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Preface

These notes are a partial summary of lectures I gave at the
Mathematisch Centrum in 1969-70. They are not intended to be a complete
survey of recent work on the classical orthogonal polynomials,but they
should serve as an introduction to some of the current work.

Many references to further work are given in my survey paper, Orthogonal
polynomials and positivity, SIAM symposium on Special Functions, to
appear in 1970. Due to recent work this paper is out of date before

it has appeared and hopefully this field will settle down in a couple

of years,so that a complete treatment of these problems can be given.

A preliminary version of these lectures was written and elaborated
by Mr. Bakker for providing me with a good record of what I said in
these lectures.

Finally I would like to thank Mr. Bavinck for helping to read the
final version of these lecture notes and the Mathematisch Centrum for

giving me the opportunity to present these lectures.

Amsterdam, April 1970



Lecture 1

Introduction

In studying special functions you should go back to the simple

special functions and examine their properties in details. We will give

here:- some elementary properties of sin 6 and cos 6 and see what problems

they lead to for orthogonal polynomials.

Starting with cos 6 the addition formula gives

L

(1) cos(n+m)6 = cos nd cos md - sin né sin mé,

I

(2) cos(n-m)® = cos nd cos mo + sin nd sin mo.
Adding (1) and (2) gives

(3) | cos nb éos mo =-% [@os(n+m)9 + cos(n-m)@].
For m = 1 we have

(W) cos 6 cos nbd =-% [bos(n+1)e + cos(n—1)é].

Using (4) we can show by induction that cos né = Tn(cos 8), where Tn(x)

is a polynomial of degree n in x. It is usually called the Tchebycheff

polynomial. Notice that

(5) T (x) =1, T .(x)=x.
0 1

(4) then becomes

T L (x).

(6) XT_(x) = x) + T

1
P Tn+1(

Recall that

™
(1) J cos nd cos md d6 = 0, if m # n.
0



Letting x=cos 6 in (7) we see that
1
2.1
(8) J Tn(x) Tm(x) (1-x")"% dax = 0, if m # n.
-1
(8) can be generalized easily. We assume that we have a nonnegative

measure do(x) and define an inner product (f,g) by

(9) (£.g) = j £(x) g(x) dolx).

o]

We assume that the measure do(x) has absolute moments of all order,

fe o]

i.e. that ( |x|® da(x) exists for n = 0,1,2,... . Then we can find &
J

w00

sequence of polynomials Pn(x), Pn(x) of degree n for which
(10)  (p ) = J P (x) P_(x) dalx) = 6_.

We call such polynomials orthonormal. If we do not require that

(Pn,Pn) = 1, then we call them orthogonal. These polynomials are unique
up to a factor of +1 and we will standardize them by requiring that

_ n
Pn(x)_knx +c-o ,kn>0c

For general orthogonal polynomials we can generalize (6). xPn(x)
is a polynomial of degree n+1 and so we can write it as

n+1
xP (x) = P (x).
a0 = Lo,

Multiplying by Pj(x) and using (10) we see that

{ xPn(x) Pj(x) da(x) = aj

-—C0

J P?(x) do(x) = a. .

s Jdsid

o]

If j < n-1 then xPj(x) is a polynomial of degree less than n and so from
(10) and the fact that any polynomial of degree (j+1) can be written as
a sum of Pk(x), (k = 0,1,00.,3+1) with constant coefficients we have

% o T 0 for j = 0,1,¢4.,0-2. Thus (6) generalizes to
9



(11) xP(x)-3 P . .(x) +a o Pn(x) + q (x).

F O P
n'h n+l,n "n+1 n, n-1,n "n-1

Since our polynomials were normalized to have positive highest coefficients

we have o > 0 and % 1n” 0, since a

n+1,n -1, n-1,n *n,n=1"

For many problems we want to normalize these polynomials in a
different way. In particular it is often convenient to have

pn(x) =x" + ... . Then (11) takes the form

(12) xpn(x) =p .(x)+ o pn(X) +8, P (x).

n+1 n-1

In (12) we have B, > 0 and o real. A famous theorem of Favard [[] says
that if we are given a sequence of polynomials pn(x) = x® + ... which
satisfies (12) with Bn > 0, o real, then there is a non-negative measure

da(x) with finite absolute moments of all order for which

J pn(x) pm(x) do(x) = 0, if m # n.
Unfortunately there is no constructive method to obtain da(x) when we
are given o and B . In fact da(x) may not even be unique. There is a
refinement of Favard's theorem due to Shohat [ﬁ]. Shohat proved that if
]an[ <A, B <B, AandB finite, then da(x) was supported on a compact
set. In this case the measure is unique but a construction of doa(x) is
still lacking. When either a, or Bn is unbounded then the measure has
mass on an unbounded set and it may or may not uniquely be determined.

Many of these results and others are given by Freud Eﬂ.

Thus we have satisfactorily generalized (6) to all orthogonal

polynomials. Next we ask if we can generalize (3), or
1 1
(13) ) T = T )+ Ty ).

There is a trivial generalization to

n+m
pn(X) pm(x) = kzo o(k,m,n) pk(x)



which holds for any sequence of polynomials. If the polynomials are
orthogonal we have

n+m |
pn(x) pm(x) = k=%n-m o(k,m,n) pk(i).

This is enough for some problems but for other problems we want to know
more about olk,m,n). In particular we would like to have a formula for
a{k,m,n) in terms of a  and B . It seemingly is possible to obtain such
a formula, which is not surprising. However there are some problems
where it is not necessary to have a(k,m,n) exactly but only to know
something about it. In the next lecture we will show how it is sometimes
possible to prove that a(k,m,n) > 0 for all k, m and n. There we will

also give some applications.

There is one. other simple: set.of orthégonal: polynomials for which

can find a(k,m,n). The addition formula for sin 6 is
sin(n+m)e = sin me cos nd + cos mé sin no.
Letting m = +1 and adding we get
sin ne cosd = %-[éin(n+1)e + sin(n-1)e].

Dividing by sin 6 we get

sin n® _ 1 sin(n+1)6 . 1 sin(n~-1)6
(14) cos b= 6 "% sin6 2 sino

An easy induction using (14) shows that

sin no _
sin 6 Un_1(cos 8),

wvhere Un(x) is a polynomial of degree n in x. It satisfies the recurrence

formula

(x) + Ly (x).

1
(15) xU (x) =5 U 5 U

n+1



Observe that this is the same recurrence formula satisfied by Tn(x). The

difference is in initial conditions. We have
(16) Uo(x) =1 and U1(x) = 2x,

while T1(x) = x. By Favard's theorem Un(x) are orthogonal. In this case
we can find the weight function. We have
m
f sin(n+1)e sin(mt1)e de =
0
T

i + 1 . .
= [ 51n§n 1)6 . 81n§m+1)6 31n26 ae = 0, if m # n.
sin 0 sin O

0

Letting x = cos 6 we see that

Ol

1
SN RS ERONIES

dx = 0, if n # m.
-1 :

To find of(k,m,n) set x = cos 6 to get

sin(n+1)s  sin(m+1)e _ ntm sin(k+1)6
T B s = Z a(k,m,n) B e amamee e
sin O sin 0 & sin 6
k=0
. . 2
Multiply by sin 6 and use
sin a sin b =-% [@os(a—b) - cos(a+bf]
to get
n+m
(18) cos(n+m+2)6 - cos(n-m)e = ) a(k,m,n) [ﬁos(k+2)6 - cos kd].
. k=0

From (18) it follows immediately that

1, ol(ntm-1,myn) =0 and

o(n+m,m,n)

o(k,m,n),

o{k-2,m,n)

k = n-m+2,...,n+m and olk,m,n) = 0 for k < n-m. Thus we have

&



m

(19) 0,60 gy = ] 0

n+m-2k x), n>m.

Observe that in this case we also have a(k,m,n) > 0.

The recurrence formula (12) is a second order difference equation.
The polynomials‘Tn(x) and Un(x) also satisfy second order differential
equations. Thus we should try to see if there are results analogous

with n and x interchanged. For Tn(x) the result is trivial. We have
1
(20) cos né cos n¢ = E-[bos n(e+¢) + cos n(e—¢)].

The following positivity result is the essential positivity result.

Let £f(x) = ] a T (x), [x| <1and } |a | < . Then £(x) > 0 iff
n=0 n=0

flx3y) = Z a, T, (x) T (y) >0, =1<=%x,y<1.
n=0
This follows immediately from (20). The corresponding result for Un(x)

is more interesting. We can still form the series
f(x) = z a U (x).

However to form the corresponding function of the two variasbles we now

form

fx3y) = Z a, U (x) U (y)/u (1).
- n=0
In either of these cases f(x;1) = f(x) and so f(x) > 0 is a necessary
condition for f(x;y) > 0, -1 < x,y < 1. The surprising fact is that it
is also sufficient. For Tn(x) it is obvious but it is far from obvious
for Un(x). In fact it was first stated in 1933 by L. Fé&jér [L]. It was
also used implicitly by Kogbetliantz Ei]. Féjér's statement is the

following:
Let ) nlanl <o, f£(6)= ] n & sinne , 0<6 <.

n=1 n=1



Then f£(6) > 0 iff

£(039) = ) a_ sinng sinnb > 0, 0 <0, ¢ <m,
n=1
Since U (cos 8) = sin(n+1)6 / sin 6 and Un(T) = n+1, Féjér's statement
is equivalent to the result we stated above.
In one direction it is easy to proof since lim £(8:9) _ £(0). To
obtain the other implication we consider f£(6+¢) ?%(e-(p? and integrate.

Then we have

O

- ¢
[f(e+1p) + f(e-xp)] ay = 2 Z n a sin né j cos np dy =
0

n=1

2 ) & sin n® sin n¢ = 2£(639).
n=1

We can integrate term by term because of uniform convergenhce of the
series. Thus if 0 < ¢ < 6 and ¢ + 6 < 7 we have £(63¢) > 0. £(03¢9) = £(¢3;6)
SO we may remove the restriction ¢ < 6. Also f£(m=03m-¢) = £(0;4) so we
may remove the restriction ¢ + 6 < 7 and obtain f£(63;¢) > 0, 0 < 6, ¢ < .
[ o]
We have made the assumption that z nlani < » only for convenience.

n=1
Actually no assumption is needed but then we must be careful about what

[+

we mean when we state ) n a sin n® > 0. The easiest way to define this
n=1

is a positive distribution. We will say more about this point in lecture

5. Let us assume for the moment that we have removed the assumption and

give an application of Féjér's theorem. In the April 1967 issue of SIAM

Review the following problem was posed. For all real x show that
§oo(oq)RHT (BIRATGET L o Lo gL, .

n=1 o -

This is an even function of period 2 so it is sufficient to prove the
nonnegativity  for O < x < 1. This is a nonlinear - problem and it is

often easier to solve a linear problem in several varigbles.



