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Summary 

The subject of this report is the implementation of automatic garbage­

collection techniques in a formula-manipulation system written in ALGOL 60. 

Two garbage-collection methods, c~mpletely written in ALGOL 60, one using 

a relocation technique, the other using a free-list technique are compared 

with each other with respect to: ease of programming and memory space used. 
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1 • Introduction 

As a continuation of the investigations on formula manipulation in ALGOL 60, 

as described in [1,2], we study in this report formula-manipulation systems 

with automatic garbage collection and compare them with respect to ease of 

programming and memory space used. 

On the basis of the results of this report a new formula-manipulation system 

will be made, in the near future, comparable with the system of [1], which 

should serve as a basis for a new programming language: ABC ALGOL(= ALGOL 60 + 

the new type formula) , ABC standing for: 

"Algebraische Bewerkingen met behulp van de Computer" 

(Dutch for: "Algebraic operations by means of the computer"}. 

Since the aim of this report is studying only the effect of garbage collection 

on the organization of the system, we have based ourselves on the simple 

formula-manipulation system of [1] chapter 1, which is copied and described 

in a condeinse form in section 2. 

In section 3 we clarify the use of the terms "formula", "formula expression", 

a "stored formula" and "the name of a formula". 

In section. 4 the concepts ~ and value are introduced; while in sections 

5,6 assignations, block entry and block exit are studied. Garbage collection 

with a relocation technique is treated in section 7-10 and with a free-list 

technique in sections 11-15. Finally, section 16 discusses the advantages 

and disadvantages of both techniques. 

Complete and tested ALGOL 60 programs are reproduced from flexowriter tape: 

ALGOL 60 identifiers(or ALGOL 60 "text"} occurring in the accompanying text 

are (or is) typed in italics. 
Identifiers of names (section 41 will be typed in small letters; identifiers 

of values in capital letters. 

2. Recapitulation of the simple formula-manipulation system 

For the sake of convem.ence of the reader, the simple formula-manipulation 

system of [1) chapter 1 is copied: 
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begin integer one, zero, sum, product, algebmic var-iabZe, k; 

integer arzaay F[l:1000,1:3]; 

integer procedure STORE (Zhs, type, rihsl; vaZ.ue lbs, type, rhs; 

integer lhs, type, rfzs; 

begin STORE:= k:= k+l; F[k,1]:~ lhs; 

F[k,2]:= type; F[k,3]:= rhs 

end STORE; 

integer procedure TYPE (f, lhs, l"hsl; value f; integer f, lfzs, rhs; 

begin lhs:= F[f,1]; TYPE:= F[f,2]; rhs:=F[f,3] end; 

integer procedure S(a,b); value a,b; integel" a,b; 

s: = it a = zel"O then b else it b = aero then a 

else STORE ( a, sum, b 1 • 

integel" procedure_ P(a,bl; value a,b; integer a,b; 

P:= it a = zero• v· b = zero th.en zero else 

it a = one then b else ff.. b = one then a. 

else STORE (a, produot, bl; 

integel" pl"ocedure DER( a, b); value f,:r:; integel" f,:r:; 

begin integer a, type, b; type:= TYPE (f,a,bl; 

DER:= it f = :r: then one else 

it type = sum then S(DER(a,:r:1,DER(b,:r:11 else 

it type= produot then S(P(a,DER(b,:r:11,P(DER(a,:r:),b)} 

else zero 

end DER; 

INITIALIZE: sum:= 1; produot:= 2; algebmic var-iabZe:= 3; k:= O; 

one:= STORE(O, algebmio var-iable, OJ; 

zero:= STORE(O, algebraic var-iable, 01; · 

comment 

Suppose one wishes to calculate: 

f = (x~+xl * dy/dx + (~+yl * dx/dx, 

: . '• .. 

which is a trivial problem, but illustrates the need for automatic garbage 

collection. 
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The calculation is performed by the following actual program; 

ACTUAL PROGRAM: 

begin integer x, y, f; 
x:= STORE (0, aZgebraia variable, 01; 

y:= STORE (0, aZgebraia variab.Ze, 01; 

f:= S(P(S(P(x,x),x), 

DER(y,x)), 

P'(S(P(y,y) ,y), 

DER(x,x) 

J ); 

end 

end 

The result of the calculation is that f = ( (y-++y l+y}; but during the calculation 

process the expression S(P(x,xl,xl has been evaluated resulting in the storage 

of the usel,ess formula ( (x~}+xl into the array F. 

This formula is useless for two reasons: 

a) it is not used for building up f; 

b) it canno·t; be used later on since it is not known where it is stored in F. 

Therefore, we may freely consider this formula as garbage. To get rid of it 

is not a simple matter since it occupies space in F which is surrounded by 

space in which still interesting formulae are stored (y and f). 

In [1J section 2.14 we have studied the problem of making a procedure COLLECT 

GARBAGE which can be added to the above set of procedures and which can find 

out which formulae are garbage 1n order to create new storage space. 

