .. ES 
J.J 

(i,j $ n) and Vkt ES (k,t $ p) such that 

are 



and 

and 

This is possible, since f-1[T~] n f-l[T;] 

to Xis fit follows that 

f-l[TO] f-l[T~ n X c niSn UjSn 
+ 

sij 

and 

f-l[Tl] ;-l[T+] 
1 n X c nksp 

+ 
UR.Sp VkR. 

~- Now as f restricted 

n X = niSn UjSn 5ij 

n X = nkSp UR.Sp VkR.. 

Now, as S = A. V .s I f-l[TO] -1 and f [T1] are separated by elements of S, 
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□ 

In the light of theorem 2.3.4, the question arises whether the con

dition of normality of the subbase T for Y can be weaked in a natural way, 

say to weak normality. The following example shows that the answer to this 

question is in the negative. 

2 2.3.6. EXAMPLE. Let X = s 1 be the poundary of the closed unit-square I • 

As in section 2.2, define 

· · 2 I -1 -1 T := {Ac I A=Tli [0,x]VA = Tli [x,1] (iE {0,1}), XE I}. 

2 Then T is a binary normal closed subbase for I and also for all T0 ,T1 ET 

with T0 n T1 ~~we have that T0 n T1 n x ~~-Hence we may apply theorem 

2.2.5. To this end, define 

r* := {T n XI T € T}. 

* * 2 Then T is a closed T1-subbase for X and also A(X,T) r::i I (theorem 2.2.5). 

Finally let 

S :={Ac X I A is an interval of length less than 1}. 

Then Sis a weakly normal binary subbase for X, which is not normal of 

course. Also SC T*. 



82 

Now assume that the identity mapping on X can be extended to a con

tinuous f: A(x,T*> + A(X,S). By the binarity of S we have that A(X,S) = X 

and hence it would follow that X = s1 is a retract of the closed unit 

square r2 , which is a contradiction. D 

The following corollary of theorem 2.3.4 was not stated explicitly in 

VERBEEK [119]; because of its importance we present it here, but we must 

acknowledge that it certainly was known to VERBEEK. 

2.3.7. COROLLARY. Let X be a topological space which admits a binary 

normal closed subbase S. Then the mapping r: AX+ X defined by 

{r(M)} := n{s ES I s EM} 

is a retraction. D 

The normality of the subbase S also is essential in this corollary: 

the 1-sphere s1 admits a binary weakly normal subbase while it is not a 

retract of AS1 , since the latter space is an Absolute Retract (corollary 

1.5.20) (recall that 

(i) X normal implies that AX has a binary normal subbase (theorem 

2. 2. 4 (iii) ) , 

(ii) X connected implies that AX is connected (VERBEEK [119], cf. also 

section 2.5), and 

(iii) X compact metric implies AX is compact metric (VERBEEK [119], cf. 

also corollary 2 .4 .10).) 

* 2.3.8. Theorem 2.3.4 also implies that always Xis C -embedded in AX. We 

argue as follows: let f: X + I be a continuous function; then, as the 

unit segment I has a binary normal subbase, there is a continuous exten

sion f: AX+ I (theorem 2.3.4). 

This suggests the question of whether for any compact Hausdorff 

space Zand for any continuous function f: X + Z there is a continuous 

extension f: AX+ Z. This is a nontrivial question which has a nontrivial 

answer. The machinery developed in section 1.1 settles the question 

negatively. For let id: lN+ 8lN be the identity mapping on :N. Then there 

is a no continuous f: AlN+ 8lN which extends id, since if there were such 

an fit would follow that 8~1 would be the continuous image of a super

compact Hausdorff space, which is not the case (corollary 1.1.7). 



2.3.9. COROLLARY. Let X be a Tychonoff space. Then the closure of X in 

A(X,Z(X)) is ax. 
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PROOF. We show that Xis c*-embedded in A(X,Z(X)). For let f: X + I be a 

continuous mapping. Then for each closed set Ac I the set f-1[A] is a 

zero-set in X. Consequently by theorem 2.3.4 there is a continuous exten

sion f: A(X,Z(X)) +I.Thus the closure of X in A(X,Z(X)) is a Hausdorff 

compactification of X (recall that Z(X) is a normal base, cf. 0.C) in 

which Xis c*-embedded. Now, by a well-known characterization of ax (cf. 

GILLMAN & JERISON [52]) we obtain the desired result. D 

2.3.10. The concept of supernormality for subbases (cf. definition 2.2.1) 

seems to be pathological, since in compactification theory a closed sub

base almost always fails to be supernormal. In our construction for AI 

however, cf. chapter 3, subbases which are supernormal appear in a natural 

way and therefore it is worthwile to derive some properties of superexten

sions relative supernormal subbases, usin;i theorem 2.3.4. 

Our main interest lies in the following problem: given two subbases 

Sand T of a topological space x, what can be said about A(X,SuT) in terms 

of A(X,S) and A(X,T)? In general the answer is: nothing; but if we make 

the additional assumption that Sand Tare both supernormal then there 

turns out to exist a very nice and very important relation between A(X,SuT) 

and A(X,S) and A(X,T). We will show that then A(X,SuT) can be embedded, 

in a natural way, in A(X,S) x A(X,T). First we need some simple lemma's. 

2.3.11. LEMMA. Let S be a closed supernormal T1-subbase for X and let U 

be a closed T1-subbase such that Sc U. Then for all ME A(X,U) the col

lection Mn Sis an mls in S. 

PROOF. Let ME A(X,U) and define PM:= Mn S. From the normality of Sit 

follows that PM~~. and therefore PM is a linked system. Suppose that PM 

is not maximally linked. Then there exists an s 0 € S such that PM u {s0} 

is linked and s 0 t PM. Clearly s 0 t Mand consequently there is an M € M 

such that Mn s 0 ~- Since Sis supernormal there is ans*€ S with 

* * Mc S and S n s 0 =~-This is a contradiction, however, since M € M 

implies thats* EM and therefore s* E PM. D 

2. 3 .12. COROLLARY. Let S be a supernormal T 1-subbase for X and let U be 

a closed T1-subbase for X such that Sc U. Then A(X,S) is a Hausdorff 
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quotient of A(X,U) under the mapping f defined by 

f (Ml : = M n S. 

Moreover, f is the identity of X. 

PROOF. This immediately follows from lemma 2.3.11 and from the proof of 

theorem 2.3.4. D 

We now can formulate the announced embedding property of superexten

sions with respect to supernormal subbases. 

2.3.13. THEOREM. Let {S0 j a EI} be a collection of supernormal T1-sub

bases for the topological space X. Then U S is a supernormal subbase OEI a 
for X. Moreover the mapping e: A(X,UaEI S0 )->- TT~EI A(X,S0 ) defined by 

(e(Mll :=MnS 
a a 

is an embedding. 

PROOF. The statement that UaEI S0 is a supernormal subbase can easily be 

checked using the fact that all the S0 ' s are supernormal (a E I). 

Let f: A(X,U IS)->- A(X,S) be the mapping described in corollary 
a aE a a 

2.3.12, i.e. f (M) = S n M. Then the evaluation mapping 
a a 

e: A(X,U IS)->- TT A(X,SN) OE Cl OEI u 

defined by (e(M)) = f (M) is continuous. Also it is a closed mapping, 
a a 

since A(X,UaEI S0 ) and TTaEI A(X,S0 ) both are compact Hausdorff spaces 

(cf. theorem 2.2.4 (iii)). we will proceed to show that e is one to one. 

To this end, choose two distinct elements M0 and M1 in A (X,UaEI S0 ). 

In addition take Mi E Mi (i E {0,1}) such that MO n M1 =~-Choose 

a0 E I such that M0 E S00 • Then, since S00 is supernormal and M1 is an 

mls in UaEI S0 , we may assume that also M1 E S00 • But then Mi E f 00 (Mi) 

(i E {0,1}) by corollary 2.3.12, and as M0 n M1 =~we conclude that 

fao<Mol # fao<M1l· □ 

If {S j a EI} is a collection of supernormal subbases for X then 
a 

we will often study A(X,UaEI S0 ) as a subspace of TTaEI A(X,S0 ). Hence 

let us identify A(X,UaEI S0 ) and eD(X,UaEI Sa)]. Itthenisusefultoknow 

what points of TTaEI A(X,S0) belong to A(X,UaEI S0 ). There is a simple 

characterization for these points, as the following lemma shows. 



Notice that a point x = (x) of TT A(X,S) is a point of which 
a aeI aeI a 

the coordinates are maximal linked systems, so that we can speak of 

UaeI xa. 

2.3.14. LEMMA. Let {S I a e I} be a collection of supernormal subbases a 
for X. Then x e TTaeI A(X,Sa) belongs to A(X,UaeI Sa) if and only if 

UaeI xa is a linked system. 
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PROOF. Let S := UaeI Sa. If x e A(X,S) then x = UaeI xa, so UaeI xa is 

linked. Conversely, let UaeI xa be linked. Then UaeI xa is an mls in S. 
Indeed, suppose UaEI xa u {s} is linked for some Se Sa0, with a 0 e I. 

Then xa0 u {s} is linked, hences e xa0 since xa0 is an mls in Sao• There

fore Se UaeI xa. It is easy to see that e[UaEI xa] = x. 0 

The importance of theorem 2.3.13 and lemma 2.3.14 is that one can 

study the behaviour of a superextension relative the union of certain sub

bases in a product of superextensions. We will demonstrate this by two 

examples. The examples are both superextensions of the closed unit inter

val; they are constructed in a similar way as in section 2.2. Hence we 

have to use theorem 2.2.5. The examples are both homeomorphic to I 3 and 

hence they are homeomorphic. This demonstrates that a topological space 

can have many quite distinct binary (normal) subbases. 

2.3.15. EXAMPLES. 

/ 

I 
/ 

I 

Figure 7. 
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2.4. A partial ordering on the set of all superextensions of a fixed space 

It is natural to ask whether the set of all superextensions of a fixed 

topological space X can be partially ordered in a natural way, analogous to 

the usual ordering of Hausdorff compactifications (cf. DUGUNDJI [44]). This 

turns out to be the case. There also is a relation between the partial order

ing of Hausdorff compactifications, mentioned above, and the partial order

ing of superextensions. 

2.4.1. DEFINITION. Two superextensions of a topological space X are defined 

to be equivalent, when there exists a homeomorphism between them which on 

Xis the identity. 

As a first step we derive a sufficient condition for ~quivalence of 

superextensions in terms of their generating subbases. This result was sug

gested by a theorem of STEINER [114]. 

2.4.2. THEOREM. Let Sand T be two T1-subbases for X such that SC T and 

TC S (see definition 2.3.1). Then \(X,S) and \(X,T) are equivalent. 



PROOF. For Ac S define PA c T by 

PA:= {T €AI 3A EA: ACT}. 

For B c T define QB c S by 

QB:= {s Es I 3B EB: B cs}. 

CLAIM 1. If Mc Sis a pre-mls in S, then PM is a pre-mls in T. If N c T 
is a pre-mls in T then QN is a pre-mls in S. 

By symmetry it suffices to prove the first statement. Let Mc S be 
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a pre-mls in S. It is clear that PM is linked. Suppose PM were not a pre

mls in T. Then there are disjoint T0 ,T1 in T such that PM u {Ti} is linked 

(i E {0,1}). Since TC S there are disjoint s 0,s1 in S with Tic Si 

(i E {0,1}). Clearly PM u {s.} is linked (i E {0,1}), hence Mu {s.} is 
i i 

linked (i E {0,1}). For suppose there is an ME M not intersecting s 0 • 

Then SC T implies that there is a T' E T such that M c T' and T' n s 0 = {IS. 

Then T' E PM which contradicts the linkedness of PM u {T0 }. Therefore 

Mu {s.} is linked (i E {0,1}) which contradicts the fact that Mis a 
i 

pre-mls. 

Now define 

and 

by 

and 

-1 
CLAIM 2. w =¢;consequently ¢ is a bijection. 

By symmetry it suffices to prove that w (¢ (M)) = M for all ME :\. (X,S). 

Let ME :\.(X,S) be arbitrary. ThenQPMc w(¢(M)). But QPM is a pre-mls in 

S by claim 1, and it is easy to see that QPM c M. Hence w(¢(M)) = M. 

CLAIM 3. The diagram 
~. !.r :\. (Xj ,S) 

x~ ¢ 

!:..r :\.(X,T) 

commutes. 

Indeed, let x Ex. Then !.r(x) is the T-mls {TE T J x ET}, while 

¢(!s(x)) is the unique T-mls containing the pre-mls 
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P!s<x) ={TE T I 3S ES: x Es c T}. 

However, if TE !r(x), then clearly P!s(x) u {T} is linked, and so 

TE P!s(x). It follows that !r(x) $(!S(x)). 

CLAIM 4. $ is a homeomorphism. 

It suffices to show that$ is continuous, because for symmetry 

reasons it then follows that $-l = w is continuous too. 
. -1 + 

So take any TE T; we must prove that$ [T] is closed in A(X,S). 

Now 

{w (Nl 

{QN IN E A(X,T) and TEN}. 

If SES and Tc S then SE QN for every NET+, hence QN ES+ for any 

NET+; thus 

Conversely, if Mi $-1[T+], then Ti $(Ml and consequently PM u {T} is 

not linked, so T0 n T =¢for some T0 E PM. As TC S there are s 0 ,s ES 

such that T0 c s 0 , Tc Sand s 0 n S =¢.Exactly as in the proof of 

claim 1 we derive that s 0 EM; therefore Si M, or Mis+. It now follows 

that 

-1 + 
and hence that$ [T] is closed. 0 

Theorem 2.4.2 leads us to the announced partial ordering on the class 

of all superextensions of a fixed topological space x. 

2.4.3. DEFINITION. Let X be a topological space and let K := {A(X,S) I 

S is a T 1-subbase for X}. Define an order "s " on K by 

A(X,S) s A(X,T) iff SC T. 

2.4.4. COROLLARY. If we identify equivalent superextions, "S" is a 

partial order. 

PROOF. It suffices to prove that "s " is an antisymmetric and this a 



corollary of theorem 2.4.2. D 

2.4.5. Let F be a family of nonempty closed subsets of the topological 

space X. Then we put 

w(X,F) :={Ac F J A is maximal with respect to the 

finite intersection property}. 

For each F € F we define F* :={A€ w(X,F) J FE A}. As a closed subbase 

for a topology on w(X,F) we take the collection 

* * I F := {F F € F}. 
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With this topology w(X,F) is called a Wallman space. In case Fis a T1-

subbase w(X,F) is a compactification of X and is called the Wallman com

pactification of X with respect to F (cf. chapter 4). STEINER [ 114] showed 

(a) every Wallman space is compact, and w(X,F) is homeomorphic to 

w(X,A.v.F); 

(b) if Sand Tare separating rings of closed sets in X, then 

w(X,S) and w(X,T) are equivalent compactifications iff SC T 

and TC S. 

The first part of (a) is also true for superextensions; every super

extension is (super) compact. The second part unfortunately does not hold 

for superextensions. 

2.4.6. EXAMPLE. Let X 

topology. Define 

{x 1 ,x2 ,x3 } be a space with 3 points with discrete 

Then S is a closed binary subbase for X. Hence A (X,S) = X. Let T :=A. v .S. 

Then there is precisely one free mls Min T (i.e. an mls with an empty 

intersection) ; 

Hence ;\.(X,T) is a space of 4 points and hence is not homeomorphic to 

;\.(X,S). □ 

However (b) is true for superextensions; this is a direct consequence 

of theorem 2.4.2. 
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2.4.7. THEOREM. Let Sand T be two separating rings of closed subsets 

of X. Then A(X,S) and A(X,S) are equivalent iff SC T and TC S. 

PROOF. This is a consequence of theorem 2.4.2 and of the proof of 

corollary 2.3.5. D 

Finally, the partial ordering, constructed in this section, has much 

in common with the usual ordering or compactifications if we restrict 

ourselves to superextensions with respect to normal subbases. 

2.4.8. COROLLARY. Let S be a normal T1-subbase for X and let T be a 

T1-subbase for X. Then A(X,S) $ A(X,T) implies that there is a continuous 

surjection f: A(X,T) ➔ A(X,S) which on Xis the identity. 

PROOF. This is a consequence of theorem 2.3.4. D 

2.4.9. COROLLARY. Let S be a separating ring of closed subsets of X and 

let T be a normal T 1-subbase for X. Then the following assertions are 

equivalent: 

(i) A(X,T) $ A(X,S); 

(ii) there is a continuous surjection f: A(X,S) ➔ A(X,T) such that 

f restricted to Xis the identity. □ 

The following important corollary of theorem 2.4.2. is due to 

VERBEEK [ 119]. 

2.4.10. COROLLARY. AX is metrizable if and only if Xis compact metrizable. 

PROOF. Assume that AX is metrizable; then Xis normal and consequently 

AX is equivalent to A(X,Z(X)) (cf. 2.4.2). Hence BX is a subspace of AX 

(cf. 2.3.9). But then BX is metrizable and hence Xis compact. 

On the other hand, assume that X is compact and metrizable. LetS be 

a countable closed base for X. Then A.v.S is a countable closed subbase 

for X which separates the closed subsets of X (cf. 0.2). Then A(X,A.v,S) 

and AX are equivalent (theorem 2.4.2) and consequently A(X,A.v.S) is a 

compact Hausdorff space with a countable closed subbase. Hence, by 

URYSOHN's metrization theorem (cf. DUGUNDJI [44]) A(X,A.v.S) is metriz

able and therefore AX is metrizable too. D 
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2.5. Connectedness in superextensions 

We now turn our attention to connectedness in superextensions. 

SUperextensions behave surprisingly nice with respect to connectedness. 

VERBEEK [119] showed that Xis connected if and only if AX is connected 

and locally connected. From this, he derived that a superextension A(X,S) 

of a connected space X with respect to a normal T1-subbase Sis both con

nected and locally connected. Also the superextension A(X,S) of a con

nected space X with respect to a subbase S that contains all finite sub

sets of Xis both connected and locally connected. 

Since the Hilbert cube Q has a dense subset homeomorphic to the 

rationals it follows from theorem 1.4.5, theorem 1.4.3 and theorem 1.4.2 

that the space of the rationals has a superextension homeomorphic to the 

Hilbert cube. In view of this example VERBEEK's results on connectedness 

of superextensions do not cover all situations (this he also noticed him

self, see [119] p.143). We will show the following: let X be a topolog

ical space and let S be a T 1-subbase for X that satisfies one of the fol

lowing conditions: 

(i) Sis closed under finite unions; 

(ii) Sis normal. 

Then A(X,S) is connected and locally connected if and only if for all 

nonvoid s0 ,s1 ES: (s0 n s1 = ¢ ~ s0 u s1 # X). This proves once again, 

and at the same time generalizes some of the results of VERBEEK [119] 

mentioned above. 

our method of proof is not a generalization of VERBEEK's proof. We 

work with partial orderings while VERBEEK [119] used very technical results 

concerning types of maximal linked system. 

2.5.1. THEOREM. Let S be a normal T1-subbase for the topological space X. 

Then the following assertions are equivalent: 

(i) A(X,S) is connected; 

(ii) A(X,S) is connected and locally connected; 

(iii) for all nonvoid s0 ,s1 ES: (s0 n s1 = ¢ ~ s0 u s1 # X). 

PROOF. The implications (ii)~ (i), (i) ~ (iii) are trivial. In addition 

(i) ~ (ii) follows from corollary 1.5.8 (iii). Therefore we only prove 

(iii) ~ (i). 

In view of theorem 1.5.22 we need only show that H_(;\,(X,Sl,S+) .is 
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+ densely ordered by inclusion (H(A(X,S),S) is compact, cf. section 2.10). 

Therefore let A and B be elements of H(A(X,S),S+) such that A is properly 

contained in B. Choose M € B\A. As A is S+-closed, there are M. € S 
l. 

+ + + + 
(i € {0,1}) such that M € Mo, Ac Ml and Mon Ml=¢. Then Mon Ml=¢ 

and by the normality of S there are Ti € S (i € {0,1}) such that M0 n T1 

= ¢ = T0 n M1 and T0 u T1 = x. Then TO n T1 #¢,by our assumptions. 
+ Define C := B n T1 • Then Ac Cc B. We first note that A is a proper sub-

set of c. Indeed, since {T;,T;,B} is linked we have that T~nT~nB # ¢. 
+ + Hence ¢ # T0 n T1 n cc C\A. Next we note that C is a proper subset of B, 

since M € B\C. This completes the proof of the theorem. D 

we now prove connectedness of superextensions with respect to sub

bases closed under finite unions. 

From now on, let X be a topological space and let S be a T1-subbase 

for X closed under finite unions. As in section 1.5 for all M,N € A(X,S) 

define I(M,N) c A(X,S). by 

rcM,NJ := n{s+ I s € M n N}. 

We need a simple lemma, which is strongly related to theorem 1.5.13. 

2.5.2. LEMMA. 

(i) For all M,N,P € A(X,S) the intersection I(M,N) n I(N,P) n r(M,P) 

consists of one point; 

(ii) for all M € M € I(N,P) we have that M €Nor M € P; 

(iii) for all M,N € A(X,S) the relation SM defined on I (M,N) by 

L $M H iff LE I (M,H) is a partial ordering; 

(iv) for all M,N € A(X,S) and all L0 ,L 1 € r(M,N) such that Lo sM Ll, 

the following holds: I ( L0 , L1) = {P E I(M,N) I Lo sM p sM Ll}. 

PROOF. We will first prove (ii). To this end, take ME ME I(N,P) such 

that Mi N and Mi P. Then there are NE N and PEP such that 

Mn N =¢=Mn P. But then Mn (NUP) =¢and as I(N,P) C (NUP)+ this is 

a contradiction (for ME I(N,P) implies that Nu PE M, contradicting 

the linkedness of M). 

To prove (i), take distinct L,H E r(M,N) n r(M,P) n r(N,P). Also 

choose LE Land HEH such that L n H =¢.By (ii) there are at least 

two distinct elements of {M,N,P} containing L. By the same reasons there 

are at least two distinct elements of {M,N,P} both containing H. Hence 
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there is at least one element of {M,N,P} containing both Land H, which is 

a contradiction. 

To prove (iii) , we only need to check that SM is anti-symmetric. Let 

L0,L1 € I(M,N) such that L0 sM L1 and L1 sM L0• Then L0 € I(M,L1) and 

consequently, by (i), {L0 } = I(M,L1) n I(M,L0 ) n I(L0 ,L1). In the same way, 

as L1 € I(M,L0) we also have that {L1} = I(M,L0) n I(M,L1) n I(L0 ,L1). 

Hence L0 equals L1• 

To prove (iv), take L0,L1 € ~(M,N) such that L0 SM L1• Choose 

P € I(L0 ,L1 ). Assume that L0 ~ P. Then L0 t I(M,P) and consequently there 

is an L € L0 such that Lt Mand Lt P. Now, since L0 € I(M,L1), by (ii) 

it follows that L € L1 • This is a contradiction since L € L0 n L1 implies 

that 

This shows that L0 SM P. To prove that also P SM L1, notice that 

L0 SM L1 implies that p·€ I(L0 ,L1 ) c I(M,L1). Therefore P SM L1• This 

proves that I(L0 ,L1) c {P € I(M,N) I L s M P SM L1 }. Now take P€ I(M,N) 

such that L0 SM P SM L1 and assume that Pt I(L0 ,L1 ). Then there is a 

P € P such that Pt L0 and Pt L1• Since P € I(M,L1 ) and since Pt L1, by 

(ii) it follows that P € M. But then P €Mn P which implies that P € L0 

since L0 € I(M,P). This is a contradiction. This completes the proof of 

the equality I(L0 ,L1 ) = {P € I(M,N) I L0 SM P SM L1}. D 

2.5.3. THEOREM. Let X be a topological space and let S be a closed T1-

subbase for X which is closed under finite unions. Then the following 

assertions are equivalent: 

(i) A(X,S) is connected; 

(ii) A(X,S) is connected and locally connected; 

(iii) for all nonvoid s0 ,s1 € S (s0 n s1 = ~ • s0 u s1 t X). 

~- The implications (ii) ,. (i) and (i) • (iii) are trivial. We will 

only establish the implication (iii)-. (ii). 

For this, take M,N € A(X,S) and consider I(M,N). By lemma 2.5.2 this 

set is partially ordered, by SM. For simplicity of notation we from now on 

suppress the index Min the ordering. 

~ 1 • s is order dense. 

Indeed, take distinct L0 and L1 in I(M,N) such that L0 s L1 • We assert 
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that II(L0 ,L1)1 > 2. For assume to the contrary that I(L0 ,L1 )={L0 ,L1 }. 

Choose Li E Li (i E {0,1}) such that L0 n L1 =¢.we will show that 

LO u L1 = X. For choose x EX. Then I(x,L0 ) n I(x,L1) n I(L0 ,L1 ) is a 

singleton (cf. lemma 2.5.2 (i)). Hence, without loss of generality 

{L0} = I(x,L0 ) n I(x,L1 ) n I(L0 ,L1 ). Hence L0 E I(x,L1), which implies 

that x E L0 , since L0 i L1 (cf. lemma 2.5.2 (ii)). 

Therefore L0 u L1 = X; but this contradicts (iii). 

We conclude that there is a PE I(L0 ,L1 ) such that P ,f Li (iE {0,1}). 

However, it is clear that L0 ~ P ~ L1, which implies that~ is order dense. 

CLAIM 2. There is an ordered continuum in I(M,N) connecting Mand N. 

Let L be a maximal chain in I(M,N) (the existence of such a chain easily 

follows from Zorn's lemma). Clearly L contains both Mand N. We will show 

that the subspace topology on L coincides with the order topology on L 

(notice that in general A(X,S) is not Hausdorff so that L need not be 

closed in I(M,N)). Then, by claim 1, Lis densely ordered by~ and con

sequently is connected (cf. WARD [124]). Also, L has two endpoints 

(Mand N) which implies that Lis compact. 

To prove that the order topology on L coincides with the subspace 

topology on L, first notice that the order topology on Lis weaker than 

the subspace topology on L because of lemma 2.5.2 (iv). Take s0 ES such 

thats; n I(M,N) ,f ¢. we claim thats; n Lis an order interval in L, which 

will establish the claim. By lemma 2.5.2 (ii) either s 0 EM or s 0 EN. 

Without loss of generality we may assume that so EM and that s 0 i N, for 

if SQ E M n N then + s 0 n L = L. Choose a point H from 

This intersection is nonvoid since {s;} u {I(L,P) I LE Ln s;, PE L\s;} is 

a linked system. To prove this, choose L0 ,L1 EL n s; and P0 ,P1 E L\s;. 

We claim that I(L0 ,P0) n I(L1 ,P1) ,f ¢. Notice thats; n Lis order-convex 

in L, because of lemma 2.5.2 (iv). This implies that max{L0 ,L1} < min{P0 ,P1} 

and consequently I(L0 ,P0 ) n I(L1 ,P1) ,f ¢. Therefore 

We claim that HE L. By the fact that Lis a maximal chain we need only 

prove that any member of Land the point Hare comparable. Assume that 
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+ L0 €Land Hare incomparable. As H € I(M,P) for all P € L\s0 it follows 
+ that H $ P for all P € L\S0 • On the other hand H € I(L,N) for all 

LE L n s~ so that L $ H for all LE L n s~. This is a contradiction. We 

claim thats~ n L = {L € L I L $ H}, which will complete the proof. Indeed, 
+ take L € s 0 n J,. Then L $ H, as was proved above. On the other hand, take 

I + + P € {L € L L $ H} and assume that Pi s 0 n L. Then P € L\s0 and con-

sequently H $ P. Therefore H P, which is a contradiction. 

CLAIM 3. A(X,S) is connected and locally connected. 

Indeed, by claim 2, A(X,S) is connected. The superextension A(X,S) is also 

locally connected. In order to prove this, let M € A(X,S) and let Ube an 

open neighborhood of M. Without loss of generality, U equals 

+ To prove this, fix i 0 $ n; then {L0 ,L1} c vi0 and hence there are Li€ Li 

(i E {O,l}l such that Li c vi0 (i E {0,1}). But then L0 u L1 c vi0 and 

consequently 

+ 
Hence, by claim 2, ni$n vi is connected. 0 

2.5.4. COROLLARY (VERBEEK [119]). Let X be a topological space. Then the 

following assertions are equivalent: 

(i) Xis connected; 

(ii) AX is connected; 

(iii) AX is connected and locally connected. 

2.6. The dimension of AX 

VERBEEK [119] proved the following results on the dimension of AX. 

(a) AX is zero-dimensional iff Xis strongly zero-dimensional and normal; 

(b) AX is infinite dimensional if Xis normal and contains a subspace 

homeomorphic to [0,1]; 
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(c) if Xis compact metrizable then AX either is zero-dimensional 

(if Xis) or is infinite dimensional. 

we will extend these results by showing that for any normal space X 

we have: dim(AX) = 00 iff Xis not strongly zero-dimensional. 

2.6.1. Recall that a Tychonoff space Xis called strongly zero-dimensional 
V 

if its Cech-Stone compactification 8X is zero-dimensional. Also recall that 

for any Tychonoff space X the superextension A(X,Z(X)) is homeomorphic to 

A (8X) (cf. 2.2.6) .. 

2.6.2. THEOREM. Let X be a Tychonoff space. Then the following assertions 

are equivalent: 

(i) Xis not strongly zero-dimensional; 

(ii) A(X,Z(X)) is infinite dimensional. 

PROOF. (ii)~ (i) follows from VERBEEK's [119] result, mentioned in the 

introduction of this section. 

To prove (i) ~ (ii) assume that Xis not strongly zero-dimensional 

and that A(X,Z(X)) is not infinite dimensional, say dim A(X,Z(X)) s n 

(n E w). Then 8X is not zero-dimensional, in other words, 8X is not 

totally disconnected. Choose a nontrivial closed connected set A in 8X. 

As A is an infinite Hausdorff space, its cellularity is at least w; choose 

open (in A) sets ui (i E w) such that 

iff i t- j. 

Now if clA(Ui) is totally disconnected, it admits a base of open and 

closed sets; hence there is an open and closed (in clA(Ui)) set Cc Ui' 

which is nonvoid. But then C is clopen in A, which contradicts A being 

connected. 

Therefore we may assume that there is a collection Ki (i E w) of 

connected closed sets in A satisfying 

K. n K. = ¢ 
l. J 

iff i t- j. 

Now fix p E Kn+l" We will show that A(X,Z(X)) (RI A(8X)) contains a 

homeomorph of TTiSn AKi which contradicts dim A(X,Z(X)) s n (cf. LIFANOV 

[73 ]) (notice that TT. AKJ.. is a product of n + 1 compact (generalized) isn 
arcwise connected Hausdorff spaces (cf. theorem 2.5.3 and theorem 1.5.16) 



so that TTi:,;n ;\Ki contains a product of n + 1 ordered compact connected 

spaces). 

Define a mapping$: TTi:,;n >.Ki->- >.(SX) in the following manner: 

:= {Ac SX I A is closed and either (An K. € M. 
J. J. 

for all i:,; n) or 

( 3i :,; n: p € A and A n K. € M. ) } • 
J. J. 

It is easy to see that$ is well-defined, that is: $((M0 , ••• ,Mn)) is a 

maximal linked system for all (M0 , ••• ,Mn) € TTi$n >.Ki. 

CLAIM.$ is injective and continuous. 

Indeed, choose (M.) .,(N.). € TT1.:,;n >.K. such that CM.). ,f (N.) .• Assume 
J. J. J. J. J. J. J. J. J. 

that M. ,f N. for some j:,; n. Then take M € M. and N € N. such that 
J J J J 

Mn N =¢.Notice that Mand N are both contained in Kj. Then 

Mu {p} € $((M.).) and Nu U. 4 . K. € $((N.)i) which proves that 
J. J. J.rJ J. J. 

$((M.) .) ,f $((N.) .) since (Mu{p}) n (NuU. 4 • K.) = ¢. 
J. J. J. J. J.rJ J. -1 + 
Let D be a closed subset of SX and assume that (M.). i $ [D ]. 