We will show that

L sin mnx sin mn
z (_1)n+1 .—.‘——1-* L) *_-——'x_k'> O’ 0 < X.
n n - -]

< 1,
n=1

Using Féjér's result (k-1) times we see that it is sufficient to prove

0 ' sin nmwx

Z (-1)n+1 --———,}—'—-—1- > 0, 0 <x, <7,

n=1 o - -
But

X i n+1 sin nnx

_-§-= Z (—1) ————r—, O_<_x_<_1,

n=1

and this is obviously nonnegative,

We will be interested in one other positivity result for orthogonal
polynomisls. We will try to find expansions of one orthogonal polynomial
in terms of a second orthogonal polynomial with a nonnegative kernel.
We will give two illustrations using Tn(x) and Un(x).

The first example is very old

sin(n+1)8 =

n
=3 Z cos(n-2k)0.

k=0

n
So U (x) = Z T (%) which we proved before. Another result is
n k=0 n-2k

sin(n+1)6

i
n+t1)sin 6 J cos ng d“e(¢)?
0

where due(¢) > 0.
In fact due(¢) = K(0,4) d¢, where

_ 2 7 sin(n+1)6 cos n¢
K(8,¢) = 3 z (n+1) sin © *

n=0



A new proof uses the relation

4 sin(o+1)6 _ _cos of
de (a+1)(cos 6)a+2 (cos e)“+2

In lecture 3 we will treat this subject more extensively.
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Lecture 2

Linearization of the product of £wo orthogonal polynomials.

From the first lecture we know that for a set of orthogonal

polynomials {pn(x)} the following recurrence Tormulas hold:

(x),

(1) xpn(:é)=pn+1(k)+ap(X)fBPn1

_ .n
where g > 0, o real and pn(x) =X + .... and

n+m
(2) p (x) p(x) = ] alkmn) py (x)h,,
k=!n—m]

]

where a(k,m,n) P, (x)p (x)pk(X) do(x)

and hk

E
oA
E
For Legendre polynomials the coefficients a(k,m,n) are known explicitly.

They are the product of a large number of gamma functions. See for

%)

There are a number of methods which can be used to calculate these

instance Hobson, p. 86.

linearizstion coefficients for the classical polynomials. The most
powerful method seems to involve the differential equation. For any

second order Sturm-Liouville equaticdn
(3) alx)y'' +o(x)y' + 1 v =

with a(x) and b(x) sufficiently differentiable,there exists a

fourth order differential equation with as solutions the product of
solutions of (3) for two different values of A

That is, if p(x,hn) and q(x,An) are two linearly independent solutions
of (3),then p(x,kn) *—p(x,Am), p(x,An) *-q(x,lm), p(x,Am) *-q(x,An)
and q(x,kn) *-q(x,Am) are solutions of this fourth order differential

equation.

*) E.W. Hobson, The theory of spherical and ellipsodal harmonics,

Cambridge University Press.
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A related result is given in Watson, Bessel Functions, 5.4. The
details will not be given here,since the calculation is lengthy and
not very enlightening. Using & differential equation of this type
(actually a fifth order equation found by Hylleraas) Gasper has been

eble to say something about the coefficients alk,m,n) in

. +
P(O‘se)(x) P(G’B)(x) = n}:m a(k,m,n) P}({OHB)(X).
n - k=ln—m

These coefficients had been obtained for o = B and Hyllersas found
them for o = B+1 using his differential equation with & series of the
type ) a(k) Péa’s)(x). This method is well known when a power series
is used instead of a Jacobi series and the method is the same in the
more general case, ﬁhe details are just more complicated and so will
not be given here. For B = -3 these coefficients may also be obtained

as the product of gamms functions when one uses

P(a’_%)(2x2-1) Pé;‘l"“‘)(x)

n = .
Piaa-%)(1) Péga@)(1)

For other values of (a,B) it seems impossible to obtain a(k,m,n) as a
product of simple functions. They have been computed as Appell hyper-
geometric functions of two variables but this expression seems to be
useless. What Gasper did was to completely solve the question of finding
the value (a,B) for which a(k,m,n) > O for all k,m,n. The region is
sligptly larger then o > B, o+f+1 > 0, B > -1, with a similar region
for B > o when the polynomials are normalized to be positive at x = =1
instead of x = H. For many problems the nonnegativity 'of the lineariszation
coefficients is all that is needed. This very important work will appear
in two papers in the Canadian Journal of Mathematics.

For Jacobi polynomiels this method is the most powerful and it
is amazing that with it we can completely solve the nonnegativity

problen.
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Unfortunately the only orthogonal polynomials for which a simple
differential equation exists are the Jacobi polynomials and their
limit, Laguerre and Hermite polynomisls. More will be said sbout
Laguerre and Hermite polynomials later, but now we would like to give
another method of attacking problems of this type.

As was mentioned at the beginning of this lecture, orthogonal
polynomials are characterized by the recurrence formuls

(x).

= '
* Pn(x) pn+1(x) ooy pn(x) * By Ppog
Adding a constant times pn(x) to both sides and recalling that
p1(x) = x-0) we see that

(L) p (x) p (x) = p (x).

n+1(X) *a pn(x) +8, P

n-1

This is a special case of

n+m

p(x) p (x)= ] —alkmn)p(x).

k=ln—m
We are interested in proving a(k,m,n) > 0 and that .oa(n) > 0,
B(n) > 0 is the necessary and sufficient condition that pn(x) defined
by (1) are orthogonal polynomials. These conditions are: not sufficient,
but the following theorem can be proved.
Theorem 1. Let pn(x) be defined by (L), po(x) =1, p1(x) = x + ¢ and

assume
a(n) > 0, B(n) > 0, a(n+1) > a(n), B(n+1) > B(n).

Then
m+n
p,(x) p(x) = ]  alk,mn) p (),
k=|mrn
with a(k,m,n) > 0 .

The proof is by induetion on m, assuming m < n.

&
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Then

Ppeq Py = (PR, - a(wlp, - B(m)p 1o,

=p[p g * aln)p, +8n)p ]

- a(m)p_p - B(m)p _,p =

D Py + [a(n) - a(mﬂpm p, + [B(n) - 8]] p, », .

+ 8(n) B)m Ppe1 ~ Pt p;]-

By induction and montonicity of a(n) and B(n) the first three terms
on the right have nonnegative coefficients when written as a sum of
pk(x). We also have

Pt Pn ™ Py Ppyq T @(n) - a(mﬂpm Py

mt
+ [B(n) - B(mﬂpm P,_q* B(n)[-_i)m Pp_1 = Pp1 Prj

and continuing in this fashion we have nonnegative terms on the right
except for the last term which is B(n) B(n-1)... B(n—m+1)E)1p
and this is B(n) B(n-1)... B(n—m+1)Ez(n—m)pn_m + B‘(n-m)pn_m_

and these coefficients are also nonnegative.

n-m Pn-m+ jl:l

The same proof gives a slightly more general result for difference
equations but rather than repeat it here we will give the partial dif-
ference equation approach of the problem.

There are a number of other orthogonal polynomisls which should
be called classical polynomials and considered at the same time. They
are orthogonal on a discrete point set and the measures are important
measures in probebility theory, the binomial, Poisson, negative bindmial
and hypergeometrlc distributions, the last 1nclud1ng the uniform dis~

trlbutlon on N equally spaced points as a special case.



1k

The Charlier polynomials, the polynomials orthogonal with respect to
the Poisson distribution which assigns mass e ® x2/x! to the point x
(x = 0,1,2, .. 3 & > 0); are covered by Theorem 1. In this case

a(n) =n, B(n) = an, Co(x;a) = 1 and C1(x;a) = x-a. As we will see
later (lecture 5) this result is not as interesting as the same result
for polynomials orthogonal on a bounded set and the more interesting
result given there for Laguerre polynomials is still unknown for
Charlier polynomials. However,for the Krawtchouk polynomials, the
polynomials orthogonal with respect to the binomial distribution, the
linearization theorem with nonnegative coefficients is true. It was
first proved by Eagleson using generating functions, but there is a

proof using a variant of Theorem 1 which we will now give.

The binomial distribution puts mass (i) o (1—p)N-x (0 <p<1)
on the points x = 0,1,2,...,N. The corresponding orthogonal polynomials
K_(x;p,N) satisfy ‘

Ki(x) K (x) = XK _,,(x) + n(e-p) K _(x) + 8(n)K _ (x),

where g = 1-p, Ko(x) =1, KT(x) = x-pN, and

B(n) = pq n(N+1-n).

B(n) > 0 for n = 1,2,..., N but B(N+1) = 0. This forces the polynomials
Kn(x;p,N) to be orthogonal on a finite set of points and also means
that the assumption of Theorem 1 that B(n) < B(n+1) cannot be satisfied.

However, R(n) satisfies
B(n) = B(N+1-n)

and this suggests that there should be a theorem with some assumption
of this type. It is

Theorem 2. Let pn(x) be defined by (4) with o(n) and B(n) satis-
fying

&
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1° 0 < a(n) < aln+1), a(n) < a(N+1-n), n=1,2,..., [NZ1J’

2 0 < 8(n) < B(n+1), 8(n) < B(N+1-n), n=1,2,..., Ly‘gi] ’

then

n+m
pn(x) i)m(x) = ) a(k,m,n) pk(x), n+m < N,
k=|n-m
with a(k,m,n) > O.
We will prove the following theorem which will easily imply
Theorem 2:

Theorem 3. Let a(n,m) satisfy the difference equation
(5) 4 aln,m) =4 a(n,m),

where A k(n) = k(n+1) + aln) k(n) + B(n) x(n-1).

Then if BO = BI\I+1 = 0,
N+1
(a) 0 _<_0Ln ioan, O+ 1-n f_an, n 15250009 [_—-é—- )
- T+ 1
(8) O S By SBiqs By SByy s B 12,0, E?S’

and if a(n,0) = a(0,n) > 0, a(-1,n) = a(n,-1) = 0, n = 0,1,...,N, then
(6) a(n,m) > 0, n,m= 1,2,..., n+m<N.