It has been shown that: 

a) merely adding a procedure COLLECT GARBAGE is not possible since it J..S 

provided with insufficient information (it only knows the contents of F, 

but it should also know that the formula of which f is a name does not 

belong to the garbage) 

b) a procedure COLLECT GARBAGE can be made if: 

1. The connection between the variables, being names of formulae, and the 

internal representations of these formulae, is made leBs direct; 

2. 'I'he f'orm of the system proced11res S and P is changed conBiderably. 
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3. Formulae, Formula expressions, internal representation of formulae 

and names o:f formulae 

In this section we shall clarify the use o:f the term "formula". 

A formula is a sequence of symbols satisfying the following syntactical 

rules: 

<:formula>::= <sum>j<product>l<derivative>j<algebraic variable>! 

<:formula identifier> 

<sum>::= (<formula>+ <formula>) 

<product>::= (<formula> -M- <formula>) 

<derivative>::= d<formula>/d<algebraic variable> 

Where <algebraic variable> and <formula identifier> are just names defined 

in the same way as <identifier> in the ALGOL 60 report (3]. 

A formula as programmed in an ALGOL 60 program will have quite a different 

appearance; it is programmed as a Formula expression. A Formula expression 

is a sequence of symbols satisfying the following syntactical rules: 

<Formula expression>::= <Sum>l<Product>l<DERivative>l<Algebraic variable>! 

<Value of a formula variable> 

<Sum>::= S(<Formula expression>,<Formula ~xpression>J 

<Product>::= P(<Formula expression>,<Formula expression>} 

<Derivative>::= DER(<Formula expression~,<Algebraic variable>) 

<Algebraic variable>::= STORE(<arithmetic expression>, aZgebraia va.PiabZe, 
<arithmetic expression>) 

<Value of a formula variable>::= V(<formula variable>) 

<formula variable>::= <variable> 

(<variable> and <aritbmatic expression> are defined in the ALGOL 60 report 

(3); the role of V will be clarified in the following section). Due to its 

above definition a formula may appear in a mathematical textbook, a Formula 

expression may appear in an ALGOL 60 program. 
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M0rcover, a Formula expression can appear only- as a sequence of symbols, 

typed in itatias. 

By means of execution a Formula expression an image of a formula is stored 

in the array F (or in another arr~, see sections 11,12), occupying three 

places: F[k,1], F[k,2] and F[k,3'], where k is some integer; this image is 

called the internal representation of the formula. 

Some formulae have obtained names by means of an assignment statement; the 

left-hand side of which being a variable (or variables), the right-hand side 

of which being a Formula expression. These variables are called the names of 

the formulae. In the actual program of the preceding section we have, for 

instance, 

one is the name of an algebraic variable; 

:x: is the name of an algebraic variable; 

f is the name of the formula f=(y-My)+y}; the formula expression creating 

this formula being: 

S(P(S(P(:x:,:x:1,:x:1, 

DER(y,:x:1), 

P(S(P(y,y) ,y), 

DER ( :x:, :x:1 

) 1 

and the array elements in F, where the internal representation off is stored, 

being F[B,1], F[B,2] and F[B, 3']. 

Note, that the above formula expression is not quite a Formula expression; 

but in the simple system of section 2 it is a legitimate formula expression. 

To make it a Formula expression, all :x:'s and y's should be changed into 

V(:x:)'s and V(y)'s, respectively. 

4. Values and names 

In this section we shall study the connection between a name of a formula 

and the internal representation of a formula. As ~e have seen in the preceding 

section a name of a formula is an ALGOL 60 variable such as an integer for 

an integer array element g[lO]. 
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Definition: A value is the whole of three array elements in F, for a certain 

number k: {F[k.,1], F[k.,2], F[k.,3]}, in which the internal representation of 

a formula is :stored. 

Remark: If th,e particular method; for storing the internal representation of a 

formula is chosen in another way, then the value is defined as the whole of 

storage cells in which the internal representation of a formula is stored. 

In the simple system of section 2 the value of a variable f, being the name 

of a formula f, points to the value in which the internal representation of 

f is stored. 

So, if we introduce the abbreviation: val(f} for value off, then 

val{fl + value v 

with v = {F[v.al(f}.,1] ,F[val(f}.,2],F[val(f}.,3]}. 

Introducing the notation val(f} for value off, we have in the simple system 

of section 2 the following: 

The variablie one is the name of an algebraic variable, 

val(one} = {F[].,1],F[l.,2],F[l.,3]}, 

while val( n.l(one l l = {O ,3 ,O}. 

The variabl,e f is the name of the formula ( (y~ }+y}, 

va:h(f} = {F[B.,1],F[B.,2],F[B,3]}, 

while val(~al(f}} = {?,1,4}; 

the numbers? and 4 point to other values, namely 

{F[?.,1],F[?.,2],F[?,3]} and {F[4.,1J,F[4,2],F[4,3]}, 

respectively. 