J. J. 

Then $((M.) .) t D+, or, equivalently Di $((M.) .). We have to consider 
J. J. J. J. 

two cases: 

CASE 1. D n K. i M. for all i:,; n. 
J. J. 
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Then n.< n~ 1[(K.\D)+] is a neighborhood of (M1.) 1. which misses $-1[D+]. 
J._n J. i 

CASE 2. There is a j 

-1 
Then TTj [Kj \DJ 

:,; n and an M € M. such that ({p}uM) n D = ¢. 
J 

is a neighborhood of (Mi)i which misses $-1[D+]. 

It now follows that$ is an embedding, since ni:,;n >.Ki and >.(SX) are 

both compact Hausdorff spaces. 0 

2.6.3. COROLLARY. Let X be a normal space. Then the following assertions 

are equivalent: 

(i) Xis not strongly zero-dimensional; 

(ii) >.xis infinite dimensional. 

PROOF. If Xis normal, then >.xis homeomorphic to ).(X,Z(X)) (cf. theorem 

2.4.2). Then apply theorem 2.6.2. 0 
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2.6 .• 4. COROLLARY. Let X be a normal space. Then AX either is zero-dimen

sional or is infinite dimensional. □ 

2.7. Path connectedness and contractibility of AX 

The following results have been proved: 

(i) if Xis compact Hausdorff, and either contractible or a suspension, 

then its superextension AX is contractible (VERBEEK [119]); 

(ii) if Xis a metric continuum, then AX is an AR (compact metric) 

(VAN MILL [79], also 2.5.1, 2.4.21 and 1.5.20). In particular 

AX is contractible; 

(iii) if Xis connected and normal, then AX is acyclic and has the 

fixed point property for continuous functions (VAN DEVEL [118]). 

In this section we make a first attempt to fill up the gaps which 

obviously exist between the above results. Among other things, we show 

that AX is contractible if Xis a continuum of finite category or if X 

is path connected, separable and normal. We also show that if Xis seper

able and normal then AX is contractible if and only if it is path connected. 

The results in this section are taken from VAN MILL & VAN DEVEL [83]. 

2.7.1. For the remainder of this section, let X be a Tychonoff space; 

let S be a normal T1-subbase for x. An s+-closed set in A(X,S) will be 

called convex for short (notice that each s+-closed set also is s+-convex 

and that conversely each closed s+-convex set is s+-closed (cf. theorem 

1.5.7); this motivates our terminology). Also the subspace H(A(X,S),S+) 

of 2A(X,S) (cf. 1.5.22 and section 2.10) will be denoted by K(A(X,S)). 

In the following we need two results: 

( ) th I . 2A(X,S) ·--~ K('( S)) a e map s+ - ~ A X, is a continuous retraction of 
2A(X,S) onto K(A(X,S)); 

(b) the map p: A(X,S) x K(A(X,S)) - A(X,S) defined by p(M,A) :=glbM(A) 

is contiruous. 

Statement (b) is a direct consequence of theorem 1.5.2 (i) and theorem 

1.5.18. We will refer to the map p described in (b) as the "nearest point 

map of A (X,S) "; cf. also VAN DE VEL [118] and VAN MILL & VAN DE VEL [82]. 

The following general result will be our main tool for deriving 

contractibility results on A(X,S). 



2.7.2. PROPOSITION. Let S be a normal T1-subbase for X and assume that 

there exists a continuous mapping¢: [0,1] + 2X such that ¢(0) is a 

singleton and ¢(1) = X. Then there is a contraction of A(X,S) onto ¢(0) 

keeping ¢(0) fixed. 
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PROOF. Define a mapping~: 2X + 2A(X,S) by ~(A) := clA(X,S) (A). This 

mapping is easily seen to be continuous, since A(X,S) is compact Hausdorff 

(cf. theorem 2.2.4 (iii)). Define 

by ¢'(t) := U{~¢(t') t' st}. Then ¢'(t) is compact, being the union of 

a compact family of compact sets, and¢' is easily seen to be continuous 

again. Notice that¢' (0) = ¢(0), that¢' (1) = ¢(1) and that¢' is increas

ing. 

we now use the mapping Is+= 2A(X,S)->- K(A(X,S)). It is easy to verify 
+ that Is+ preserves singletons, and that Is+(S) = s for each S € S. 

Let x0 be the unique point in Is+(¢' (0)) and define a map 

F: A(X,S) x [0,1] + A(X,S) by 

F(M,t> := p(M,Is+'¢' <t> >,, 

where pis the nearest point mapping of A(X,S). Then, clearly Fis contin

uous, and by the construction of the map p 

F(M,1) = p(M,AX) = M. 

Moreover, x 0 € Is+(¢' (t)) for each t € [0,1], whence 

proving that Fis a contraction of A(X,S) onto x0 keeping x0 fixed. D 

Recall that a space X is said to be of category s n (n < w) if X is 

the union of n closed subspaces {x.}.<, each deformable onto a point 
l. l.-n 

of X (cf. WILLARD [129]). A space Xis of finite category if it is of 

category less than or equal ton, for some n < w. 
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2.7.3. COROLLARY. Let X be a continuum of finite category and let S be a 

normal T1-subbase for X. Then A(X,S) is contractible. 

n 
PROOF. Let X = Ui=l Xi, where each xi is a closed subspace of X which 

admits a mapping 

with the properties: Fi(-,0) is a constant map onto, say xi, and Fi (-,1) 

equals the inclusion Xi c X. It is easy to see, using the connectedness 

of X, that the space Xis path connected. For each i > 1 we fix a path 

with ~i (0) = x 1 and ~i (1) 

¢.: [0,1] + 2x 
i 

xi (i $ n). Define 

by ¢i(t) := Fi(Xi x [O,t]). It is easy to see that each ¢i is continuous 

(cf. VAN DEVEL [118], lemma 1.3). Let 

be defined as follows 

if 0 $ t $ 
1 
2; 

if 
1 

$ t $ 1. 2 

Then¢ is easily seen to be a continuous map with ¢(0) a singleton and 

¢(1) X. Applying proposition 2.7.2 we find that A(X,S) is contractible. D 

This corollary includes, as a particular case, the contractibility 

results of VERBEEK, mentioned in the introduction of this section. In fact, 

a contractible (compact Hausdorff) space is of category 1, and a (compact 

Hausdorff) suspension is of category 2. 

The main result in this section is the following: 

2.7.4. THEOREM. Let X be a separable space such that each finite subset 

of Xis contained in a metric continuum and let S be a normal T1-subbase 

for X. Then A(X,S) is contractible. 
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PROOF. We need two auxiliary results: 

CLAIM 1. There is an increasing sequence (Kn)n<w of metrizable subcontinua 

of X, such that KO is a singleton and (Kn)n<w converges to X in 2x. 

Indeed, let {xn n < w} be a countable dense subspace of X. Por each 

n < w let Ln be a metric subcontinuum of X containing {x0 , ••• ,xn}. We 

choose L0 := {x0 }. Then put 

K 
n 

for each n < w, so that (Kn)n<w is an increasing sequence of metrizable 

subcontinua of X whose union is dense in x. 

The sets of the type 

where each oi is open (is p), form a neighborhood base at x E 2X. Fix 

open sets 00 , ••• ,op in X. For each is p we cah find n(i) < w such that 

Kn n Oi #¢for all n ~ n(i) (the sequence (Kn)n<w is increasing!). Hence, 

if n0 = max{n(i) Ii s p} we have that Kn E <00 , ••• ,op,X> for each n ~ n0 • 

Therefore (Kn)n<w converges toxin 2x. 

CLAIM 2. If Kand Lare metric subcontinua of X, with KC L, then there 

is a continuous increasing mapping cj,: [0,1] + 2x with cj, (0) Kandcj,(l)=L. 

Using the fact that 2L is a X 
subspace of 2, this statement is a direct 

consequence of a result in KURATOWSKI [72], vol. II. 

We now combine the two statements. For each n > 0 we have a contin

uous increasing map (with rearranged domain) 

such that 

and since 

1 1 
cj,n: [l-n' l-n+l] 

cj, (1- !) = K and cj,n(l - n+11) = K • Since each cj, is monotonic, 
n n n-1 n X n 

(Kn)n<w converges to X, the map cj,: [0,1] + 2, defined by 

is also continuous. Applying proposition 2.7.2 yields the desired 

result. 0 
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2.7.5. Several classes of topological spaces are in the scope of theorem 

2.7.4. For example the class of all separable path connected spaces. The 

class of spaces, described in theorem 2.7.4, is countably productive. 

2.7.6. As a particular consequence of theorem 2.7.4, it follows that AlR, 

the superextension of real line is contractible, in contrast with the fact 

that the ~ech-Stone compactification BJR c AlR is not contractible (it is 

not even oath connected). 

By the above remark on productivity, a countable product of real 

line!' also has a contractible superextension. Recall that JR00 is homeo

morphic to the separable Hilbert space i 2 by a result of ANDERSON [3] 

(cf. also ANDERSON & BING [6]). 

2.7.7. We now turn our attention to path connectedness of superextensions. 

It is rather surprising that the existence of dense path connected sub

spaces is easy to prove under fairly general circumstances. In contrast 

to this, it seems to be rather difficult to find an improvement of theorem 

2.7.4 in the direction of path connectedness of AX. A partial explanation 

is provided by theorem 2.7.8 below, which shows that path connectedness 

and contractibility are equivalent on separable superextensions. 

2.7.8. THEOREM. Let X be a separable space and let S be a normal T1-subbase 

for X. Then A (X,S) is contractible if and only if it is path connected. 

PROOF. By a result of VERBEEK ([119], p.96), A(X,S) is separable. Let 

{Mn n € lN} be a countable dense subspace of A (X ,S) • For each n ~ 1 we 

fix a path 

an: [ 1 - ~ , 1 - n!l] -+- A (X,S) , 

with a ( 1 - ! ) = M and a ( 1 - - 1-) = M • Lateral composition yields a 
n n n n n+l n+l 

continuous map on the half open interval [0,1), 

a: [0,1) -+- A (X,S), 

the image of which contains the above dense subspace. 

Define a mapping 

by ¢(t) := a[O,t] if t < 1 and ¢(1) := A(X,S). The continuity of¢ follows 
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from a rather obvious type of argument similar to the one in the proof of 

theorem 2.7.4. 

Now, by proposition 2.7.2, A(A(X,S),S+) is contractible. But 

A(A(X,S),S+) is homeomorphic to A(X,S) (cf. theorem 2.2.5) and consequent

ly A(X,S) is contractible. D 

2.7.9. THEOREM. Let X be a topological space and let S be a normal T1subbase 

for X. If X contains a dense path connected subspace, then so does A(X,S). 

PROOF. We need the following three auxiliary results: 

CLAIM 1. Let M,N € A(X,S). If Mand N can be joined by some path in A(X,S), 

then the interval Is+(M,N) is path connected. 

Indeed, let f: [0,1]-+ A(X,S) be a path joining Mand N. As Is+<M,N) is 

a retract of A(X,S) (cf. theorem 1.5.2), hence we may assume that 

f[0,1] c Is+<M,N). Let P € Is+<M,N). Then 

cf. 1.3.2 and 1.5.3. Let 

be the restriction of the retraction of A(X,S) onto Is+<M,P) described in 

theorem 1.5.2. Then r(M) =Mand r(N) P and hence it follows that the 

path f "retracts" onto a path r O f of I (M, P) joining M and P. It now easily 

follows that Is+(M,N) is path connected. 

CLAIM 2. If Ac A(X,S) is path connected, then so is the space 

By claim·1, each interval Is+<x,y) with x,y € A, is path connected. 

Moreover A is a path connected subspace of Is+<AxA); therefore the desired 

result follows. 

CLAIM 3. Let B c A(X,S) be such that for all x,y € B the set Is+<x,y) c B. 

Then the closure clA(x,S) (Bl of Bin A(X,S) is s+-closed. 

Choose x,y € clA(X,S) (B) such that Is+(x,y) ¢ clA(X,S) (B). By the contin

uity of the mapping f, described in lemma 1.5.10, there are disjoint 
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neighborhoods U and V of x and y such that 

for all p € U and q € V. Choose z0 €Un Band z 1 € V n B. Then 

which is a contradiction. Now, by theorem 1.5.7, clA(X,S) (Bl is s+-closed. 

To prove the theorem, let Y0 c X be a dense path connected subspace. 

For each n € w we define, inductively 

Using claim 2, each Yn is path connected. Since Yn c Yn+l for all n € w, 

we find that Y := UnEw Yn is path connected too. This subspace of A(X,S) 

obviously satisfies the conditions of claim 3,!whence clA(X,S) (Y) is 

S+-closed. But 

X C cl A (X,S) (Yo) C cl A (X,S) (Y), 

and the only s+-closed subsets of A(X,S) containing Xis A(X,S) itself. 

This shows that Y is dense in A(X,S). D 

2.7.10. Our final results in this section involve some particular dense 

subspaces of superextensions introduced in VERBEEK [119]. An mls M € AX 

is said to be defined on a closed set Ac x if Mn A€ M for all M € M. 

For any space X, let 

Af(X) :={ME AX I MisdefinedonsomefinitesubsetofX} 

and 

A (X) : = { M € AX I Mis defined on some compact closed subset of x}. comp 

2.7.11. THEOREM. Let X be a normal space such that each finite subset of 

Xis contained in a metrizable continuum. Then Af(X) is path connected 

within A (X) (notice that the space is not assumed to be separable). 
comp 

PROOF. Let M,N € Af(X); say, Mis defined on F c X and N is defined on 

G c X, where F and Gare finite. By assumption there is a metrizable 

continuum Kc X containing Fu G. The inclusion mapping Kc X induces an 
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embedding AK c AX (cf. theorem 2.3.4). Clearly AK c A (X). But AK is 
comp 

contractible (theorem 2.7.4) and hence Mand N are joined by a path in 

AK C A (X). D 
comp 

The results derived in this section suggest some questions: 

2.7.12. QUESTION. Find necessary and sufficient conditions on a continuum 

X in order for AX to be path connected/contractible. 

We found the following "controversial" examples: 

2.7.13. EXAMPLES. 

(i) Let X be a compact tree-like space which is not path connected. 

Then AX is not path connected. 
V 

(ii) Let X = $JR, the Cech-Stone compactification of the real line JR. 

Then Xis not path connected, but AX is contractible. 

The proofs are simple: 

(i) a compact tree-like space admits a binary normal subbase (cf. theorem 

1.3.21) and hence it is a retract of its superextension (cf. corol

lary 2.3.7). 

(ii) A($JR) is homeomorphic to AIR (cf. VERBEEK [119]; also corollary 2.2.6 

and theorem 2.4.2). 

It is well known that AR's in the category of compact Hausdorff 

spaces are contractible and locally contractible: see e.g. SAALFRANK [101]. 

The two properties are not equivalent in general. However, in view of our 

result that AX is an AR (compact metric) iff Xis a metrizable continuum, 

and in view of nice convexity structure of superextensions, one is lead 

to the following: 

2.7.14. QUESTION. Find conditions on a continuum X in order that AX be an 

AR (in the category of compact Hausdorff spaces). 

Concerning the superextensions of non-compact spaces we have no 

information on the necessity of the separability condition appearing in 

our present results. 
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2.8. Subspaces of superextensions; the spaces o(X) and L(X) 

In this section we will describe some subspaces of superextensions 

which seem interesting. This is only a first attempt; many questions are 

unsolved. We are particularly interested in subspaces of :\.lN, the super

extension of the natural numbers. It is clear, due to the definition of 

AlN, that AlN and f3lN, the ~ech-Stone compactification of lN, must be 

related, but it is not clear in what way. It was noticed by VERBEEK [119] 

that :\.lN and f3lN are not homeomorphic, since :\.lN contains nontrivial con

vergent sequences. But :\.lN contains a dense set of isolated points 

(VERBEEK [119]) and hence can considered to be a compactification of lN; 

consequently AlN is a continuous image of f3lN, however f3lN is not a con

tinuous image of A lN (cf. corollary 1 .1 • 6) • 

Proposition 2.2.3 implies that AlN is totally disconnected and has 

weight c. The isolated points in :\.lN are just the points with a finite 

defining set (VERBEEK (119]; recall that an mls ME AX is said to be 

defined on a closed set Ac X provided that Mn A EM for all ME M, 

cf. section 2.7). The space :\.lN\:\.f(lN) is compact and possesses points 

with a countable neighborhood basis and points without a countable neigh

borhood basis. For example 

M ={Mc lN I 3i> 1: {1,i}cM or {2,3, ••• }cM} 

can easily be seen to be an mls in AlN\A/lNl with a countable neighborhood 

basis. 

An ultrafilter FE f3lN\lN c AlN\Af(lN) is an example of a point with

out countable neighborhood basis (notice that each ultrafilter is a max

imal linked system and hence that f3lN is a subset of :\.lN; f3lN also is a 

subspace of :\.lN; indeed it equals the closure of lN in AlN, cf. corollary 

2.3.9). We see that AlN\Af(:t-1) differs essentially from f3N\lN. The fol

lowing subspace of :\.JN \Af (lN) at first glance seems to be closer to 

f3lN\lN than :\.lN\:\.f(lN): 

o(lN) := {ME :\.lN I M contains no finite set}. 

Unfortunately, however, o(lN) is separable, because of the following 

lemma, while f3JN \lN is not. 

2.8.1. LEMMA. o(lN) is a retract of :\.lN. 

*) This section will also be published separately in Math. Z. 
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PROOF. Let A= {Ac JN J IJN\AI < w}. Then a(JN) = n{A+ I A E A} and hence 

by theorem 1.5.2, a(JN) is a retract of AJN. As AJN is separable (VERBEEK 

[119]),sois a(lN). D 

[The definition of a(lN) suggests a more general definition. For any 

topological space X let a(X) be defined by 

a(X) :={ME AX J M contains no compact set}. 

We did not yet study the spaces a(X) in detail.] 

The subspace E (lN) := {M E AJN J for all M0 ,M1 EM: IM0nM1 I= w} of 

AJN \Af (JN) is a better candidate for an analogue of 13:N \JN. One can look 

at E(JN) as the set of all uniform maximal linked systems. This appears 

to be the most interesting subspace. More generally, for any topological 

space X, define 

E(X) :={ME .AX I for all M0 ,M1 EM: MO n M1 is not compact}. 

Notice that E(X) =¢if Xis compact Hausdorff and that E(X) c a(X). 

2.8.2. THEOREM. Let X be a normal topological space. Then 

(i) E(X) C AX\Af(X); 

(ii) E(X) is compact iff Xis locally compact; 

(iii) if Xis locally compact then E(X) is homeomorphic to A(i3X\X). 

~- (i) is trivial. To prove (ii), assume that E(X) is compact. Notice 

that 13X is closed in AX and consequently i3X\X is closed in AX\Af(X). 

Therefore, as i3X\X c E(X), i3X\X is closed in E(X) too. It follows that 

13X\X is compact and consequently Xis locally compact. The converse of 

(ii) follows from (iii), since A(i3X\X) is compact. 

To prove (iii), assume that Xis locally compact. For each closed 

* * I subset Mc X define M := c113X(M)\M. Then {M Mis closed in x} is a 

closed base for the topology of 13X\X, closed under finite intersections 

and finite unions. Define a mapping~: A(i3X\X) + E(X) by 

~ (M) := {M C X 

First we will show that~ is well-defined. Clearly ~(M) is a linked 

system for all ME A(i3X\X). Suppose that ~(M) is not a maximal linked 

system for some ME A(i3X\X). Then there exists a closed set Ac X such 
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that ¢(M) u {A} is linked, while Ai ¢(M). Then A* i Mand consequently 

there exists an ME M such that A* n M =¢.By the compactness of SX\X 

there is a closed subset B c x such that Mc a* and a* n A*=¢. As 

M E M it follows that B * E M and consequently B E cj, (M) • Therefore B n A ,t, ¢. 

But a* n A*=¢ implies that B n A is compact. Choose a relatively compact 

neighborhood U of An Band define C := B\U. Then c* = a* and consequently 

also CE ¢(M). This is a contradiction, since C n A=¢. Also it is clear 

that cj,(M) E E(X); for take M,N E cj,(M) such that Mn N is compact. Then 

* * M n N ¢ and consequently Mis not linked. Contradiction. 

Let B be a closed subset of X. Then 

ME cp- 1[B+ n E(X)] iff cp (Ml E B + n E(X) 

iff cp CM) E B 
+ 

* E M iff B 

M * + iff E (B ) • 

Therefore cp- 1[B+n E(X)] = (B*)+ (the first "plus" is taken in AX, the 

second in A(SX\X)!) showing that¢ is continuous. Also it is not difficult 

to show that cj, is one to one and surjective. As ;\(SX\X) and E(X) both are 

compact Hausdorff spaces, it follows that cj, is a homeomorphism. D 

2.8.3. REMARKS. 

(i) The present proof of theorem 2.8.2 (ii) is due to E. VAN DOUWEN; 

he discovered a mistake in our original proof. 

(ii) Theorem 2.8.2 shows that E (1N) is a homeomorph of A (SlN \JN) and 

hence that E (1N) is supercompact. The proof of theorem 2 .8.2 shows that the 

subbase {M+ n E (1N) IM c JN} for E (1N) is binary. For this fact there is also 

an elementary proof. For take M,N,P E E(lN). Then 

I (M,N) n r (M,P) n r (N,P) 
P(JN) + P(lN) + P(lN) + 

consists of one point, say L (cf. corollary 1.5.3). Take L0 ,L1 EL 
a.nd assume that L0 n L1 is finite. Then, as in the proof of lemma 

2.5.2 L0 and L1 both belong to an element of {M,N,P}, which is a 

contradiction, since {M,N,P} c E(lN). 

Now, theorem 1.3.3 implies that {M+ n E(lN) I Mc 1N} is a binary 

subbase for E ( JN) • 

(iii) The supercompactness of E ( 1N) implies that SJN \JN and E ( JN) are not 

homeomorphic after all, since SJN\JN is an F-space (cf. O.C), and 

no infinite compact F-space is supercompact (cf. corollary 1.1.6). 
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We will now derive some properties of E (lN) (and hence of A (f3lN \:N)). 

2.8.4. LEMMA. The cellularity of E(lN) is e. 

PROOF. Let A be an almost disjoint collection of infinite subset of :N 

of cardinality C; i.e. for all A EA we have JAi = w while JAnBJ < w for 

all distinct A,B EA (there is such a collection, cf. GILLMAN & JERISON 

[52]). Then {A+ n E (lN) I A E A} is a collection of e pairwise disjoint 

open subsets of E (lN). For take distinct A,B E A and M E A+ n B + n E (lN). 

Then JAnBJ w since ME E(lN). Contradiction. 

Since weight (UN) = e, the weight of E (lN) also equals e (recall 

that f3lN \IN c E (:N)). D 

2.8.5. Let K be any cardinal. The following principle is called P(K). 

Let A be a collection of fewer than K subsets of lN such that each 

finite subcollection of A has infinite intersection. Then there is an 

infinite F c lN such that F\A is finite for all A E A. 

It is easy to show that P(w 1) holds in ZFC and moreover that Martin's 

axiom (MA) implies P(C) (BOOTH [18]). Also P(K) implies that 2>,. = e for 

each infinite>..< K (ROTHBERGER [96]). Clearly P(w2) implies the negation 

of the Continuum Hypothesis. 

It is easy to show that P(K) is equivalent to the statement that 

each nonvoid intersection of fewer than K open subsets of f3lN \lN has non

empty interior. Unfortunately P(K) does not imply the same property for 

E(lN). In fact we will show that there is a nonvoid countable intersection 

of clopen subsets of E(lN) with a void interior. The following lemma shows 

that P(K) works for intersections of open sets in E(lN) containing an 

ultrafilter. 

2.8.6. LEMMA [P(K)]. Let A be an intersection of fewer than K open sub

sets of E (IN). If A n (BlN\lN) f. ¢ then there is an infinite B c lN such 

that B+ n E(IN) c A. In particular, A has a nonvoid interior. 

PROOF. Let A n{o I a E f3}, where f3 <Kand each o is open in E(JN). 
a a 

Take a point F E A n (BlN \lN). For each a E f3 choose an F E F such that 
a 

F+ n E(lN) c oa. This is possible since it is easy to see that 
a+ 

{F n E (JN) I F E F} is a neighborhood basis for F in E (lN). Then 

{Fa a E f3} is a collection of fewer than K subsets of :N each finite 

subcollection of which has infinite intersection. Choose an infinite Be lN 
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such that IB\Fal < w for all a E 8. We will show that 

+ + I B n E(JN)c n{F n E(JN) a ES}. 
a 

Indeed, choose a point M E (B + n E (JN)) \ (F + n E (JN)) for some a E 8. Then 
a 

F i. M and consequently N \F E M. Hence IB n (JN \F ) I = w, since M E E (JN). a a a 
Contradiction. Therefore B+ n E(Jil) c F+ n E(JN) (a E 8) andasBisinfinite, 

a 
B + n E (N) is a nonvoid open set in E (JN) • D 

2.8.7. REMARK. In the proof of lemma 2.8.6 we showed that A+ n E(JN) cB+n 

n E ( JN) iff I A \BI < w. This is a property of the binary subbase {A+ n E ( N) I 
} {A+ I } A c JN • The binary subbase A c JN does not have this property. 

For example let A= {1} and B = {1,2}. Define an mls ME \JN by 

M : = { C c N I { 1 , 2} c C or { 1 , 3} c C or { 2, 3} c C}. 

It is easy to see that Mis an mls. Moreover ME B+\A+ and yet IB\AI < w. 

We will now give an example showing that lemma 2.8.6 cannot be 

sharpened. 

2.8.8. EXAMPLE. A countable nonvoid intersection of clopen subsets of 

E (JN) with a void interior. 

Inductively we construct a collection {A I n E w} of infinite subsets 
n 

of JN such that for all i E w 

(i) k $ R, $ i .,. 

(ii) k $ i .,. 

(iii) IJN\U.<. A.I= w; 
J-1 J 

l¾n AR.I = w; 

I¾ \U.<. A.I 
J-1 J 
jfk 

w; 

(iv) k < R, <ms: i .,. ¾ n AR, n Am=¢. 

To define A0 just pick an infinite subset of N with an infinite complement. 

Suppose that {Aj I O S: j s: i} are defined satisfying (i) - (iv). For each 

k S: i choose an infinite 

ck C ¾ \ ujS:i Aj 
j,ik 

such that also 

<¾ \ ujs:i Ajl \ ck 
j,ik 

is infinite. Choose an infinite D c JN\U.<. A. such that also (JN\U.<. A.)\D 
i J-1 J J-1 J 

is infinite. Define Ai+l := Uj=O Cj u D. Then clearly (i), (ii) and (iii) 



are satisfied. Take k,i s i such that k < i. Then 

hence (iv) is also satisfied. 

We will show that the nonvoid set n{A+ I n E w} n r(:N) has a void 
n 

interior (that n{A + I n E w} n r (JN) is nonvoid is trivial since 
n 

IA.nA.I = w for all i,j E w). First we prove one more simple lemma. 
1. J 
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+ 2.8.9. LEMMA. Let M0 c :N (a E Bl such that naES M0 n r (:N) ,f ¢. Then for 

all B c :N we have naES M: n r (:N) c B + n r (JN) iff IMao \BI < w for some 

C!Q E f3. 

PROOF. If IM \Bl < w for some a E S then M+ n r(JN) c B+ n r(JN) (cf. the 
a a 

proof of lemma 2.8.6) and consequently naES M: n r (:N) c B+ n r (JN). 

On the other hand, if IM0 \BI = w for all a ES, then the linked 

system {M I a E S} u { JN \B} is a linked system any two members of which 
a 

meet in an infinite set. Hence this linked system can be extended to a 

maximal linked system 

Contradiction. D 

Now suppose there exists a nonvoid 

U C n{A+ 
n I n E w} n r(JN). Without loss 

for some infinite M. 
1. 

C :N (i $ n). Now 

m E w there is a k(m) $ n such that 

open (in r (JN)) set 

of generality u = n.< M: n r(N) 
1.-n 1. 

lemma 2.8.9 implies that for each 

Hence there must be a is n such that B = {m E w J k(m) = i} is infinite. 

Choose three elements m1,m2 ,m3 EB such that m1 < m2 < m3• Then clearly 

Mi is finite since Am1 n Ara2 n ~ 3 =¢,which is a contradiction. D 

2.8.10. REMARK. E. VAN DOUWEN has pointed out to me that lemma 2.8.6 and 

example 2.8.8 imply that r(N) is not homogeneous. Indeed, let FE SJN\N, 

let L be a nonempty countable intersection of open sets in r (JN) with a 

void interior and let LE L. Then lemma 2.8.6 implies that there is no 

autohomeomorphism ¢, of r ( JN) which maps F onto L. 

The above example shows that nonvoid countable intersections of open 
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sets in l: (lN) need not have nonvoid interiors in l: (N). The following 

theorem in any case implies that such intersections have cardinality 2c. 

2.8.11. THEOREM. Let A be a nonvoid countable intersection of open sets in 

l: (lN). Then A contains a homeomorph of BlN \lN. 

PROOF. Since {M+ I M c :N} is an open subbase for >..:N there are Bi c :N 

(i E w) such that 

¢ f. n B + n i:: (lN) C A. 
iEW i 

Then B = {B. I i E w} is a countable collection of subsets of N, any 
l. 

two members of which meet in an infinite set. If I JN \BI < w for all BE B 

then l: (lN) = n{B + n l: (lN) I B E B} c A and hence clearly A contains a 

homeomorph of BlN \lN. Therefore we may assume that there is a B0 E B such 

w. Define 

C := {B n a0 I BE B}. 

Then C consists of countably many infinite subsets of B0 • List C as 

{Ci I i E w} such that each CE C is listed countably many times. 

Now, by induction, for each i E w pick pi,qi E Ci such that 

(i) pi f. qi; 

(ii) {pi ,qi} n 

Define P = {pi 

{po•··•·Pi-l'qo,···•qi-1} = ¢. 
I i E w} and Q = {q. I i E w}. Then P and Qare two dis

l. 

joint infinite subsets of B such that IPnC. I = IQnC. I = w for all i E w. 
l. l. 

Let r: l:(JN)-+ n{B+ I BE B} n l:(lN) be a retraction defined by 

r(N) :=n{N+nl:(lN) I NE N and INnBI =w for all BE B} n n{B+nl:(lN) I BE B} 

(cf. theorem 1.5.2). 

Let D := lN\B0 • We will show that r~BD\D is a homeomorphism (notice 

that BD\D c BlN\lN c l:(lN)). Take two ultrafilters F0 ,F 1 E BD\D such 

that F0 ,f. F1 . Then there are Fi E Fi such that Fi c D (i E {0,1}) and 

F O n Fl = ¢. Clearly F O u P E F O, Fl u Q E Fl and 

Also I (F0uP) n Bl = w = I (F1uQ) n Bl for all BE B. 
+ + + and r(F1) E (F 1uQ) • But (F0uP) n (F1uQ) ¢ and consequently 

r(F0) f. r(F1). Hence r~BD\D is one to one and consequently r~BD\D is a 

homeomorphism. D 



113 

2.8.12. COROLLARY. Nop E E(N) admits a countable neighborhood basis. 

A well-known property of flJN\lN, under P(C.), is that each nonvoid 

open set contains 2c. . P c.-points (see e.g. VAN DOUWEN [40]). Recall that a 

point p of a topological space is called a PC.-point if the intersection 

of less than C. neighborhoods of p is again a neighborhood of p. We will 

show that each nonvoid open set in E (JN) also contains 2c. Pc.-points. 

2.8.13. THEOREM [P(C.)]. Each nonvoid open set in E(N) contains 2c. Pc.-points. 

PROOF. Let A:= ff E flJN\JN I Fis a Pc.-point}. Define 

B :={ME E(JN) I 3Fi EA (io,n, nEw) 3LE A{0,1,2, •.. ,n} 

M {F c ]NI 3LEL: FEF, (iEL)}}. 
J. 

We will show that B consists of Pc.-points of E(JN) and that each nonvoid 

open set contains 2c. elements of B. Indeed, take ME Band let {o I o. E fl} 
0. 

be a collection of less than C. neighborhoods of M. Without loss of general-

ity we may assume that each ON is of the form M+ with M EM (o. E fl). 
~ 0. 0. 

Choose Fi EA (io,n, nEw) and LE A{0,1,2, •.. ,n} such that 

M = {F c JN 3L EL: FE F. (i EL)}. For each M choose L EL such that 
J. 0. 0. 