The proof is by induction on m. Assume we have proven (6) for

0,1...,m and consider a(n,m+1). From (5) we have
a(n,m+1) + uma(n,m) + Sma(n,m-1) = a(n+1,m) + ana(n,m) + Bna(n—1,m),

S0

a(n,m+1) = a(n+i,m) + (an-am) a(n,m) + (Bn-Bm) a(n-1,m)

£

+ Bm[},(n-hm) - a(n,m-1)].
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Since a(n,m) = a(m,n),we may assume that m + 1 < n or m < n. Also we

have m+ n < Nsom < N+ 1 - n. Thus from (o) we have

o, -0 >0 if m<ni[-g—]

and

. +1 .
A T 0 1f I:Ng] <n <N, sincem < N+l-n,

Similarly B - B, > 0. Also we can estimate a(n-1,m) - a(n,m-1) by

recurrence; for

a(n,m+1) - a(n+1,m) > Bm@(n—hm)» - a.(n,m—1ﬂ

—

> BmBm_1]:21.(n—2,m-—1) - a(n—1,m—2)]
> BmBm_1B1Ea.(n—m~1 »1) - a(n—m,oﬂ

> BB 4 e BB, qalnm-2,0) > 0.
Thus a(n,m) > O for n,m = 1,2,..., n + m < N,
To obtain theorem 2 we observe that
n+m
p(x) p(x)= ] alkmnlp (),
k=]n—m
then
[ 2,000 2,0 B0 aatx)

a(k,m,n)—= : .
J pi(x) do(x)

for a nonnegative measure do(x). In our case the measure is a finite

number of point masses but is not necessary for this result.

(1) Ana(k,m,n) = Ama(k,m,n) .

&

and that
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e(k,0,n) = a(k,n,0) > 0,
a(k,-1,n) = a(k,n,-1) = 0,

(7) follows from the recurrence formula for

J pn(x) pm(x) P (x) p,(x) da(x)

u

Ana(k,m,n) = Ama(k,m.n).

[ 22x) aat)

Also

’ a(k,n,o) = a(k,O,n) = =
[ Pi(x) da(x)

1 if n = k.

If p 1(x) is defined to be zero then the recurrence formula holds,so

we have a(k,~1,n) = a(k,n,-1) = 0.
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Lecture 3

Connexions between orthogonal polynomials
of different classes .

We are now interested in the possibility of representing an or-
thogonal polynomial as the sum of orthogonal polynomials of a different

class with nonnegative coefficients i.e.

P, (x) = Z o qk(x) with o 2 0.
k=0
At first we will give some simple examples of polynomials with
that property.
a. We will show, that

n
P (x) = kZO o0 T (x), a > 0.

Proof: We will use the generating function of Pn(x):

1
(1-2xr+r®) 72 = Z P (x)r®, x| <1, r < 1.
n=0

Put x = cosf. Since ele + e—le = 2cosb0, we have

(1-2xr+r2) ‘=

en 1 g 2
(1—rele) 2 (1-re 16) 2
'k nle n

n-k e—kleQe(n—k)lgj o

i
el 1
i~ 3

which implies

(2), (3)_ o(n-2k)ie _

n
Ppleost) = z k! (n-k)!

), (D),

1
2
k! (n-k)!

cos (n-2k)9.

i

k=0

Singe x = cos® and cos(n-2k)6 = Tn_zk(x), we have
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(3), (3)

—~
Ol
~—

n n-1

P(x)=2—= T (x)+2 (x) +
n n. n 11 (n=1)! n-2
+ .0+ (). T 2 ] (x). The term of the lowest degree equals
(H)n (Hn=1 (Da+1
2 . . 2 2 . .
2((ﬁ/2)!) » if n is even and equals (n—1), m, x, if n is odd.
2 " 27!

All the coefficients are nonnegative so the proof is complete.

b. Next we will show that

2O 0 = T aGemse) 1 ()
k=0

Again we use the generating function.
We know that

.(1—.1:')"0L-'1 exp %%% = E L(u) (x) r
n=0

So we have

L(G+B+1)(x+y)rn = (1“1‘)-(1—8—2 exp - (x+y)r -
n=0 2 1-r

~0—1 xr -B=-1 yr =
(1-r) exp - ?:;-*-(1-r) exp - T3

z L (x e 2 L(B)(y) =
n=0 n=0

® n
nZO Ekzo Ll(ia)(x) Lr(ﬁl); (v =5
which implie%

) lé“)(x) L( ) (0) = Lia+6+1)(x).

n=0
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(fi (0) = (n‘k+6),we have our theorem.

Since Ln -k

These two examples would follow from the following more general
conjecture provided it is true. Unfortunately it has not yet been
proven.

Conjecture: Let w(x) be a weight function on [§,§1, a finite,
{pn(x)};=o a set of polynomials orthogonal on [a,b] with respect to

w(x) and standardized by pn(a) >0, Let'{pz(x)};=o be a set poly-
nomials orthogonal on [},ﬁ] with respect to (x-a)® w(x) and standar-
dized by pg(a) > 0. Then the following positivity relation should
hold :

n
U - . .
pn(x) kzo % n pk(xL'w1th o, >0 for u>0.

For y = 1,2,... this follows from two well known results of Christoffel,

For noninteger u the conjecture is still open.

Now we would like to find a similar connection between two dif-
ferent classes of orthogonal polynomials and their respective weight
functions.

Assume {pn(x)}: and {qn(x)}‘::O are two sets of polynomials

=0
orthonormal on E with respect to w(x) and v(x).
If
n
qn(x) = 3 o pk(x), with o, > 0
i k=0
then

(e o]

p, (x) w(x) = nzk o, 4. () v(x) .

Proof:

n
qn(x) = kZO % pk(x) 50 i

[ B0 a0 wlax = o
E
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Now we want

B qn(X) vix),

p, (x) w(x) = nzk

S0

J P (%) q (x) wix)dx =8 =a_,
E
which completes our proof. The fact that the series expansion of
p{x) w(x) starts only at n = k follows from the fact that o
vanishes for k > n. For any specific set of weight functions the
series (1) may not converge,so this is just a formal result. The
convergence (say in LQ).must be proven in any specific case.

Next we will give an illustration:

1 n ;
-3 (a+B+1) _ . (a) -1
hn,a+B+1 * Ln (X) - kZOY(kanao‘aB) »* Lk (x) *hk’a’
where o
n o= | x%e~X [L(“)(x)jz ax ’
n,o ' .
0
So ) 1
O =X (OL -3 -
x e Lk (%) hk,a =
y -2 (a+g+1) -x _otB+1
= 1 vlon; b, a++1 Tn (x) e x .
n=k >
Applications.

We will start this section with the formulation of a problem
involving orthogonal polynomials and its dual problem. Then we will
give an example in mathematical physics and its dual,which has no
connection with any practical problem. However,this dual problem can
be solved easily and the dual of this method was first found by
B. Noble. The details in Noble's proof are much more complicated and
our proof is a good introduction to Noble's method.

Now we procede to the formulation of the problem:
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Let {pn(x)}:=0 be a set of polynomials orthogonal on a measurable
set E with respect to the weight function w(x). Then compute (ah)§=0
from the following data

243

2 & pn(x) = £(x), x&E,
n=0.

and
HZO t, e, pn(x) = g(x), x &£E,,

where the functions f£(x) and g(x) and the seguence (tn):=0 are given

and E, and E_, are two measurable subsets of E whose union equals E,

1 2
The dual problem is:
Let {pn(x)}:=0 be a set of polynomials orthogonal on E with respect to

w(x). Then determine f(x) from the following data

J £(x) pn(xjnw(x)dx =8, ' n&N,
E
and
j f(x) g(x) pn(x) wix)dx = b, ‘0N,
E

where (an)né-N . (bn)n@-N 1

two disjoint sets of integers whoge union equals the whole set of non-

and g(x) are given and N_ and N, are

negative integers,

Specific examples now follow.,
i. The function u is harmonic in the interior of the unit circle. Solve

u from the following boundary conditions:

u(1,8) = £(e), 0< |8] <a,
and
2 (1,8) = g(0), o< |o] < m.

Translated into terms of Fourier series:
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Compute (an):=0 from the following data:

<]

Z a_ cosn® = £(0), 0 < 8 < a,
n —
n=0
] n e cosnb = g(6), ~ " a<6<m
n=1

ii. can be dualized to the following:

If
T
f £(6) cosnd do = & s “n = 0,1,0.4,N,
o
and
i
J sin® f(6) cosnb 46 = bn’ n=DN+1, ...,
0

then compute f£(8).

The next example is even easgsier to solve than ii and the method
that we use to solve it can be used on many problems of this type
and in particular it can be used to solve i. and generalizations of
it to Jacobi polynomials. This is the method due to B. Noble.

iii. Solve f(x) from the following data:

a) j x° £(x) Léa)(x) xe Xax = &, n=0,...,0, ¢c>0,
0

b) J £(x) Lia)(x) e ax = b s n="N+l,.0. .
0

We know that L(a+c)(x):$ E o Liu)(x), n=0,...,N
n K= kn

S0 we have
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[=+]

An = J £(x) Lia+c)(x) e *ay = kgo O By
. =

Furthermore we know from the former section that

% ‘Lz(lu+c)(x)= L Byn Llia)(x> (n=N+1,...)
k=n

and this series converges if ¢ > 0. So

]
o~
w
o

Bn = f £(x) Lia+c)(x) *TCe™* ax
0

Since we know the coefficients a , b , a
n n kn

A eand B and hence we can expand f(x) into an infinite series of

, and Skn’ we can compute
Laguerre polynomials.

The problem we just solved is an example where the coefficients
% and Bkn are known, Unfortunately the coefficients are usually
unknown., Nonethelessywe would like to be able to say something sbout
the coefficients.
We recall that
n
LQB)(X) = kZo o Léa)(x).

Now if B > a then a, > 0. We would like to find a general theorem which

kn
would imply this. At present we do not have such a theorem.

We will close this part of lecture 3 by giving two more examples
without comment.

1. For Jacobi polynomials Szegd has proven

n
Péy+u’5)(X) i kZO %kn PéY’G)(x)’

with % > 0 for u > 0.
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2. Gegenbauer has proven

P(Y+u,v+u)(x) - E

(v,v)
N Lo o PV (),

kn k
with O > 0 for u > 0.

In both cases o, were computed explicitly.

Next we will consider a recent theorem of M. Wayne Wilson. Wilson has studied
some discrete orthogonal polynomiald that approximate Legendre

polynomials. The standard classical example is the set of discrete
Tchebycheff polynomials. They are defined as follows:

Divide the unit segment into N equal parts. Then give each of the points

%(i‘= 0,..,N) the weight E%T . If we let x, = 1/N the discrete

Tchebycheff polynomials are defined by the orthogonality relation

L

N+1

it B~

. tn(xi;N) tm(xi;N) =0, (m# n)

and the standardization tn(O;N) = 1

i

It is not hard to show that as the division of the unit segment is
finer,tn(Nx;N) converges to Pn(1—2x). Unfortunately the convergence is

not very good, for in another paper Wilson has given the formula

tn(Nx;N) = Pn(1-2x) + Eé%ZEL Pﬂ(1—2x) + o(égo .

