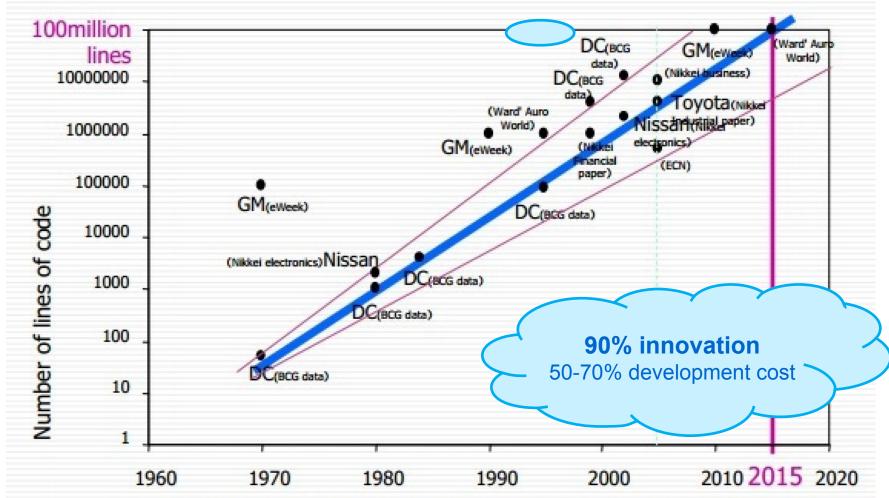
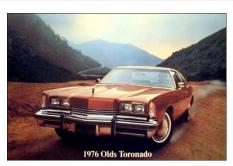


Automotive Architecture Description Mechanisms:


Between Past and Future


[Invited Talk]

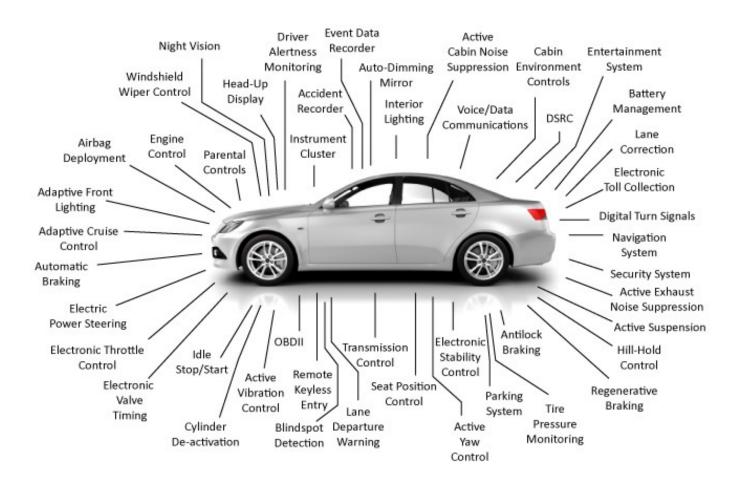
Yanja Dajsuren, CWI

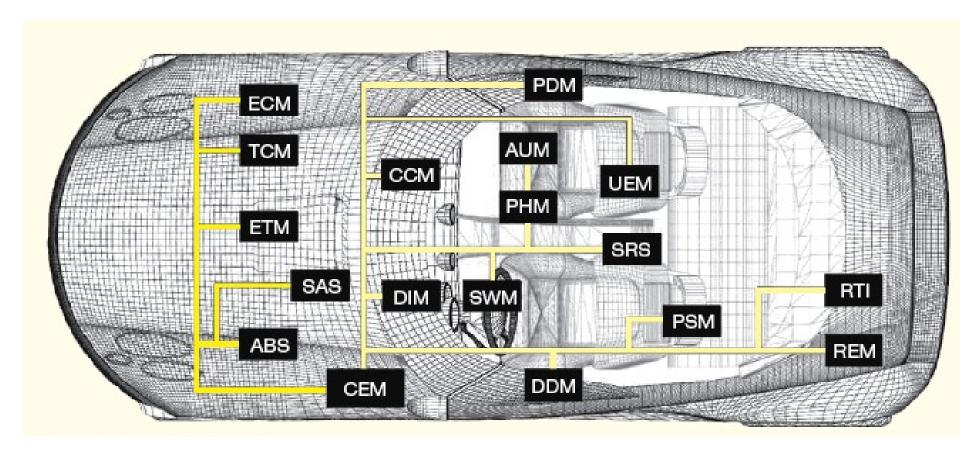
The 6th MUSTAK International Conference on Global Science and Technology Convergence

August 19, 2015 Ulaanbaatar, Mongolia

Electronic Spark Timing (EST) System (1 ECU)

2000 functions enabled by software (70-100 ECUs)