Mo. E Fi for all i E Lo.. For each LE L define A(L) := {o. E fl L = Lo.}. 

Fix LE L. For each i EL choose Fi (L) E Fi such that IFi(L)\Mo.l < w 

for all o. E A(L). This is possible since Fi is a Pc.-point of flJN\N. 

Moreover for each i E {0,1,2, .•. ,n} define Li :={LE L I i EL}. 

Then let 

n 
Ld. 

J. 

F. (L). 
J. 

Clearly Fi E Fi (i,;; n). Finally define 

u := n 
Ld 

+ ( U Fi) n E(lN). 
iEL 

+ It is easy to see that U is a neighborhood of M such that u c n O O. 
O.Eµ 0. 

This shows that B consists of Pc.-points. 

Now, let U be a nonvoid open set in E ( JN) • Take M E U and let Mi E M 

(i,;; n) such that ni,,n M; n E(lN) cu. For each i,j E {0,1,2, ••• ,n} take 

a Pc.-point Fij = Fji EA such that Min Mj E Fij" This is possible since 

IU.nM.I = w. Take a maximal linked system LE A({0,1, ... ,n)} such that 
J. J 
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that for all i ~ n the set L, = {(i,j) I j ~ n} is an element of L. 
l. 

Notice that {L. I i ~ n} is a linked system. Now define 
l. 

N:={Fc]N j3L€L:F€F .. ((i,j)EL)}. 
l.J 

We will show that N is a maximal linked system. Clearly N is linked. Now 

suppose that N is not maximally linked. Take M c lN such that N u {M} is 

linked while Mi N. Define E := {(i,j) M. € F .. }. Clearly E #¢and 
l.J 

also {E} u Lis linked. Hence, as Lis a maximal linked system E €Land 

consequently M € N. Contradiction. 

Since each F .. is an ultrafilter, N is a maximal linked system any 
l.J 

two members of which meet in an infinite set and hence N € E(lN). Also 

it is clear that N € U and that there are 2e different choices for N. D 

REMARK. The technique used in the proof of the previous theorem is due 

to VERBEEK [119]. 

2.8.14. It is well-known that SlN \lN is an F-space. In particular, a 

countable union of clopen subsets of SJN \JN is always c* -embedded. The 

space E(lN) cannot be an F-space, since no infinite compact F-space is 

supercompact (cf. corollary 1.1.6). We give an example of a countable 

union of clopen subsets of E(JN) that is not c*-embedded. 

NEGREPONTIS [90] has shown that the closure of a countable union of 

clopen sets in SJN \JN is a retract of SlN \JN. The following theorem shows 

that a similar assertion holds in E(lN) for suitable countable unions of 

clopen sets, taken from the "canonical" closed subbase {M + n E (JN) I Mc JN}. 

For the remainder of this section, let S = { M + n E ( JN) I M c :N} • 

This subbase is binary and for all S € S the set E(lN) \Sis also in S. In 

particular, Sis normal. 

2.8.15. THEOREM. Let {A I cx € S} be a collection of S-closed sets such cx 
that A c 

cx 
particular 

A..., iff cx < y. Then clE (JN)(UCXE/3 ACX) equals IS (Ucx€/3 ACX). In 

clE (lN) (UCXE/3 Acx) is supercompact and is a retract of E (lN). 

PROOF. Clearly clE(lN) (Ucx,;:S Acx) c IS(UcxES Acx). Take two distinct points 

M0 ,M1 € clE (lN) (UcxES Acx) and assume that there exists a point P E E (lN) 

such that 
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Take finitely many Pi. E P (i!S: n, nE w) such that n.< P°: n U f3 A = ¢. 
l.-n l. CI.E Cl. 

Now suppose that for some i !S: n we have that Pi i M0 and Pi i M1 . Take 

Mi E Mi such that Mi n pi ¢ (i E {0,1}). Clearly pi n (MOU Ml) = ¢ and 

also 

However P; n (M0uM1)+ = ¢, which is a contradiction since PE Is(M0 ,M1). 

Therefore each Pi either belongs to M0 or belongs to M1 • Define 

(i E {0,1}). 

\ 
+ 

Then niECi Pi is a neighborhood of Mi and hence intersects Ua.Ef3 Aa. 

(i E {0,1}). 
+ 

Choose a.i E f3 such that niEC· Pin Aa.i t- ¢ (i E {0,1}). Without 
l. 

loss of generality assume that a.0 !S: a. 1• Then 

{ n P + n P ! , AN
1

} iECO i' ie:C1 ,, ~ 

is a linked system of S-convex sets; consequently, by the fact that Sis 

binary 

which is a contradiction. 

It now follows that clE(JN) (Ua.Ef3 Aa.) is S-convex and hence S-closed, 

by theorem 1.5. 7. Therefore clE (JN) (Ua.Ef3 Aa.) = IS (Ua.Ef3 Aa.). Hence 

clE (JN) (Ua.Ef3 Aa.) is supercompact (lemma 0.5) and is a retract of E (JN) 

(theorem 1.5.2). D 

2.8.16. COROLLARY. Le= Si E S such that Si c si+l and si+1 \Sit-¢ (i E w). 

Then uiEW Si is not C -embedded in L (N). 

PROOF. Notice that A= UiEW Si is not pseudocompact, since A is a-compact, 

* hence normal, and not countable compact. Now suppose that A is C -embedded 
V 

in E (lN). Then clE (lN) (A) is equivalent to the Cech-Stone compactification 

f3A of A. Hence, by theorem 2.8.15, f3A is supercompact and consequently 

A is pseudocompact (cf. corollary 1.1.7). Contradiction. D 

2.8.17. There are still many questions to be asked concerning E(N). For 

example theorem 2.8.11 says that each nonvoid countable intersection of 
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open sets in E (lN) contains a homeomorph of SJN \lN. Hence such an inter

section contains many countable subspaces that are c*-embedded. On the 

other hand E(lN) is supercompact and hence for each countable subspace K 

it follows that at least one cluster point of K is the limit of a non

trivial convergent sequence in E (N) (cf. theorem 1. 1.5). Hence there are 

also many countable subspaces of E (lN) that are not c*-embedded. This 

suggests the following question: 

* 2.8.18. QUESTION. When is a courit:able Ac E(lN) C -embedded? 

Also we have said nothing about normality in E(JN). It is well-known 

that CH implies that SJN \lN \{p} is not normal for all p e: SJN \JN (cf. 

COMFORT & NEGREPONTIS [31], RAJAGOPALAN [95], WARREN [126]). Hence if for 

each p e: E (lN) there is a copy of 13:N \JN in E (lN) containing p, then CH 

also implies that E(lN) \{p} is not normal. Theorem 2.8.11 suggests that 

such may well be the case. 

2.8.19. QUESTION. Is t:here for each p e: E(JN) a homeomorph of SJN\lN con

t:aining p? 

2.8.20. QUESTION. Is it: t:rue t:hat: E(lN) \{p} is not: normal for all 

pe: E(lN)? 

2. 8. 21 • In [ 91] , PAROVICENKO characterized 13 JN \ lN in terms of its Boolean 

algebra of clopen subsets. We will show that PAROVICENKO's result allows 

us to give a characterization of E(lN),not in terms of its Boolean algebra 

of clopen subsets but in terms of the Boolean algebra {M + n E (lN) I M c lN}. 

Clearly S = {M+ n E (lN) I M c JN} is not a Boolean subalgebra of the 

Boolean algebra of clopen subsets of E(lN). Therefore we define for S new 

Boolean operations and show that, under the Continuum Hypothesis, the 

Boolean algebra thus obtained characterizes E (JN) and hence A (SlN \JN). 

PAROVICENKO also uses the Continuum Hypothesis and from an example given 

by VAN DOUWEN [40] it follows that the Continuum Hypothesis is essential 

in this characterization: there is a locally compact, a-compact and 

separable space M for which SlN \JN and SM\M are homeomorphic under CH 

but not under P(C) + 7CH. This same example can be used for showing that 

in our characterization CH is essential. The spaces E(M) and E(lN) are 

homeomorphic under CH, but not under P(C) + 7cH. One might thin]<; that 

this immediately follows from VAN DOUWEN's result, using the equalities 



L(lN) ~ >..(BlN\lN) and L(M) ~ >..(8M\M) (cf. theorem 2.8.2). Such is not 

true, however. We will present an example of two compact metric spaces 
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X and Y which are not homeomorphic while nevertheless >..x and >,,y are homeo

morphic. 

PAROVI~ENKO [91] has also, without using the Continuum Hypothesis, 

shown that each compact Hausdorff space of weight at most w1 is a contin

uous image of 8lN\JN. We will show that for I:(lN) this is not true, since 

there is a compact Hausdorff space with w1 points which is not the con

tinuous image of L ( JN) • 

2.8.22. Let B <B,0,1,',A,V> be a Boolean algebra.Bis called Cantor 

separable if no strictly increasing sequence has a least upper bound, 

i.e. if 

then there exists an element c < b such that a < c for all n E w. In 
n 

addition Bis called Du Bois-Reymond separable if a strictly increasing 

sequence can be separated from a strictly decreasing sequence dominating 

the increasing one, i.e. if 

then there exists an element c EB such that a < c < b for all n E w. n n 
Finally Bis called dense in itself if for all a,c EB with a< c there 

is ab EB such that a< b < c. 

2,8.23. PAROVI~ENKO [91] has shown that, under CH, a compact totally 

disconnected Hausdorff space of weight Q which possesses no isolated 

points is homeomorphic to 8JN \JN if the Boolean algebra of clopen subsets 

of Xis both Cantor and Du Bois-Reymond separable. If fact he showed 

that all Boolean algebras of cardinality Q which are dense in themselves 

and which are both Cantor and Du Bois-Reymond separable are isomorphic 
V 

under CH. We will use PAROVICENKO's result in this form. 

2.8.24. If Xis a set and if Sis a collection of subsets of X for any 

ACX let Ws(A) C X be defined by 

The set WS(A) is sometimes called the S-interior of A, just as 
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Is(A) = n{s Es I AC s} is called the S-closure of A. 

For technical reasons we will assume for the remainder of this 

section that each closed subbase S for a topological space contains¢ 

and X. 

2,8,25. THEOREM [qi:]. Let X be a compact Hausdorff space of weight C. which 

possesses no isolated points. Then Xis homeomorphic to E(lN) (and hence 

to ;\. (13 (lN) \lN)J iff X possesses a binary closed subbase S satisfying: 

(i) for all SES also X\S ES; 

(ii) for all s 0 ,s 1 ES also IS(S0 us 1) ES; 

(iii) for all SO,sl E S: Is<sousl) = X - sou sl = X; 

(iv) for all s 0 ,s1 ,s2 ES: WS(s0nIS(s1us2)) =Is(WS(s0ns 1) n WS(S0 ns2)); 

(v) if Sn E S, Sn => Sn+l (n E w) then nnEw Sn contains a nonvoid element 

of S; 

(vi) disjoint countable unions of elements of Shave disjoint S-closures. 

PROOF. II~". 

First we remark that E(lN) indeed is a compact Hausdorff space of 

weight C. without isolated points; this follows from proposition 2.2.3 and 

theorem 2.8.11. Also, Sis a binary subbase for E(lN) which satisf.ies (i). 

In order to show that S also satisfies (ii), (iii) and (iv) we use the 

equalities 

( 1) 

(2) 

Let us prove (1) only. 
+ + + 

Clearly IS ( (MO n E (lN)) U (Ml n E (lN))) c (M0uM1) n E (JN) • Suppose 

that there exists an ME ((MOUMl)+ n E(:N)) \Is ((M~ n E(JN)) u (M; n E(lN))). 
+ + + 

Choose L c lN such that IS ( (MO n E (JN)) U (Ml n E (JN))) c L n E (lN) and 

Mi L+ n E(lN). Then M": n E(lN) c L+ n E(lN) implies that IM.\LI < w 
i i 

(i E {0,1}) (lemma 2.8.9) and hence that I (M0uM1)\LI < w, which is a 

contradiction since ME (M0uM 1)+\L+. 

This shows that S satisfies (ii), and also (iii); for take s 0 ,s1 ES 
+ such that IS(S0us 1) = E(lN). Let Si= Min E(JN) (i E {0,1}). Then 

+ E (lN) = (M0uM1) n E (JN) by (1). Hence I lN \ (M0uM1 ) I < w and consequently 
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+ + 
(M0 n E(lN)) u (M1 n E(lN)) = E(JN) (notice that in general llN\(M0 uM1 ) I <w 

+ + -- 'lN .') need not imply M0 u M1 A 

Using (1) and (2) it is easy to see that S satisfies (iv). 

S also satisfies (v), because of lemma 2.8.6 (recall that P(w 1) is 

true in ZFC and hence that we do not use CH or P(e) here). 

Finally S satisfies (vi). Let A = U (M;° n E (N)) and 
iEW l. 

+ * B = UiEw (Lin E(lN)) such that An B =~-It now follows that UiEW Mi and 

U. L~ are disjoint subsets of (3lN \lN. As (3lN \lN is an F-space (cf. O .C) l.EW l. 
these two sets have disjoint closures. Therefore we can choose two disjoint 

sets E and F in lN such that U. 
l.EW 

(M: n E(JN)) cc+ n E(lNl and Uirn 

lishes (v). 

* * * * M. c E and U. L. c F. Then U. 
l. + l.EW l. l.EW 
(Lin E(JN)) c F+ n E(lN), which estab-

11 .., 11 Define operations 11, v, ' on S in the following manner: 

A /I B 

AV B 

A' 

WS(AnB) 

IS (AU B) 

X\A. 

We will show that <S,11,v, 1 ,O,l> is a Boolean algebra, where O =~and 

x. Notice that for all A,B ES we have that A II B c An Band 

Au BC AV B. Because of (ii) AV BE s for all A,B Es. Also A /I BE s 
for all A,B ES, because of the equality 

A /I B = (A I V BI ) I • 

To prove this, notice that A /I B U{X\S j S E S and X\S c An B} = 

= U{s ES j s c AnB} by (i). Now takes ES such thats c An B. Then 

A' U B' c S' and consequently IS(A' UB') c S'. Therefore Sc X\IS(A' UB') = 

(A'AB')'. Since (A'VB')' ES, by (i) and (ii) it follows that 

A /I B = (A I V BI ) I . 

Define a relation 11 $ 11 on S by putting A $ B iff A II B = A. 

Let us prove that A$ B iff Ac B, for all A,B ES. Indeed, assume that 

Ac B. Then A /I B (A' VB') I (A')'= A and therefore A$ B. Next, 

suppose that A$ Band that there exists an x E A\B. Then xi A /I Band 

consequently A /I B #A.Contradiction. 

It now follows that the relation 11 $ 11 is a partial ordering. Also 

it is clear that for all A,B ES the set A /I Bis the greatest lower bound 

of A and B with respect to this ordering and in the same way Av Bis the 

least upper bound for A and B. Hence (S,$) is a lattice. Also (S,$) is 
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distributive because of (iv) and clearly it is complemented. Hence 

<S,A,V, 1 ,0,l> is a Boolean algebra. 

Let us show that this Boolean algebra is Cantor separable. Take 

An ES (n E w) and BES such that A0 < ..• <An< ••• < B. Define 

Sn:= BA A~ (n E w). We will show that Sn IO (n E w). For suppose to 

the contrary that for some n0 E w we have Sno = 0. Then 1 s~0 = 

= (BAA110 )• = B' V Ano and hence, by (iii), B' u Ano= X. This is a con

tradiction, since Ano< B (notice that in fact we have shown that for all 

A,B € S: An BI¢ iff A AB I 0). Also An < An+l implies that BA A~+l c 

c BA An (n E w). By (v) there is a nonvoid CE S such that Cc nnEw Sn. 

Then Ao< Al < ••. <An< .•• < C' < B. 

Let us prove that <S,A,v,',0,1> is dense in itself. Indeed, take 

A,C ES such that A< C. If A= 0, then Cf¢ implies that there are two 

distinct points x and yin C since X contains no isolated points. By the 

fact that Sis binary there is an SES such that x ES and y i S. Then 

define B :=CA S. Now A< B < C. If A f O define D :=CA A'. Then D # 0, 

since C n A' # ¢; define B := D' AC. Clearly A < B < C. 

Let us prove that <S,A,V,' ,0,1> is Du Bois-Reymond separable. Suppose 

that A0 < ••• <An< .•. < Bn < •.• < B0 for some An,Bn ES (n E w). Then 

UnEw An and UnEw B~ are disjoint countable unions of elements of Sand 

hence, by (vi), have disjoint S-closures. Let c0 := IS(UnEw An) and 

c1 := IS(U B'). By the binarity of S there now is a DES such that nEW n 
c0 c D and D n c1 =¢.Then clearly An< D and B~ < D' for all n E w. It 

now follows that 

The cardinality of S equals e since X has weight e and since Sis a 

subbase. Now, by PAROVI~ENKO's result the Boolean algebra <S,A,v, 1 ,0,l> 

is isomorphic to the Boolean algebra of clopen subsets CO ( 13:JN \ JN) of 

13:JN\lN. Let O: S->- CO(i31N\JN) be an isomorphism. Define a function 

cf,: X ->- ~ (JN) by 

cf,(x) := {M c lN I M* E fo(S) lxES} }. 

* Recall that M 

homeomorphism. 

= cli3lN (M) \M for all M c lN. We will show that cf, is a 

CLAIM 1. Take x EX; then S := {s ES Ix Es} is a maximal linked system 
--- X 

in the Boolean algebra <S,A,v, 1 ,0,l>. 
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Indeed, take s0 ,s1 E Sx. Then s0 n s 1 I¢ implies that s0 A s1 I¢, 

which shows that Sx is a linked system. Also Sx is maximally linked, for 

suppose that there is an AES such that Sx u {A} is linked but At Sx. 

Then x t A and consequently x E A'. But A n A' = ¢ implies that AA A' = 0. 

Contradiction. 

The Boolean isomorphism a maps Sx onto a maximal linked system in 

CO (13lN \lN). Now it follows that 

is a maximal linked system in P(JN) and that it is an element of E (JN). 

Also, the fact that a is an isomorphism implies that¢ is one to one and 
-1 + -1 * surjective. Moreover ¢ is continuous, since ¢ [M n E (JN)] = a [M ] for all 

M c lN. Therefore ¢ is a homeomorphism. D 

2.8.26. COROLLARY [CH]. If Xis a zero-dimensional noncompact a-compact 

and locally compact space with IC (X) I = c., then E (X) and E ( N) are homeo

morphic. 

PROOF. It is easy to see that {M+ n E(X) IM is open and closed in X} 

satisfies all conditions of theorem 2.8.25 (notice that X Lindelof being 

a-compact implies that for closed sets A,B c X with An B =¢there is an 

open and closed Uc X such that Ac u and B c X\U). D 

2.8.27. REMARK. Corollary 2.8.26 also follows directly from PAROVI~ENKO's 

result. For if Xis a zero-dimensional noncompact a-compact and locally 

compact space with IC(X) I = C. then there is a homeomorphism¢: 13X\X+i3lN\lN 

by PAROVI~ENKO' s characterization of i3lN \JN. This homeomorphism can be 

extended to a homeomorphism A(¢): A (i3X\X) -->- A (13:IN \lN) (theorem 2. 3 .4) • 

Now theorem 2.8.2 implies that E(X) is homeomorphic to E(JN). 

2.8.28. EXAMPLE. A locally compact and a-compact separable space M for 

which E (M) and E (JN) are homeomorphic under CH but not under P (C.) + 7CH. 

As noted in the introduction of this chapter this example is based 

on an example of VAN OOUWEN [40]. 

Let M = lN x { 0, 1} c.. Then clearly E (M) and E (lN) are homeomorphic 

under CH (cf. corollary 2.8.26). Assume that w1 < C. and let K = {0,1}c.. 

- 1 I I Let K := {T\-i [{i}] a E w1 , i E {0,1} }. Then {lNxK KE K} is a collec-

tion of w1 clopen subsets of Meach infinite subcollection of which has 
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a void interior. As for each a E w1 we have 

for each ME J.M there is an i E {0,1} such that JN x n-1[{i}J E M. For 
a 

each ME E(M) let K(M) :={KE K I JN x KEM}. It follows that K(M) is 

uncountable for each M E E (]N) and also that {K (M) I M E E (]N)} has cardin
w1 

ali ty 2 • Also 

K E K (Ml } n E (M) I M E E (M) } 

covers E(M). The collection A has cardinality 2w 1 and consists of pairwise 

disjoint sets each an intersection of w1 clopen subsets of E(M). 

Let us prove that each A EA has a void interior. Assume there exist 

open and closed co, ... ,en c M such that 

¢ # .Q + E (M) c. n C AO i-n l. 

for some Ao EA. Let Mo E E (M) such that AO 0{ (lN X K) + I K E K cM0>} n E (Ml • 

Now the fact that 

implies that for all KE K(M0 ) there is an iK s n such that Ci\(lNxK) 
+ + 

is compact; for otherwise nisn Ci n E (M) ¢ (lN xK) n E (M). 

Hence there is an i 0 s n such that L ={KE K(M0 ) J iK = i 0 } is un

countable. Also, clearly, ci0 is not compact. Choose for every LE Lan 

integer i(L) such that¢# ci0 n ({i(L)}xK) c {i(L)} x L (this is possible 

since ci0\(lNxL) is compact!). There is an integer i such that the collec

tion 

B ={LE LI i(L) = i} 

is infinite, since Lis uncountable. But then OB has a nonvoid interior 

in K, since¢# ci0 n ({i}xK) c {i} x nB, which is a contradiction. 

Now suppose that there is a homeomorphism$: E(lN)--+ E(M). Take 

F E 81N \lN and take A E A such that F E cp-l (A) • As A is an intersection 
-1 -1 

of w1 clopen sets, so is cp (A). Also cp (A) has a void interior. However 

P(e) + 7CH implies that this intersection has a nonvoid interior (lemma 

2.8.6). Contradiction. D 
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IOCJrphic while yet AX and AY are homeoIOCJrphic. 
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Let X = I, the closed unit interval and let Y = { (O,y) I -1,,; y,,; 1} u 

u {x,sin !) I Q,,;x,,; 1}. In chapter 3 (sections 3.4 and 3.2) we will show 
X 

that AX and AY both are homeomorphic to the Hilbert cube Q. D 

2.8.30. EXAMPLE. A separable compact Hausdorff space with w1 points which 

is not the continuous image of E ( JN) • 

In section 1.1 we gave an example of a separable compact Hausdorff 

space with w1 points which is not the continuous image of a supercompact 

Hausdorff space (cf. example 1.1.18). Hence this space is not the contin-

uous image of E (JN). D 

2.8.31. QUESTION. Is there a separable supercompact first countable 

Hausdorff space which is_ not the continuous image of E (ll:il)? 

2.9. Another nonsupercompact compact Hausdorff space 

In section 1.1 we gave an example of a compact Hausdorff space which 

is not supercompact but which admits a closed subbase T such that for all 

Mc T with nM =¢there are M0 ,M1 ,M2 EM such that M0 n M1 n M2 = ¢. In 

this section we will present another space with this property. The space 

is a subspace of All:il and the subbase with the above property is just the 

restriction of the canonical binary subbase of AJN to the space under 

consideration. This makes the example of independent interest. 

2.9.1. Let S denote the canonical binary subbase of A:IN and for each 

Ac A:IN, let I(A) (as usual) be defined by I(A) := n{s ES I Ac s} (cf. 

section 1.1). We start with a simple but useful lemma. 

2.9.2. LEMMA. Let Ac AJN. Then for all ME M E I(A) there is an A E A 

such that ME A. 

PROOF. Suppose that M i A for all A E A. Then :IN \M belongs to each A in A 

and consequently _A c (:IN \M) +. But then I (A) c (:N \M) +, which is a contra

diction since ME I(A). D 
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2.9:3. EXAMPLE. There is a subspace X of \:N with the following properties: 

(a) X is not supercompact; 

(b) for all M c { s n x J s E S} with nM 
such that M0 n M1 n M2 ¢. 

Indeed, define 

X := {M € AlN J VMO,Ml ,M2 € M: 

[M0nM 1nM2 = ¢-. 3i E {0,1,2}: € M,]}. 
1. 

Notice that lN c X and therefore, as we will show that X is closed in \lN, 

also l'llN c x. 

CLAIM 1. Xis compact. 

Indeed, assume that Mi X. Then there exist M0 ,M1 ,M2 € M with 

M0 n M1 n M2 =¢and 1 i Mi (i E {0,1,2}). Then M~ n M; n M; is an open 

neighborhood of M which obviously misses X. Hence Xis closed in the 

compact space \JN. 

CLAIM 2. The closed subbase T = {M+ n X J Mc lN} has the property that 

for each Mc T with nM =¢there are M0 ,M1 ,M2 € M such that 

Mon Ml n M2 = ¢. 

Let Mc T be a subsystem any three members of which meet. We will 

show that nM # ¢. This suffices to prove the claim. 

We will show, by induction, that M has the finite intersection 

property; then, by claim 1, nM # ¢. Assume that any n - 1 members of M 

meet. If n = 2 or n = 3 then obviously any n members of M meet. Therefore 

we may assume that n>3. Let M: n X € M (i € {1,2, •.. ,n} and talce, for 
1. 

each i € {1,2,3,4} 

Now define 

L1.. € n 
jfi 
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Notice that, as {M+ I M c JN} is binary the set z is nonvoid. We claim that 

z c R M+ n x. 
i=1 i 

That Z c n:=l M~ is trivial. we proceed to show that z c X. Suppose there 

were an NE z with Ni EN (i E {1,2,3}) such that N1 n N2 n N3 =~and 

1 t Ni (i E {1,2,3}). We will derive a contradiction. 

Fix i E {1,2,3} and let Ai:= {j E {1,2,3,4} I Ni E Lj}. Then 

IAil;:: 3. Suppose that IAil < 3; then there exist distinct R.,mE {1,2,3,4}\Ai. 

Then, as N € I({1,LR.,Lm}) and as 1 t Ni, by lemma 2.9.2, we must have that 

either Ni€ LR. or Ni E Lm. Contradiction. 

Now, IAil ;:: 3 for all i E {1,2,3}; therefore 

Take m E A1 n A2 n A3 • Then Ni€ Lm for all i E {1,2,3} and as Lm EX this 

is a contradiction. 

~ 3. Xis not supercompact; it is not even the continuous image of a 

supercompact Hausdorff space. 

Assume that Tis a binary closed subbase for X. We assume that Tis 

closed under arbitrary intersection (cf. lemma 0.5). Let Ac P(lN) \{1}) be 

an uncountable almost disjoint family of infinite sets which satisfies: 

For each uncountable B c A there is a BE Band an 

infinite Cc 8\{B} such that C n C' c B for all distinct 

C,C' E C. 

There is such an almost disjoint family, cf. 1.1.14 and lemma 1.1.15. 

For each infinite B c N, the set B+ n Xis clopen in X and consequent

ly, since Tis closed under arbitrary intersection, there exists a finite 

F c T such that B+ n X = UF (cf. 0.3). Therefore there exists an T(B) ET 

such that T(B) c B+ n X and T(B) n Bis infinite. 

As {T(A) n A I A EA} is an uncountable collection of subsets of 

:N \{ 1} there is an n0 E :N \{1} such that A1 = {A E A I n0 E T(A) n A} is 

uncountable. Take an A0 E A1 and an infinite Cc A1 such that 

for all distinct c,c• EC. Then 
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{T(Cl n ((JN\{l}l \ A0 )+ n x I c E C} 

+ is an infinite disjoint collection nonvoid subsets of ((JN\{1})\A0 ) n X. 

As this latter set is clopen in X, there is a finite F c T such that 

UF = ((JN\{1}\A0)+ n X. Choose a TE F such that T intersects both T(C) 

and T(C') for certain C,C' EC (Cf C'). Then 

L = {T,T(C) ,T(C')} 

is a linked system with a void intersection. That Lis indeed linked is 

trivial since n0 E T(C) n T(C'). But 

nL T n T(C) n T(C') 

= ¢, 

since ((JN\{1})\A0 ) n c n c• c ((JN\{1})\A0 ) n A0 c (JN\A0 ) n A0 =¢and 

neither contains 1. Contradiction. 

The assertion that Xis not the continuous image of a supercompact 

space can be shown using the same technique, cf. proposition 1.1.16. D 

REMARK. The proof of claim 3 of the above example is a simple modification 

of the technique used in the proof of proposition 1.1.16. 

2.9.4. In section 2.8 we defined two subspaces cr(JN) and E(]N) of AlN 

which are, in some sense, related to the space X constructed in example 

2.9.3. The spaces cr(:JN) and E(IN) both have a void intersection with JN, 

but both contain SJN\JN. Therefore cr(JN) u JN and E(:JN) u lN are closed in 

AlN. This suggests the question whether the spaces cr (JN) u J1ll and E (lN) u lN 

have the same properties as example 2.9.3 (recall that ]Ne SJN c X!). 

For o· (lN) u lN this is disproved in the next proposition; E (lN) u lN is 

more difficult to treat, however, it can also be shown that it differs in 

compactness type from X. 

2.9.5. PROPOSITION. 

(i) a (JN) and E (lN) are supercompact; 

(ii) cr(JN) u ]N is supercompact; in fact cr(JN) u lN Fll A(JN) ,H) where 

H ={Mc JNI IMl=l v !Ml= w}; 

(iii) E (lN) u lN is not supercompact; 



(iv) the subbase T := {M+ n (o(lN) u lN) I Mc lN} for o(lN) u lN has the 

property that for each n .: 3 there is an F c T with IF I = n and 

nF =¢while n(F\{F}) #¢for all F € F; 

(v) the subbase V := {M + n (I: (:N) u :N) I M c :N} for I: (lN) u lN has the 

same property as T. 
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PROOF. (i) The supercompactness of a (lN) follows from (ii). That I: (lN) is 

supercompact was shown in theorem 2.8.2 (iii) .• 

(ii) Define a mapping (j,: J.. (lN,H)-+ J..JN by (j, (M) := M (it is easy to see 

that an mls Mc His also an mls in P(lN)). The simple proof that (j, is an 

embedding and that (j,[J..(lN,H)] = o(lN) u lN is left to the reader. 

(iii) This can be proved using the same technique as in example 2.9.3 

claim 3. Under P(C), we will give another proof, which uses theorem 1.1.5. 

Assume that I: ( lN) u lN were supercompact. Then, by theorem 1 .1 • 5, at most 

countably many points of 8:N \lN are not the limit of a nontrivial conver

gent sequence in I: (lN) u JN. As no sequence in :N converges it follows that 

at most countably many points of BE \lN are not the limit of a nontrivial 

convergent sequence in I: (]N) • Under P (C) , there are 2c Pc-points in BlN \lN 

(VAN DOUWEN [40]). It is easy to see that a Pc-point in BlN\JN is also a 

Pc-point in I:(lN). But a Pc-point is not the limit of a nontrivial con

vergent sequence. Hence there are 2c points in BJN \:N which are not the 

limit of a nontrivial convergent sequence in I:(JN). Contradiction. 

(iv) Fix n.: 3 and define F := {({1,2, ••• ,n}\{i})+ I is n}. Then IFI = n 

and nF n (o(JN) u lN) =¢while ncF\{F}) n (o(lN) \JN) #¢for all F € F, 

as can easily be seen. 

(v) This can be proved in the same way as in (iv). D 

2.10. SUbbases, convex sets and hyperspaces 

In this section we will study the operator Is, defined in 1.5.1. We 

do not restrict ourselves to binary normal subbases. For any topological 

space X and for any closed subbase S for X we define 

Is<A> := n{s € s I Ac s} 

for all Ac X (an empty intersection will represent, by convention, the 

whole space X). The set IS(A) is called the S-closure of A, or, the 

S-convex closure of A. By definition, H(X,S) will denote the space of all 
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nonvoid S-closed sets, endowed with the subspace topology of 2X 

We are interested in compactness properties for the spaces H(X,S). 

Our main result in this section is that if Xis a compact space and if S 

is a normal T1-subbase which is closed under arbitrary intersection, then 

H(X,S) is compact if and only if H(X,S) is a retract of 2x, and also if 
X and only if the map IS: 2 -+ H(X,S) (which sends each closed set Ac X 

onto its S-closure) is a retraction. 