3

But Pﬁ(1—2x) grows in n like n2 for fixed x, 0 < x < 1 and an infinite

NOfat

nunber of n, while Pn(1-2x) decreases like n 2.
Thus ,unless N _>__cn2 for some ¢ > 0,it is not clear,that

tn(Nx;N) - Pn(1—2x) is small and in general it is not. To obtain a nicer
set of polynomials,Wilson has constructed & new discrete polynomial

as follows. He divided the upper part of the unit circle into N

equal parts and prejected the division points into the x-axis.
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Now X, has the mass density u(xi) =X - % for i = 04...,N, Since

. i+1
X. = - cosmi the precise value of u(x.) is cosmi - cosm(i+1)
S o) 1o cosg - ol

Wilson defined his polynomials by the orthogonality relation:

igo wn(xi;N) wm(xi;N) p(xi) =0, "'n#m
Now the segment [;1,11 is not uniformly distributed,but the convergence
of wn(Nx;N) to Pn(1—2x) is much more rapid. Also,wn(Nx;N) behaves
qualitatively like a Legendre polynomial: for N > n and not just N i_cn2
as in the case of discrete Tchebycheff polynomiais, in the sense that
these polynomials teke on their largest value on the interval of or-
thogonality at the end points of that interval. The discrete Tchebycheff
polynomials do not in general,

For the investigation of his polynomials Wilson used the following
theorem.
Theorem: Let {pn(x)} be a set of polynomials orthonormal on E with
respect to w(x) and let {qn(x)} be a set polynomials orthonormal on E

with respect to v(x).

If
f p(x) p (x) v(x)dx < 0, - n#m,
2 i

then ” n
qn(f) = kzo o B (x), o > O,

For the proof Wilson used Stieltjes' theorem:
If A is a symmetrical matrix with positive elements in the main
diagonal and negative elements elsewhere,then its inverse has only

positive elements.
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These new polynomials are very interesting and much work remsins to
be done. We are still lacking most of the standard properties of
orthogonal polynomials. For example we have no explicit expression

and we do not know the coefficients in the recurrence formula.

We will close this lecture with a theorem about positivity,which
comes from the recurrence formulas.

Let {pn(x)} and {qn(x)} be two sets of polynomials orthogonal
on E with respect to the respective weight functions w(x) and v(x).

Let pn(x) and qn(x) satisfy:

xp (x) =p (x) +o p(x)+8 p ,(x)8,=0,8 >0
forn > 1,

x qn(x) = qn+1(x) + v, qn(x) +8 qﬁ_1(x), 8§, = 0,6 >0

forn > 1 .
n+1
Then qn+1(x) = kZb = a(k,n+1) pk(x) =
n n-1
= (x-yn) kzo a(k,n) pk(x) - 6n kZo a(k,n-1) pk(x) =

n
= kZO a(k,n) [p,(x) + (o= ) p (x) + 8 p (x)} -

n-1
- kZo s a(k,n-1) pk(x).

So a(k,n+1) = a(k-1,n) + (ak—yn) a(k,n) + Byt a(k+1,n) - 8 a(k,n~-1).



28
A more surveyable result is
a(k,n+1) - a(k-1,n) = (uk—yn) a(k,n) +

+ (8 ) a(k+1,n) + § [a(k+1,n) - a(k,n-1)].

k+1'5n

Now,if o > y_ and B > 68 for k = 0,....0,8 simple induction shows
n k+1 n 4 P

k

that the coefficients a(k,n) are nonnegative.

One application is the following:

For Legendre polynomials we have

} 2
= - S
X Pn(x) Pn+1 + I 2 Pn—1(x)'
n -1

1
Here n < Bn < Bn_1 .

Define the associated polynomials Pn(x;v) by

(n+\))2
x Pn(x;v) = Pn+1(x;v) + Pn_1(x;v).
L(n+v)“=1
Then we have
n
Pn(x;v) = kzo o Pk(x),' O > 0.

The coefficients are positive here. This was already known from an

explicit expression of o, found by Barrucand and Dickinson. Other

kn
examples are given in TW 114 note II.

Literature. .
R. Askey. Orthogonal polynomials and positivity, to appear in pro-

ceedings of symposium on special functions, SIAM.

R. Askey. Three notes on orthogonal polynomials. Edited by the
Mathematical Centre at Amsterdam as TW 11k,

For S%ieltjes' theorem, see Szegd's book.
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Lecture b

Hypergeometric functionsg and their applications.

This lecture will deal with. hypergeometric functions and their

applications.

At first we define (a)n:

(a)o = 1 and (a)n = a(a+1)...(a+n-1), for n > 1,

If a is not equal 0, -1, -2,...,(3.)n is also given by

_ I(a+n)
(a)n _> P?a? *

Now we define the hypergeometric function - F1 (a,b3c3x) as follows:

2

©  (a)_ (b)
F, (a,bsesx) = ) ORI
n=

(1) ,2

for [x] < 1.

Using Stirling's formula for I'(a+n) we can investigate the behavior

of the series on the unit circle for all possible values of a,b and c.
It appears then that the series converges asbsolutely for Re(at+b-c) < 0,

conditionally for O < Re(at+b-c) < 1 with a pole at x = 1 and diverges

for Re(at+b-c) > 1. Gauss has computed 2F1(a,b;c;1) and found
that

4y o Ie) T(e-a=b)
(2) 2F.1;(asbacs1) = T(c-a) T(c-b) .

Another special cagse is the important formula

(3) LF (asb3bsx) = (1-x)"% .

Now we consider ,2F1 (a,bjesxy) .
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The function

: 1
() [ o7y arvsesm) w0y
0

) dy

is analytic in a,b,c and x for the values mentioned above. Before
evaluating this integral we will give a generalization of the hyper-
geometrice function.

For p and g positive integers and b. F 0,-1,-2,... (i=1,...,0)

we define

@ (a,) ...(a )

: 1'n P n n
F (B,500008 3D, 500.,b 3X) = E -
pa 1T qQ =0 (b1)n...(bq)n n!

Evaluation of (4) gives
1
f RACHILIEND PP ey =
0

1

© (a)_ (b)

) m}l_g'__r}_ & fyn+a+1—1(1_y)3+1_1 iy =
n=0 n !

) (a)n (b)n I'(n+a+1) L(B+1) n
nzo (C)n n! F(H+Q+B+2) X

T(a+1) T(B+1) (a)n (b)n (a+1)n Ei ]
I'(a+B+2) n=0 (C)n (u+3+2)n o
P(??;iﬁié§+1) 3F2(a,b,u+1;c’a+8+2;x).

So we have

1

I(avp) - -1 B=1 _
P(Z) r(g) f 2F1(a,b,c,xy) Yd (1-y) dy =
0

(5)

3F2(a,b,a;a+6,c;x).
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If we put b = ¢ we get Euler's formuls

1

T(at+B) - -1 B=-1 _
?%%7TQ'J (1-xy)"2% y* ' (19)*7 @y =
0

(6) =

oFy(a,0504+85x),

which gives us a nice integral representation of the hypergeometric

function. Letting x = 1 and applying (6) we have

1

2F1(a,u;a+8;1) = ?Ez;sr(s J 1 ()BTl gy =

0
I(o+8) T(a) I(B-a) _ I(o+B) I'(B-8)
I'(a) T(8) T(o+B-a) r(g) r(o+g-a) °

which is Gauss' result (2).

Note. There exists a generalization of the hypergeometric series due

to - Heine. He defined the opersator Aq by

flox) - £(x)
(q=-1)x

Aq f(x) =

For x" we have

n T _ 1 ne1
v q-1

The basic hypergeometric series of* Heine is defined by

Dy B
n=0 [c]n,q_ Kl

~n,q

~18
-

where
a a+1 at+n-1

q =1 q - 1 q - 1
. 7 <1
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a .
If g > 1,then [gjn,q - (a)n and Aq * 3= - It would be useful to obtain

fractional integration theorems for these Heine series using the inverse

operator to Aq to define an integral,

After this intermediar note we will apply the theory of hyper-

geometric series to the Jacobli polynomials using the important

relation
1) ;G’,é")'(j‘)' = 2F1(_n,n+oa+6+1;0t+1;_]_§__2g) .
n

We know that in some cases a Jacobi polynomial of a certain class can
be expressed as the sum of Jacobi polynomials of a different class

with nonnegative coefficients.

Example
n
Piu+u,8)(x) = Z akn Péa,ﬁ)(x) ,
k=0

. S . > 0.
with akn >0 1f wu>0

Now we want to derive some continuous analogues of this and other
formulas by means of the hypergeometric series,i.e. we want nonnegative

kernels K(x,y)s for which e.g. the relation

pletibliyy pl®8) )
(8) CTTE o | e Sy
n -1 n

holds.
Before proving (8), we will derive some other relations.

We know already, that

1

c=-1 -1
f y (1=y)" 2F1(a,b;c;xy)dy =
0

T'(c+u)
I'(e) T(w)

2F1(a,b;<:+u§x) .
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Letting a = -n, b = n+a+f+1, ¢ = o+1 and xy = é{1-xy) and recelling

(7),we get after some substitutions

P(a+u56-u)(x)
I

(+96-)
Pn“ HaB=l7 ()

I'(op+1 -1
quﬁﬁ%—%fgy (1-y) F—— (y-x)""" ay .

(9)

So

T(o+u+1

K(xay) = HEU— (1)% (y-x)*!

s yzx

= 0 elsewhere.

Since Pia’s)(—x) = (-1)% Pée’a)(x) we have

(o= ,B+u)
o 2 =
Péa—u,6+u)(1)

(1+

X P(a,B)(y)

I(B+u+1 B -1
o= HRy | o) ey

-1 n

In all these cases u should be positive.
In (10) p should also be smaller than o + 1.
Another formula can be derived as follows:

Since 2F1(a,b-u;c;x) =

1

TZing(b-us J Yb_u_1(1-y)u_1 Y2F1(a,b;c;xy)dy’

0
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we have after some sultable substitutions

(1+X)n+u+5 Piu-u,B)(x) -

X
(1) ?&:ZZSZJ% r(u) J (1+y)n+a+8—pPr(la:,s)(y) (x5
-1

Again using the formula for Péu’s)(—x), we have
(1_x)n+u+6 Pr(l(XQB_U)(x) =

1

- Ml e 2o ot

X

Now we will derive the formula we initially wanted. We have
therefore to derive some auxiliary formulas, involving hypergeometric

functions. We recall that

.2F1(a,b;C;x) =

1

0

Substituting 1 = s for y we have

(1-x)"2

(13) 2F1(a,b;c;X) QFT(a,c—b;c;"‘-}iﬁ)-

X=1

Because of the symmetry in a and b we have

(14) P (asbsesx) = (1=0)™  _F (c-a,bse;

X
x~1
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Using (13) on (14) gives

(15) ;2F1(a,b;c;x) = (1-::)(:_3‘"b » F1(c-a,céb;c;x).