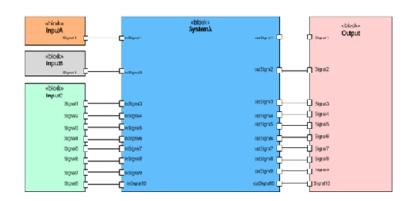

2014 record recall year


Software problem that could cause

- the cars to stop suddenly
- accelerate without warning
- overheats/damages power **electronics**

YEAR	TOTAL RECALLS ISSUED	TOTAL NO. OF VEHICLES AND EQUIPMENT RECALLED IN MILLIONS
1990	269	18.5
1991	282	14.4
1992	217	13.6
1993	264	11
1994	290	9.9
1995	348	19
1996	341	19.5
1997	312	16.7
1998	408	19.2
1999	440	55.6
2000	626	44.6
2001	527	22.4
2002	506	25.3
2003	600	22.9
2004	698	33
2005	645	20.4
2006	613	14.1
2007	713	20.6
2008	781	22.6
2009	571	18
2010	723	23
2011	657	17.5
2012	657	18.1
2013	714	27
2014 YTD	*500	**56

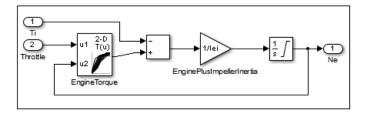
Toyota Prius - Software Issue in ABS



Toyota Hybrid Model recall:

- Global recall of ~ 400,000
- The total recall cost ~\$2 billion

Average automobile:


- 70 to 100 ECUs
- ~100 million LOC

Architecture Model

Architecture
----> Description
Language (ADL)

Design Model

Source Code

Automotive companies and ADLs

- Automotive Modeling Language (AML)
- COmponent Language (COLA)

- · EAST-ADL
- Timing Augmented Description Language (TADL)
- The ICT MAENAD project EAST-ADL2

Automotive ADL comparison

Architecture needs	EAST-ADL	TADL	AADL	AML	SysML	MARTE
Requirements traceability at multiple levels	The traceabil- ity between requirement en- tities and other design entities are supported.	The traceabil- ity between requirement en- tities and other design entities are supported.	Not supported	Not supported	The traceabil- ity between requirement en- tities and other design entities are supported.	Not supported
Integrated multi-level modeling	Vehicle, Analysis, Design, and Implementation levels	Integration of Timing constructs at different levels (EAST- ADL and AUTOSAR)	Implementation level	Logical ar- chitecture, Technical ar- chitecture, and Implementation levels	Multi-level modeling ele- ments	Generic compo- nent model
Modeling hierarchical elements	Hierarchal ele- ment concept	Integration of timing concepts into hierarchal elements	Hierarchal system abstrac- tions (systems of systems, inte- grated software and hardware components)	Hierarchical structure of elements and variants (subset of the elements' subelements)	Different type of hierarchical ele- ments (package, block, part, and activity)	Different type of hierarchical ele- ments (package, component, class)
Mapping between ar- chitectural elements	n-to-m mapping between design entities at dif- ferent architec- tural levels	Time budgets are allocated to design elements at different levels	Mapping of software onto computational hardware ele- ments	Mapping func- tions and func- tional clusters to the technical infrastructure	Mapping be- tween different entities using an allocate relationship	Allocation mod- eling
Support of evolution	Component re- finement and re- alization	Component re- finement and re- alization	Component ex- tension	No explicit evolution mech- anisms	Subtyping, gen- eralization, re- finement	Subtyping, gen- eralization, re- finement
Determining architectural quality	Quality require- ment element as part of require- ments modeling	Support of architectural quality from timing perspec- tive.	No specific mechanisms of defining architectural quality	No specific mechanisms of defining architectural quality	No specific mechanisms of defining architectural quality	Modeling of quality in use characteristics
Adoptability in the automo- tive domain	Used in aca- demic setting	Used in aca- demic setting	Used in aca- demic setting	Concepts avail- able	Automotive case studies	Real-time em- bedded systems
Usability	Graphical nota- tion based on the UML pro-	Defined for the automotive do- main	Defined for the automotive do- main	Defined using automotive concepts	UML inspired graphical nota- tions	UML notations