We first prove that if Sis a binary normal subbase for X then H(X,S) 

is compact though establishing that the closure operator IS is a retrac

tion. This fact then is used to obtain the general compactness result 

cited above. 

The results in this section are taken from VAN MILL & VAN DEVEL [82]. 

We start with the following remarkable result: 

2.10.1. THEOREM. Let S be a binary normal subbase for x. Then the operation 

of intersecting two S-closed sets is continuous. 

PROOF. First notice that Xis normal, being compact and Hausdorff (cf. 

2.2.4 (iii)). Let 

AC H(X,S) X H(X,S) 

be the subspace of all pairs (A,B) such that An Bf¢. we have to show 

that the mapping 

n: A -+ H(X,S) 

assigning to (A,B) € A the S-closed set An B, is continuous. we shall use 

the open subbase of 2x, consisting of all sets of type <O> or <O,X>, 

where O c Xis open. 

Assume first that (A,B) € A and that O c Xis an open set such that 

An B c O. A straightforward argument, using the normality of X, then 

shows that there exists a neighborhood v0 of A and a neighborhood V, of B, 

in 2x, such that (v0xv1) n A is mapped into <O> by the intersection 

operator. 

Assume next that An B n Of¢ for some pair (A,B) € A and for some 

open set O c X. Let x €An B n O. Since Sis a normal T1-subbase (cf. 0.4) 

there are s 1, •.• ,sn € S such that 

( n ) n s. 
i=l 1 

n 
c n s1. c o. 

i=l 
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n n 
Hence (<ni=l si,X> x <ni=l si,X>) n A is a neighborhood of (A,B) and for 

each pair (A',B') in this neighborhood the system {A',B 1 ,s1, •.• ,Sn} is 

linked. Hence, by binarity of S, also 

n 
n s1.. n A' n B' f ¢. 

i=l 

n n 
Itfollowsthat A' nB' no=¢forall (A',B') E (<ni=l si,X>x <ni=l si,X>) nA,. D 

2.10.2. It can easily been deduced from theorem 2.10.1 (or proved direct

ly with the above method) that n-fold intersection is also continuous on 

the hyperspace of S-closed sets, associated to a normal binary subbase S. 
The contirruity of the 2-fold intersection operator - even in one 

variable at the time - seems to be fairly exceptional in hyperspaces, as 

can be seen from the next example. 

2.10.3. EXAMPLE. Let X be the unit 2-cell. For each t E [O,n] we let 
X it 

Ft E 2 be the line segment joining O and e (regarding X as a subspace 

of the complex rrumbers). The mapping 

sending t onto Ft obviously is continuous. The map 

assigning to Ft the set FTI n Ft, is not continuous, since the image of 

G ° F consists of the two points {O} and F of 2x. D 
TI 

Before passing to general normal subbases, we need one other theorem 

dealing with binary normal subbases. We begin with the following auxiliary 

result (compare lemma 1.5.10). 

2.10.4. LEMMA. Let S be a binary normal subbase for the topological 

space x. For each n ~ 2 the mapping 

tuple (x,x1, ••• ,xn) E Xn+l onto the 

n Is({x1 , •.• ,xn}), is continuous. 

f: xn+l-+ x, which sends an (n+l)
n 

unique point in ni=l IS(x,xi) n 

PROOF. The uniqueness of f(x,x1 , .•• ,xn) is a consequence of theorem 1.5.2. 
n+l -1 To prove the continuity, let SES and let (x,x1, ... ,xn) EX \f [s]. 

Then 



130 

n 
0 IS(x,xl..) n I({x1, •.• ,xn}) n S ¢, 

i=l 

and S being binary, we have that either IS(x,xi) n S =¢for some i Sn, 

or that IS({x1 , ... ,xn}) n S ¢. 

In the first case, using the normality of S, there is an s 0 ES 

such that 

Let TI • Xn+l-+ X denote the proJ·ection mapping onto the J· th coordinate. 
j" 

Then 

is a neighborhood of (x,x1, ... ,xn) which does not meet f- 1[s]. For, if 

(y,y1 , •.• ,yn) Eu, then {y,yi} c intx(s0 ) c s 0 , whence 

In the second case one can proceed in the same way. First, choose 

s 0 ES such that 

Is({x,x1,···,xn}) c intx<so) c soc X\S. 

n -1 . 
Then, let U := ni=l ITi [1.ntx(s0)]. This set is a neighborhood of 

(x,x1 , ••• ,xn) not meeting f-l[S]. O 

2.10.5. THEOREM. Let S be a normal binary subbase for the topological 

space x. Then the map IS: 2X-+ H(X,S) is a continuous retraction of 2X 

onto H(X,S) (in particular H(X,S) is compact). 

PROOF. For simplfication of notation, writer= IS. Let us prove that r 

is continuous. Fix an open set O c X and assume first that A E r-1[<0>]. 

Then IS(A) c O. Since Xis compact and since Sis a closed subbase, there 

exists Sij ES (i,j s n, n E w) such that 

x\o c u n s .. c x\Is<AJ. 
iSn jSn J..J 

Since Sis normal and binary, we have that the collection of S-closed 

also is normal (cf. 0.5). For each is n, we therefore can choose T. € S 
J.. 

such that 



Define Z := niSn Ti. Then z is S-closed and 

For each A'€ <Z> we have that IS(A') c z co, proving that <Z> is a 

neighborhood of A which is mapped by r into .<O>. 

Assume next that A€ r-1[<O,X>]. Choose p € IS(A) no. 

CLAIM 1. {p} = n IS(p,a). a€A 

Indeed, choose z € naEA Is(p,a) such that z ~ p. By the fact that 

Sis a normal T1-subbase (cf. 0.4), there are s0 ,s1 € S such that 

z € s0\s1, p € s1\s0 and s0 u s1 = x. Now if An s1 =~it would follow 

that 

which is a contradiction since p € IS(A). Therefore, there is an 

a 0 €An s1• But then 

which also is a contradiction since z t s1• 

By claim 1, and by the compactness of X there exist finitely many 

ai € A (is n, n € w) such that 

n Is(p,al..) Co. 
iSn 

Consequently, using the notation of lemma 2.10.4, 
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By the continuity off, cf. lemma 2.10.4, there exist open neighborhoods 

Vi of ai (i Sn) such that f(p,a0,ai,···•a~) € O for all n+l-tuples 

Ca0,ai,···•a~) € TTiSn vi. Hence, the set <V0 ,v1, ••• ,vn,X> is a neighbor

hood of A€ 2X, which is mapped by r into o. For take B € <v0 ,v1, ••. ,vn,X> 

and choose bi€ B n Vi (is n). Then 
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since {b0 ,b1 , ... ,bn} c B. In particular, on Is(B) f ¢, or, equivalently, 

r(B) E <O,X>. 

Finally, clearly r(C) 

is a retraction. 0 

C for each S-closed set C, proving that r 

2.10.6. CURTIS & SCHORI [36] have shown that C(X), the space of all sub

continua of x, is a Hilbert cube factor (that is, a space of which the 

product with the Hilbert cube is homeomorphic to the Hilbert cube) if 

and only if Xis a Peano continuum. In particular, this implies that C(X) 

is a retract of 2x. Theorem 2.10.5 implies that for the class of dendra, 

a subclass of the class of all Peano continua, such a retraction can be 

explicitly described. For, the collection of subcontinua of a dendron X 

is a binary normal closed subbase for X (in theorem 1.3.21 it was shown 

that the collection of complements of segments of a compact tree-like 

space is a binary normal subbase. As each connected closed subset A of 

a compact tree-like s~ace Xis the intersection of all complements of 

segments containing A, it follows that the collection of subcontinua of 

Xis also a binary normal subbase). 

We now can prove the following compactness theorem for normal sub

bases. 

2.10.7. THEOREM. Let X be a compact space and let S be a normal T1-subbase 

for X which is closed under arbitrary intersection. Then the following 

assertions are equivalent: 

(i) H(X,S) is compact; 

(ii) the map Is is a retraction of 2X onto H(X,S); 

(iii) H(X,S) is a retract of 2X; 

(iv) regarding X as a subspace of its superextension A(X,S), the opera

tion of intersection with X yields a continuous mapping 

(v) H(X,S) has a closed normal T1-subbase consisting of all sets of type 

<S> n H(X,S), or, <S,X> n H(X,S) (S € S); 

(vi) IS is continuous on the space of all finite subsets of x, and in 

addition a nonempty closed set Ac Xis S-closed iff for each 

finite F CA also Is(F) CA. 
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The implications (ii)=> (iii)=> (i) are obvious, using the fact that 2X is 

compact (cf. MICHAEL [75]). We shall prove the following statements: 

(i) => (ii) and (iv); (iv)=> (i) => (v) =>(iv); (i) - (vi). We assume 

throughout that¢ i S (and hence that¢ i S+), allowing us to identify S 

with H(X,S), since Sis closed under intersection. 

PROOF. (i) => (ii) and (iv). Let g denote the composed mapping 

2X __!___.. 2 >. (x,S) Is+ · + 
- H(A(X,S) ,s ) I 

where i sends Ac X onto Ac 1,.(X,S); let h be the restriction of g to 

S = H(X,S). It is easy to see that h[SJ cs+ and that h has a two-sided 

inverse, which is the mapping 

•nX: S+-+S 

which sends s+ Es+ onto s = s+ n XE S. By theorem 2.10.5, the map g 

(and hence h) is continuous. Since Sis compact and Hausdorff, his a 

homeomorphism of S onto s+, showing that •nx is continuous. 

For each A€ 2X we have that 

n{s+ I Ac s € S}, 

and therefore 

This shows that g[2X] = h[H(X,S)], and hence that 

-1 X h g: 2 -+ H(X,S) 

-1 
is a well-defined continuous map; clearly h g IS. 

(iv) => (i) . Assume that the map 

is continuous. We first prove thats+ is a closed (and hence compact) 

subspace of H(A(X,S),S+). Let C € H(A(X,S),S+)\S+. If C n X =¢,then 

<1,.(X,S)\X> is a neighborhood of C which misses s+ (since each S+ Es+ 

satisfies s+ n s sf¢). 

Assume next that c n x f ¢, and let Cc s+ be such that c nC. Then 
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c n x = n{s+ I s+ EC} n x = n{s 

Also, (CnX)+ cc. In fact, if ME (cnx)+\C, then c n XE Mand some ME M 

satisfies M+ n C =¢.Hence 

M+ n C n X Mn (CnX) = ¢, 

contradicting that Mis linked. Since Ci s+, we have that (CnX)+ # C, 

and using the above inclusion, there must be some maximal linked system 

NE A(X,S) such that NE C\(CnX)+. Let NE N be such that N n (CnX) = ¢. 

By the normality of S there exist s 0 ,s1 ES so that 

C n X n X\S1 and 

Observe that N+ n C #¢and that N+ c A(X,S)\s;. Then the collection 

is a neighborhood of C which misses s+. In fact, if DES is such that 

D+ is in the above neighborhood, then 

D D+ n x c ((A(X,S)\s;) u (A(X,S)\X)) n x = X\S; 

¢ # D+ n (A(X,S)\s;) 

and consequently 

which is a contradiction. 

(i) => (v). First, notice that for each SES, 

<X\S,X>; 

and hence that the sets of the form <S>, <S,X>, with SES, are closed. 

Assume that H(X,S) is compact, let 8 c H(X,S) be a closed subset, and 

let SE H(X,S)\8. Then for each BE 8 we have either B ¢Sor that S ¢ B. 

If B ¢ S, then choose x E B\S. By the normality of S there exist 

SB,SC ES such that 

and x. 



In particular, x € B n intx(SB), and hence it follows that <SB,X> is a 

neighborhood of B which does not contain S. 

135 

If S ¢ B, then choose y € S\B. Again; there exist SB,SC € S such that 

In particular, <SB> is a neighborhood of B that does not contain S. 

Since Bis compact, a finite number of the selected neighborhoods 

of type <SB> or <SB,X> suffices to cover B. Hence it follows that the sets 

of type <A> or <A,X>, A€ H(X,S), form a closed subbase for H(X,S). 

This subbase is T1 : assume that A,B € H(X,S) and that Ai <B>. Choose 

x € A\B. Since Sis a T1-subbase, there is an S € S such that x €Sand 

S n B 

An B 

¢. Hence, A€ <S,X> and <S,X> n <B> = ¢. If Ai <B,X>, then 

¢. It follows that A€ <A> and <A> n <B,X> = ¢. 

Finally we prove that this subbase is normal. Notice that for each 

pair of S-closed sets o1_ and o2, 

Hence we are only concerned with the following two cases cc1 ,c2 € H(X,S)). 

(a) <C1> n <C2> n H(X,S) =¢.Then c 1 n c 2 =¢.By the normality of S, 
there exist s1,s2 ES such that c 1 n s2 = ¢ = s1 n c 2 and s1 u s2 = x. 

It easily follows that 

<C1> c <S 1 ,X>\<S2,X>; 

<C2> c <S2 ,X>\<S1,X>; 

X <S 1,X> U <S2 ,X> = 2, 

yielding the desired result (after intersecting with H(X,S)). 

(b) <C1> n <C2,x> n H(X,S) =¢.Then c 1 n c 2 =¢.Choosing s1,s2 €Sas 

above, it can easily be seen that 

(v),. (iv). Let f 

see that 

c <S2,X>\<S2>; 

X <S2,X> = 2. 

•nx: s+ - S. For each S-closed set cit is easy to 
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f-l[<C>nSJ = <C+> n S+; 

f-l[<C,X>nSJ = <C+,A(X,S)> n S+. 

Using the fact that the sets of type <S> n H(X,S) or <S,X> n H(X,S), where 

SE H(X,S), form a closed subbase for H(X,S), it follows that f is contin

uous. 

(i) * (vi). The continuity of the map IS on finite subsets of X follows 

from (i) * (ii). Let A E 2x. If A is S-closed, then IS(F) c A for each 

finite F c A. If the latter is true, then A E H(X,S). In fact, let 

<01 , ••• ,0n> be a basic neighborhood of A, where 01 , ••. ,on c X are open. 

For each is n fix an ai EA n oi, and let F = {a1 , ••• ,an}. Then 

and hence <01 , .•• ,0n> meets H(X,S). It follows that A is in the closure 

of H(X,S), which equals H(X,S) by compactness. 

(vi)* (i). Let A E 2X\H(X,S). Then there is a finite F = {a1 , .•• ,an} c A 

such that Is(F) ¢A.Fix x E IS(F)\A. By the regularity of X there exist 

disjoint open sets O,P c X such that x E P and Ac o. Since Is is contin

uous on finite sets, there exist open sets oi co with ai E Oi (is n) 

and such that 

for all (ai•···•a~) E TTiSn Oi. 

Then <0,01 , ••• ,0n> is a neighborhood of A which does not meet H(X,S). 

In fact, if BE <0,01 , •.• ,0n>' then there exist b 1 , ••. ,bn EB such that 

bi EB n oi for each is n, and hence IS({b1, ... ,bn}) n PI¢. Also B co, 

and hence IS({b1, ••• ,bn}) ¢ B, proving that Bis not S-closed. 

This completes the proof of the theorem. D 

2.10.8. Theorem 2.10.7 shows that a closed subbase S which (a) is normal 

and T1 ; (b) is closed under arbitrary intersections; and (c) yields a 

compact hyperspace of S-closed sets, must have quite strong properties. 

The most interesting types of examples are the normal binary subbases, 

and the ones described below. It is possible, however, to find other non

trivial (i.e. different from H(X)) examples of such compact subbases. 
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2.10.9. EXAMPLE. Let X be a compact convex subspace of a locally convex 

vectorspace, and let S be the collection of all closed (linearly) convex 

subsets of x. 'l'hen Sis easily seen to be a T1-subbase for X, which is 

closed under arbitrary intersection. By the HAHN-BANACH theorem (cf. 

RUDIN[lOO]), Sis also normal. 'l'his subbase is compact, as can be derived 

from an obvious argument on line segments and continuity of the algebraic 

operations in the vectorspace. Hence theorem 2.10.7 implies that the 

hyperspace of all closed convex subsets of Xis a retract of 2x. 

our next examples illustrate the interference of the conditions (a), 

(b) and (c) listed in 2.10.8. 

2.10.10. EXAMPLE. Let X be a locally connected continuum. 'l'hen C(X) (cf. 

2.10.6) is a closed T1-subbase of X which is compact. C(X) is closed under 

arbitrary intersections iff Xis hereditarily unicoherent, in which case 

Xis a compact tree-like space and C(X) is a normal binary subbase (cf. 

2.10.6 and theorem 1.3.21). D 

2.10.11. EXAMPLE. Let s 1 denote the unit circle, metrized by arc distance. 

'l'he following sets are easily seen to be closed subbases for s 1 , for each 

real number r with O < r ~ 2n: 

s := {c e: C(S1) ·diameter of C ~ r}; 
r 

s• := {c e: 
r 

C(S1) diameter of C < r}. 

Let E2 denote the unit 2-cell. 'l'here is a wellknown homeomorphism (cf. 

CURTIS & SCHORI [37]) 

constructed as follows: h(s1) O, and force: C(s1), C # s 1 the image 

h(C) of C is the point of E2 on the line segment joining O with the middle 

point of the arc Con a distance 

1 
1 - 2n (diameter of C) 

to the origin. 

Applying this map to the 

that S is compact for each r 
r 

subspaces S ,S• of C(S1), it is easy to see 
r r 

and that S• is non-compact for each r. 'l'he 
r 

subbase S (resp. S 1 ) is closed under arbitrary intersections iff r < n 
r r 
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(resp. iff r ~TI). The subbase S is non-normal for each r < TI, and S• is 
r r 

normal iff r > TI. 

None of the above subbases therefore satisfies (a), (b) and (c) 

simultaneously. Notice that, if r < 2
3TI, then S and S• even are binary 

r r 
(but not normal). D 

We now present some corollaries of theorem 2.10.5 and of theorem 

2.10.7. 

2.10.12. COROLLARY. Let S be a binary normal subbase for X. Then H(X,S) 

has a binary normal subbase. 

PROOF. Applying theorem 2.10.5 and theorem 2.10.7, we conclude that 

H(X,S) admits a closed normal T1-subbase consisting of all sets of type 

<C> n H(X,S), or <C,X> n H(X,S), 

where CE H(X,S). We claim that this subbase is binary. 

Assume that the collection 

{<C.> n H(X,S) I i E I} u {<D.,X> n H(X,S) I j E J} 
J. J 

is linked, where c.,D. E H(X,S) for each i EI and j E J. Then there 
J. J 

exist S-closed sets 

i,i' E I; 

€ <C,> n <D,,X>nH(X,S), 
J. J 

iEI,jEJ. 

Hence, 

implying that for each j E J the collection 

is linked. Choose 

j E J, 



and let A:= IS({xj 

j E J, proving that 

j € J}).ThenA C iQI Ci and An Dj;, fll for all 

This completes the proof of the corollary. D 
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2.10.13. COROLLARY. Let X be a continuum with a binary normal subbase S. 

Then 

(i) H(X,S) is an acyclic Lefschetz space (cf. WILLARD [129]), and it 

consequently has the fixed point property for continuous mappings; 

(ii) if Xis metrizable moreover, then H(X,S) is a metric AR. 

X PROOF. The space 2 is connected (cf. MICHAEL [75]) and so is its retract 

H(X,S). A connected space carrying a normal binary subbase is an acyclic 

Lefschetz space (cf. VAN DEVEL [118]). 

If moreover Xis metrizable, then 2X is metrizable too, since Xis 

compact and metrizable. Hence H(X,S) is connected and metrizable, there

fore an AR by corollary 1.5.2. D 

2.10.14. By a result of WOJDYSLAWSKI [130], the hyperspace of a Peano 

continuum is an AR (the hyperspace of a nondegenerate Peano continuum 

is even homeomorphic to the Hilbert cube, cf. CURTIS & SCHORI [36]). In 

case a metric compactum is not locally connected, the techniques dis

cussed in the present section provide a way to construct hyperspaces 

which are AR's and which are rather close to the original space. Let S 

be a normal T1-subbase for the compact metric connected space X. Then 

A(X,S) is metrizable, since it is a quotient of the compact metric space 

AX (cf. theorem 2.3.4 and corollary 2.4.21). Moreover A(X,S) is connected, 

by theorem 2.5.1. Therefore A(X,S) is an AR and consequently H(A(X,S) ,S+) 

is an AR too, being a retract of an AR (theorem 2.10.5). 

By a recent result of EDWARDS [45], every (compact metric) AR is a 

Hilbert cube factor. Consequently all hyperspaces, constructed above, are 

Hilbert cube factors. It is desirable to find conditions on the subbase S 

such that H(A(X,S),S+) is not only a Hilbert cube factor but is homeo

morphic to the Hilbert cube itself. Also one could ask whether the spaces 

H(AX,(2X) +) are homeomorphic to the Hilbert cube in case X is a nondegenerate 

metrizable continuum. 
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2.11. Notes 

In the present chapter we have dealt with some topological properties 

of superextensions and of some of their subspaces. We expect that this 

treatment is only a first step. There remain many questions unsolved, for 

example the following ones: when is a superextension AX first countable?, 

or, when is a superextension AX hereditarily separable and hereditarily 

Lindelof?, or, when is a superextension AX perfectly normal?, or, when 

is a superextension AX hereditarily normal? At the moment we are not able 

to solve these questions; we can only point out the following information: 

(a) VERBEEK [119], p.135, has given an example of a first countable compact 

Hausdorff space X such that AX is not first countable; 

(b) AJN is not first countable, not hereditarily separable, not hereditarily 

Lindelof, not perfectly normal and not hereditarily normal. 

Superextensions behave surprisingly nice with respect to connected

ness, cf. 2.5; whenever a superextension is connected, it is not far from 

being locally connected. Our proof of the connectedness of certain super

extensions is elementary, but not trivial. It is desirable to find a 

simple proof of our connectedness results. 

The results in sections 2.7 and 2.10 are joint results of M.VANDEVEL 

and the author, cf. VAN MILL & VAN DEVEL [82], [83]. 

Added: some of the above questions are answered by VAN DOUWEN, see 

section 5.2. 
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CHAPTER III 

INFINITE DIMENSIONAL TOPOLOGY 

In this chapter we concentrate on metrizable superextensions. Our 

main interest lies in infinite dimensipnal problems such as: is the super

extension of the closed unit interval homeomorphic to the Hilbert cube? In 

section 3.4 we give an affirmative answer to this question, thus proving 

a conjecture of DE GROOT [59]. Recent developments in infinite dimensional 
X topology, such as 2 Fl:I Q iff Xis a nondegenera~ Peano continuum (cf. 

SCHORI & WEST [102],[103],[104] and CURTIS & SCHORI [36]) suggest that the 

above question should be attacked using methods from infinite dimensional 

topology. Indeed, such methods turn out to be ven useful in our situation. 

We use near-homeomorphism techniques (cf. BROWN [25], SCHORI & WEST [102], 

[103],[104], CURTIS & SCHORI [36]) and inverse limits of Hilbert cubes. 

The bonding maps in the inverse sequences turn out to be near-homeomorphisms 

by results of CHAPMAN [28],[29]. 

In section 3.1 we derive some preliminary ;esults concerning metriz

ability and superextensions. Among other things, we prove that each separ

able metric space which is not totally disconnected, admits a superexten

sion homeomorphic to the Hilbert cube Q. As a consequence, the closed 

unit interval I= [0,1] has a closed subbase S for which A(I,S) Fl:I Q, 

Unfortunately the subbase S obtained in this manner cannot be described 

well. Therefore, we describe in section 3.3 another subbase S for which 

A(I,S) Fl:I Q. This particular superextension is used in section 3.4 as the 

first step in an inverse limit representation of AI. There we show that 

AI can be approximated by superextensions A(I,Sn) Fl:I Q (n € lN) of I with 

cellular bonding maps. Combining several results in the literature it 

then follows that AI itself is homeomorphic to the Hilbert cube. The con

struction of the superextensions A(I,Sn) (n € lN) uses much geometry in 

the plane. 

The final sections in this chapter are devoted to the construction of 
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capsets in AI and to the study of some subspaces of superextensions. As 

a consequence of our results we show that the subspace A C:R) of AR is comp 
homeomorphic to B(Q) = {x E Q 3i E lN: lxil = 1}, thus disproving a 

conjecture of VERBEEK [119]. 

3.1. Metrizability and superextensions 

This section contains some preliminary results concerning metrizabil

ity of superextensions. Of great importance is VERBEEK's [119] metric for 

AX. This metric allows us to recognize Z-sets in AX, and it reflects the 

nice geometric structure of AX. 

3.1.1. One of the most important results in the theory of superextensions 

is VERBEEK's [119] theorem: AX is metrizable if and only if Xis compact 

and metrizable (cf. also corollary 2.4.21). If (X,d) is compact metric then 

there is a metric d for AX such that~: (X,d)"-+ (AX,d) is an isometry 

(VERBEEK [119]). We will study this metric in detail. Let us start with 

some definitions and some preliminary results. 

If (X,d) is a metric space then for all Ac X and E ~ 0 define 

B (A) := {x EX 
E 

d(x,A) $ e:} 

d(x,A) < e:}. 

For any A,B E 2X the Hausdorff distance dH(A,B) is defined by 

If Xis compact then dH is a metric for 2X (cf. ENGELKING [48]). 

One might wonder whether one has to use the axiom of choice to extend 

a linked system L c 2X to a maximal linked system L' c 2X in case Xis a 

compact metric space. The following lemma shows that this is possible 

using induction only. 

3.1.2. LEMMA. Let X be a compact metric space. Then each linked system 

L c 2X can be extended to at least one maximal linked system L• c 2x. 

PROOF. Let {U I n E lN} be a countable open basis for X. It is easy to 
n 

see that 



145 

is a countable closed basis for X which is closed under finite intersec

tions and finite unions. Suppose that L c 2X is a linked system. Define 

M :={TE T 3L E L: L c T}. 

Enumerate T as {T n E lN}. By induction, for each n E lN define a sub-
n 

collection Mn of Tin the following way: 

Ci) M1 := Mi 

(ii) M := 
n 

(iii) M := 
n 

Define S := 

M 
n-1 

M 
n-1 
ex, 

u n=l 

if M n-1 u {T} 
n 

u {T } if M 1 n n-

M . Then it is 
n 

is not linked; 

u {T} 
n 

is linked. 

easy to see that 

. X 
L' := {A E 2 I Vs ES: Ans f ¢} 

is a maximal linked system that contains L. 0 

3.1.3. In the proof of the above lemma we showed that each mls ME AX, for 

compact metric X, contains a countable pre-mls (recall that a pre-mls 

L c 2X is a linked system contained in at most one mls L' c 2x, cf. defini

tion 2.3.2). (In general, this is not the case, cf. section 2.8.) The fol

lowing lemma gives another proof of this fact. 

3.1.4. LEMMA. Let X be a topological space and let ME AX. Then each dense 

subset L c M (dense in UM as subspace of 2X) is a pre-mls for M. In par

ticular, if Xis compact metric, then any countable dense subset of Mis 

a pre-mls for M. 

PROOF. Suppose that L c ME AX is dense in M. Suppose that Lis also con

tained in an mls M0 E AX distinct from M. Choose ME M, MOE M0 such that 

111 n M0 ¢. Then <X\M0> is an open neighborhood of ME M; consequently 

there is an LE L such that LE <X\M0>. But then L n MO=¢, which is a 

contradiction. 0 

3.1.5. REMARK. The converse of lemma 3.1.4 in general is not true. For 

example, define an mls ME AI by 
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1 1 It is easily seen that Mis an mls and also that {{0, 2},{2,1},{0,1}} is a 

pre-mls for M. As M has continuously many points it cannot contain a dense 

subset consisting of three points. 

3.1.6. A metric d for a space Xis called convex provided that 

for any A E 2X and o0 ,o 1 ~ 0. It is well known that any Peano continuum 

admits a convex metric. The following lemma is also well knowni for com

pleteness sake we include it. The proof was suggested to me by M. VAN DEVEL. 

3 .1. 7. LEMMA. Let d: Xx X --+ [0, 00 ) be a convex metric for the compact 

space X. Then the mapping e: 2X x [0, 00 ) --+ 2X defined by e(A,t) := Bt(A) 

is continuous (e is sometimes called an expansion homotopy, cf. CURTIS & 

SCHOR! [37]). 

-1 -1 PROOF. Let O c X be open. We claim that e [<O>] and e [<O,X>] are open. 
-1 To prove this, first assume that (A,t) Ee [<O,X>]. Then choose 

x E Bt(A) no and choose E > 0 such that BE(x) co. Also choose a EA 

such that d(x,a) st. We claim that 

Indeed, choose (A',t') E <BE/2(a),X> x (t-~,t+ ;). Fix a'EBE/2(a)nA'. 

Then 

and 

E d(a',x) s d(a',a) + d(a,x) s d(a,x) + 2 

d(a,x) s d(a',a) + d(a',x) 

and therefore 

E d(a',x) ~ d(a,x) - d(a',a) ~ d(a,x) - 2. 

We conclude that 

E E d(a' ,x) E [d(a,x) - 2,d(a,x) + 2J. 

As dis a convex metric, there is an x' EX such that d(a',x') = 

max{d(a,x) -;,o}. Then d(x' ,x) s E and consequently x' E Bd(a' ,x') (A') n 

no c Bt 1 (A') no. 
-1 -1 . 

To prove that e [<O>] is open, assume that (A,t) Ee [<O>]. Then 



Bt(A) co. As Xis compact there is an£> 0 such that B£(Bt(A)) c 0. 

Hence B£+t(A) co. Therefore 

£ e[<B £(A)> x [0, 2]] c <O>. 
t+2 

This completes the proof of the lemma. D 

3.1.8. THEOREM. Let X be a topological space. and let M £ AX. Then Mis 

closed as subspace of 2x. If in addition Xis a Peano continuum then 

there is a retraction r: 2X - M. 
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PROOF. Choose A£ 2X such that Ai M. Then there is an M £ M such that 

An M =¢.Then <X\M> is an open neighborhood of A which misses M. For 

take BE <X\M>. Then B n M =¢and consequently Bi M since Mis a linked 

system. 

Assume that X is a Peano continuum. Let d: Xx X - [0, 00 ) be a convex 

metric for X. Choose A E 2x. 

CLAIM 1. The set{£ <:: 0 I B (A) E 
£ 

Indeed, let o :=inf{£<:: 0 

M} has a minimum, denoted by t(A). 

Take ME M such that B0 (A) n M =¢.Choose£> 0 such that 

Then B£+o(A) n M =¢and as o inf{£<:: 0 I B£(A) EM} it follows that 

there is a p £ { £ <:: 0 I B (A) E M} such that o < p < £ + o. Then 
£ 

implies that B (A) n M =¢and consequently B (A) i M. Contradiction. 
p p 

CLAIM 2. If 5-¼m An= A (in 2x !) then 5-¼m t(An) = t(A). 

Choose£> 0. Then there is an n0 E :N such that dH(An,A) <£for 

all n <:: n0 • Fix arbitrary m <:: n. Now B£(A) ~ Am implies that 

consequently t(A) ~ t(Am) +£,since Bt(~) (~) £ M. 
On the other hand, A c B£ (Am) and there.fore 
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which shows that t(Am) :s; t(A) + E, since Bt(A) (A) € M. 

we conclude that !!m t(Am) = t(A). 

CLAIM 3. The mapping r: 2X-+ M defined by r(A) := Bt(A) (A) is a retrac

tion. 

The continuity follows from claim 2 and lemma 3.1.7. The fact that 

r is a retraction is trivial. D 

3 .1. 9. COROLLARY. Let X be a Peano continuum. Then each mls M € AX is an 

AR, and consequently is a Q-factor. 

X PROOF. Since 2 is an AR (cf. WOJDYSLAWSKI [130]) the result follows from 

theorem 3.1.8 and the observation that each AR is a Q-factor (cf. EDWARDS 

[45]). D 

3.1.10. If (X,d) is a compact metric space then there is a natural metric 

d for AX such that i: (X,d) <---+ (AX,d) is an isometry. VERBEEK [119] has 

given the following expressions ford; 

(1) d(M,N) = sup min dH(S,T) 
S€M T€N 

(2) = min{E ~ 0 

(3) = min{E ~ 0 

(4) 

VM € M: B (M) € NandVN€ N: B (N) € M} 
E E 

VM € M: B (M) € N} 
E 

We need a simple generalization of this result. 