2

Now it is very easy to see that

(1-x)"2 2F1(a,c+u—b;c+u; ;%?) =
1
(6) = Eeh [y (T (o)™ (a,ebsesEay

0

Letting t = x/(x-1) and s = xy/(xy-1) and replacing c-b by b we get

t .
E%E;&l__. p=1 a-c=l _c=1 N _
Ir'(e) r(w) j (t-s) (1-s) s 2F1(a,b,c,s)ds =
0
= tC+u—1(1_t)u—c 2F1(a,b+u;c+u;‘t)‘

By the substitutions s = é{1—y), t = %(1-x), a = -n,b = n+at+p+1,

¢ = g+1, we finally have

(1-x)**H P(d+u,8)

n
(1+x)n+a+1 ;E&+u,s)(1)

 rat) [ (1) B0 )
2" T{a+ut+1 1=y n p-1
(17) T(a+1) T'(n) £ ( 4y ) RFOFHHT Pia’ﬁ)(1) (y=x)" ay.
So the kernel wanted in (8) equals
oH (1-y)° (1) 2+ (y=x) = s x
(tagyFerudl o ek Blarty) > V2

0 elsewhere.
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Using the expression for P(a’B)(—x)

n ve get

(14x)P*H Péu’B+U)(X)
(1_x)n+8+1 P;G’B-‘-U)(-])

* (a,8)
(18) - 2% r(g+ut1) j (145)° Pna ()

r(g+1) r(u) (1_y)n+8+u+1 P(“:B)(_1)
n

(x=y)"" " ay.

=1

An important application of these two integral transforms can be
made on the ultraspherical polynomials Ci(x). We define them as
follows

(2x) 141
(19) = o P, a0
n
We use the suxiliary relations
(a,a) (aa‘%) 2 .\ d+%
(20) Py )(x) ) P? 1)(2x -1) i} C2§1(x)
(a:a O g=2 T3
Py (1) P (1) Cop (1)
(op0) (ay2),,.2 o+
(21) E%Eiljifl = x P? 1)(2x sl C%“EE(X) .
G g0 [0 28 o2
P2n+1 (1) Pn i (1) 02n+3(1)

If we choose B = + 3 in (11)and (17) and recall (20) and (21) we see

after some tedious calculations the following results:

A,y _ 2Ty "
C(x¥) = Ty T
1
(22) * f Rt Cg(xt)(1-t2)v_k_1 at,
0
(v >x>0)

and
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v . 2v=1
Cn(cose) sin ) ., F(ved) )
= 7
02(1) cos?TEV*1 o I(A+z) T(v=d)
( sin> y( cos>y-coso9) " Ci(cosw)
(23) [ w

+
cos” va 02(1)

0

0< 8 <-§ v > AL

The latter formula is due to Feldheim and Vilenkin and can be used to

obtain a number of results. For instance

¢ (x)

MZV
]

20, N=0,1,000,=12x 21, 423,
n=0 cn(1)

N
follows from Féjérs result ) P (x) > 0.
n=0

It would be very interesting to find a general theorem,which
says something about the problem of writing a solution of one Sturm-
Liouville equation as an integral of a solution of a different S.-L.-
equation. In the dual case - that of second order difference equations -
some theorems have been given in lecture 3. These theorems are not very

satisfactory but at least they exist.

Literature: An extensive bibliogrephy is given in R. Askey and
J. Fitch, Integral representations for Jacobi polynomials and some

applications, J. Math. Anal. Appl. 26(1969), L11-437.
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Lecture 5

Some more positivity results.

A new result of the type considered in lecture 2 has come up and
we will start with it. In Math. Zeit. 37(1933) G. Szegd proved the

following conjecture of K. Friedrichs and H. Lewy:

[+

1 _ z A S0l tk
- - - - - - - R
(1=r)(1-s)+(1-r){(1-t)+(1-8)(1-t) n,m k=0 n,m,k
with An nx =0 His proof used Bessel functions but he concluded the
E k-

main part of his paper with the following observation.

Define the Laguerre polynomial L (x) by
, n

_ Xr
e T ot n
-——7":;—-: Z Ln(x)r .
n=0
Then
X
e T o
e ) e Ln(x)r >
n=0
and so
1 1 1
=G T TR E 5% nomk
= L (x) L(x) L (x)e > rst.
(1-r)(1-s)(1-t) n,m,k=0 B ' X/ Ty
Integration from 0 to « gives
1 % n m k
(1-2) (1-8)+(1-1) (1=t )+ (1=-8) (1-t) ) Amef ot

n,m, k=0

with

- -3x
An,m,k = J Ln(x) Lm(x) Lk(x) e ~ dx.
‘ 0
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This is equivalent to

o~2X% Ln(x) Lm(x) = Z

~-2X
k=0 An,m,k © , Lk(x) ’

or

—2x -2x o3 —ox
e Ln(x) e Lm(x) = kzo An,m,k e Lk(x)

and in this form it resembles the problem we considered in lecture 2.

There we considered problems like

, n+m
L(x) L(x)= ]  akmn) L (x)

k=]n—m
and e simple calculation from the recurrence formula for Ln(x) shows

(_1)k+m+n e(k,mn) > 0 .

2X

Szegd's result is more interesting, since we have e Ln(x) = 1
for x = 0. Therefore
A o ,=1lendso ] [A |=1,
k=0 Mofs k=0 T
since A nx > O,which we will show after some lines. We have
2 9
n+m ‘ ) ) n+m
) a(k,m,n) = 1, but ) |o(k,m,n)| is unbounded in m and n
k=|n-m| k=|n-m

and for many applications, in particular in the construction of Banach
algebras from these results, it is exactly the boundedness of
Y |a(k,m,n)| or § lAn,m,kl that we need.

We will show that A >0 .
n:m$k -
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It is possible to use similar methods to show its strict positivity
but we do not need the positivity for any applications. The positivity
proof, some related monotonicity results and some stronger results will
be given in a joint paper with George Gasper.

First recall that for Legendre polynomials

n+m

P (x) B_(x) = a(k,m,n) (k+3) P, (x),

=]

k=%n-m|

with a(k,m,n) > 0, But
1
a(k,m,n) = J Pn(x) Pm(x) Pk(x)dx.
-1

We have

(lgé)Péa,B+1)(x) = Ah Péi;ﬁ)(x) + Bn Péaaﬁ)(x)’

with A_, B_ > 0. The positivity of A follows from Pﬁ“’s)(1) >0 and

o

the fact that all the zeros of Pn ’s)(x) lie in =1 < x < 1,80

Péu’e)(x) =k, bt T k > 0. Also Péa’s)(—x) = (-1)" Pés’u)(x) and

letting x = -1 gives the positivity of B . Combined with the nonne-

gativity of a(k,m,n) this gives

1
RS LI e
1

Now set x = 1 - 72y/j and let j - « using

lim Péo’s)(1 - %ﬁ)

Boroo IR

to get

. J Ln(x) Lm(x) Lk(x)e_Bx dx > 0,
0
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Szegd generalized this to

=

[32 0 12 @™ axz 0,0z -
nq nk - -
0

and this result also follows from our method. This result of Szegd

is equivalent to

L —— = [a x?‘...x??; A >
[?,(1i]a Dyseresy Dyseeesy

where f(x) = (x—x1);..(x—xk).

This problem is & beautiful exemple of the usefulness of special
functions. A direct proof has been given of the original problem of
Friedrichs and Lewy, but it is complicated and there seems to be no
hope at all of obtaining Szegd's general result on j variables with
an arbitrary power by any other than using some properties of special
functions. As Gasper and I will show in the promised paper it is
possible to use other special functions to obtain stronger results. We

will show

j L (x) I_(x) L (x) % ax > O,
0

In lecture 2 we proved a result that gives
n+m-k -X
(=1) an(x) L (x) Lk(x) e dx >0 .
0

There are no known results of this type for Charlier or Meixner
polynomials. The Meixner polynomials are orthogonal on X = O,1,.04,

X
with respect to the mass distributions LEL%%E— . It is not clear
what the theorem should be or even if there is a theorem of this type.

They do not alweys exist.



Lo

Now we will consider the dual problem. We want to find a(n) so that

oe)

nzo a(n) Ln(x) Ln(y) Ln(z) > 0, X,¥,z > 0.

The only such a(n) is a(0) > 0, a(n) = 0, n = 1,2,... . This follows

from the following result of Sarmanov,

0

Theorem 1. If Y e(n) Ln(x) Ln(y) >0, X,y >0, eand
. n=0

E Ic(n)]2 < »3 then

n=0 1
o) = [ aue) , aue) zo

0

The positivity of the series

Y 0L (x) L (y)
n n
n=0
is well known and theorem 1 says that in some sense these are the only

positive bilinear series of Laguerre polynomials, If

) a(n) L (x) L (y) L (z) > 0, then by theorem 1
n n n —
n=0
we have
1
- n
a(n) L (z) J v au (t) , ap (%) >0 .
0
But for n = 1,2,..., the left hand side changes sign with z,unless

a{n) = 0. There are slight technical problems about showing that

) Ia(n)i2 an(z)]2 < ®» but they are easily bypassed using the
n=0

positivity of

T L (x) L (y), 0<t <1, for if
n=0 n n
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z a(n) L. (x) L (y) L, (z) > 0,

n=0
so is
JE
Z t a(n) L (x) L (y L (z) e
n=0
and
2
2
]Ln(z) e °| < 1.
Furthermore ) a(n) converges so, [a(n)| < C.

n=0

The Meixner polynomisls are self-dual:

Mh(x)'= Mk(n) = 5 F (-n,-x;831-2),

2
and they have Laguerre polynomials as limits. Thus,any result that will
be obtained for them will have to have both Szegd's and Sarmanov's
results as limiting theorems. Strange as it seems,it is possible to
have positive theorems for trilinear expansions and have results of

the Sarmanov type as a limit.