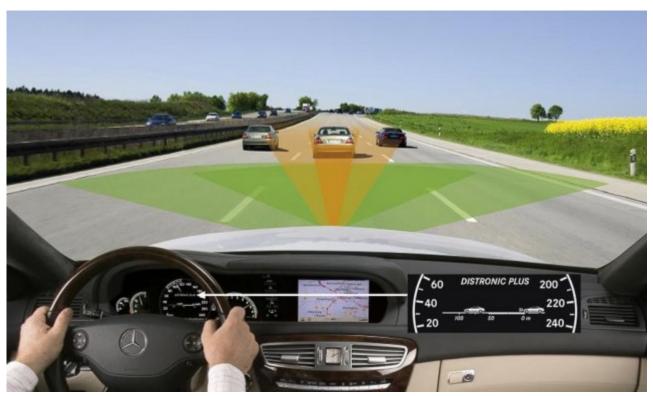
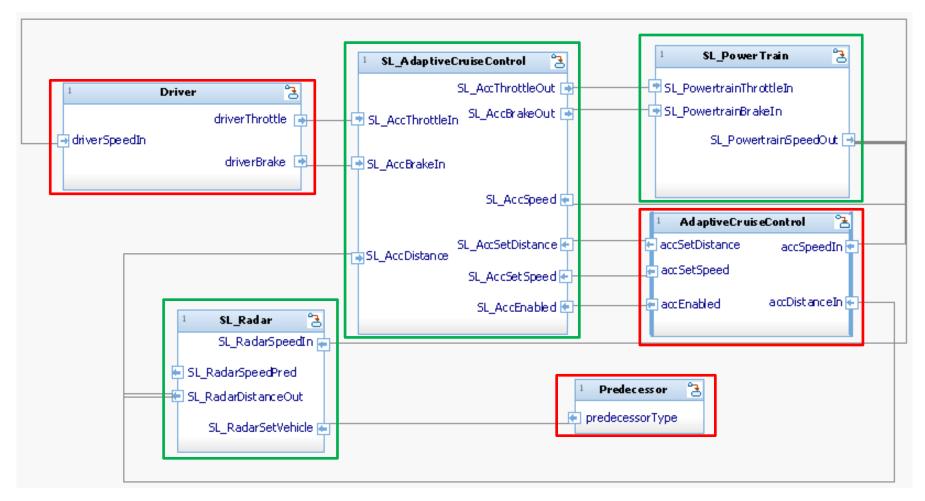
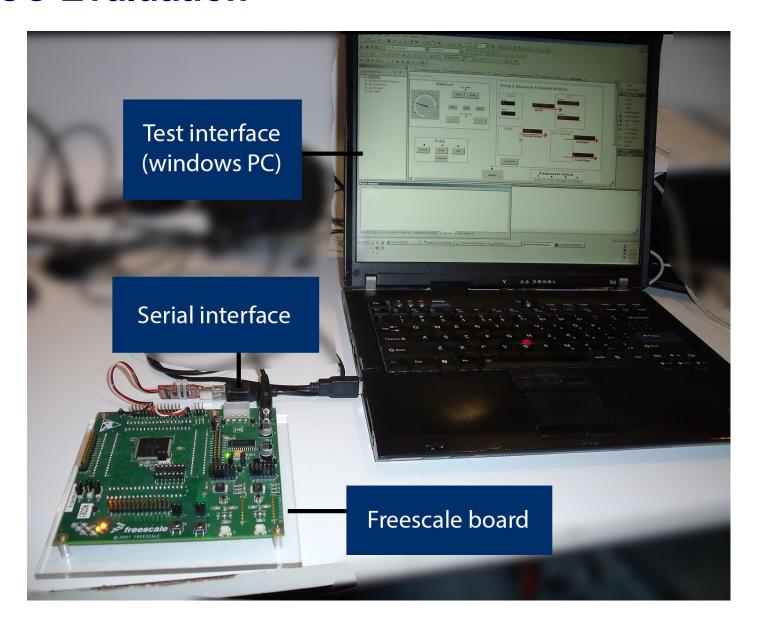



Image: http://www.extremetech.com/


Modeling the ACC system for an E-truck with a top-down approach in SysML

ACC Architecture

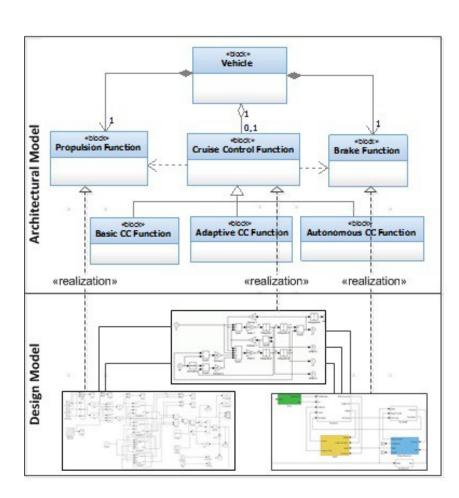
- Software
- · Hardware

ACC Evaluation

Automotive @ TU/e

Cooperative Driving (platooning), A270: Helmond-Eindhoven, 2011 (Mechanical Engineering/TNO)

Solar Team Eindhoven and **Stella** (World champion in the Michelin Cruiser Class of the Bridgestone World Solar Challenge 2013.)



TU/E URE team

Further Work

- Automotive architecture framework
- Integrating automotive ADL (e.g. SysML) with verification
- Defining quality-driven architecture modeling

Contact for comments and collaboration:

Tel: +31(0)20 592 4007

Email: y.dajsuren@cwi.nl

Address:

Centrum Wiskunde&Informatica

Science Park 123

1098 XG Amsterdam