3.1.11. LEMMA. Let (X,d) be a compact metric space and let M be a pre-mls 

for M €AX.Then for each N € AX we have that d(~,N) = min{E ~ 0 I 
VM € M: B (M) € N}. 

E 

PROOF. Let 6 := inf{E ~ 0 I VM € M: BE(M) € N}. Assume that B6 (M) t N for 

some M € M. Take E > 0 and N € N such that 
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This is a contradiction, since o+£ E {£ ~ 0 I VM EM: B (M) EN}. We con
£ 

elude that the set{£~ 0 I VM EM: B (M) EN} has a minimum, denoted by o. 
£ 

Obviously o s d(M,N> (cf. 3.1.10 expression 3). Let us assume that 

o < a<M,N>. we will derive a contradiction. It follows that B5 (M) EN for all 

ME Mand that B0 (N) i M for some NE N. As Mis a pre-mls for M there is 

an ME M such that 

Since B0 (M) EN there is a point x EN n B0 (M). Choose y EM such that 

d(x,y) so. Then y E B0 (N) n M, which is a contradiction. D 

3.1.12. The distance between two maps f and g: X + Y, where (Y ,d) is 

compact metric is defined by d(f,g) = SU~ d(f(x),g(x)). The identity map-
XE 

ping on Xis denoted by idX. A mapping f: (X,d) -+ (Y ,P) is called a 

contraction provided that p(f(x),f(y)) S d(x,y) for all x,y EX. 

3.1.13. THEOREM. Let (X,d) be a compact metric space and let Mc 2X be a 

linked system. Then there is a retraction r: AX-+ n{M+ IM EM} satis

fying: 

(i) r is a contraction; 

(ii) d(N,r(N)) a(N,n{M+ IM EM}) for all NE AX; 

(iii) d(r,idAX) s ~~M dH(X,M). 

PROOF. Definer as in theorem 1.5.2. It follows from the definition of r 

that for all NE AX the collection 

P (N) = {N E N I N n M f, ¢ (VM E M)} u M 

is a pre-mls for r(N). 

CLAIM 1. r is a contraction. 

Indeed, choose L,P E AX and let£ := d(L,P). Choose A E P(l). If 

A EM then clearly B (A) E r(P). On the other hand if A EL then B (A) E P 
£ £ 

(cf. 3.1.10 expression 3) and consequently B£(A) E P(P) c r(P) since 

B£(A) intersects all members from M. From lemma 3.1.11 it now follows that 

d(rCLJ,r(P)) s £ a(L,PJ. 

CLAIM 2. a(N,r(N)) = d(N,n{M+ I ME M}) for all NE AX. 
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Choose N € AX and take LE O{M+ IM€ M} such that 

a.(N,L> < a.cN,r(NJ >. 

Let£ := d.(N,L). It then follows that B (N) € L for all N € N. But 
£ 

L € O{M+ IM EM} implies that each element L € L intersects all members 

from M. Consequently B (N) E P(N) c r(N) for all NE N. From lemma 3.1.11 
£ 

it now follows that 

d(N,r(N)) s £ 

which is a contradiction. 

Choose N € AX and consider P(N). By lemma 3.1.11 we have 

d(N,r(N)) = min{£ :2c O I VA E P(N): B (A) EN}. 
£ 

Leto := ~~ij dH(X,M). Notice that o < +00 • Choose A€ P(N). If A EM then 

B0 (A) = X € N, since N is a maximal linked system. On the other hand if 

Ai M then A€ N and then also B0 (A) EN. It now follows that 

d(N,r(N)) so= SUP. d (X,M). 
MEM H 

D 

3.1.14. If Y is a closed subset of the normal space X then there is a 

natural embedding jYX of AY in AX (cf. VERBEEK [119]) defined by 

j (M) := M(= {G c x I G € 2x and G n Y € M}) 
YX -

(that jYX is an embedding also follows from theorem 2.3.4). We will always 

identify AY and jYX[AY]. 

3.1.15. LEMMA. Let Y be a closed subset of the normal space X. Then M € AX 

is an element of AY if and only if {Mn Y I M € M} is linked. 

PROOF. Choose ME AX. If ME AY then {Mn Y ME M} is a maximal linked 

system in Y and if {Mn YI M € M} is linked, then it is easy to see that 

it is also maximal linked (in Y) and that jYX({M n YIM EM}) = M. D 

3.1.16. A closed subset B of a metric space (X,d) is called a Z-set (cf. 

ANDERSON [4]) provided that for each £ > 0 there is a continuous f£: X+X\B 

such that d(f£ 1 idX) < £. Z-sets are very important in infinite dimensional 
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topology and for later use we will give some classes of Z-sets in AX. The 

following result is an application of theorem 3.1.13. 

3.1.17. THEOREM. Let (X,d) be a metric continuum and let A€ 2x. Then 

(i) A+ is a z-set in AX iff A has a void interior in X; 

(ii) if A# X then AA is a Z-set in AX. 

PROOF. (i) If A has not a void interior in X then A+ also has a nonvoid 

interior in AX. Consequently A+ is not a z-set. 

Assume that A has a void interior in X. Choose E > 0 and choose a 

finite subset F c X, disjoint from A, such that dH(F,X) < E. Let 

f: AX--+ F+ be the retraction of theorem 3.1.13. Then d(fE,idAX) < E and 
E + + + 

as F n A ¢, we have that fE[AX] C AX\A. 

(ii) Choose E > 0 and choose two disjoint finite sets G0 and G1 in X such 

that dH(Gi,X) < E (i € {0,1}). Let p € X\A and define 

(i € {0,1}). 

Let fE: AX--+ F;nF; be the retraction of theorem 3.1.13. Then 

and moreover 

(i € {0,1}) 

N i AY. 0 

+ + 
fE[AX] n AA=¢. For take N € fE[AX] = F0 nF1 • Then Fi€ N 

and (F0nY) n (F 1nY) =¢.Consequently, by lemma 3.1.5, 

3.1.18. Examples of z-sets in the Hilbert cube Qare compact subsets of 

(-1,1) 00 and also closed subsets of Q which project onto a point in infinit

ely many coordinates (cf. ANDERSON [4]). In fact we have the following 

characterization: a closed subset B of Q is a Z-set iff there is an auto

homeomorphism of Q which maps B onto a set which projects onto a point in 

infinitely many coordinates (cf. ANDERSON [4]). Also, a closed countable 

union of Z-sets is again a Z-set. Combining these two results it follows 

that in any case each convergent sequence in Q is a Z-set. This observa

tion will be used in the proof of the following theorem. 

We will also use ANDERSON's [4] homeomorphism extension theorem: any 

homeomorphism between two Z-sets in Q can be extended to an autohomeo

morphism of Q. In particular, the Hilbert cube Q is homogeneous. 
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3.1.19. THEOREM. For every separable metric not totally disconnected 

topological space X, there exists a normal closed T 1-subbase S such that 

A(X,S) is homeomorphic to the Hilbert cube Q. 

PROOF. Assume that Xis embedded in Q and let C be a nontrivial component 

of X. Choose a convergent sequence Bin C. Furthermore, define a sequence 

{yn}:=O in Q by 

I 1 if i t- n 
(yn). l -1 ]. if i n, 

for i 1, 2, ••. ,. 

It is clear that 

Moreover define z € Q by zi = 0 (i = 1,2, ••• ). Then 

E = {y I n € JN} u {z} 
n 

is a convergent sequence and therefore is homeomorphic to B. Since Band 
I 

E are both z-sets in Q (cf. remark 3.1.18) there is an autohomeomorphism 

of Q which maps B onto E (cf. remark 3.1.18). This procedure shows that we 

may assume that Xis embedded in Qin such a way that E cc. 

Let T= {Ac QI 3x € [-1,1]: A=TT- 1[-1,x] v A=TT-1[x,1] (nElN)} be n n , 
the canonical binary normal subbase for Q. We claim that for all T0 ,T1 € T 

with T0 n T1 I-¢ also T0 n T1 n X t- ¢. To show this, choose T0 ,T1 ET with 

T0 n T1 I-¢. We need only consider the following 4 cases: 

-1 
n [y ,1J 

no 

Since z E T0 and y0 E T1 and c is connected, it follows that 

¢ t- Ton Tl n CC Ton Tl n x. 

-1 -1 
CASE 2. TO= TTn [-1,x]; T1 = TT [y,1] 

0 nl 

-1 
TT [-1,y]. 
nl 

Then z E T0 n T1 n x. 
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-1 -1 
CASE 4. TO= TT [x,1]; Tl= TT [y,1]. 
-- no nl 

Then Yo E Ton Tl n x. 

Theorem 2.2.5 now implies that \(X,Tnx) is homeomorphic to Q. That 

T n Xis a normal T1-subbase is straightforward and is left to the reader. D 

3.1.20. Since the proof of theorem 3.1.19 uses the homeomorphism extension 

theorem the subbases derived from.it are difficult to describe. For simple 

spaces however, such as the closed unit interval I or then-spheres Sn 

there are subbases of easy description for which the corresponding super

extensions are homeomorphic to the Hilbert cube; cf. VAN MILL & SCHRIJVER 

[80]. 

3.1.21. The final results in this section are devoted to mapping theorems. 

First let us give some definitions. A continuous surjection f: (X,d)-+ (X,d) 

is called a near-homeomorphism (cf. BROWN [25]) if for each£> 0 there is 

an autohomeomorphism ¢: X ➔ X such that d(¢,f) <£.Near-homeomorphisms 

are very useful in infinite dimensional topology. Let (X,d) and (Y,p) be 

metric spaces. A collection of functions F c C(X,Y) is called equi-uniform

ly continuous provided that for each£> 0 there is a o > 0 such that for 

all x,y € X with d(x,y) <owe have that p(f(x),f(y)) <£for all f € F. 
we need a simple lemma. 

3.1.22. LEMMA. Let Y be a normal space and let f: X ➔ Y be a continuous 

closed surjection. Then there is a continuous surjection \(f): \X-+ \Y, 

defined by \(f) (M) := {f[M] / ME M}, which is an extension off. 

PROOF. \(fl is just the mapping described in theorem 2.3.4. It is clear 

that, by the fact that f is closed, {f[M] / ME M} is a pre-mls for f(M) 
(f defined as in the proof of theorem 2.3.4) for all M € \X. Hence we need 

only show that \(f) (M) is an mls. Indeed, assume that for some M € \X we 

have that \(f) (M) were not an mls. Choose A€ 2Y such that \(fl (M) u {A} 

is linked but Ai \(f) (M). Then f- 1[A] i M, since f[f-l[A]] = A, and 

consequently there is an M € M such that f- 1[A] n M =¢.But this is a 

contradiction since f[M] E \(f) (M) and An f[M] □ 

We now have the following theorem. 

3.1.23. THEOREM. Let X and Y be compact metric spaces and let F c C(X,Y) be 



154 

a collection of surjections of X onto Y. Then 

(i) if f E Fis a near-homeorrorphism, then so is A(f); 

(ii) if Fis equi-uniformly continuous, then so is {A(f) I f E F}. 

PROOF. (i) Identify X and Y and let d be a metric for X. Choose£> 0 and 

choose a homeomorphism¢: X + X such that d(¢,f) .::_£.From lemma 3.1.22 

and theorem 2.3.4 it follows that A(¢): AX-+ AX is a homeomorphism too. 

we will show that d(A(¢),A(f)) ~£. 

For this, take ME AX and let 

o := d(A (¢l (Ml ,A (fl (Ml) 

min{£ 2: 0 I VM E A(¢) (Ml: B (Ml E A (fl (Ml}. 
£ 

Assume that there is an M E A(¢) (Ml .such that B (Ml i. A (fl (Ml. Let 
£ 

M = ¢[A], with A E M (lemma 3 .1.22) • Choose N E A (fl (Ml such that N n B (M) 
£ 

=~-Assume that N = f[B], with BE M (lemma 3.1.22). As Mis a linked 

system, there is an x €An B. It now follows that 

and 

f(x) € N 

¢(x) EM c B (M) 
£ 

and BE(M) n N =~-But then d(¢(x),f(x)) >£,which is a contradiction. 

(ii) This can be proved in the same way. D 

3.1.24. REMARK. In theorem 3.1.23 (i) we showed that each near-homeo

morphism f: X + X extends to a near-homeomorphism A(f): AX-+ AX. The 

fact that f is a near-homeomorphism is not a necessary condition for A(f) 

to be a near-homeomorphism. From results derived in 3.2 and 3.4 it follows 

that each continuous surjection f: I+ I extends to a near-homeomorphism 

A(f): AI-+ AI. 

3.2. Cell-like mappings and inverse limits 

This section contains an approximation theorem for inverse limits 

of superextensions. We use corollary 1.5.20 to show that each continuous 

surjection f from a metrizable continuum X onto a metrizable continuum Y 

extends to a cell-like mapping A(f): AX-+ AY. Then, applying results of 
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CHAPMAN [28],[29] and BROWN [25] we get an approximation theorem for in

verse limits of superextensions. 

We first give an important consequence of corollary 1.5.21. 

3. 2 .1. THEOREM. Let X be a metrizable continuum and let S be a normal T 1-

subbase for X. Then A(X,S) is an AR. In particular, AX is an AR if and 

only iff Xis a metrizable continuum. 

PROOF. As AX is metrizable, so is· A(X,S), being a Hausdorff quotient of a 

compact metric space (cf. VERBEEK [119]; also theorem 2.3.4). Moreover 

A(X,S) is connected (cf. VERBEEK [119]; also theorem 2.5.1). The result 

now follows from corollary 1.5.21 since the subbase {s+ I s ES} for A(X,S) 

is both binary and.normal. 

The second part of the present theorem follows from theorem 2.5.1. D 

3.2.2. The above theorem answers a question of VERBEEK [119] affirmatively. 

The second part of the above theorem was proved in [79]. There we asked 

whether every AR admits a binary normal subbase. This question was answer

ed negatively by SZYMANSKI [117] who showed that BORSUK's two dimensional 

AR having the singularity of MAZURKIEWICZ (cf. BORSUK [20]) is a counter

example. 

If X and Y are locally compact, then a map f: X ➔ Y is called proper 

if the inverses of compact subsets of Y are compact in X. A proper map f 

is called cell-like or cellular (CE), if f is onto and point inverses have 

trivial shape (for the notion "shape of a compactum" see BORSUK [21],[22]). 

We now can prove the following result, which is fundamental and im

portant in the theory of superextensions. 

3.2.3. THEOREM. Let S be a normal T1-subbase for the metrizable continuum 

X, let T be a normal T1-subbase for Y and let f: X ➔ Y be a continuous sur

jection. If {f-1[T] I T E T} c S then the extension f: A(X,S)-+- A(Y,T) of 

f described in theorem 2.3.4 has the property that each point inverse is 

an AR. In particular, f is cellular. 

PROOF. Let us use the notation of the proof of theorem 2.3.4. Take 

MEA(Y,T). 
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By theorem 1.5.3 we only need to show that f- 1[{M}J is S+-convex. To 

show this, take L0,L1 E f-1[{M}J and choose 

PE Is+<L0,L1>. 

Assume that Pi f-1[{M}J. We will derive a contradiction. As f(P) i f(L 0) 

there are T0 ,T1 ET such that 

and 

and 

-1 -1 -1 -1 Take v0 ,v1 ET such that f [T0] n f [v1J = ¢ = f [v0J n f [T1] and 
-1 -1 

f [v0J u f [v1J X. This is possible since Tis normal and f is sur-

jective. Since L1 is a maximal linked system, either f- 1[v0 J E L1 or 
-1 -1 

f [v1J E L1• If f [v0 J E L1 then 

v0 E P~1 c t<L 1> = M, 

and since v0 n T1 ¢ this is a contradiction. On the other hand, if 
-1 -1 

f [v1J E L1 then f [v1J is an element both of L0 and L1• Consequently 

-1 + Is+<L0,L1> cf cv1J , 

-1 and since PE Is+<L0 ,L1) it follows that f [v1J E P. However, this is 
-1 -1 

also a contradiction since f [T0] n f [v1J = ¢. 
By corollary 1.5.12 (a) it now follows that f- 1[{M}J is a retract 

of A(X,S) and as A(X,S) is an AR (theorem 3.2.1) the fiber f- 1[{M}J is 

an AR too. 

This completes the proof of the theorem. D 

3.2.4. COROLLARY. Let X and Y be metrizable continua and let f: X + Y be 

a continuous surjection. Then A(f): AX--+- AY (cf. lemma 3.1.22) is cellular. 

3.2.5. This corollary explicates a fundamental difference between 2X and 

AX. For all compact metric spaces X and Y and for each continuous function 

f: X + Y there is natural extension 2f: 2X--+- 2Y off defined by 

The mappings 2f are not cellular in general. For example, let X [0,1] 



and let Y be the space obtained from X by identifying O and 1. Let 

f: X + Y be the quotient mapping. Then 

which is not connected. 

3.2.6. A Q-manifold is a separable metric space modelled on Q, i.e. 
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a space which admits an open covering by sets homeomorphic to open subsets 

of the Hilbert cube Q. CHAPMAN [30] has shown that the class of Q-manifolds 

coincides with the class of spaces of the form KX Q, where K is a locally 

finite polyhedron. Moreover CHAPMAN showed that each cell-like mapping 

between Q-manifolds is a near-homeomorphism. This is a consequence of his 

papers [28] and [29]. This powerful result will be very important for us. 

If (Xi,fi) is an inverse sequence, then the inverse limit ~(Xi,fi) 

is the subspace {x e: TT.x. I f. (x. 1) = x. (i e: N)} of n.x .• BROWN [25] 
J. J. J. J.+ J. J. J. 

has shown that the inverse limit lim(X.,f.) of compact metric spaces X1., +--- J. J. 

all homeomorphic to a given space X, such that each bonding map fi is a 

near-homeomorphism is homeomorphic to X. 

Combining the results of CHAPMAN and BROWN it follows that the inverse 

limit of a sequence of Hilbert cubes with cellular bonding maps is again a 

Hilbert cube. 

This observation yields the following: 

3.2.7. THEOREM. Let X be homeomorphic to ll!!!,(Xi,fi) where the bonding maps 

fi are surjective. If AXi F:::I Q (i e: lN) then AX F:::I Q. 

PROOF. Identify X and Fm(Xi,fi) and let 11i: X + Xi (i e: lN) be the pro

jections. Since 11i is a continuous surjection, for each i e: lN, there is 

an extension 

A ( 11. ) : AX --.. AX .. 
J. J. 

It is easily seen that A(fi) 0 A(1Ti+l) 

and consequently the mapping 

e: AX--.. lim(AX.,A(f.)) 
+--- J. J. 

11i (i e: lN) 

defined by e(M). = A(11.) (M) is a continuous surjection. We claim that e 
J. J. 

is one to one. For this, choose M,N e: AX such that M f N. Also, choose 
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disjoint ME Mand NE N. By the compactness of the spaces 

(cf. corollary 2.5.4) there is an i 0 E N such that 1r, [M] 
1.0 

Then, clearly 

A (1f. ) (M) t- A (1f. ) (N) I 

1.0 1.0 

Xi (i E lN) 

n 1f. [NJ = ¢. 
1.0 

since 1fio[M] E A(1fiol (M) and 1fio[N] E A(1fio> (N). It follows that e(M>io t

e(N)io and consequently e is one to one. 

We conclude that AX is homeomorphic to ll!!!.(AXi,;>..(fi)). Since :>..xi RS Q 

(i E :N) the spaces Xi are metrizable continua (cf. corollary 2.5.4); 

corollary 3.2.4 implies that the mappings ;>..(fi) are cellular. It now fol

lows that ll!!!.(AXi,;>..(fi)) RS Q (cf. 3.2.6). Therefore :>..x RS Q. 0 

3.2.8. In section 3.4 we will show that AI is homeomorphic to the Hilbert 

cube Q. Therefore, theorem 3.2.7 implies that a space such as 

Y= {(0,Yl.l -l~y~l} u {(x,sin!) 
X 

has the property that its superextension is homeomorphic to the Hilbert 

cube. This is of interest since 2Y is not homeomorphic to the Hilbert cube, 

not being locally connected. 

3.3. some :>..(I,S) is a Hilbert cube 

In this section we construct an easy to describe subbase S for 

I= [0,1] with the property that A(I,S) is homeomorphic to the Hilbert 

cube Q. The space :>..(I,S) will be the first step in an inverse limit repres

entation of :>..I, the superextension of the closed unit interval. 

3.3.1. We start with a general method in order to construct superextensions 

of I as subspaces of I 2 . For this, let T denote the canonical binary subbase 

for I 2 , i.e. 

T ={Ac I 2 I A= 1r~1[0,x] VA= 1r~1[x,1] (iE {0,1}); XE I}. 
1. 1. 

Assume that I is imbedded in I 2 , preserving arc-length, as indicated in 

the following figure: 



159 

0 
0 '--------""-------' 1 

Figure 9. 

We are interested in A(I,T0 ), where T0 is the restriction of T to I, i.e. 

TO = {T n I I T € T}. 

(Here I denotes the embedded copy of I in I 2 .) 

It is easy to se8 that T0 is a supernormal T1-subbase (cf. 2.2.1). We 

assert that A(I,T0) is homeomorphic to the space X indicated in figure 10 

X 

0 

Figure 10. 

To prove this, define an interval structure (cf. definition 1.3.2) IX on 

X by 

Ix(x,y) := n{T ET I x,y ET} n x. 

The verification that IX indeed is an interval structure is routine and 

follows immediately from figure 10, since for all x,y,z € X we have 
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Consequently, each element of T n x = {T n X I T € T} is Ix-convex. We 

conclude that T n Xis a binary subbase for X (cf. theorem 1.3.3). It is 

easily seen that for all A0 ,A1 € T n X with A0 n A1 #~also A0 n A1 n I 

#~.due to the special choice of X. Theorem 2.2.5 now implies that 

>..(I,Tn;r) RIX. 

If we consider the proof of theorem 2.2.5 we see that the homeo

morphism between >..(I,TnI) and Xis very "direct". For instance the point p 

in figure 11 represents the T n I mls M for which 

{[O,e],[e,1],[a,b] u [c,d],[0,a] u [b,c] u [d,1]} 

is a pre-mls. 

! 

Figure 11. 

3.3.2. We will now construct the announced subbase S for I. Define 

E := {-2.3k I k € {0,1,2, ... }}. 

For each n € E let I be embedded in 12 , preserving arc-length, as indicated 

in the following figure. 

0 

-
4 
-n 

2 
-n 

1 

0 

1T 1 

~ -n-1 
-n 

3 
-n 

-n 

Figure 12. 



All angles are ½TI except the one at <!,O) which is ¾TI. Define A by n 

A := {T n I I T E T}. 
n 

161 

Then, using the same technique as in 3.3.1, it follows that A(I,An) is the 

convex-hull of the embedded copy of I in I 2 • 

Notice that A (n EE) is a supernormal subbase for I and hence that 
n 

A(I,U EA) can be embedded in TT E A(I,A) in a very canonical way; cf. nE n nE n 
theorem 2.3.13 and lemma 2.3.14. We will make two identifications. First 

we consider A(I,UnEE A) to be a subspace of TT E A(I,A). Second, we n 2 nE n 
identify A(I,A) and the subspace of I indicated in figure 12 (n EE). 

n 

3.3.3. PROPOSITION. A(I,UiEE Ai) is a (linearly) convex subspace of 

TTiEE A(I,Ai>. 

PROOF. Suppose that A(I,UiEE Ai) is not a convex subspace of TTiEE A(I,Ai). 

Then there exist x,y E A(I,U. EA.) and a.,13 E lR with a.+ 13 = 1, a.;,, 0, 
. l.E l. 

13;,, 0 such that 

a.x + 13y i A(I,U. EA.). 
l.E l. 

Since for all i E E the point a.xi+ 13yi belongs to A(I,Ai) it follows that 

the system UiEE(a.xi+13yi) is not linked (cf. lemma 2.3.14). Notice that we 

identify axi+l3yi and the mls which is represented by a.xi+13yi (i EE). 

Choose two indices i 0 and i 1 such that 

is not linked. Hence there exists an ME (axi +13yi) and an NE (ax1. +i3yi) 
0 0 1 1 

such that Mn N = ¢. 
If in the copy of I 2 corresponding to i 0 we draw a horizontal line 

through xi and determine its intersection p0 with the embedded copy of I, 

and we do ~e same in the copy of I 2 corresponding to 1 1, thus obtaining 

p 1, then Po and p 1 are derived from the same point of I; for if not, then 

it is easy to see that x• u io 
horizontal lines through Yi 

0 
the embedded copies of I and 

X• is not linked. In the same way, straight 
J.1 

and yi 1 also must determine the same point on 

consequently the same is true for horizontal 

lines through a.xi + 13Yi and ax1, + 13y1, because of the specially chosen 
0 0 1 1 

embeddings of I. Hence it follows that the situation drawn in the following 

figure is the only possibility (except for interchanging 10 and i 1). 
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1..-----------------, 

ax. +Sy. 
1 0 o 

N 

0 0 

Figure 13. 

REMARKS. 

(i) M meets any set of the form 
-1 1 

110 [2,x] n I with X ,': 11o(axi1+/3yi1) in 

the point 0 of the embedcl~d copy of I. 
-1 

X $ 110(axi0+/3yi0) in (ii) N meets any set of the form 110 [x,1] n I with 

the point 1 of the embedded copy of I. 

(iii) It is possible that an element of axi0 + l3Yio containing M, and an 

element of axi + 13Yi , containing N, have a void intersection. 
1 1 

In that case of course the sets Mand N also have a void intersection. 

(iv) In figure 13 we have drawn the points xi0 , Yio• xi 1 and Yil in such 

a way that 11 0 xi0 < 110 yio and 110 xi 1 < 110 Yil• This is done because 

in the cases 11 0 xi0 = 11 0 Yio or 110 xi 1 = 110 yi 1 or (110 xi0 < 110 Yio 

and 11 0 xi 1 > 11 0 yi 1) or (11 0 xi0 > 110 Yio and 110 xi 1 < 110 yi 1) it is 

easy to see that Mand N intersect, as the reader can easily verify. 

Without loss of generality we may assume that 110 Yi 
-1 -1 1 

- 110 xio· It then follows that 11 0 [110 xi 1,1] n I c 110 (110 

N c I\M and since 110 (axi 1+13yi 1> - 110 xi 1 $ 11 0 (axi0+13Yio> 

this is a contradiction since xi0 u xi 1 is linked. 0 

3.3.4. PROPOSITION. A(I,Ui€E Ai) is infinite dimensional. 

- 110 xil $ 110 Yio 

xi0 ,1J n I since 

- 110 Xio· However, 

PROOF. We will show that l{I.U, EA.~ contains a copy of the Hilbert cube . 
.Ii€ .. 

For each n € E let I be defined by 
n 
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I := [½ + 1 , ½ + 2 
n 312° • -n 312° • _J· 

Notice that for each i €Ethe point (~(x))i is an element of A(I,Ai) for 

all x € nieE Ii. Furthermore it is obvious that~ is an embedding. 

It suffices to show that the image of nieE Ii is contained in 

A(I,UieE Ai) and for this it suffices to show that 

u O<x>). 
ieE 1 

is linked for all x € nieE Ii (cf. lemma 2.3.14). Assume to the contrary 

that for some x € nieE Ii the system UieE (~(x))i were not linked. Then 

there exist indices n0 and n1 such that 

is not linked. Choose M € (~(x)>no and N € (~(xlln1 with a void inter

section. Then there are two possibilities drawn in figure 14 and figure 15. 

Without loss of generality we may assume that n1 < n0 • 

1--------------, 

0 1 0 

Figure 14. 

-1 1 -1 1 This shows that n0 [ 2,n0 (~(x)>n0J n I c n0 [ 2,n0 (~(x)>n1> n I. Since 
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n 1 < n0 it follows that 

and therefore 

= 1 = 1) v2(no(¢(x))n1 - 2) < v2(no(¢(x))no - 2 

which shows that the component containing O of n01[½,n0 (¢(xlln0 J n I 
-1[1 J be contained in the component containing O of n0 2,n0 (¢(xlln1 n I. 

is a contradiction. 

cannot 

This 

1----------------, 1-----------------, 
[BJ 

0 0 

Figure 15. 

Now, TI~1[no(¢(x))no'1] n I c TI~ 1 <no(¢(xl)no'1] n I. Since -no< -nl it 

follows that the component containing½ of n01[n0 (¢(xl)n0 ,1J n I cannot 

be contained in the component containing½ of n01 cn0 (¢(xl)n1,1] n I. This 

is a contradiction. D 

Proposition 3.3.3 and proposition 3.3.4 now give the desired result. 

3.3.5. THEOREM. A(I,U. A.) is homeomorphic to the Hilbert cube. 
J.E E J. 

PROOF. According to a theorem of KELLER [68] each infinite dimensional 

(linearly) convex compact subspace of the separable Hilbert space is 

homeomorphic to the Hilbert cube. D 



3.4. The superextension of the closed unit interval is 

homeomorphic to the Hilbert cube 
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In this section we show that the superextension of the closed unit 

interval AI is homeomorphic to the Hilbert cube. We represent AI as the 

inverse limit of a sequence of Hilbert cubes with cellular bonding maps. 

It then follows that AI itself is a Hilbert cube. 

3.4.1. For the closed unit interval I, define 

S := {G c I J G is the union of finitely many closed 

intervals with rational endpoints}. 

It is clear that S separates the closed subsets of I and hence it follows 

that AI and A(I,S) are homeomorphic (cf. theorem 2.4.2). Define 

Clearly Fis countable; we enumerate Fusing a bijection of F onto ]N\{1}. 

If (S0 ,s1) E F, then£= d(s0 ,s1) > 0 and also o = !£fi > 0. Consider the 

following embedding, depending on (s0 ,s1), of I preserving arc-length in r 2 . 

0 ab 

Figure 16. 

All angles are !11 except the one at ( ½,O) which is ¾11. Also b - a = o and 
-1 -1 

s 0 c 110 [O,a] n I and s 1 c 110 [b,1] n I. Since s 0 and s 1 are finite unions 
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of closed intervals, such an embedding is always possible. 

As in section 3.3 define 

T :={Ac 12 J A= 11"~ 1[0,x] VA= 11"~ 1[x,1] (i E {0,1}), x E I}. 
l. l. 

Then A(I,TnI) is the space designed in figure 17 (cf. 3.3.1). 

A(I,S) 
n 

0 

. 11" 

- 1 

A(I,TnI) 

Figure 17. 

be the superextension of I as indicated in figure 17. In addition put 

where the A. 's are defined as in section 3.3 (cf. 3.3.2). 
]. 

The hardest part of our program is to show that for each n E lN the 
n 

superextension A(I,Ui=l Si) is a Q-manifold, the proof of which will be 

postponed till the end of this section. Notice that for each n E lN the 

subbase u1=l Si is supernormal (cf. 2.2.1 (iv)) and hence that we can apply 

the results derived in 2.3.10- 2.3.15. 
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n 
3.4.2. PROPOSITION. For each n € lN the superextension A(I,Ui=l Si) is a 

compact Q-manifold. 

Now an interesting result of CHAPMAN [27] is applicable to show that 
n 

A(I,Ui=l Si) is even a Hilbert cube. 

n 3.4.3. LEMMA. For each n € lN the superextension A(I,Ui=l Si) is a Hilbert 

cube. 

n 
PROOF. The normality of Ui=l Si (cf. theorem 2.3.13) implies that 

A(I,U~=l Si) is an AR (cf. theorem 3.2.1). In particular A(I,U~=l Si) is 

contractible. Therefore A(I,U~=l Si) is a contractible compact Q-manifold 

by proposition 3.4.2. However, CHAPMAN [27] has shown that a compact 

contractible Q-manifold is a Hilbert cube, which proofs the lemma. D 

3.4.4. Consider the following inverse limit system 

where the bonding maps gn are defined by 

n 
g <M> :=Mn U S 

n i=1 i 

(n € lN). These mappings are well-defined, cf. corollary 2.3.12. 

n 
PROOF. For each n € lN define a mapping ~n: AI-+- A(I,Ui=l Si) by 

n 
~ <Ml :=Mn u S1 .• 

n ~1 

This mapping is well-defined, cf. corollary 2.3.12. We claim that for each 

n > 2 the diagr- ~>{r,u~.1 s,1 

.,~ l•n 
n-1------......__ n-1 

------.....A(I,Ui=l Si) 

commutes. 