Consider the case of ultraspherical polynomials C (x) These
polynomials are orthogonal with respect to the measure (1-x )A_e dx

and can be deflned by the generating function

2 o
== ST L ° : X CQ(X) £ 4> 0.
(1-2xr+r°) n=0
If A > 0,we obtain
1 - r2 1 Y n
— = g+ Z r- cosnb, x = r cosé .,
2 2
1-2xr+r n=0
i, ifn=0,
So 1lim n+A LA _
A0 A Cn(cose) - cos0, if n = 1,2,...
3 1 1
If we let x = yA 221n the weight function w(x) = (1-x )A 2 we see
1 -
that W(yk_z) >e 7V ag A~ o,
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It is easy to show that

-2 -]
lim A~ 2 ¢™x A72) = H (x)/n!
n n
Ao
So cosn® and Hn(x) are both contained as limits of Ci(x). Also,so is
n
x ,.for
NEY)
. n
lim \ =X,
o C (1)

From the addition formula for ultraspherical polynomials Bochner
made the following observation., If

(1) )~ ] e (B

) M),
=0 A n X

and f(x)e L1,then the formal series

2lasy) v [ a (B22) cXx) cAy)/ein)

is for almost all y, -1 <y < 1, the expansion of an L1 function £(x3y)

and what is decisive for us, if £(x) > O then f(x;y) > O.
the expasnsion (1) then a

If £(x) has
n is given by
1 A
¢ (x) 41
a = -- j £(x) —2— (1-x7)"2ax,
n C A
Ao, c (1)

where

1
R 2
c, = f (1-x2)A 2dx.,

-1

From this it is an easy observation to the following characterization
of nonnegative bilinear sums

A
® c (y)
y) ~ ] a (B Ao 2

ot A
n=0 Cn(1)

20,



L5

cA(x)

1
iff a = é— I £(x) (1= 2-))“2dx,

A
Ao c (1)
where f(x) > 0 of course.
Some remarks should be made gbout the interpretation of the
positivity everywhere or almost everywhere if f£(x,y) is integrable, or

in the sense of distributions. In the last case it is only possible

to prove that

¢ (1)

1 A
= J %' aux), du(x) > 0.
al'l

-1 n

If we let A > 0 in this theorem and use

Ci(cose) 3 , i1f n=0
lim = cosn® and lim n+) Cn(cose) =
A>0 Cn(1) A0 A cosnb, if n>1,

we obtain formally the trivial and well known result that

a
£(8) ~ 59-+ a cosnb > 0, 026 <m,

e~ 8

n=1
iff
a, ©
f(e;¢)n¢-§- + 2 an cosn® cosng > 0, 0 < 6, ¢ <1 .
n=1

We proved this at the first lecture already.

It is more interesting to let A » «, If we do and we use

1
A g.C;\l(x}‘mz) > Hn(x)/n! and
A
Cn(X) n
Cn(1)

we formally obtain the following theorem of Sarmanov:
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o H (x) H (y)
P(x3y) ~ ) & —r-l'-;l——n'—‘ > 0,
n=0 2" n!
1
iff a = f t% au(t) , du(s) > o.

-1

This theorem can be proven if Z aﬁ < o , Thus it is possible to
n=0
obtain these strong bilinear expansion theorems,which say that the

Poisson kernel is essentially the only nonnegative bilinear expansion
and a formal limit of results,where there are many of nonnegative
bilinear expansionsi This makes the case of Meixmer polynomisals that
much more interesting, for in that case I do not know which way I
expect the result to be. And until this problem is solved we will not
know which of the above results, Szegd's or Sarmanov's, is typical

of expansions on an infinite interval.

We should mention that the ultraspherical result of A = 1 is
especially interesting. It is

£(030) ~ ) 8 sinn® sinng > 0, 0 < 6, ¢ <7,
n=1

iff £(8)» ] na sinne >0,0<0 <,
n=1

which we already knéw from lecture 1.

There exist other methods which can be used to prove Bochner's
result, Weinberger has shown that it follows from a maximum theorem
for hyperbolic differential equations and Gasper has shown that results
of this type follow from transformation and reduction formulas for
hypergeometric functions and the classical theorem of Sonine on
integrals of three Bessel functions. Gasper's work solves the problem

for Jacobi polynomials.

&
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However,we can not use Bochner's proof,since the addition theorem has
not yet been found for Jacobi polynomials. Gasper's work suggests,
that this addition formula will be essentially more complicated than
Gegenbauer's addition formuls for ultraspherical polynomials. This

involves Ci(cose cos¢ + sin® sin¢ cosy),while the corresponding result

for P(G’B)
n

functions as varisbles. However,it would be very interesting to obtain

probably has elliptic functions instead of trigonometric

this addition theorem. The most promising methods are probably alge-
braic methods over high dimensional Lie algebras, where by high we

mean at least six. The calculations will probably be very complicated,
but the result is important enough to justify the extensive calculations,

which will be necessary.
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b

Lecture 6

Mean convergéncefof'orthogonal series.

This lecture will deal with mean convergence of orthogonal series
and continuity of linear operators. We will state some problems in the
simplest case,i.e. the trigonometric series, and hence we will investigate,

how far they can be extended to other orthogonal series.

Let f(x)m ] o e,
n:._oo
where )
_ 1 -inx
e, = J £f(x) e dx ,
-7
R inx
and let 8y(x) = ] c_ e .
n
n=-N
Let F(x) & LP(-m,7) i.e.

™
J |[£(x)|P ax < »  for 1< p< .
o

The question is now:

v
1i s (x) - £(x)|¥ ax = 0%
Ni:’l-lle x)|

M. Riesz proved that the answer is yes.

The problem above is a special case of the multiplier problem:
. . in w
Let £€LP, 1 <p<e,f(x)w n;_wcn e ™y let (t ) _~ Ve a

bounded sequence of complex numbers i.e. ]tnl <t VIL Now the linear
transform T is defined as follows:

0 e

inx
If £(x) ~ Z c e ", then TE(X) & ) t e e,
n= s OO 1= w00
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For f € 12 T is bounded and |]T]| < t by the Riesz-Fischer theorem,
since this gives |[|T f||2 j_tllfllg ,

The corresponding result for Lp, P +:§;is easily shown to be false
and the problem of finding necessary and sufficient conditions on
(tn) for T to be a bounded operator from P to IP is still open for
1<p<w, pt2.

The M. Riesz conjugate function theorem can be formulated as
follows: |

=]

If [t | <Cand )] |t -t _ .| < C then there exists an A_ with
n' - n n+l' — je)

11558 0
[z efl, <acllell, 1<p<e.
A generalization due to Marcinkievicz ‘is:
Ne+1

2

If Itn| < Cand ) [tn—tn+1 <C, N=0,1,..., then
|nf=2

T f AC||T .
|17 211, < acllel],

After this introduction we will talk about the analogous problem

for expansions in some orthogonal polynomials.

Let pn(X) = kn 2+ ... (o= 0,1,...) be polynomials orthonormal

on [é,ﬁ] with respect to do(x). Let f(x) be integrable on [é,@] with
respect to da(x). For f(x) we define Si(x):

£ n
Sn(X) = kzo ak pk(X) ’
where

b
&, = f f(x) pk(x) do(x).
a

Now we want to show that ||sf|| <4 ||£]]_,
n''p~— P b

where
b

1112 = [ 1260 [P aat).

- &



50

Using the Christoffel~Darboux formula,we have

b

£ n n
Sn(X) = kZO & pk(X) = J £(y) kZO pk(X) pk(y) da(y) =

b
ko7 P.(x) 2 (v) - p (¥) p (x)
= T J £(y) da(y).
n+1 a X -y
kn
Now if a and b are finite then |k ] < C . The proof is simple but very
n+1

technical and not enlightening and will not be given here.

Sinece the polynomials are not uniformly bounded and we are not
assured that the measﬁre does not grow too fast at any point, we must
use some sort of cancellation. We consider a = +1 and b = ~1. We may
assume 0 < x < 1 since the same type of argument will handle -1 < x < 0.
Then if -1 <y < -& < O the factor (x—y)_1 is bounded and we no longer
have a singular integral except at possible singularities in da(y).

We now assume that da(y) = w(y)dy = (1-y)% (1+y)8 t(y) where
0<A<t(y) <B<ew, a,8>-1and [t(x+th) - t(x)] < Ah. Ve will
only congider o, B i.‘% but the case a, B > -1 can also be handled. We

have now

POl

2,1 '
(1-x7)* [w(x)]? [p (x)] < A.
Now we can consider each of the terms pn+1(x) Pn(y) and Pn(x) pn+1(y)

separately and then we need to estimate

-£
2 _ a2 8
glx) = J le(y)] (1-x)" 2 = %(14y)" 2 7 % F Bgye

-1
We then get

1 1
J IS(XHP (1—:}{)0‘ (1+x)sdx _<_Ap J (1-X)G_P(g2‘+%)dx e
. 0 5
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8_
2

J='l—-‘

ay]®,

-£
> [:f [£(y)] (1+y)

~1

and applying HSlder's inequality,we have

1
‘ j le(x)|® (1-x)% (1+x)Pax A f l£(v) [ (1) *(1+y) Bay,
0

if p < 4(o+1) (20+41) and p > 4(B+1)/(28+3).

Next we consider

(x) p (v) -2 (x)p . (v)

n+1
(x) p (x) p (y) (YST
Praq n n Pr+1
n+1(1) - Pn(17' pn(y) pn+1(1) * Pn(1) Pt T_Jpn(x)pn+1(1)'
We see that
pn(X) P, (%) ) (o) q, (x)
p (1 7 p (0 7 %7 g (M)

for some cn > 0 where qn(x) are the polynomials orthonormal on [é,ﬁl

with respect to (1—x)a+1

also have

(1+x)® t(x) = (1=x) w(x).

Then we

(1-x)E Eﬂxﬂé ]%ﬁxﬂ < C,

For the continuation of the proof we need an estimate of p_,,(1)
n+1

. - + .
Equation of the coefficients of yn ! gives

(1) k

o n+1 = n+1
n qn(1) ln

where 1, is the highest coefficient of qn(x).

#

on/qn(T)«
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Szegd has shown,that if

dx < .,

1
j 11log w(x)]
7 V(1-x )

then 1
k . (
-f% -+ L exp - l— I Log wix dx,
2 \'r V(1—x )

as n goes to infinity. In our case both w(x) and (1-x) w(x) satisfy
the above condition,so we have |kn+1/ln] i_Ap. Thus the integrals are

bounded by

it it
A_(x) f f(")“‘y; — (=x) B_(v) ay
-
and 1 2.+ 3 _ % _ %.,
2G| fm“'y)x_y“-x) B () 4y,

-€
where An(x) and Bn(x) are functions bounded both in x and n. Since we

are interested in LY norms,we may ignore them since

£fB A £ .
les,ll < allell

Now we have reduced our problem to estimating

£ 1421 + 5 -3
# ZJ £(y)(1=y)

x -y

o le
vie

(1"3{)-' dy’

—-£

and such integrals are classical. So IIS£|!P E.Allfllp for same p
depending on o and 8. The exact range is the same as we encountered

vefore,

4(o+1) 4(at+1) . - i
5ot3 <P < 5 and the same inequalities with B

&

instead of a.
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Now let us consider o = B = 0, t(x) = 1 as a special case. We

have then the Legendre polynomials. Pn(x).