Indeed, take M €AI.Then 
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g (1; (Ml) 
n n 

Consequently, the mapping e: AI-+ tim(A(I,U~ 1 S.),g) defined by 
i= i n 

e(M)n := l;n(M) (n € :JN) is a continuous closed surjection. It remains to 

show that e is one to one. Choose distinct M,N € AI and choose M €Mand 

N € N such that Mn N =¢.Since S separates the closed subsets of I there 

are so,s1 € S with Mc s0 and N c s1 and s0 n s1 = ¢. Now, (SO,Sl) € F, 
say the nth element, and therefore s0 and s1 are separated by elements of 

s It follows that l;n(M) t- l;n (N) , since s n s .. This now c ui=l proves n n l. 

that e is one to one; consequently e is a homeomorphism. □ 

3.4.6. This lemma completes the proof of the fact AI RS Q, since the 

theorem 3.2.3 implies that the bonding maps in the inverse sequence are 

cellular. They are even cellular in a very strong way: in [79] we showed 

that each point inverse of gn (n € JN) either is a point or is homeo

morphic to an interval. We will not give the argument here, since there 

is no use fot it. But it is a nice fact. 

We did not check whether the bonding maps are strictly-cellular, i.e. 

have the additional property that the point inverses are Z-sets. Probably 

this is the case. 

3.4.7. THEOREM. The superextension of the closed unit interval is homeo

morphic to the Hilbert cube. 

PROOF. As indicated above, the bonding maps gn (n € JN) are cellular. 

Hence AI RS ~(A(I,U:=l Si),gn) RS Q (cf. lemma 3.4.3, lemma 3.4.5 and 

3.2.6). 0 

3.4.8. PROOF OF PROPOSITION 3.4.2. Choose 

Let {pi I i € E} u {pi I i € {2, ••• ,n}} denote the projection maps of the 
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latter product. For each i E {2,3, ..• ,n} the projection of A(I,Si) onto 

the first coordinate axis of r2 is an interval, say [c?,c~]. Assume that 
1 1 0 1 

for each i E {2,3, ••. ,q} where q ~ n, the projection TI 0x. E (c.,c.) and 
0 1 1 1 1 

that for i E {q+l,q+2, •.• ,n} we have TIOxi i (ci,ci). Define 

Let A:= {2,3, .•. ,n}. If i EA and ME xi define 

* M := cl1 int1 (M) 

(here I refers to the copy of [0,1] embedded in A(I,S.) c r2). Also, for 
1 

i EA, put 

F {M* I -1c J -1c J (xi) := (M= TIO 0,r.0xj n I or M= TIO TIOxj,1 n I) 

* M 

(j E A\{i}) and 

Notice that F(x.) is finite. If i E {2,3, ••. ,q} then choose a subinterval 
0 l.1 

(ai,bi) of (ci,ci) (an interval is non-degenerate in our terminology) such 

that 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

If i 

(i) 

(ii) 

(iii) 

(iv) 

TIOxi. E (a.,b.); 
0 1. 1. 1 

a. - c. > !E and c. - b, > ¼E; 
~1 l. l. l. 

TIO [ai,bi] n A(I,Si) consists of two closed convex subspaces 
o · 1 o_ J 1 

D!1and Di such that TIODi - [ai'"Oxi and r.0Di = [r.0xi,bi]; 

"o [ai,bi] n UF(xi) = ¢; 

for each subinterval [e 1,e2J of [ai'"Oxi) and 

[d1,~J of (r.0xi,bi] we have that r.01[e 1,e2] 

both have no isolated points. 

E A\ { 2, 3, •.. , q} then choose a subinterval 
-1 

TIO [ai,bi] n A(I,Si) is 

x. is an interior point 
:!:1 

"o [ai,bi] n UF(xi) = ¢; 

has no isolated points; 

for each subinterval 
-1 

n I and "o [d1,d2J n I 

(one should convince oneself that in all cases suitable ai,bi do indeed 

exist:). 
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We will show that the closed neighborhood 

of xis a Q-manifold, which will establish the proof of proposition 3.4.2 

(there is an open U in A(I,U1=l Si) such that x EU c B(x) and as B(x) is 

a compact Q-manifold, there is also an open O in A(I,U1=l Si) such that 

x E O c Uc B(x) and O is homeomorphic to an open subset of Q). 

Let us first anatomize B(x). Consider F = {0,1}{ 2 , 3 , •.. ,q} and for 

each a = (cri) i E F define 

~ 1 cr. n -1 -1 - l. X(cr) := i=2 pi [Di] n 
i=Q+1 Pi [1To [ai,bi] n 

It then is clear that 

B(x). 

n 
CLAIM 1. For each a E F the set X(cr) is closed and convex in A(I,Ui=l Si). 

Indeed, assume to the contrary that for some cr E F the set X(cr) were 

not convex. Then there exist y,z E X(cr) and a,S E R with a> 0, S > 0 and 

a+ B = 1 such that ay + Sz r/. X (cr). We claim that 

n 
is not linked, for else it would follow that ay+ Sz E A (I,Ui=l Si) (cf. 

lemma 2.3.14), and as (ay+Sz)i = ayi + Szi for each i, it is easily seen 

that even ay+ Sz E X(cr). Therefore there exist two indices i 0 ,j0 such that 

(ay+Sz) . u (ay+Sz) . 
io Jo 

is not linked and consequently there exists an ME (ay+Sz)io and an 

NE (ay+Sz)j 0 such that M nN ~- Now, if i 0 and jO are both elements 

of Eu {q+l,q+2, .•• ,n} then, using the same technique as in proposition 

3.3.3, it follows that Mand N must intersect, for we have chosen the 
-1 

intervals [ai,bi] (i E {q+l,q+2, ••. ,n}) is such a way that 1TO [e 1,e2] n I 

has no isolated points for every subinterval [e 1,e2] of [ai,bi]. 
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Therefore, let us assume that i O € {2,3, ••• ,q}. Since straight 

horizontal lines through (ay+Bz)io and (ay+Bz)j0 must intersect the em

bedded copies of I in the same point (cf. the proof of proposition 3.3.3), 

the situation sketched in figure 18 is the only possibility (except for 

an interchange of the indices i 0 and j 0 , which induces a similar situation). 

• y. • 
Jo 

I ·-·-·-·-·-·-·-· 
N 

Figure 18. 

REMARKS. 

(i) It is possible that an element of (ay+Bz)i0,containing M, and an 

element of (ay+Bzljo• containing N, have a void intersection. 

In that case the sets Mand N of course also have a void intersection. 

(ii) In figure 18 we have drawn the points Yio• zio• xio• Yjo• zj0 and 

xjo in such a way that ffOYio < ffOZio < ffOXio and ffOYjo < uozjo < 

< u0xj0 • This is not the only possible configuration. More generally, 

we may assume that either (u0yi0 < u0zi0 s u0xi0 and u0yj0 < uozj0 s 

s uoxjo> or (uoxio s ffOYio < uozio and ffoXjo s ffOYjo < uozjo) (these 

two cases are similar), for in all other cases it is easy to see that 

(ay+Bz)io u (ay+Bz)j0 is linked. The lack of generality in our diagram 

will cause no trouble, as will appear from the proof. 

We distinguish two subcases: 

(al u0z. - u0y. s u0z. - u0yJ•o· io io Jo 
-1 

Since Mc u0 (u0 (ay+Bz)j0 ,1J n I, it follows that 

-1 -1 
u0 [u0yi0 ,1J n 1 c u0 (u0y. ,1J, 

Jo 

-1 
since u0 [u0 yi0 ,1] n I has no isolated points and since 
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However, this is a contradiction since y. u y. is linked. 
1 0 Jo 

n I, we conclude that 

-1 
since 110 (ay+Bz)jO - 110YjO s 110 (ay+Bz)io - 110Yio· Therefore, if 110 110zj0 n I 

-1 
contains no isolated points of 110 [0,11ozj ] n I, then this is a contra-

0 -1 
diction by the linkedness of zi u zj • If 110 110zj n I contains an isolat-

. -1 0 0 0 
ed point of 110 [0,110zJ. J n I, then 110zj = 110xj, for if not, then 

-1 0 0 0 
110 [0,11ozj0 J n I is not perfect, which is a contradiction. 

Now, since 

it follows that also 110yi0 = 110xjo' for if not, then Yio u Yjo is not 

linked. However, this implies that also 110 (ay+Bz)j0 = 110xj 0 and consequent

ly N € Zjo· This is a contradiction, since zi0 u zj0 is linked. 

It now follows that the neighborhood B(x) of xis a finite union of 

closed (and hence compact) convex subspaces. By a theorem of QUINN & WONG 

([94], theorem 3.4) it follows that B(x) is a Q-manifold provided that 

for all nonvoid subsets F0 of F the set n X(o) either is void or is a 
0€Fo 

Hilbert cube. 

~ 2. Let F0 be a nonvoid subset of F. Then n X(o) either is void 
0€Fo 

or is a Hilbert cube. 

Assume that n F X(o) were nonvoid. It suffices to show that 
0€ 0 

n F X(o) is infinite dimensional, for an infinite dimensional compact 
0€ 0 

convex subset of the separable Hilbert space is a Hilbert cube (cf. KELLER 

[68]). We will show that n F X(o) contains a copy of the Hilbert cube. 
0€ 0 

Choose y € n F X(o). We again distinguish two subcases: 
0€ 0 



(a) 
0 1 For each i E {2,3, ••• ,n} the point n0yi is an element of (ci,ci). 
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Assume that y is such that for every coordinate y i (i EE u {2,3, ••• ,n}) 

a straight horizontal line through yi doesnot intersect I in O or 1 (this 

assumption is justified by the fact that if y= 0 or y= 1, then n F X(o) 
0€ 0 

is the intersection of a finite number of sets, each of which intersects I 

in a neighborhood of y). This intersection, say f, must be the same point 

for every coordinate. Define 

0 
60 := min{ly.-c. I 

l. l. 

1 61 := min{ly.-c. I 
l. l. 

and choose n0 EE such that 

i E {2,3, ••• ,n}}, 

i E {2,3, ••• ,n}} 

For all j EE, let I. be defined as in proposition 3.3.4. It is easy to 
J 

show, using the same technique as in the proof of proposition 3.3.4, that 

for all j E E with j :S n0 and for each point d E Ij x {i} we have that 

is linked (notice that indeed I. x 
J 

Now, by induction, for each k 

f 
{7,;"2} c ). (I,A.)). 

I J 
E {m EE I n0 :Sm} 

a point~ E ).(I,~) with the following property: 

we will construct 

*) for all j EE with j :S n0 there exists a (nondegenerate) subinterval 
k k k f 

Ij of Ij such that for every point dj E Ij x {72} the system 

n 
i~2 Yiu j~E 

k:Sj 

is linked. 

- f For each j E E with j :S n0 let aj be the middle of the interval Ij x {72}. 

Then the linked system 
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is contained in at least one maximal linked system g0 € A(I,U~=l Si). 

Define h_2 := (g0 )_2• The intervals Ij2 (j s n0) now can be found in the 

following way: 

(i) -2 Ij if 110h_2 € I. := I_2; 
J.2 

(ii) I. := [ l ,110aj J n I. if 110h-2 € 
J.2 J 

(iii) I. := [110aj,1J n Ij if 110h-2 € J 

u,110iijJ\Ij; 

[110aj,1]\Ij. 

-2 It is easy to verify that the intervals Ij (j s n0), defined in this way, 

satisfy our requirements. 

Let all points ~ be defined for all k ~ R, (R.,k € {mE E I n0 s m}). 
-R, R, f 

For each j € E with j s n0 let aj be the middle of the interval Ijx {72}. 

Then the linked system 

n 
i~r Yiu j~E hj u 

R,Sj 

is contained in at least one maximal linked system p0 € A(I,U~=l Si). 
3R, l. 

Define h3R, := (p0 ) 3R,. The intervals Ij (j s n0) now can be found in the 

following way: 

(i) I ]R, R, 'f h I j := Ij l. 110 ]R, € ]R,; 
3R, [I -R,] R, [I -R,] 

(ii) I:l := 2,110aj n I. if 110h3R, € 2,110a. \I.; 
(l.'1.'i) ]R, [ -R, I] I [ -R, J]\ J Ij := 110aj,2 n Ij if 110h3R, € 110aj,1 Ij. 

Again, it is easy to verify that the intervals I~R, (j s n0), defined in 

this way satisfy our requirements. 
no/3 

Now, it is obvious that noEFo X(o) contains a copy of njEE Ij , 

which shows that n F X(o) is infinite dimensional. JSno 
0€ 0 

0 1 (b) There exists a coordinate i 0 E {2,3, ••• ,n} such that 110y. t (c. ,c. ). 
1 0 1 0 1 0 

We will construct a point g € n F X(o) such 
0€ 0 

all i € {2,3, ••• ,n}. Then case (a) is applicable to 

is infinite dimensional. 

Without loss of generality we may assume that 

n -1 n 
n p, [s.J n A(I,UJ..=1 Sl..), 

i=2 l. l. 

0 1 
that 110gi € (ci,ci) for 

show that n F X(o) 
0€ 0 

where each Si (2 sis n) is convex in A(I,S.), while, moreover, for each 
-1 l. 

i > q we have that Si= 110 [Hi] n A(I,Si) for some (nondegenerate!) inter-

val Hi. As in case (a), we may assume that a straight horizontal line 



through yi does not intersect I in O or 1. Let this intersection be f. 

Define 

V := {i E {2,3, ... ,n} I •oY· i (c~,c~)}. 
l. l. l. 
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Clearly V C {q+1,q+2, ..• ,n}. Now, for every i E V there is a subinterval 
f 

>..(r,Si). L. of Hi such that u0yi EL. and Li x {72} c Let cS, denote the 
l. 

length of 
l. 

this interval (i E V). 

cS := min{cS. I i E v}. 
l. 

Moreover define 

and 

1 
p := 4 min{cS,po}. 

l. 

Let 

i E {2,3, ••• ,n}\V; j E {0,1}} 

f 
Choose for each i E Va point gi E Li x {72} c >..(r,Si) such that 

Recall that A {2,3, ••• ,n}. We will show that 

n 
is linked; consequently each mls g E >..(I,Ui=l S. ) which comtains L is a 

l. 

point of n F X(cr) such that u0g. E (c9,c~) 
OE Q l. l. l. 

for all i E {2,3, •.• ,n}. 

Assume that L were not linked. We again distinguish two subcases: 

CASE 1. There exist two indices i 0 ,j0 EV such that gi
0 

u g, 
Jo 

linked. 

is not 

Choose ME gio and NE gj 0 such that Mn N 

cases: 

¢. There are two sub-

(i) One of the sets M,N contains the corresponding projection of y, say 

Yi E N. 
0 r·-·-·-·-·-

• I •o 
I + 

-·-·-·-·-, 

I 
g .• 

l.o I 

I ·-·-·-·-·-
M N 

Figure 19. 
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-1 
Since N c TIO [0,Tiogi) n I 

-1 0 
follows that TIO [0,TioYj J n I c 

-1 0 
tradiction since TIO [0,TioYj 0 J n 

(ii) None of the sets M,N contains the corresponding projection of y. 

-·-·-·-·-·-, ·-·-·-·-·-·7 
I 

I 

g. f io g. • 
Jo I 

I 
-·-·- _____ _J •-i•-·-·-·-·-' 

M 

Figure 20. 

-1 
It now follows that, for example, Mc TIO (TI0gj 0 ,1] n 

is a contradiction since M contains a component of length 

I. However, this 

at least ipfi 
-l 

TIO (TI0gj 0 ,1] n I have length less than or equal to while all components of 
2 r::: -1 
4pv2 since TIO [Hj 0J n I contains 

for each subinterval of H- • 
Jo 

no isolated points and the same is true 

CASE 2. There exist indices i 0 € V and jO € A\V such that gio u Yjo is 

not linked. 

This can be treated in the same way as case 1 (ii). 

This completes the proof of the proposition. D 

3.4.9. REMARK. As announced it now follows from theorem 3.4.7, corollary 

3.2.4 and the remarks in 3.2.6 that each continuous surjection f: I--+ I 

extends to a near-homeomorphism A(f): AI--+ AI. 

3.5. Pseudo-interiors of superextensions 

In this section we concentrate on pseudo-interiors and capsets of 

superextensions. For any metrizable continuum X we define 



A (X) :={ME AX IM is defined on some ME 2X\{X}}. 
cap 
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We show that if X has a binary normal subbase then A (X) is a B(Q) factor, 
cap 

i.e. A (X) x Q RS B(Q). From results derived in the previous chapter it 
cap 

follows that A (I) RS B(Q) and also that A (JR), the subspace of AJR 
cap comp 

consisting of those mls's ME A:R which are defined on some compact subset 

of :R., is homeomorphic to B(Q). As a consequence a conjecture of VERBEEK 

[119] turns out to be false. 

3.5.1. A subset M of the Hilbert cube Q is called a capset (cf. ANDERSON 

[5]) if M can be written as M = u;=l Mi, where Mi is a z-set in Q, with 

Mi c Mi+l (i E N) while in addition the following absorption property 

holds: for each E > 0 and i E lN and for every Z-set K c Q there exists 

a j > i and an embedding h: K--+ M. such that h f (KnM.) = idK M and 
J i n i 

d(h,idK) < E. It is known that every capset of Q is equivalent to B(Q) 

= {x E Q 3i E JN: Ix. I = 1} the pseudo-boundary of Q, under an autohomeo-
i . 

morphism of Q (cf. ANDERSON [5]). The complement of a capset is called a 

pseudo-interior of Q and is homeomorphic to i 2 , the separable Hilbert 

space (cf. ANDERSON [5]). 

Recall that an mls ME AX is said to be defined on A E 2X if 

Mn A EM for all ME M. For any space x the space A (X) is the sub-
comp 

space of AX consisting of those mls's which are defined on some compact 

subset of X (cf. VERBEEK [119] (cf. also 2.7.10). 

3.5.2. LEMMA. If Xis locally compact and a-compact then A (X) is 
comp 

a-compact. 

PROOF. Write X = u:=l Xn, where Xn c xn+l (n E JN) and each Xn is compact 

(n E JN), while in addition each compact Cc Xis contained in some Xn. 

CLAIM. A (X) 
comp 

(Notice that X, being Lindelof, is normal and hence that for each A E 2x 

the superextension AA can be embedded in a natural way in AX (cf. lemma 

3.1.15)). 

Indeed, choose ME A (X) and let Cc X be a compact defining set 
comp 

for M. Choose n E lN such that Cc X. Then lemma 3.1.15 implies that 
n 

ME AXn. Therefore ME u:=l AXn. 

On the other hand choose M E u"' AX . Let n E lN be such that ME AX . 
n=l n n 
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It now is easily seen that X is a (compact) defining set for M, i.e. 
n 

M E A (X). □ comp 

3.5.3. For any topological space X, define 

A (X) :={ME AX IM is defined on some A E 2X\{X}}. 
cap 

3.5.4. LEMMA. If Xis a compact metric space, then A (X) is a-compact. cap 
If moreover Xis connected then A (X) is a countable union of Z-sets ·cap 
in AX. 

PROOF. Let {B n E :N} be a countable closed n 
Bn ,f X for all n E lN. With the same technique 

follows that 

co 

A 
cap 

(X) n~l AB n' 

showing that A (X) is a-compact. cap 

basis for X, such that 

as in lemma 3.5.2 it now 

If moreover Xis connected then AB 
n 

(cf. theorem 3.1.17). Hence A (X) is a cap 

is a z-set in AX for each n E JN 

countable union of Z-sets. D 

In [71] KROONENBERG gave an alternative characterization of capsets 

in Q and we will use this characterization to show that A (X) is a cap 
B(Q)-factor in case Xis a metrizable continuum with a binary normal sub-

base. 

3.5.5. LEMMA ([71]). Suppose Mis a a-compact subset of Q such that 

(i) for every£> 0, there exists a map h: Q ➔ Q\M such that 

d(h,idQ) < £; 

family of compact subsets Ml C M2 C ... such that 

of Q and Mi is a Z-set in Mi+l (i E lN), and such 

each 

that 

(ii) M contains a 

Mi .is a copy 

for each£> 0 there exists an integer i E :N and a map h: Q ➔ M. 
J. 

such that d(h,idQ) < £. 

Then Mis a capset for Q. 

We need some simple results. 

3.5.6. LEMMA. Let (X,d) be compact metric and let f: X + X be continuous. 

Then d(f,i~) = d(A(f),idAx>· 



PROOF. Since A(f) : AX - AX is an extension off and since i: X '-+ AX 

is an isometry (cf. VERBEEK [119]) we find that 
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Assume that d(f,idx) < d(A(f),idAX). Let e := d(f,idx). Then there is an 

M E AX such that 

d(M,A(fl (Ml) > e. 

Choose ME M such that B (M) i A(f) (M) (cf. lemma 3.1.11). Also take 
€ 

M0 EM with Be(M) n f[M0] =¢(cf. lemma 3.1.22). As Mis a linked system 

there is an x EM n M0 • Then f(x) E f[M0 ] and consequently 

d(x,f(xJ) > e, 

which is a contradiction. D 

3.5.7. THEOREM. Let (X,d) be a non-degenerate metrizable continuum which 

admits a binary normal subbase. Then there is a sequence M1 c M2 c 

of subcontinua of X such that: 

(i) Mi is a proper subcontinuum of Mi+l (i E :IN); 

(ii) for each e > 0 there exists an i E :IN and a retraction r: X + M. 
l. 

such that d(r,idx) < e. 

PROOF. Let S be a binary normal subbase for X. Then H(X,S), the hyperspace 

of S-closed sets (cf. section 2.10), is a compact densely ordered (by in

clusion) subspace of 2X (cf. theorem 2.10.5 and theorem 1.5.22). Fix a 

point p EX and let J be a maximal chain in H(X,S) containing {p}. Then 

J is homeomorphic to the closed unit interval [0,1] since 2X is metrizable 

(cf. WARD [124]). Let 

be a sequence which converges to X and which is indexed in such a way that 

Mn is properly contained in¾ if and only if n < k. It is clear that this 

is possible. 

We claim that the sequence {M.}~ 1 defined above satisfies (i) and 
l. l.= 

(ii). The claim that each Mi is a proper subcontinuum of Xis trivial since 

each S-closed subset Ac Xis a retract of X (cf. corollary 1.5.12 (a)). 
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This proves (i). 

To prove (ii) choose E > 0. Let F c X be a finite set, say 

F {x1 , ..• ,xn} satisfying 

X 

Choose a finite refinement {A1, ••• ,Am}, consisting of S-closed sets with 

nonempty interior, of {U 1 (x.) I 1 Si Sn} (that this is possible is an 
2 E l. 

easy consequence of the fact that Sis a normal T1-closed subbase for the 

compact space X). Leto> 0 be such that for each is j s m there is an 

yj E Aj with 

C A .• 
J 

Choose i E l'1 such that dH(Mi,X) < ½o. Then Mi intersects all members 

from the covering {A1, ••• ,A }. Now let r: X + M. be the retraction of 
. m l. 

theorem 1.5.2, in formula 

{r(x)} 

We claim that r moves the points less than E. Indeed, take x EX. Choose 

1 s ks n such that x E ¾· Since¾ intersects Mi, there is a z E ¾ n Mi. 

Then 

{r (x)} 

consequently x and r(x) both belong to¾· Since¾ is contained in 

U!E(xl) for some 1 s £ s n we conclude that 

This completes the proof of the theorem. 0 

We now prove the main result in this section. 

3.5.8. THEOREM. Let (X,d) be a metrizable continuum. If there is a 

sequence M1 c M2 c ••• of subcontinua of X satisfy,ing: 

(i) Mi is a proper subcontinuum of Mi+l (i E lN); 

(ii) for each E > 0 there is an i E l'1 and a map h: X + Mi with 

d (h, id ) < E, then ;>. (X) x Q is a capset for ;>.x x Q. In particular, 7C cap 



A (X) is a B(Q)-factor. cap 

PROOF. First notice that the spaces AX and AMi (i E lN) are AR's (cf. 

theorem 3.2.1) and hence that they are Q-factors (cf. EDWARDS [45]). 

Therefore 
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is a sequence of Hilbert cubes. Moreover AMi x Q is a z-set in AMi+l x 'Q 

(i E lN) by theorem 3.1.17 (ii). Let p be a metric for X. Then p 0 , defined 

by 

is a metric for AX x Q. 

We claim that the family {AM. x Q j i E JN} satisfies the conditions 
l. 

of lemma 3.5.5. To prove 3.5.5 (i) choose E > 0. Also choose two disjoint 

finite F0 ,F1 c X such that d8 (Fi,X) < ½E (i € {0,1}). By induction for 

each i E lN choose a point pi E Mi+l \Mi such that P = {pi j i E JN} has 

a void intersection with F0 u F1 . It is clear that this is possible. 

Now define a linked system M = {Nk j k > 1} on P by 

if k is even 

and 

if k is odd. 

It is clear that Mis a linked system and also that 

for all k > 1. Define for all k > 1 sets Gk by 

if k is even 

and 

if k is odd. 

Then {Gk k > 1} is a linked system of finite subsets of X and hence 

there is a retraction r: AX-➔- nk>l G; defined by 

(cf. theorem 1.5.2 and theorem 3.1.13). Then 
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(cf. theorem 3.1.13) and moreover 

00 

r[AX] n i~l AMi ¢. 

For choose LE r[AX] and k E lN. Then Gk and Gk+l both belong to L. Also 

Gk n Gk+l n ¾ {pk+l} n ¾=¢,since P n (FOUFl) =¢.Now, lemma 3.1.15 

implies that Lt A¾- This completes the proof of 3.5.5 (i), since 

clearly is a retraction which moves the points less thane: and whose image 

is disjoint from u;=l (A¾ x Q). 

To prove 3.5.5 (ii) choose e: > 0. Then there is, by assumption, an 

i E lN and a map h: X .._ Mi with d(h,idX) < e:. Then A(h): AX.._ AMi and 

also d(A(h),idAX) < e: by lemma 3.5.6. Therefore 

is the desired mapping. D 

3.5.9. COROLLARY. Let X be a metrizable continuum with a binary normal 

subbase. Then A (X) x Q is a capset for AX x Q. In particular, A (X) cap cap 
is a B(Q)-factor. 

PROOF. This follows from theorem 3.5.7 and theorem 3.5.8. D 

3.5.10. The metrizable continua with a binary normal subbase are not the 

only compacta with a sequence of subcontinua as described in theorem 3.5.8, 

for it is easy to see that a space such as 

Y = {(0,y) I -1:,;y::;1} u {(x,sinl) I 0<x::;1} 
X 

also has such a sequence (notice that Y does not possess a binary normal 

subbase since Y is not locally connected; cf. corollary 1.5.8 (iii)). 

The technique used in the proof of theorem 3.5.8 can also be used to 

obtain the following results. 



3.5.11. THEOREM. 

(i) ;\ (0, 1) is a capset for AI; 
comp 

(ii) :\ (I) is a capset for :\I. 
cap 

PROOF. Define M. = 
l. 

as in the proof of 

(theorem 3.4.7). 

[O + ,L 1 - -h (i > 2) and then use the same technique 
l. l. 

theorem 3.5.8 and the fact that :\Mi~ Q (i > 2) 

□ 

3.5.12. COROLLARY. :\I\;\ (I) is.homeomorphic to i2. □ cap 
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As noted in the introduction of this section theorem 3.5.11 (i) dis

proves a conjecture of VERBEEK [119]. 

We conjecture the following: 

3.5.13. CONJECTURE. ;\ (X) is homeomorphic to B(Q) for any metrizable cap 
continuum with a binary normal subbase. 

In connection with this conjecture we also have the following 

question: 

3.5.14. QUESTION. Let X be the 1-sphere s1 . Is>. (X) homeomorphic to 
cap 

B(Q)? Or is it a capset of >.x (if >.x ~ Q)? Is>. (X) x Q a capset of cap 
AX X Q? 

3.6. Some subspaces of :\X homeomorphic to the Hilbert cube 

We show that in case :\Xis homeomorphic to the Hilbert cube the open 

basis {n. < I X\U. E 2X; n E :N} of :>.x has the property that the closure 
l.-n l. 

of a nonvoid element of it is again homeomorphic to the Hilbert cube. 

3.6.1. In this section we assume that (X,d) is a compact metric space such 

that the space ;\Xis homeomorphic to the Hilbert cube. From results of 

VERBEEK [119] (cf. also corollary 2.5.4) it then follows that Xis a non

degenerate metrizable continuum. 

For simplicity of notation we will write A for the closure of the 

subset A of the topological space Y. 

3.6.2. ~- Let {u1, .•. ,un} be a finite linked system of open subsets 
+ - - + 

in x. Then (ni~n Ui) equals ni~n (Ui) • 
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+ - + 
PROOF. Clearly nisn ui c nisn(Ui) so that in any case 

- + 
Choose a point ME niSn(ui) \(nisn 

0. (j s m) in X such that M € n.< 
J J-m 

+ 
n oJ. n 

jSm 

u:)-. Choose 
]. 

o+ and 
j 

finitely many open sets 

Then {O. I j s m} 
+] + 

u {ui I is n} is not a linked system for otherwise 

nj< o. n n.< u. _m J J._n 1 
t- ¢ (see VERBEEK [ 119]). Hence, since clearly {o. I j s m} 

J 
is linked, there are j 0 s m and i 0 s n such that 

+ - + 
Then oj 0 n ui0 ¢ a:d ~ons~qu:ntly oj 0 n (ui0 ) 

diction, since ME oj 0 n (ui0 > • D 

¢. This is a contra-

3.6.3. COROLLARY. Let {u1, ••• ,Un} be a finite linked system of open sets 
+ -

in X. Then cnisn Ui) is a Hilbert cube factor. 

+ -PROOF. By lemma 3.6.2 cniSn Ui) is a retract of AX (cf. theorem 3.1.13) 

and consequently it is an AR. Now the EDWARDS [45] theorem gives the 

desired result. D 

As in section 2.7 the subspace {n{M+ IM€ M} IM c 2X is a linked 

system of 2AX} will be denoted by K(AX). An element S € K(AX) is called 

convex for short (theorem 3.1.13 motivates this terminology). We need 

a simple lemma. 

3.6.4. LEMMA. Let s 1 , .•• ,sn be a finite collection of convex sets in AX 

such that niSn Sit-¢. Then UiSn Si is an AR. 

PROOF. we will prove the lemma by induction on n. The lemma is true for 

n = 1 (cf. theorem 3.1.13). 

Suppose that the lemma is true for unions of n - 1 convex sets. Let 

Sic AX (is n) be convex such that nisn Sit-¢. Write Uisn Si= 

= (Uisn-l Si) u Sn. Then Uisn-l Si is an AR by induction hypothesis. 

Also Sn is an AR. As (Uisn-l Si) n Sn= Uisn-l (Sinsn) and as the inter-
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section of two convex sets again is convex, the intersection 

(UiSn-l Si) n Sn also is an AR by induction hypothesis. But then UiSn Si 

is the union of two AR's the intersection of which also is an AR. By a 

theorem of BORSUK [20] it now follows that UiSn Si is an AR too. D 

We need the following compactification result of WEST [127]. 

3.6.5. THEOREM. Suppose that X is a compactification of a Q-manifold M 

such that 

(i) X is a Q-factor; 

(ii) X\M is a Q-factor; 

(iii) X\M is a Z-set in X. 

Then Xis a Hilbert cube. 

This theorem is the basic tool in proving the main result in this 

section. 

3.6.6. THEOREM. Let (X,d) be a compact metric for which AX is homeomorphic 

to the Hilbert cube Q. Then for each finite linked system {u1, ••• ,un} of 

open sets in X the closure (in AX) of n.< u: is homeomorphic to the J._n J. 
Hilbert cube. 

PROOF. Let {u1, ••• ,U} be a finite linked system of open sets in X. Fix a 
--- n 
point p € X and define Vi := Ui\{p} (is n). Then, since Xis connected 

{v1, ••• ,Vn} is again a linked system. Hence 

( n v:) 
iSn J. 

( n u:)-, 
iSn J. 

+ - - + - + + -
since (niSn Vi) = niSn (Vi) = niSn (Ui) = (niSn Ui) by lemma 3.6.2. 

We will show that (niSn v;,- is a Hilbert cube. Without loss of generality 

we may assume that V~ ¢ V~ for all i,j s n. Define 
J. J 

A:= ( n v:1\- \ n v: 
iSn J. iSn i 

+ Indeed, assume that M €A.Then Min.< V. and hence there is an i 0 s n 
+ l.-~ J. 

such that M i Vi • But then M € (X\Vi ) (cf. proposition 2.2.3 (v)). 
0 + 0 + _ 

Consequently M € U.< ((X\V.) n (n.< V.) ). 
J-n J J._n+ i + _ 

On the other hand, if ME (X\VJ•) n (n.< vi.) for some j 0 s n 0 J._n 
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+ then clearly Mt vj0 and consequently M € A. 

The linked system {X\Vj I j s n} u {v; is n} is contained in at 

least one maximal linked system 

M € n (cx\vj>+ n n cv;>+). 
jSn iSn 

Now lemma 3.6.2 establishes claim 2. 

Lemma 3.6.2 also implies that A is a finite union of convex sets; 

hence, by claim 2 and by lemma 3.6.4, A is an AR. 

+ -CLAIM 3. A is a Z-set in (niSn Vi) • 

For each i,j s n choose a point pij = Pji €Vin Vj. 

P. := {p .. I j s n}. Then {P. I i s n} is a finite linked 
l. l.J . l. 

subsets of X such that Pi c Vi for all is n. 

Define 

system of finite 

Fix€> 0 and for each is n choose a finite Fi c Vi such that 

dH(Fi,V~) < 1€. Define Li:= Fi u pi (is n). Let 

r: AX-+ n L+ 
iSn 

+ be the retraction onto niSn Li of theorem 3.1.13. Let f€ be the restric-
+ - + - + 

tion of r to (niSn Vi) Notice that f€[(niSn Vi) ] c niSn Vi. We wi!l_ 

show that f moves the points less than€. Indeed, choose M€ cni< V.) • 
€ _n l. 

Then 

PM= {M €MI Vis n: Mn Li~~} u {Li I is n} 

is a pre-mls for r(M) = f€(M) (cf. the proof of theorem 3.1.13; see also 

theorem 1.5.2). Also 

a(M,f (Ml)= min{a ~ 0 I Vs E PM: B (S) EM} 
€ a 

(cf. lemma 3.1.11). Therefore d(M,f (M)) < €. Indeed, choose SE PM: if 
€ 

SE M then also BlE(S) € M since Sc BiE(S); if S € {Li I is n}, say 

s = Lio' then vi0 c BiE(S) and consequently BiE(S) € M since v10 € M by 

lemma 3.6.2. This yields in any case 
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By corollary 3. 6. 3 en . < V;) - is a Hilbert cube factor which is a compac·-
1.-n 1. 

tification of the Q-manifold ni~n v; such that the remainder A is an AR 

(and hence a Q-factor) which is a z-set. in eni~n v;)- (claim 2 and claim 3). 
+ -Therefore en i~n Vi) RS Q by theorem 3. 6. 5. D 

3.7. Notes 

The techniques derived in the previous chapter to show that the super

extension of the closed unit interval is homeomorphic to the Hilbert cube 

are not applicable to show that the superextension of any non-degenerate 

metrizable continuum is homeomorphic to the Hilbert cube. We can show that 

the superextension of any finite tree is the Hilbert cube and, more general

ly, using the approximation result in section 3.2, that the superextension 

of any dendron is homeomorphic to the Hilbert cube (it is easily seen that 

any dendron is the inverse limit of a sequence of finite trees with element

ary collapses as bonding maps). Also, if Xis the topological sum of finit

ely many dendra, then AX is a Q-manifold; in fact it is a topological sum 

of finitely many Hilbert cubes. 

Recently we have shown that the superextension of any finite connected 

graph is the Hilbert cube. Unfortunately this result could not be included 

in the previous chapter. 

Theorem 3.1.19 is taken from VAN MILL & SCHRIJVER [80]. 





CHAPTER IV 

COMPACTIFICATION THEORY 

In this chapter we deal with the following two questions: 

a) Is every Hausdorff compactification of a Tychonoff space a Wallman 

compactification? 
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b) Is every Hausdorff compactification of a Tychonoff space a GA compac

tification? 

Question a) was posed by FRINK [51], who used Wallman-type compactifica

tions (cf. also SHANIN [106a]) to obtain an internal characterization of 

complete regularity. It is unsolved until now, although many partial 

results suggest that the question can be answered affirmatively (cf. AARTS 

[1], STEINER & STEINER [109],[111],[112],[113], HAMBURGER [62], MISRA [85], 

NJAsTAD [89], VAN MILL [77]). *> 
DE GROOT & AARTS [57] generalized FRINK's technique and considerably 

strengthened his characterization of complete regularity. They also used 

a compactification method, which is related to the Wallman compactifica

tion technique and which is now known as the "GA compactification method" 

(cf. HURSCH [65], DE GROOT, HURSCH & JENSEN [58]). A.B. PAALMAN-DE MIRANDA 

posed question b) (cf. VERBEEK [119] question V.3.9). It remains as yet 

unsolved (however, see 4.7). 

In 4.1 we will derive some preliminary results on Wallman compactifi

cations, results which are all known but which are included for completeness 

sake. The next section contains the main result of this chapter; we show 

that every Hausdorff compactification of a Tychonoff space in which the 

collection of multiple points is Lindelof semi-stratifiable is a z-compac

tification ( a compactification obtainable as the ultrafilter space of a 

normal base consisting of zero-sets). Sections 4.3, 4.4 and the last part 

of section 4.2 deal with regular Wallman spaces. Among other things we 

show that every Hausdorff compactification of a locally compact metrizable 

*) 
There is a rumour going that Uljanov and Shapiro have constructed a 
counterexample. 
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space with zero-dimensional remainder is regular Wallman (cf. also 

BAAYEN & VAN MILL [11]). Closely related to regular Wallman spaces are 

regular supercompact superextensions; they are considered in section 4.5. 

The sections 4.6 and 4.7 deal with GA compactifications. We will 

characterize the class of GA compactifications of a given topological 

space and from an analogous characterization of Wallman compactifications 

(cf. STEINER [114]) it follows that any Wallman compactification is a GA 

compactification. This implies that the questions a) and b) are related. 

Finally we show, using the characterization announced above, that any 

compact Hausdorff space of weight at most e is a GA compactification of 

each dense subspace. 

4.1. Wallman compactifications; some preliminaries 

This section contains some preliminary results concerning Wallman 

compactifications. Most of the results are taken from STEINER [114]. 

4.1.1. Let S be a T1-subbase (cf. definition 2.2.1) for the topological 

space X. Define 

w(X,S) :={Ac SI A is maximally centered}. 

For each S € S define 

s* := {A € w(X,S) I s € A} 

and define a topology on w(X,S) by taking 

* * I S := {s s € S} 

as a closed subbase. With this topology w(X,S) is called the Wallman 

compactification of X relative S. If Sis the collection of all closed 

sets in X then w(X,S) is denoted by wX and is called the Wallman compac

tification of X (cf. WALLMAN [121]). That w(X,S) is a compactification 

of Xis shown in STEINER [114]. We mention the following result (recall 

that A.v.S is the ring generated by S, cf. O.A): 

4.1.2. THEOREM. Let S be a T1-subbase for the topological space x. Then 

w(X,S) is compact and is homeomorphic to w(X,A.v.S). Moreover the mapping 
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i: x->- w(x,S) defined by !(x) := {s ES I x Es} is an embedding. □ 

4.1.3. In case the subbase Sis a separating ring (cf. O.A) and is normal 

(cf. 2.2.1) it is called a normal base. Notice that a base may very well 

be a normal subbase without being a normal base. The best known example 

of a normal base is the ring of zero-sets Z(X) of a Tychonoff space X. 

The following result is also taken from STEINER [114]. 

4.1.4. THEOREM. Let S be a T1-subbase for X. Then w(X,S) is Hausdorff if 

Sis normal. Moreover w(X,S) is Hausdorff if and only if A.v.S is a normal 

base. D 

4.1.5. A compactification ax of a topological space Xis called a Wallman 

compactification if it is equivalent to a compactification w(X,S) for some 

T1-subbase S for X. 

Let X be a space and let Y be a subspace of X. A family T of closed 

subsets of X has the trace property with respect to Y (cf. STEINER [114]) 

provided that for any finite F c T with nF f ¢ also nF n Y f ¢. STEINER 

[114] gives the following useful characterization of Wallman compactifi

cations. 

4.1.6. THEOREM. A compactification ax of Xis a Wallman compactification 

if and only if ax possesses a separating family of closed sets with the 

trace property with respect to X. D 

Many compactifications are Wallman compactifications, for example, 

this is true for all metric compactifications (cf. AARTS [1] and STEINER 

& STEINER [109]). 

4.1.7. In the above characterization of Wallman compactifications the 

separating family F of closed sets in ax with the trace property with 

respect to X can be chosen in such a way that {F n X IF E F} c Z(X) then 

we say that ax is a z-compactification. Many compactifications are 

z-compactifications, cf. STEINER & STEINER [112] and HAMBURGER [62]. 

4.1.8. Let ax be a compactification of X and let~ denote the unique 
V 

projection mapping of SX, the Cech-Stone compactification of X, onto ax 

which on Xis the identity. We say that a point p € aX\X is a multiple 

point of ax (cf. NJASTAD [89]) if ~-l(p) consists of more than one point. 
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Every compactification in which the set of multiple points is countable 

(this is usually called a countable multiple point compactification) is a 

z-compactification (cf. STEINER & STEINER [112]). This result is strengthen

ed in section 4.2. 

4.1.9. A compact topological space Xis called regular Wallman if it pos

sesses a separating ring consisting of regular closed sets (cf. STEINER 

[114]). From theorem 4.1.6 it follows that a regular Wallman space is 

Wallman compactification of each-dense subspace. Many compact Hausdorff 

spaces are regular Wallman, for example all compact metric spaces (cf. 

STEINER & STEINER [109]). The first example of a compact Hausdorff space 

which is not regular Wallman was obtained by SOLOMON [107]. 

4.1.10. Let K > w be any uncountable cardinal. A topological space Xis 

called strongly K compact if for each subset A of X with IAI ~Kand for 

each total order< on A there exists a y € A such that for each open 

neighborhood U of y both u n {x € A Ix< y} and Un {x € A I x,> y} are 

nonvoid. It is very easy to show that a space of weight K is strongly K+ 

compact. Hence each separable metric space is strongly w1 compact. 

The following theorem is due to BERNEY [15]. For completeness sake 

we will include its proof. 

4.1.11. THEOREM. A strongly w1 compact space is hereditarily strongly 

w1 compact. Moreover it is hereditarily separable and hereditarily 

Lindelof. 

~- Let X be a strongly w1 compact space. That Xis hereditarily 

strongly w1 compact is trivial. Hence we only need to show that Xis both 

separable and Lindelof. 

If Xis not separable then there is a sequence P = {xa I a€ w1} of 

elements of X such that for each a€ w1 the point xa is not in the closure 

of {xe I a< a}. Choose ao € wl such that Xao is limit point from below 

of P. But xa0 is not in the closure of {xe I a< a 0}, which is a contra

diction. 

If Xis not Lindelof then there is a sequence U 

open subsets of X such that for all a€ w1 

is nonvoid. For each a€ w1 choose xa € ua \ e~a ue and define 
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Choose a0 E w1 such that ua0 n {xB I a0 < B}; ¢. Then there is a B0 E w1 

such that a 0 < B0 and xB0 E Uao• This is a contradiction. D 

4.1.12. A topological space Xis called semi-stratifiable if to each open 

subset U of X, one can assign a sequence {u }00 
1 of closed subsets of X 

n n= 
such that 

(a) u:=l Un= U; 

(b) if Uc V and {vn}:=l is the sequence assigned to V, then 

U c V for all n € :N. 
n n 

It is easily seen that each metric space (X,d) is semi-stratifiable; for 

each open subset V c X and each n € :IN let V n be defined by 

n 

In [33] CREEDE showed that each Lindelof semi-stratifiable space is strong

ly w1 compact. Hence we have the following implications: 

separable metric• Lindelof semi-stratifiable • strongly w1 compact~ 

• hereditarily separable and hereditarily Lindelof. 

Since CREEDE's theorem is very important for us, cf. section 4.2, we will 

include a proof of it. The proof presented here was suggested to me by 

J.M. VAN WOUWE. 

4.1.13. THEOREM. A Lindelof semi-stratifiable space .is strongly w1 compact. 

PROOF. Let X be a Lindelof semi-stratifiable space and assume there exist 

a totally ordered subset A of X such that IAI ~ w1 and such that for each 

x EA there exists an open neighborhood Ux such that either 

Ux n {a€ A I a< x} = ¢ or Ux n {a EA I a> x} =¢.Since IAI ~ w1, 

we may assume, without loss of generality, that for each x €Awe have 

U n {a EA I a> x} = ¢. 
X 

For each x € A and for each n € :N define 

on : = u \ ( U u ) . 
x x a<x an 
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It is clear that On is an open neighborhood of x such that 
X 

on n {a E A I a > x} = ~ for all n E lN. Since a Lindelof semi-stratifiable 
X 

space is hereditarily Lindelof (cf. CREEDE [34]), for each n E :N the 

covering 

0 = {on Ix EA} 
n X 

of A has a countable subcover {on I i E :N}. Define x(i,n) 

F := {x (i,n) I n E lN, i E :N}. 

* * As Fis countable there is an a E A\F. Since a E Ubsa* Ub, there is an 

n0 E :N such that 

a* E ( U 
bSa* 

Consider the sequence {x(i,n0 ) I i E :N}. Since a* E A\F it follows that 

* * a '! x(i,n0 ) for all i E lN. Now fix i E lN. If x(i,n0 ) < a then 

c u no. \1 u * u ) • 
x(i,n0) \i,sa b n0 

* no Hence it again follows that a t O (' )" x i,n0 
It now follows that Ono is not a covering of A, which is a contra-

diction. D 

4.1.14. E.S. BERNEY [16] has introduced the concept of strongly K compact

ness in the theory of Wallman compactifications. His techniques turn out 

to be very powerful and will be used in section 4.2 and section 4.7. 



4.2. Compactifications in which the collection of multiple points is 

Lindelof semi-stratifiable 
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In this section we show that any compactification ax of a Tychonoff 

space X in which the collection of multiple points is Lindelof semi

stratifiable is a z-compactification. If in addition Xis also Lindelof 

semi-stratifiable then ax is regular Wallman. In particular, BX is 

regular Wallman if Xis Lindelof semi-stratifiable (cf. BERNEY [16]). 

4.2.1. In this section we assume that ax is a compactification of the 

Tychonoff space X. The set of multiple points of ax is denoted by M. 

We start with some simple results. 

4.2.2. LEMMA. Let Y be a subspace of BX such that X c Y c BX. If 

ZO,zl € Z(X) then cly(Zo) n cly(Zl) = cly(ZonZ1). 

Let~= BX--+ ax be the unique projection which extends idX. 

-1 
4.2.3. LEMMA. Let Z € Z(X). If aclax(Z) n M= ¢, then ~ [clax(Z)] 

clBX(Z). 

PROOF. Assume there exists an 

Then ~(x0 ) € clax(Z) n Mand consequently ~(x0 J € intax claX(Z) since 

<lclax(Z) n M =¢.Therefore 

Let O be any open neighborhood of x0 in BX. Then clearly 

As~ is the identity on X it follows that On Z ~¢.We conclude that 

x0 € clBX(Z). This is a contradiction. D 

If f € C(aX,I) then we will write U(o,f) in stead of f- 1[0,o) 

(0€ (0,1]). 
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4.2.4. LEMMA. Let f E C(aX,I) and assume that Mis strongly w1 compact. 
-1 

Then {o E (0,1) I cl (f [0,o] n X) n Mt- cl x<u(o,f)) n M} is countable. 
ax a 

PROOF. Assume to the contrary that it were uncountable. If for some oE (0,1) 
-- -1 
we have that clax(f [0,o]nx) n Mt- clax(U(o,f)) n M then there is an 

a(ol E (cl (f-1[o,oJ n x) \ cl x<u(o,f) l) n M. 
ax a 

Let B be the set of a(o) chosen.in this way. Since f(a(o)) = o for all 

a(o) EB it follows that o1 t- o2 implies that a(o 1 ) t- a(o 2 ) and therefore 

Bis uncountable. Also, a total order< is defined on B by putting 

Since B c Mand since Mis strongly w1 compact it follows that B has a 

limit point a(o 0 ) from below. 

Let u be any open neighborhood of a(o 0 ). Since a(o 0 ) is limit point 

from below there is an a(o 1 ) Eun B such that a(o 1 ) < a(o 0 ). This shows 

that a(o 1 ) E U(o 0 ,f) nu and in particular U(o 0 ,f) nut-¢. Hence 

a(o 0 ) E clax(U(o0 ,f)) n M, which is a contradiction. D 

The following lemma is due to BERNEY [16]; for completeness sake we 

will include its proof. 

4.2.5. LEMMA. Let f E C(aX,I) and let u be open in ax. If Ac ax is strong

ly w1 compact, then 

{o E (0,1) I cl x(U) n cl x(U(o,f)) n At- cl (UnU(o,f)) nA} 
a a ax 

is countable. 

PROOF. Assume that it were uncountable. If for some o E (0,1) we have that 

then there is an a(o) E ((clax(U) n clax(U(o,fll)\claX(UnU(o,f))) n A. 

Let B be the set of a(o) chosen in this way. Clearly f(a(o)) = o for all 

a(o) EB which implies that Bis uncountable and also that the order< 

on B defined by 

is a total ordering. Since B c A and since A is strongly w1 compact, 



there is an a(o0) in B which is a limit point from below. Let O be any 

open neighborhood of a(o 0 ). Then there is an a(o 1 ) € O with o1 < o0 • 

Then a(o 1 ) € U(o 0 ,f) n O and consequently~# U(o 0 ,f) n On U 

on (U(o 0 ,f) n U), since a(o 1 ) € clax(U). It now follows that 

a(o 0 ) € clax(unu(o0 ,f)) n A, which is a contradiction. D 

We now can prove the main result in this chapter. 
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4.2.6. THEOREM. Any compactification of a topological space X in which the 

collection of multiple points is strongly w1 compact is a z-compactification. 

4.2.7. COROLLARY. Any compactification of a topological space X in which the 

collection of multiple points is Lindelof semi-stratifiable is a z-compac

tification. 

* * PROOF. Let M denote the closure of Min ax. Then M is a compactification 

* of Mand since Mis separable we have that the weight of M is at most Q. 

Let B be an open base for the topology of M* which is closed under finite 

intersections and finite unions and which contains at most Q members. 

Define 

For each (clax(B0 ),clax(B1)) € C, choose an f € C(ax,I) such that 

f[clax(B0 )J = 0 and f[claX(B 1)] = 1. Let F denote the set of mappings 

obtained in this way. Write F { f I K € Q}. 
K 

By transfinite induction we will construct for each KE Q a oKE (0,1) 

such that 

(i) -1 
clax(fK [O,oK) n X) n M = clax(U(OK,fK)) n M; 

(ii) clax(U(oK,fK)) n clax(V) n M = clax(U(oK,fK) nV) n M, 

Let KE Q and assume that oS is defined for all S < K. If K 

choose o E (0,1) such that 

0 then 

Such a choice for o is possible (cf. lemma 4.2.4). Define OK:= o. If 

K # 0, let V := A.V.{U(os,fs) I S < K}. Then if V € V we have that 
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l{oE (0,1) I cl x(U(o,f )) n cl x<v) nM t- cl x(U(o,f) nv) nM}I sw, a K a a K 

by lemma 4.2.5 and consequently 

I Uv{oE (0,1) I cl x(U(o,f )) ncl x .. (V) nM 1- cl~V(U(o,f) nv) nM}I < c.. 
VE a K a ""' K 

From lemma 4.2.4 it now follows that there exists a o E (0,1) such that for 

all v EV we have that cl x(U(o,f )) n cl (V) n M = clax(U(o,fK) nv) nM _1 a K ax 
and also that clax(fK [0,o] n X) n M = claX(U(o,fK)) n M. Now define 

0 := o. This completes the inductive construction. 
K 

-1 
Now, for each a E c. define H := fa [O,oa] n x. Notice that H € Z (X) 

a a 
for all a € c.. Finally define H := {H 

a I a E c.} and 

¢ or M* c int cl x(Z)} u H. 
ax a 

Using the compactness of ax it is easy to show that 

is a separating ring. We will show that for each finite number of elements 

L0 ,L1 , ..• ,Ln E L the equality 

cl x(.Q L.) = .Q clax(L1.) a J._n i i-n 

holds, which then proves the theorem (cf. theorem 4.1.6). 

If Lit H (is n) then apply lemma 4.2.3 and use the analogous 

equality 

in 8X. Notice that equality(**) holds because Li E Z(X) (is n). So it 

suffices to prove equality(*) in case L1 ,L2 , •.. ,Ln EH and L0 t H (if 

all Li EH then enlarge {L0 ,L1 , •.. ,Ln} with Ln+l = X and renumber them). 

suppose that equality(*) does not hold; then there exists an 

We have to consider two cases: 

* CASE 1. clax(Lo) n M ¢. 

Since x0 E niSn clax(Li) c clax(L0) it follows that x0 t M*. Let 

Y := aX\M. Notice that Y is homeomorphic to ~-l[Y]. Then 
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( lemma 4 . 2 . 2) 

this is a contradiction. 

* CASE 2. M c intax clax(L0). 

-1 
Let L. = fK [O,oK.J n X (i E {1,2, .•• ,n}). If XO i M then use the 

i i i 

same technique as in case 1 in 
n 

suppose x0 EM; then x0 E ni=l 

order to derive a contradiction. Next, 
-1 

claX(fK/0,oK.Jnx) n clax(L0 ) nM and con-
i 

sequently (i) 

((ii)) 

claX(i~l U(oKi'fKi)) n clax(Lo) n M 

clax(B1 U(oKi'fKi>) n intax clax(L0) n M 

C cl ( n Li.) n M 
ax i~n 

C cl ( n Li,), 
ax i~n 

which is a contradiction. This completes the proof of the theorem. D 

Since separable metric spaces and countable spaces are Lindelof semi

stratifiable we have the following corollaries: 

4.2.8. COROLLARY (cf. [1],[109]). Every metric compactification is a 

Wallman compactification. 

4.2.9. COROLLARY (cf. [112]). Every countable multiple point compactifi-

cation is a z-compactification. 

4.2.10. We will now prove that certain compactifications of strongly w1 

compact spaces are regular Wallman. For this, we assume for the remainder 

of this section that Xis a strongly w1 compact space and that ax is a 

compactification of X. As before M denotes the set of multiple points 
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of ax. If B c X then B denotes the closure of Bin X. 

We need a simple lemma. 

4.2.11. LEMMA. Let U and V be open subsets of ax such that 

(i) (UnX) n (VnX) (unvnx)-; 

(ii) clax(U) n clax(V) n M = claX(UnV) n M; then 

clax(U) n clax(V) = clax<unv). 

PROOF. Suppose to the contrary that there exists an 

Let Y := aX\M. Since Xis Lindelof (cf. theorem 4.1.10) Xis normal and 

consequently 

clBX ( (UnVnX) 

= c18xcunvnx). 

Hence it follows that cly(UnX) n cly(VnX) = cly(unvnx) and therefore 

x0 i Y. It is also clear that x0 i M. Contradiction. D 

This lemma implies the following theorem. 

4.2.12. THEOREM. Any compactification of a strongly w1 compact space in 

which the collection of multiple points is also strongly w1 compact, is 

regular Wallman. 

4.2.13. COROLLARY. Any compactification of a Lindelof semi-stratifiable 

space in which the collection of multiple points is also Lindelof semi

stratifiable, is regular Wallman. 

PROOF. Since Xis separable it follows that the weight of ax is at most c. 

Let Ban open basis for ax, closed under finite intersections and finite 

unions, which has at most C members. Define 

C := {clax(Bo),clax(B1)) BO,Bl EB 

and clax(B0 ) n clax<B1) ¢}. 
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Let F denote the set of mappings obtained in this way; write F = { f I K E c.}. 
K 

By transfinite induction we can construct, in a similar manner as in the 

proof of theorem 4.2.6, for each K € c. a oK E (0,1) such that 

(i) cl0 x(U(oK,fK)) n cl0 x(V) n M = cl0 x(U(oK,fK) n V) n M 

for all VE A.V.{U(os,fs) I B < K}; 

(ii) (U(oK,fK) n V n X) = (U(oK,fK) n X) n (VnX) 

for all VE A.V.{U(oB,fB) I B < K}. 

Here we use lemma 4.2.5 in case A= X. From lemma 4.2.11 we deduce that 

A.v.{cl X(U(o ,f )) j KE c.} is a ring of regular closed sets in ax. D 
a K K 

4.2.14. COROLLARY (cf. [16]). BX is regular Wallman if Xis regular 

Lindelof semi-stratifiable. 

4.2.15. COROLLARY to COROLLARY (cf. [85]). SX is regular Wallman if Xis 

separable metric. 

4.3. Compactifications of locally compact spaces with zero-dimensional 

remainder 

For a locally compact space X we give a necessary and sufficient con

dition for every compactification ax of X with zero-dimensional remainder 

to be regular Wallman. As an application it follows that the Freudenthal 

compactification of a locally compact metrizable space is regular Wallman. 

The results in this section are taken from BAAYEN & VAN MILL [11]. 

4.3.1. For shortness, from now on a separating ring of regular closed sets 

of a topological space X will be called ans-ring. 

4.3.2. PROPOSITION. Any open subspace of a regular Wallman space possesses 

an s-ring. 

PROOF. Let Ube an open subspace of the regular Wallman space X and let 

F be ans-ring for x. Then it is easy to see that S := {F nu FE F} 

is ans-ring in U. 0 
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4.3.2. Notice that a closed subspace of a regular Wallman space need not 

have ans-ring, for SOLOMON's [107] example can be embedded in a product 

of closed unit segments and each product of closed unit segments is 

regular Wallman (cf. STEINER & STEINER [109]). 

4.3.3. When A and Bare open subsets of the topological space X and 

A n B = ¢, we will write A+ B instead of A u B. If X is a locally compact 

space and Fis ans-ring in X then we will write 

F* := {F €FI Fis compact or (X\F) is relatively compact}. 

Clearly F* is ans-ring. In addition, if ax is any compactification of X, 

we define a collection aF of subsets of X in the following manner: 

SE aF: - there are FE F*, compact Kc X and open subsets v1 ,v2 
of ax such that: 

(i) F n K = ¢, 

(ii) aX\K = vl +V2 and S 

4.3.4. LEMMA. Let X be a locally compact space, ax a compactification of 

X, and Fans-ring in X. Then aF is closed under finite intersections, 

and v.aF is again ans-ring. 

PROOF. First notice that aF consists of regular closed sets. Secondly we 

show that aF is closed under finite intersections. Take s 0 ,s1 E aF. Then 

for i € {0,1} there exist Fi E F*, compact Ki c X and open ui,Vi c ax such 

that aX\Ki = ui +Vi and Fin Ki=¢ and si Fin ui. Then s 0 n s 1 = 

(F0nF1) n (u0nu1). Since K0 u K1 is compact, (F0nF1) n (K0uK1) =¢,and 

it follows that s 0 n s 1 E aF. 

Trivially F* c aF and hence aF is separating if F* is. To prove the 

latter, let x € X and let G be a closed set in X such that xi G. Take an 

open Uc X such that x Eu c clx(U) and clx(U) n G =¢,while moreover 

clx(U) is compact. This is possible since Xis locally compact. Now, Fis 
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separating and therefore there exist F0 ,F1 E F such that x E F0 , X\U c F1 
* * and F0 n F1 =¢.Evidently F0 ,F1 E F and hence F is separating. 

Since the union of finitely many regular closed sets is again regular 

closed it now follows that v.aF = A.v.aF is ans-ring. D 

4.3.5. THEOREM. Let X be a locally compact space. Then the following 

assertions axe equivalent: 

(i) X possesses an s-xing; 

(ii) any compactification ax of X with zero-dimensional remainder 

pX = ax\X is regular Wallman. 

PROOF. (ii)• (i). This follows from proposition 4.3.2. 

(i) • (ii). Let F be ans-ring in X and let S := {claX(S) I SE aF}. We 

will show that v.S is ans-ring in ax, which implies that ax is regular 

Wallman. 

Let F E F* and let K be a compact subset of X such that ax\K VO+ V 1 

and F n K =¢;we put Si F n V. (i E {0,1}). 
l. 

Indeed, if Fis compact, then also Si is compact; consequently claX(Si) =Si. 

If X\F is relatively compact, then clax(F) =Fu pX and consequently 

Since clax(s0us 1) n pX = pX and clax(s0 ) n clax(s 1) 

clax(Si) = Si u (pXnVi) (i E {0,1}). 

¢ it follows that 

If s 0 or s 1 is compact, then this is a triviality. Therefore suppose 

neither is compact. For i E {0,1} let Ki be a compact subset of X, 

* Fi E F and ui,Vi open subsets of ax such that Si Fin vi, while 

aX\Ki vi +Ui and Fi n Ki=¢. Then 
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Suppose that there exists an x € (clax(s0) n clax(s1))\claxcs0ns1). Then 

x € v0 n v1 • Now, as claX(F0 nF1) n pX = pX, it follows (cf. the proof of 

lelllllla 4.3.4) that 

which is a contradiction. 

It now follows that T := v.S is a ring consisting of regular closed 

sets. 

CLAIM 3. Tis separating. 

Let x0 € ax and let G be a closed set of ax such that x 0 t G. If x0 € X, 

then the existence of T0 ,T 1 € T such that x0 € T0 and G c T 1 and T0 n T 1 = Ill 

is evident. So, we may assume that x0 € pX. Since pX is zero-dimensional 

it possesses a base of open and closed sets. Let C be an open and closed 

set of pX such that x0 € C and C n G =Ill.Define c 0 = pX\C. Then C and c0 
are disjoint closed subsets in ax such that c 0 u C pX. As ax is normal, 

there exist open u0 ,u1 c ax such that c 0 u G c u0 , cc u 1 and u0 n u 1 = Ill. 

Then K = aX\(u0 uu1) is a compact subset of X such that Kn G =Ill-Choose 

a relatively compact open O in X such that Kc O c clX(O) and 

clX(O) n (GnX) Ill. As F* is separating we conclude that 

x\o = n{F € F* I x\o c F} 

.and consequently, by the compactness of K, there exists an F € F* such 

that X\O c F and F n K =Ill.Define so := F n uo and sl := F n ul. From 

claim 1 it now follows that x0 € clax(s1) and G c clax(s0 ) and 

claxcs0 ) n claxcs1) = Ill. 

This completes the proof of the theorem. D 

4.3.6. COROLLARY. Let X be a topological space and let ax be a compacti

fication of X such that the set M of multiple points is compact and zero

dimensional. If ax is regular Wallman, then also ax is regular Wallman. 

~- By proposition 4.3.2 aX\M possesses ans-ring and hence, as ax is 

a compactification of aX\M, the space ax is regular Wallman (cf. theorem 

4.3.5). □ 
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4.3.7. In [85] MISRA showed that BCI. IX.) is regular Wallman if BX. is 
1€ 1 1 

regular Wallman for all i €I.It is well known that any locally compact 

metrizable space is a topological sum of locally compact separable metric 

spaces. As BX is regular Wallman if Xis separable metric (cf. MISRA [85], 

also corollary 4.2.15) this implies that BX is regular Wallman if Xis 

locally compact and metrizable. This yields the following: 

4.3.8. COROLLARY. Let X be a locally compact metrizable space. Then each 

bouding system compactification of Gould, all finite and countable com

pactifications, all finite multiple point compactifications and the 

Freudenthal compactification are regular Wallman. 

PROOF. Bounding system compactifications of Gould have only one multiple 

point (cf. NJASTAD [88]) and the Freudenthal compactification has zero

dimensional remainder. D 

4.3.9. In [85] MISRA also showed that BX is regular Wallman in case Xis 

normal and homeomorphic to a finite product of locally compact ordered 

spaces. Thus the above corollaries also hold for these spaces. 