Let ®
£(x) & ) &, Pn(x),
n=0
then 1
. = + 1
8 (n + 3) f £(x) Pn(x)dx,
~1
1
P (x)P(t) -P(x)P . (t)
+
n 2 .
27 x -t
and
£ N
511, < allell, for 5 < 2 < .
It is well known that
cos|(n+3)e - Ei
2
P (cosp) Vv - s 0> @,
Vo (sine)z

£(8) ~ z & cosnh
and
1
g(e) ~ } a, Pn(cose)v% (sin®)?2,
These two functions should have much in common.
We now define ||f[lp s o8 follows:
N >

m 1
||£] Ip,cx = [:J |f(6)|p (sing)® dé___}p .
0

We would like to show that

1
el o <Allell < atllsll

1< p<w, =1< &< p=1,
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If we could prove this,we could argue as follows:
Let ©

T fe~ ) t_a cosng,
n n
n=0

-

T.g’if y v, 8, Pn(cose)\In (sind)?®,
n=0

If it is also true that
e el < il s
then we would have
Imal | < agllnell < allell < ajllall .

Consider the case

d.
it

1 for n <N,

il

t

0 forn>0N.
n .

Hardy and Littlewood have shown that
f .
HSNHP,OL = HT pr,OL iAprHp’aa 1< D < ®, -1 <o < P"1a

where Ap is independent of N.

So,if the conjecture is true,then

TN )

. 2 P
J | 1 = */n P (cos0)|P (sine) as < Allg]]¥ .
5 n=0 n n - P

If we choose‘g'+oc= 1 and use -1 < o < p-1 wehave£<p<h_

3

Thus we would have a new proof of Pollard's mean convergence theorem.

&
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This conjecture is true,but rather then give a proof of it,we will
sketch a proof of the dual result.

Dual theorem:

Let
T
a = J f(cos6) cosnb de ,
0
T
b= J f(cosH) Pn(cose) Vn sine de.
0
e wast [la ||y Iloll o for 1< p <=y <1 <0< pet,
1
- b oTP
where Ha‘n”p,a = EnZo ]a.nl (n+1)_T

We will give a sketch of the proof. Formally

T
b = J £(0) Pn(cose)Vn (sine)% de =
0

m
® 1
= ] & Vn J coske P (cose) (sine)® do =
k=0
0
in 2n o
= ) e+ ) R D T
=0 k=3n+1 k=2n+1

We would like to show that these terms are

n/2 2n a, ey
o(+ ) + —£ 4+ of £y,
n kZO & n/g+1 k=n 2n§1

The middle term can be estimated using asymptotic properties of Pn(cose)

and it is the desired term plus smaller terms with bounded L?*® norms.
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We consider

Va

1
Pn(cose) cosk6® (sind6)? de,

O

n
Now Pn(cose) = ) o, cosje, o > 0, as we proved in the third lecture.

J=0
So the above integral equals

m

n 1
%/n ) o, J [éos(k—j)e + cos(k+j)é](sin6)2 ae =
j=o0 Y
0
= O(AZE—) = 0(10 for k > n.
3/2 n
k™
n
Observe that all we needed about OLj was o > 0 and z ocj = 1.
§=0

This estimate takes care of the first term. To handle the third
term we must expand Pn(cose) in terms of some functions ¢j(x),

for j > n,so that the subscripts j and k will stay apart. We use

00

P (cos®) = ) al(j,n) sinje
n . s,
J=n+1 sin®

which was given in lecture 3. In this case we need a(j,n) explicitly

but we have them. We also must use

sinje coskd = %[éin(j+k)e + sin(j—k)i]

and here we again have nonnegative coefficients, this time because

J > k.
This proof can be extended to ultraspherical polynomials and now
we need
n+m
A A A
Cn(x) Cm(x) = ) a(k,m,n)Ck(x),
k=]n-m

) = T aln) )
n 20 ? k »
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[e<

A (1M = T ylem) ¢ (1)
n=

21l of which we have considered and a new result

n+m
= 1 slemm) ot (x),

CA+1( ) CA(x)
k=ln—m[

x

‘n m
We have said nothing about this result before;since we still have

no general theorems which contain the positivity result for §(k,m,n)

If n > m-1 then &§(k,m,n) > O and this generalizes
sinné cosmé = #[sin(n+m)6 + sin(n-m)e] .

Actually,it was this proof which finally convinced the author,that
there should be general theorems of the type givea in lectures 2 and 3.
There is now an improved proof of this result and of its dual,which
not only works for Jacobi polynomials,but for Fourier-Bessel and Dini
series and many Sturm-Liouville expansions. However,the above proof
has more than historical interest,since it shows how some of the
fundamental properties of orthogonal expansions we have been considering

can be used.
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Lecture T

Gaussian quadrature.

In this lecture we will show the importance of the zeros of
orthogonal polynomials in approximation theory. From the Weierstrass
theorem we know that a continuous function £(x) on [-1,1] can be
approximated uniformly by polynomials. One natural way to attempt to
prove this theorem is by interpolation. Divide [}1,{1 into k+1 parts
Eki’xi+{1’ i=0,1,...,k, Xy = —1% x, = 1. Let Li(x) be the polynomial
of degree k-1 with the property Lk(xj) = f(xj), J= 1,000,k

(X—Xq) s e » (X"J&i)
If w.(x) = ¢ where the terms (x-x.)/(x,-x,) are
3 (x.-%,) «o. (x.~x ) J J7d
J J n
P -k
omitted,then L (x) = ) f(xj) Wj(x). A natural choice for x is the
J=1

set of equispaced points,but this is a very bad choice. Actually, it can
be proven,that no choice works for all continuous functions. However,
if we ask for less,then we can still obtain interesting theorems for

an appropriate cholce of xj.

Suppose we wish to compute f(x) dax. If f(x) is a polynomial
-1 1 1

of degree k-1,then Li(x) = f(x) and so j Li(x) do(x) = J f(x) do(x).
-1 -1

A surprising result of Gauss and Jacobi is that this identity holds

for polynomials of degree 2k-1,1if the x, are suitably chosen. Let

do(x) be a nonnegative measure on [-1,1] and pn(x) the polynomials
orthogonal with respect to da(x). Choose X5 x (j=1,...,k) as t?? k
zeros of pk(x). Then,if f(x) is a polynomial of 2k-1, f(x) - Lk(x) =
pk(x) qk_1(x) (q_k_1 polynomial of degree k-1), since f(xj,k) = Li(xj’k).
Then

1 1
| B - fasta = | 5060 g () aale) = o,
-1 ‘ -1
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because of the orthogonality.
1

1
Since we have J Li(x) da(x) = f £(x) da(x) for a larger
-1 -1 1
class of polynomials than usual,it is natural to consider J Li(x) do(x)
-1
for an arbitrary continuous function. Stieltjes (188L4) proved that

1
lim J [Li(x) - £(x]] da(x) = 0.

e
The essential step in the proof is to observe that

1 : 1
J wj(x) do(x) = f w?(x) da(x) = Aj >0
-1 -1

L]

since each of these integrals is equal to the same sum and all of the
terms in this sum vanish except one term,which we will call Aj.

Erdds and Turan (1935) extended Stieltjes' result to

1
(1) lim f [@i(x) - f(xz]e da(x) = 0,

e

for all continuous functions. This is an extension of Stieltjes'

theorem,since (1) implies

1
1lim j [Li(x) - £(x)] da(x) =0,

n-»« 1

1
which is clearly stronger than Stieltjes' theorem. For do(x) = (1-x2)—2dx

Erdds and Feldheim and independently Marcinkiewicz proved that

1
lim J Eﬁ(x) - £1(x)]? _ax

LE =0, p<e
e V(1-%°)
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1
For do(x) = (1—x2)2dx Feldheim showed the existence of a continuous
function £, for which

1
I 15 (x) - £ |* (1-22) ax
21

goes to infinity.

It is also possible to consider interpolation at the zeros of one
set of orthogonal polynomials and ask for convergence with respect to
a different measure.

Szegl proved that
1

lim J [F(x) - L5(x)]ax = o,
n-roe n
-1

if the interpolation is taeken at the zeros of the polynomials orthogonal
with respect to (1-x)* (1+x)B dx for o,B < 3/2 and he also proved
thet this result fails for o > 3/2 or B > 3/2.

The following conjecture would connect these results.

Conjecture. Let Li(x) be defined at the zeros of Pia’e)(x).

Then

1
lim f Lf:(x) - £(x)|P (1-x)? (1+x)® ax 1/p _ 0,

>0
-1

for all continuous functions if a,B z_—%, a,b > =1 and
p < min [h(a+1)/(20+1), 4(b+1)/(28+1] and this inequality is best
possible.

For certaip values we can prove this conjecture. In particular
for a=b = o =8 > -} it is true. Since the argument holds much more
generally (except for one step), we will start with a more general measure.
However, we will ask only for P convergence with respect to the
measure which also determines the interpolation.

It is sufficient to prowe

1 1
J ]Lﬁ(x)lp do(x) v < A J l£(x) P da(x) /o ,
-l -1

o

for all continucus functions.
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We use the converse of HSlder's inequality

1
1

[J |L§(x)|P da(X] e - HLEI'I = sup Li(X) g(x) da(x),

-1 | g61”, | lgl] 1oy =1

where + %F.= 1. Now let

1
P
1

g(x) o kZO b, pk(x) s ka(X) pj(X) da(x) = (Skj’

n-1
s&(x) = L b, p (x). Since Lf(x) is polynomial of degree n-1,
n k=0 k "k n

1 s 1
J Li(x) g(x) dol(x) = j Li(x) s8(x) du(x).
~1 -1

But Li(x) Sg(x) is a polynomial of degree 2n-2 and so by the fundamental

property of Gaussian quadrature

1
J ﬁb(x) sB(x) da(x) = % Lf( ) & DY
: n n k=1 B xk,n n xk,n k?

where Ak are the Cotes numbers which are positive.
£ _ e .
Recall that Ln(xk,n) = f(xk,n)‘ Using HSlder's inequality we

have
1

f -7
f L (x) g(x) da(x) < []
! k=1

n g ' " 1/,
kZ1 | Sn(xk’n)' ’ AQ ’

1
|20 1P 1 J7

From Stieltjes' result we have

v p . |/
k; |£(x, o) ?\;] Peallell,,
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and if we could bound the other factor by ]]Snllp,,then the problem
would reduce to the partial sum problem,which was considered in the last
lecture. Fof'p' = 2 and p' = » guch estimates are easy,but they seem

to be hard for other values of p'. It is of course equivalent to

showing that

v ‘ P 1/P 1 P 1/p
21 JCNIPLC ] b I J o, _,(x) [P aalx)| ‘P,
1

for an arbitrary polynomial of degree n-1. One method of attacking this
is the following
n-1 1

ZO O Pk(x) = [ Qn—1(y) Dn_1(x,y) da(y),
-1

Q. L (x)

n-1
where
n
D (x,y) = kZO p, (x) p (¥).