4.4. Tree-like spaces and Wallman compactifications 

V 
We show that the Cech-Stone compactification BX of a peripherally 

compact tree-like space X, which has at most e closed subsets, is regular 

Wallman. 

4.4.1. Let X be a peripherally compact tree-like space (cf. 1.3.16). For 

all distinct a,b EX define 

S(a,b) := {x € X I x separates a and b} u {a,b}. 

It is well known that S(a,b) is an orderable connected subspace of X with 

two endpoints (cf. PROIZVOLOV [92]; also KOK [70]) and therefore S(a,b) is 

compact (cf. KELLEY [69]). 

In [93] PROIZVOLOV proved that any two disjoint closed sets A and B 

are separated by a closed discrete set C = {x I a EK}; that is X\C is 
a 

the union of two disjoint open sets u0 and u1 such that Ac u0 and B c u1. 

The set C is not uniquely determined. In fact, each xa is a point arbitrarily 
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chosen from S(a ,b )\{a ,b} for certain a ,b € X (a€ K). Hence it a a a a a a 
follows that for each x there are at least c different choices. 

a 
This observation will be used in the proof of the following theorem. 

4.4.2. THEOREM. Let X be a peripherally compact tree-like space. Suppose 

X has at most c closed subsets. Then ax is regular Wallman. 

PROOF. Let B the collection of closed subsets of x. Define 

A:= {(A,B) I A,B €Band An B = ~}. 

Write A= {(A ,B) I a€ c}. For each a€ c we will construct an open suba a 
set U of X such that: 

a 

(i) Aa c ua c clx(Ua) c X\Ba; 

(ii) au is discrete; 
a 

(iii) 6 < a implies that au6 n aua = ~-

Suppose that all ua are defined for a< a. If a= 0, choose an open o in 

x with discrete boundary such that A0 co c clx(O) c X\B0 and define 

u0 := 0. If a f 0, then define 

H := A.v.{ua I a < a}. 

It is clear that His a family of less than c open sets with discrete 

boundary. Let C = {xi i € I} be a discrete set separating Aa and Ba' 

and, for each i € I, let S(ai,bi) be selected in such a way that 

xi€ S(ai,bi)\{ai,bi} while, moreover, for any choice of 

Yi€ S(ai,bi)\{ai,bi} (i € I) the set D = {yi I i € I} is again a closed 

discrete set separating Aa and Ba (cf. 4.4.1). Since S(ai,bi) is compact 

we have that 

for all H €Hand consequently 

I u caa n S(a.,bi)l I < c. 
H€H 1. 

For each i € I choose x1 € S(ai,bi)\{ai,bi} such that x1 i. UH€H(aHnS(ai,bi)). 

It is clear that such a choice is possible. Define C' = {x1 I i € I}. Let 

O be an open subset of X such that Aa c O c clx(O) c Ou C' c X\Ba and 

define Ua := o. This completes the transfinite construction. 
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Finally define V := A.v.{u I a€ c}. As the intersection of two a 
regular closed sets with disjoint boundaries, is again regular closed it 

immediately follows that {clx(V) I V € V} is a ring consisting of regular 

closed sets of x, while moreover it separates (in the sense of 2.3.1) the 

closed subsets of x. Since xis normal, ax is regular Wallman (cf. MISRA 

[85], theorem 3.4). D 

4.4.3. The proof of the previous theorem is a modification of the proof 

of theorem 1.4.8. There we showed that a compact tree-like space of 

weight at most c is regular supercompact, hence, in pa1:ticular, is regular 

Wallman. This suggests the following question. 

4.4.4. QUESTION. Are all compact tree-like spaces regular Wallman? 

4.5. Regular supercompact superextensions 

In section 1.4 we defined a space X to be regular .supercompact 

provided that X possesses a binary subbase T such that A.v.T is a ring 

consisting of regular closed sets. Since superextensions are supercompact 

in a canonical way, it is natural to ask in what cases spaces AX are 

regular supercompact. We will prove that in case ax is regular Wallman, 

A(X,Z(X)) is regular supercompact. Hence for a normal space X it follows 

that .AX is regular supercompact if ax is regular Wallman. 

4.5.1. LEMMA. Let X be a topological space and let F be a separating ring 

of regular closed subsets of x. If M = {F1 , ••• ,Fn} cf is a finite linked 

system then there is a finite linked system M• = {Fi,···,F~} cf such that 

F1 c intX(Fi) for all is n. 

PROOF. For i,j s n choose Fij Fji € f such that Fij c intX(FinFj) and 

Fij ~~-This is possible since f is separating and is a ring consisting 

of regular closed sets and Mis linked. Define 

F' 
i 

for all i $ n. It is clear that M• 
properties. D 

{Fi•···•F~} has the desired 
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2. 5. 2. THEOREM. Let X be regular Wallman and Hausdorff. Then AX is regular 

supercompact (and hence regular Wallman). 

~- Let f be a separating ring of regular closed subsets of X. Then f 

separates the closed subsets of X (cf. O.A) and consequently AX and A(X,f) 

are equivalent (cf. theorem 2.4.2). Hence it suffices to show that A(X,f) 

is regular supercompact. 

. + 
CLAIM 1. Choose F € f. Then (intx(F)) is open in A(X,f). 

Indeed, let M € (intx(F))+. Choose M0 € M such that MO c intx(F). As f 

separates the closed subsets of X there is an F0 € f such that 

X\(intx(F)) c F0 and F0 n M0 =~-Therefore M € (X\F0)+ c (intx(F))+. 

~ 2. {(intx(F))+ I F € f} is an open subbase for A(X,f). 

Choose M € n., u: with X\U. € f (is n). Fix is n and choose M € M 
1.:.n 1 1 

such that Mc ui. By normality of X there is an open subset O c X such 

that 

Choose Fi€ f such that clx(O) c Fi c ui. Then 

M € 
+ + + 

n (intx(Fill c n Fi c n ui 
iSn iSn iSn 

CLAIM 3. A.V.{F+ I F € f} is a regular ring. 

+ It suffices to prove that nisn Fi (n € w) is regular closed in A(X,f) for 

arbitrary Fi€ f (is n). Let M € n.< F: and let Ube any open neighbor-
1-n 1 

hood of M. Without loss of generality, by claim 2, 

u = n (intx(Tj)l+ 
jSm 

where T. € 
J 

f (j s m). Clearly 

M € + n + 
n Tj n Fi jSm iSn 

and consequently {Tj I j s m} u {Fi I is n} is linked. By lemma 2.11.1 

there are Tj € f (j s m) and F1 € f (is n) such that 



T' c int (T ) 
j X j 

and (j :,;m, i :,;n); 

{T'. i:,; n} is linked. 
J 

+ that LE n.< T'. n 
J-m J 

n.< F'.+. Then 
i-n l. 

Choose LE A(X,F) such 

LE n.< (intx(TJ.ll+ n 
J-m 

n.< (int (F.))+. 
i-n -x i 

In particular 

u n n (intx(Fi.ll+ f ¢. 
i,5;n 

It follows that ni"<_n F~ is the closure (in A(X,F)) of n.< (intx(F.))+; 
l. J._n l. 

consequently ni:,;n F: is regular closed. D 

4.5.3. COROLLARY. 

(i) If BX is regular Wallman then A(X,Z(Xll is regular supercompact; 
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(ii) AX is regular supercompact if Xis a regular Lindelof semi-stratifi

able space; 

(iii) AX is regular supercompact if Xis normal and homeolOCJrphic to a 

finite product of locally compact ordered spaces. 

PROOF. (i) This follows from corollary 2.2.6 and theorem 2.5.2. 

(ii) This follows from corollary 4.2.14. (iii) MISRA [85] showed that 

BX is regular Wallman if Xis normal and homeomorphic to a finite product 

of locally compact ordered spaces. D 

Finally we prove that a regular supercompact space is a superexten

sion of each of its dense subspaces. 

4.5.4. THEOREM. A regular supercompact space is a superextension of each 

dense subspace. 

PROOF. This immediately follows from the definition of regular super

compactness and from theorem 2.2.5. D 

4.6. GA compactifications; some preliminaries 

This section contains some preliminary results concerning GA compac

tifications. These results will be used in section 4.7 to show that each 

compact Hausdorff space of weight at most c is GA compactification of 
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each dense subspace. 

4.6.1. As noted in section 2.2, the GA compactification S(X,S) of the 

topological space X relative the closed T1-subbase Sis the closure of X 

in the superextension A(X,S). One of the basic properties of the GA com

pactification S(X,S) is that it is Hausdorff in case Sis weakly normal 

(cf. 2.2.1 (ii)) (cf. DE GROOT & AARTS [57]).As mentioned earlier DE GROOT 

& AARTS [57] used this fact to obtain a new intrinsic characterization of 

complete regularity: a topological space is completely regular if and 

only if it possesses a weakly normal closed T 1-subbase. This result con

siderably strengthened FRINK's [51] result and it motivates the interest 

in GA compactifications. It is unknown whether there exists a direct 

proof of the above characterization, i.e. a proof without using compactifi

cations. For FRINK's [51] result there are several direct proofs (cf. 

STEINER [115], VAN MILL & WATTEL [84]). 

4.6.2. LEMMA. Let S be a closed T 1-subbase for the topological space X. 

Then the following assertions are equivalent: 

(i) S(X,S) is Hausdorff; 

(ii) Sis weakly normal; 

(iii) {s+ n A(X,S) I s ES} is weakly normal. 

PROOF. (i) • (ii). Assume that S(X,S) is Hausdorff and take s 0 ,s1 ES 
+ + such that s 0 n s 1 =¢.Then (s0 n S(x,S)) n cs1 n S(x,S)) =¢and hence 

there exist open disjoint Ui c S(X,S) such that 

s: n S(X,S) cu. 
l. l. 

(i E {0,1}). 

Then S(X,S)\Ui is closed in S(X,S) and as S(X,S) is closed in A(X,S) it 

is closed in A(X,S) too (i E {0,1}). Since s+ is a closed subbase for the 

compact space A(X,S) there exist Tij ES and Tij ES (i,j Sn, nEw) such 

that 

(i) 8(X,S)\u0 C UiSn n. T":.; S(X,S)\01 C UiSn n.< T!:'; ]Sn l.J J-n l.J 

(ii) UiSn njSn T":. 
+ 

= ¢ = UiSn n.< T!°: 
+ 

n so n s1. l.J J-n l.J 

(Notice that a finite intersection of finite unions of subbase elements 

also can be represented as a finite union of finite intersections of sub

base elements.) Ass+ is binary, for each is n there is a j 0 (i) s n such 



that T;jo(i) n s~ =¢and a jl (il $ n such that Ti;i(il 

writing Ti for TijO(i) and Ti for Tijl(i) we find that 

(i) 8(X,S)\Uo c ui$n T;; 8(X,S)\U1 c ui$n Ti+; 

(ii) ui$n T; n s~ = ¢ = ui$n Ti+ n s;. 

Then 

8(X,S) u + u T:+. X C C T. u 
i$n 1. i$n 1. 

and consequently 

X = lJ (T'.nx) u u (T:+nx) 
i:,n 1. i$n 1. 

Moreover it is obvious that Ui:,n Tin s 0 

that Sis weakly normal. 

u 
i$n 

T. u u 
1. i$n 

211 

T'. 
i 

(ii)• (i). See DE GROOT & AARTS [57, lemma 9] or VERBEEK [119, Theorem 

11.2.3]. 

(ii) ,. (iii). 
+ + + + + 

Choose s 0 ,s1 ES such that s 0 n s 1 

there exist T. 
1. 

ES and T: ES (i $ n) such that 

(ii) Ui$n Tiu 

Then it follows 

x c 8(X,S) c 

and consequently 8(X,S) 

1. 

u 
i:,n 

+ T,, 
1. 

(iii)• (ii). This can be proved in a similar way. D 

4.6.3. THEOREM. A Hausdorff compactification ax of Xis a GA compactifi

cation if and only if ax possesses a weakly normal closed T 1-subbase T 

such that for all TO,Tl ET with Ton Tl 1 ¢ we have Ton Tl n x 1 ¢. 

PROOF. (•). This follows from lemma 4.5.2 and from the trivial observa

tion that if ax= 8(X,S), then {s+ n 8(X,S) I SES} is a closed T1-sub

base for 8 (X ,S) • 

(.-). Suppose that ax possesses a weakly normal closed T1-subbase T such 

that for all T0 ,T1 ET with TO n T1 1 ¢ we have that TO n Tl n X 1 ¢. 
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Define 

T fX = {T n x I TE T}. 

We will show that ax is equivalent to S (X, T f X) 

For all x E ax define M(x) := {T n X j TE T and x ET}. 

CLAIM 1. M (x) is a maximal linked system (in T f X). 

That M(x) is a linked system is evident. Assume that there is a TE T 

such that M (x) u {T n x} is linked and x i. T. Then there is a T0 E T 

such that x E T0 and T0 n T = Ill, since Tis a T1-subbase. Now T0 nxEM(x) 

and (T0nx) n (TnX) =¢,which is a contradiction. 

Define a mapping f: ax-+ A(X,T fX) by f(x) := M(x). 

CLAIM 2. f is one to one and continuous and is the identity on X. 

Choose distinct x,y EX. Choose disjoint T0 ,T1 ET such that x E T0 and 

y E T1 . Then T0 n x E M(x), T1 n x E M(y) and (T0nx) n (T1nx) = Ill; 

consequently M(x) ~ M(y). 

X E 

The continuity off follows from the following observation: 

f- 1[(TnX)+] - f(x) E (TnX)+ - (TnX) E M(x) - x ET. 

Finally, choose x EX. Then f(x) = M(x) = {TnX j TET and XET}=x, 

which shows that f is the identity on X. 

CLAIM 3. f is a closed mapping. 

As f is one to one, we need only show that f[T] is closed in A (X, T f X) 

for all TE T. This however is a triviality, since it is easy to show 

that f[T] (TnX) + n s (X, T f X) for all T E T. 

Since f is the identity on X we conclude that f: ax -+ S (X, T r X) is 

a homeomorphism. D 

We conclude this section with a sufficient condition for extending 

continuous functions over GA compactifications. (We refer to 2.3.1 for 

the definition of the relation C between closed subbases.) 

4.6.4. THEOREM. Let S be a T 1-subbase for X and let T be a weakly normal 

T1-subbase for Y and let f: X + Y be a continuous map such that 
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Then f can be extended to a continuous map f: B(X,S)--+- B(Y,T). Moreover, 

if f is onto then f is onto. 

If f is 1 - 1 and {f[S] I S E S} C: T then f is an embedding. 

PROOF. The proof is almost the same as the proof of theorem 2.3.4, except 

for some replacements of two elements covers by finite covers. D 

In a similar manner one obtains an analogue of corollary 2.3.5. 

4.6.5. COROLLARY. Let S be a separating ring of closed subsets of X, and 

let T be a weakly normal T1-subbase for Y and let f: X + Y be a continuous 

surjection. Then the following assertions are equivalent: 

(i) there is a continuous surjection f: B(X,S)--+- B(Y,T) such that 

f ~ X = f; 
(ii) {f-1[T] I T € T} Ls. □ 

4.7. Every compactification of a separable space is a GA compactification 

In this section we show that any compact space of weight at most C 

is a GA compactification of each dense subspace. First we show that any 

compact space of weight at most c is a GA compactification of each dense 

open subspace. Then using a technique of SAPIRO [101a] (cf. also UNLU 
[117a], STEINER & STEINER [113]) we derive the above result. 

4.7.1. For technical reasons we need to define a new class of compactifi

cations. 

DEF'INITION. Let X be a topological space and let ax be a compactification 

* of X. Then ax is called a GA compactification of X provided that ax pos-

sesses a family T of closed sets satisfying: 

(i) for every pair of disjoint closed sets A0 ,A1 c ax there are disjoint 

TO,Tl € T with Ai C Tl (i € {O, 1}) (i.e. 2ax C:: T, cf. 2 .3 .1); 

(ii) for all TO,Tl E T with TO n T 1 f- ¢ we have that Ton Tl n X f- ¢. 

4.7.2. LEMMA. Each Wallman compactification is a GA* compactification and 

* each GA compactification is a GA compactification. 
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* PROOF. That every Wallman compactification is a GA compactification fol-

lows from theorem 4.1.4 and theorem 4.1.6. 

Let ax be a compactification of X and let T be a family of closed 

sets of ax satisfying (i) and (ii) of definition 4.7.1. Clearly Tis a 

closed base which is T1 . We will show that Tis normal, which suffices to 

prove the lemma (cf. 4.6.3). Choose disjoint T0 ,T1 € T and let u0 and u1 

be disjoint neighborhoods of T0 and T1 respectively. Then, by 4.7.1 (i) 

there are T0,T1 € T such that aX\Ui c Ti and Tin T1 = ¢ (i € {0,1}). 

Consequently Tis normal. D 

The following proposition was the main result in VAN MILL [78]. 

4.7.3. PROPOSITION. Let aX be a compactification of a locally compact 

* space X such that weight (aX) s c. Then ax is a GA compactification of X. 

PROOF. Let 8 be an open basis for ax such that 181 s c. Without loss of 

generality we may assume that 8 is closed under finite intersections and 

finite unions. Define 

For each pair (claX(B0) ,clax(B1)) EC choose an f E C(aX,I) such that 

f[claX(B0)] = 0 and f[claX(B 1)] = 1. Let F denote the set of mappings ob

tained in this way; write F = {f I y E c}. For each y E c we will con-
y 

struct a o € (0,1) such that 
y 

for all p < y. 

Let f € F and define M := {f-l (p)\X I p € f [aX\X]} u {{x} j XE x} 
y y y 

and let a (X) be the decomposition space of M. It is easily seen that 
y 

a (X) is Hausdorff; consequently a (X) is a compactification of X with y y 
f [aX\X] is a remainder. Let P denote the projection map. Then P is the 

y y -1 y 
identity on X. Finally define h : a (X) -->- I by h f O P . Then h is 

y y y y y 
continuous and the diagram 



commutes. 

p 
y 

ax---------~ 

I 

h y 

a (X) 
y 

Define o0 :=!and assume that all op have been defined for p < y 

(y € C) such that (*) is satisfied. If B ca (X), then B denotes the 
y 
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closure of Bin a (X). As in the proof of theorem 4.2.6 there is a o € (0,1) 
y 

such that 

f- 1[o,o ) n x n h-1[0,ol n Ca (Xl \Xl 
p p y y 

for all p < y (notice that a (X)\X is homeomorphic to a closed subset of 
y 

the real line and hence is strongly w1 compact). Define oy := o. We claim 

that(*) is satisfied. Take p < y and assume that cl x<f- 1[0,o )) n 
-1 a y y 

cl X(f [0,o )) #¢.Then 
a P P 

since it is easily seen that P (cl X(U)) 
Therefore Y a 

unx for each open u C ax. 

Now assume that h-1[0,o ) n f- 1[0,o ) nx n x 
y y p p 

¢. It then follows that 
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-1 -1 
and consequently h [O,o) n f [O,o) n X,; ¢, which is a contradiction. 

y p p 
-1 -1 

Therefore h [0,o ) n f [0,o ) n x n x ,; ¢. Let y y p p 

x E h-1[o,o > n f- 1[o,o > nx n X; 
y y p p 

then x E cl x<f-1[0,o )) n clax(f-1[0,o )) n x. Thus (*) holds indeed for 
a y y P P 

of the o (y E c.) • 
y 

y E c.}. It is easy to see that A 

oy; this completes the construction 

Define A := {cl x<f-1[0,o i) I 
a y y 

separates the closed subsets of aX; consequently ax is a GA* compactifi-

cation of X. D 

The following leDD11a is straightforward generalization of a lemma 

due to UNLU ([117a]; cf. also STEINER & STEINER [113]). 

4.7.4. LEMMA. Let a0x0 and a 1x1 be compactifications of x0 and x 1, respect

ively. Let f: a 0x0 --..·a1x1 beacontinuous surjection such that f[x0J = x 1 , 

and f ~ (a0x0\x0) is one to one. If a 0x0 is a GA* compactification of x0 
then a 1x 1 is a GA* compactification of x 1 • 

~- Let T be a family of closed sets in a0x0 satisfying (i) and (ii) 

of definition 4.7.1. Define S := {f[T] I TE T}. We will show that S satis

fies the conditions of definition 4.7.1. Indeed, take disjoint closed sets 

A0 ,A1 c a 1x1 and take disjoint open neighborhoods u0 ,u1 of them. By 
-1 -1 

4.7.1 (i) there are T0 ,T1 ET such that f [Ai] c Tic f [ui] (i E {0,1}). 

Then Ai c f[Ti] c ui (i E {0,1}). Clearly S consists of closed subsets of 

alxl. 

Take TO,Tl ET such that f[To] n f[Tl] 'f ¢. Suppose that 

f[T0 ] n f[T 1] n x 1 =¢.Then there is a y E f[T0 ] n f[T1] n (a1x 1\x1). 

Choose xi E Ti such that f(xi) = y (i E {0,1}). Clearly xi i. x0 (i E {0,1}) 

since f[x0 J = x 1 so that x0 = x 1, since f ~ (a0x0\x0) is one to one. We 

conclude that T0 n T1 ,; ¢ and consequently T0 n T1 n x,; ¢. Therefore 

f[T0] n f[T 1] n f[x0 J = f[T0 J n f[T 1] n x1 ,; ¢, which is a contradiction. D 

The next lemma is a straightforward generalization of a leDD11a due 

to SAPIRO [101a]. 

4.7.5. LEMMA. Suppose that X =Yu z and that ax is a compactification 

* of X. If claX(Y) and clax(Z) both are GA compactifications of Y and z, 
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* then ax is a GA compactification of x. 

PROOF. Let Sand T be families of closed sets of clax(Y) and of clax(Z), 

satisfying 4.7.1 (i) (ii). Let w := claX(Y) n clax(Z). Define 

F := {s u T I s ES, TE T ands n w c T}. 

We will show that F satisfies 4.7.1 (i) (ii). 

Indeed, choose disjoint closed sets A0 ,A1 c ax. Choose disjoint 

s 0 ,s1 ES such that Ai n clax(Y) c Si (i E {0,1}). In addition, choose 

cl x(Z)) u (S. n W) c T, (i E {0,1}). disjoint T0 ,T1 ET such that (A. n 

Thens. 
l. 

(s0uT0) 

u Ti E F while 

n (S 1uT1) = ¢. 

moreover 
l. a l. l. 

Ai c Si U Ti (i € {0,1}) and 

Let F. = S. UT. € 
l. l. l. 

F Ci E {O, 1 }) such that Fon Fl 'f' ¢. If s0 n T0 f ¢ 
or T0 n T1 f ¢ then clearly F0 n F1 n X f ¢. Therefore assume that 

s0 n Tl f ¢. Then cs0nwl n Tl f ¢ and consequently, by definition, also 

TO n T1 'f' {ll. The case s 1 n T0 'f' {ll can be treated analogously. □ 

We now can prove the main result in this section. The technique of 

proof is again due to SAPIRO [101a]. 

4.7 .6. THEOREM. Every compact Hausdorff space of weight at most c is a 

GA* compactification of each dense subspace. 

PROOF. Let X be a compact Hausdorff space of weight at most C and let Y 

be a dense subspace of X. Let D be the set of isolated points of Y. 

Define E := Y\cly(D). Then Eis an open subspace of Y without isolated 

points. 

CLAIM. cl (E) is a GA* compactification of E. 
-- X 

Indeed, let z := clx(E) and let A be a dense subspace of E of cardinality 

at most c. Topologize B := (Zx{O}) u (Ax{l}) by taking as an open base 

the collection 

V := {(a,1) I a E A}u {(U x {O}) u ((UnA)\(a,1)) I u open in 

z and a Eun A} 

(cf. ENGELKING [49]). Clearly Bis a compact Hausdorff space of weight at 

most C. Also Ax {1} is dense in B, since E has no isolated points. Now, 

by proposition 4.7.3 Bis a GA* compactification of Ax {1}. Define a 
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mapping f: B ➔ Z by 

{f((x,O)) 

f( (e,1)) 

= X 

= e 

(x E Z) 

(e E E). 

Then f clearly is continuous. By lemma 4.7.4 it now follows that Z is a 

* GA compactification of A. By an obvious argument it now follows that Z 

* is a GA compactification of E too. 

* By proposition 4.7.3 it also follows that clX(D) is a GA compacti-

* fication of D. Thus, lemma 4.7.5 implies that Xis a GA compactification 

* of Du E. By an obvious argument it now follows that Xis a GA compacti-

fication of Y. D 

4.7.7. COROLLARY. Let X be a separable space. Then all compactifications 

of X are GA* compactifications. D 

* 4.7.8. QUESTION. Is there a GA compactification which is not a GA com-

pactification? 

4.7.9. REMARK. Using the same technique as above it can be shown that 

* every compactification is a GA compactification if and only if every 

* compactification of a discrete space is a GA compactification. 

4.8. Notes 

In the present chapter we have given partial answers to questions 

posed by FRINK and PAALMAN-DE MIRANDA. Interesting is the connection 

between Wallman compactifications and GA compactifications. Our technical 

but natural proof of proposition 4.7.3 unfortunately only "works" for 

GA compactifications. 

As noted before, some of the techniques used in the present chapter 

are inspired on ideas of BERNEY [16]. 

The results in section 4.3 were taken from BAAYEN & VAN MILL [11]. 
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CHAPTER V 

A SURVEY OF RECENT RESULTS 

In this final chapter we give a survey of recent results; moreover we 

mention some important results on superextensions which were proved by 

VERBEEK [119]. References are to be found at the end of this chapter; they 

are not included in the list of references for the first 4 chapters. 

5.1. Cardinal functions on superextensions (cf. VERBEEK [10], VAN MILL [4]). 

Let X be a topological space. The definitions of the following cardin

al functions on X can be found in JUHASZ [67]; let 

d(X) denote the density of X; 

t(X) denote the tightness of X; 

c(X) denote the cellularity of X; 

w(X) denote the weight of X; 

x(X) denote the character of x. 

5.1.1. THEOREM (a) (cf. VERBEEK [10]). Let X be a topological space. Then 

(i) d(X.X) S d(X); 

(ii) if X is compact and Hausdorff then w(X) = w(X.X); 

(iii) if Xis an infinite Hausdorff space then 

c (X) S c (X.X) = sup{c (Xn) j n E lN} = c (Xw). 

(b) (cf. VAN MILL [4]).Let X be a normal topological space. Then 

(i) t(X.X) = x(X.X); 

(ii) if X has a binary normal subbase then 

X (X) S d (X) • t (X) • 

5.2. Metrizability in superextensions (cf. VAN DOUWEN [3]) 

The following theorem answers some questions posed in 2.11. 
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5.2.1. THEOREM. Let X be a normal topological space. Then the following 

assertions are equivalent: 

(i) Xis compact and metrizable; 

(ii) AX is metrizable; 

(iii) AX is perfectly normal; 

(iv) $Xis a G0 in AX; 

(v) AX is hereditarily normal. 

5.2.2. THEOREM. Let X be a normal topological space for which AX is first 

countable. Then Xis compact, hereditarily separable and perfectly normal. 

5.3. The compactness number of a compact topological space (cf. BELL & 

VAN MILL [2]) 

BELL & VAN MILL [2] define the compactness number cmpn(X) of a 

compact Hausdorff space-X in the following manner: 

cmpn(X) s k (k E IN) provided that X admits an open subbase U 

cmpn(X) 

cmpn(X) 

such that each covering of X with elements of U contains 

a subcovering of at most k elements of U; 
kif cmpn(X) s k and cmpn(X) t k; 

00 if cmpn(X) # n for all n E IN. 

5.3.1. THEOREM.(a) Let X be a non-pseudocompact space. If Y is a compact 

Hausdorff space which can be mapped continuously onto $X, then cmpn(Y) = 00 

(b) For each k E IN there is a compact Hausdorff space Xk for which 

cmpn(Xk) = k. 

5.3.2. THEOREM. There is a non-compact, locally compact and o-compact 

topological space X all compactifications of which have infinite compact

ness number. 

5.4. A cellular constraint in supercompact Hausdorff spaces (cf. BELL [1]) 

The following result is quite unexpected. 

5.4.1. THEOREM. Let X be a compact Hausdorff space which is a neighborhood 

retract of a supercompact Hausdorff space. If Dis any dense subspace of X 

then c(X\D) s w(D). 
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Notice that the above theorem implies that if ylN is a supercompact 

compactification of IN then yIN\IN satisfies the countable chain condition. 

8™ 8m\m 5.4.2. THEOREM. 2 and 2 are not supercompact. 

5.5. An external characterization of spaces which admit binary nomal 

subbases (cf. VAN MILL & WATTEL [7]) 

5.5.1. THEOREM. Let S be a normal T 1-subbase for the topological space X. 

Let p,q be distinct elements of X. Then there is a function f: X + [0,1] 

such that f(p) = 0 and f(q) = 1 while for every t E [0,1] the sets f- 1[0,t] 
-1 

and f [t,l] are countable intersections of members from S. 

This theorem is used to give an unexpected characterization of spaces 

which admit binary normal subbases. First we give a definition. If 

x,y,z EI= [0,1] then let m(x,y,z) be the unique point in 

[x,y] n [y,z] n [x,z]. We call a subset X in a product of unit segments IA 

triple convex provided that for all x,y,z EX the point p of IA defined by 

(a EA) 

also belongs to X. We now get the following characterization of spaces 

which admit a binary normal subbase. 

5.5.2. THEOREM. A compact space X admits a binary normal subbase if and 

only if it can be embedded as a triple-convex set in a product of closed 

unit segments. 

5.6. Some elementary proofs in fixed point theory (cf. VAN DEVEL [9]) 

Let X be a space with a binary normal subbase S. A mapping f: X + X 

is called convexity preserving (cp map) (cf. VAN MILL & WATTEL [7]) provid

ed that f-l(S) E H(X,S) for all SES. 

As noted in chapter 1, each connected space with a binary nomal sub

base has the fixed point property for continuous functions. This was proved 

by VAN DEVEL [118] using methods from algebraic topology. Recently 

VAN DEVEL has found an elementary proof of a special case of the above 

theorem. 

5.6.1. THEOREM. Let X be a normally supercompact connected space. Then 
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each cp map f: X + X has a fixed point. 

5.7. Reductions of the generalized De Groot conjecture (cf. VAN MILL & 

VAN DEVEL [6]) 

The generalized De Groot conjecture states that AX~ Q iff Xis a 

nondegenerate metrizable continuum. We have two reductions. 

5.7.1. THEOREM. The following assertions are equivalent: 

(i) the generalized De Groot conjecture; 

(ii) AP~ Q for all nondegenerate compact connected polyhedra. 

5.7.2. THEOREM. The following assertions are equivalent: 

(i) the generalized De Groot conjecture; 

(ii) for each compact connected polyhedron P and for each continuous sur

jection f: P + P the Jensen extension A(f): AP-+ AP is a near

homeomorphism. 

5.8. More about convexity (cf. VAN DEVEL [8]) 

VAN DEVEL has proved the following remarkable result. 

5.8.1. THEOREM. Let X be a space with a binary normal subbase S. Let O be 

an open subset of X. Then the following properties are equivalent: 

(i) for each pair x,y € 0: Is(x,y) c 0. 

(ii) for each closed set D c O: Is(D) co. 

By an example it is demonstrated that the restriction to open sub

sets of Xis essential. 

5.9. Convexity preserving mappings in subbase convexity theory 

(cf. VAN MILL & VAN DEVEL [5]) 

Convexity preserving mappings are very important in the theory of 

normally supercompact spaces. Examples of cp maps are the nearest point 

mappings. 

5.9.1. THEOREM. tet Sand T be normal T 1-subbases for the spaces X and Y, 

respectively, and let f: X + Y be a mapping such that f-1 (T) € S for each 

TE T. Then the induced Jensen mapping 



>-(f) = A(f;S,T): A(X,S) --+- A(Y,T) 

is a cp mapping extending f. Moreover, if f is surjective, then A(f) is 

the unique surjective cp mapping which extends f. 
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Due to the fact that a space Xis usually not dense in A(X,S) (e.g. 

if Xis compact and if Sis not binary), there may as well exist more than 

one continuous extension of the map f. Within the category of surjective 

cp mappings, the extension is unique. Hence, superextension theory can be 

regarded as an extension of "ordinary compactification theory" to the 

appropriate category. 
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