If we can add to Dn_1(x,y)‘terms 8 pk(x) pk(y), n <k < 2n-1, so that

' 2n-1
the resulting kernel,Kgn_1(x,y) = Dn_1(x,y) + an 8 pk(x) pk(y),ls

nonnegative for -1 < x,y < 1, then from

1

[ 0y D, ) o) =

-1

1

[ ) Ty ) aaty),

-1

we have from Jensen's inequality
1

: D P
Qper B < [ oy (P, ) asly),

-1

Q 1(X)

Tl

and so
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1
° n
k; Ml (g 1P _<_f la__()[® k; Koot (K o )iy G(y) =
-1
! ! : 1

= [ 0 @ [ Ky ) aa) da) = [ g @I aaty).
1 1 - 1

One way to construct K, (x,y) > 0 is to use the nonnegativity
of the Cesaro means of some order and the generalized delayed means
of de la Vallée-Poussin, Zygmund and Stéin.

The following is a reasonable conjecture. If o + 8 +1 > O and

0<f(x)v ] a Pia’s)(X),
» n=0

(o,

then the (C, o+B8+2) means of the series Z &, P )(X) are nonnegative,

n=0

For o = B > ~3 this is known and best possiblé. It is also known

> -3
for o = - = 3. It would follow for o > 8 > -3. It would follow for
o> B z_—%,if it were known for B = -3,from Bateman's integral which
was given in lecture 4. The details of this will not be given here.
We will conclude with a method which can be used to form counter
(o, )(x) Szego,ln his book,
has shown the existence of a continuous functlon f(x) with L (1) > A a+2.
It is also not too hard to show that
1
lQn(x)l < A *n(2a+2)/p |J IQ»n(x)IP (1-X)a(‘1+x)6dx|
-1

examples. For interpolation at the zeros of P

1

if a > B, o > -;. Similar 1nequallt1es are given in Timan's book on

approximation theory. If Qn(x) is L (x) then

3
HLr:t;! |p Z_A n (2G+2)/P Lri;(.l) _>_A nOH‘g (20L+2)/p

and this exponent is positive if p > L(o+1)/(2a+1). To show that mean
convergence fails for p = L(1+a)/(1+2a), one must go back to Szegd's
construction and examine it in more detail. We spare the reader these

tedious calculations.

The best reference at present is Szegd's book, Orthogonal poly-

nomials.
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Lecture 8

Some open problems.

This will not be a record of the last lecture. This lecture
dealt with a few qualitative results on the classical polynomials and
their zeros. The results described were all in the literature and my
only contribution was to mention a few simple extensions and some open
problems. It is this last that will be given here. Some of the problems
mentioned here were not given in the lecture.

We have already mentioned the important problem of finding an

(G,B)(X).

addition formuls for Pn This would generalize

cos(B+d) = cosb cos¢ — sind sing.
An even easier result for cosd is
cosee + sin26 = 1,

In generalizations of this addition formula the functions which
replace sin® will be other Jacobi polynomials. In effect cosn® is

-2n

(-%)-%) -1 — 2n . .
P (cosH) * 8 vhere a = = 2 *-(n ) and sinn® is

n
11 - -

b *.P(2’2)(cose) »* sin® where b L (2n+1) 5 2 2n(2n)_
n n-1 n o

. . , 2 . 2 .
However 1in generalizations of cos 6 + sin 6 = 1, cosnb 1s

11
Pé-z’ 2)(cose) and sinn® is the second solution to

2
du +'n2u = 0.

d62

This is suggested by Nicholson's formuls for Bessel functions:
2 2 8 .
Jv(z) + Yv(z) = KO(ZZ sinh t)cosh 2vt dt, Re z > O,
w
0

See Watson, Bessel functions 13.73.

&
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Of course many formulas can be given for Ji(z) + Yi(Z) or for the
corresponding classical polynomials and second solutions to their
differential equations, but what mskes Nicholson's formula so useful

is what can be proven from it. In 13.T4 Watson shows that

xEIi(x) + Yi(x)]

is a decreasing function of x when v > % and an increasing function

when 0 < v < 3. Of course for v = 3 this function is a constant, as
it must be, since it reduces to sin2x + cosex = 1.

Actually, much more is true about x[?i(x) + Yi(xi] and meny inte-
resting consequences for monotoniclty properties of Bessel functions
have been obtained by L. Lorch and P. Szegd in Acta Math. v. 109 (1963).
It would be very interesting to have similar results for the classical
polynomials. Probably the easiest to handle will be Lz(xg) and after
that

The above results deal with properties of Pn(x) at various points

x . It is also possible to compare Pn(x) and P_ (x) at various points

th *1

For example, Szegd has shown that the k™ relative maximum of |Pn(x)I

i i i > k+1. - > -

is a decreasing function of n for all n > k+1. If uk,n uk,n+1 uk,n+1

NP i.e. this sequence is convex as well as monotone, but this has
9

not been proven as yet.

If0O=906, <6, <= ...%<8 denote the first [E] + 2 zeros
0 1 [Il_+ 1] 2
2
of sind Pn(cosQ) then this is a convex sequence as Szeg® has shown, i.e.
ek - 9k—1 is an increasing sequence. A slightly harder result is due

to Szegb and Turan. They have shown that the sequence ev et = ev'n
sli= H
increases, as v goes from 1 to Egglﬂ. Here GV 0 is the v-th zero of
. -

Pn(cose) in inecreasing order. Similar inequalities for 6 as

ven ev,n+1
a function of n with v fixed are even harder to find. The ultimate

monotonicity of this of this sequence can be proven from asymptotic
formulas. The inequalities involve the various second difference in
ev ;, first in v, next the mixed difference, one in n and one in v,

2
and finally the second difference in n.
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The first is O(n—2), the second is O(n_3) and the last is O(n—h) as is
easily shown from asymptotic formulas. Thus this last should be sub-
stantially harder to prove and it seems to be.

These results and problems have just been mentioned for Legendre
polynomials, but they can of course be asked for Jacobi and Laguerre
polynomials as well, Some results are known and in some cases the
proposed theorems are false, but we are far from having a good grasp
on those guestions. An even harder question is to consider functions of
the same degree and different parameters. Markoff and Stieltjes have
monotonicity theorems for the zeros of the classical polynomials
(Markoff's theorem is more general), but there are a large number of
questions we cannot answer even for this type of question.

Consider the Charlier polynomials, Cn(x;a), the polynomials

orthogonal with respect to e_a *-ax/x! for x=0, 1, +v., & > 0, Let
0 < x1(§) < s < xiai be the zeros in increasing order., Then it is
] 9 -
not too hard to show that lim X n = k-1 for fixed k. Also from general
new "2

(a) (a) (a)
theorems xk,n+1 < xk,n 50 xk,n > k-1. An upper bound can be shown to

be x(a)
n,n

a, but I have only shown this for k = 1 and k¥ = n. What is needed is a

< (1+a)n. It is likely that xéag is an increasing function of
b

generalization of Markoff's theorem to measures which are not sbso-
lutely continuous. P(a,a)(x)

If M n(a) denotes the k-th relative maximum of , then

n

, Péa,a)(1)

it is likely that uk’n(u) is a decreasing function of o. The list of
problems of this type can be extended edgeless and others will suggest

themselves to the reader.

Another problem concerns positivity results. Féjér proved that

n n Péa,u)(x)
) Pk(x) > 0 and Feldheim generalized this to ) REPN > 0,
k=0 k=0 Pk“ 2%/ (1)

o > 0. He also mentioned the problem

P(G,B)(x)
() I, ey, 2%
k=0 p \%Bleqy ~

k
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this has been proven for o >B,0a >0, 8 3_-% and for some B & (-1,-3)
by Askey and Fitch. However this is not the right inequality to prove
for o > B. A stronger inequality would be

(2) ) P () |
2 ———— > 0, 0 > B, =1 < x< 1,
Kk=0 Pﬁﬁ-“)(1) - -

This is easy to prove for o = B+1, B Z_—%, and from this and the
integrals given in lecture U4 it is possible to prove this for
l8]< o < B+1, B > -3,

One consequence of this inequality would be the following con-

jecture. -
If £f(x) v ) -a P(“’B)(x) >0, |x| <1,
n n - -
=0
then
¥ n _(a,B)
) a r PP (x) >0, |x| <1,8=0,1, ...,
n n - —
n=0
< L]
— a+B+3

This conjecture is true for B < o < B+1, B i_-%, and it may not
hold for a+B+1 < 0. However it probably does hold for a+B+1 > 0O and
it is best possible.

By itself this conjecture is not very important, but it was this
problem which showed me that the right inequality to prove was (2)
rather then (1). The latter inequality only implies the nonnegativity of

N
n=0 no

+ .
(x) for 0 < r < Bl ! o > B and this is almost

— o+1 o+B+1°

surely not best possible for any (a,8). If there is anything I would like
the reader to learn from these pages,it is Jjust this, that without
some type of application the wrong problems will usually be asked

and the wrong formulas be proved. I can now tell why

n %) (y) n p{%8)(y)
—=————— ig a better sum to consider then ——— , but
(8,a) (a,B)
k=0 P >27(1) k=0 P (1)

&

the fact remains that this knowledge was hindsight and so I will not

give it here.
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I would much rather want the reader to learn the above moral: do not
study special functions for their own sakes. Without motivation and
problems from some other field this area becomes sterile very fast. Of
course this warning is not unigue for special functions, but holds

for any other specialized field of mathematics. And with this remark

I close my series of lectures.

References: The best references to results on zeros and on lnequalities
for the classical polynomials is Szegd's book. The Szegd-Turan result
is in Publicationes Mathematicae, Debrecen, Tom 8 (1961), 326-335.
Szegd's monotonicity result for uk,n is in Boll. Union. Matem. Ital.
ser. III, Anno V(1950), 120-121. The Askey-Fitch result is in

J.M.A.A. 26(1969), L411-437 and many references are given in this paper.