In order to make the connection between the variable f, being a name of a 

formula f and the internal representation off less direct, we introduce a 

name: 

Definition:A 11ame is a storage cell. The value of a name either is zero or ---· --· 
points to a value. Each variable f, being the name of a formula f, shall 

point (by means of its value} to a unique ~., called the name of f or na.me(fl. 
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We now have the following situation: 

val(f) +~(fl• 

If a variable g is not the name of a formula, but will possibly become the 

name of a, formula, then for this g a ~ is cref!,ted also, having the value 

zero. If a variable f is the name of a formula f, then the value of its name 

is defined as the value off itself: 

val(~(f}) + val(f} ; 

hence in this case: 

val(f} + ~(f} ; val(~(f} l + val(fl. 

One might visualize the situation in the following manner, which is almost 

the manner described in the following sections: 

Introduce the integer array NAME[-1000:-1] ; 

let val(f} = -5 , 

then ~(f}. = NAME[-5] , 

let 'val ( NAME[ -5] } = 8 , then 

val_(f) = val(~(f}} = {F[B,1J ,F[B, 2] ,F[B, 3'] }. 

Note, that chasing values of pointers to names to be non-positive and values 

of pointers to values to be positive gives the possibility of a run-time 

"type-check". 

Let f be a formula having an internal representation stored in the value: 

val(f}. 

Definitions: 1. f is called a formula of the first kind if there exists a 

~ .!!. such that val(!!,) = val( f). 

2. f is called a subformula of the formula g, if val(g) contains 

a pointer to val(f). 

3. f is called a subformula of the formula h, if f is a subformula 

of the formula g and g is a subformula of h. 

4. f is called a formula of the second kind if there exists no 

name with a value pointing at val(fl, but there exists at 

least one formula g of the first kind of which f is a sub­

formula. 
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It is clear now that giving a procedure COLLECT GARBAGE the list of names 

it can determine precisely which formulae belong to the garbage; namely, 

those formulae which are neither of the first kind nor of the second kind. 

Assume that an integer array NAME were introduced in the program of section 

2, then the final stage of the calculations might be visualized by means of 

the following diagram: 

val(one}= 

val(zero)= 

val(x)= 

val(y)= 

val(f}= 

Abbreviation: 

n 

-1 

-2 

-3 

-4 

-5 

NAME[nJ 

1 

2 

3 

4 

8 

fig. l. 

k F[k,1] F[k,2] 

1 0 3 

2 0 3 

3 0 3 

4 0 3 

5 3 2 

6 5 l 

7 4 2 

8 7 l 

The value {F[k,1],F[k,2],F[k,3]} will be denoted by {k}. 

F[k,3] 

0 

0 

0 

0 

3 

3 

4 

4 

From fig. 1, we see that the formulae with the values {1}, {2}, {3}, {4} and 

{8} are of the first kind, with the values {5} and {6} form the garbage and 

that the formula with the value {7} is of the second kind. 
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5. AGrdgni:ng a formula to a variable by means of a Formula expression 

In this section we shall investigate the ALGOL 60 analogue of an assignment 

statement, as e.g. 

f:= ((x~)+(y""Y)). ( 1} 

Although wia! have introduced the concept Formula expression already in section 

3, we shall temporarily forget the concept in order to study how a formula 

expression should be built up. Of course, the declarations of the procedures 

for storing a sum and a product form the cornerstones. 

There are J>rincipally two ways open: 

1. We make procedures sand p, for storing a sum and a product, respectively, 

in such a way that they create a~' the pointer to which being delivered 

by the values of their procedure identifiers. 

2. We make procedures Sand P, for storing a sum and a product, respectively, 

in such a way that they create a value, the pointer to which being delivered 

by the values of their procedure identifiers. 

Pursuing the first way, we observe that since we want to be able to write 

"s (p ( B ( ~ • • ", the values of the actual parameters of s and p should be 

pointers to names. The following statement is then legitimate: 

f:= s(p(x,x),p(y,y)) , (2) 

for, a) the values of :x.: and y are pointers to names; 

b} f becomes equal to a pointer to a name. 

However, since s and p create unique names, it follows that, without pre­

cautions, execution of (2) leads to three unique names of which two are 

superfluous, namely the names created by p(x,x) and p(y,y). 

Therefore, sand p should not only create names, they should also destroy 

the temporarily created~ as the result of evaluation of their parameters. 

In order to save the names of ;c and y from this erasure it is necessary to 

insert a special procedure save(f) which delivers a pointer to a newly 

created name with the same value a:J t..he value of f. 
Hence, ( 2) changes into: 

f:= s (p ( Gai'e (x) ,save(x)) ,pfaave (y) ,aave.(y})). (3) 
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We shall now declare the procedures, using the (undeclared} procedure 

create name (VALUE), which delivers a pointer to a newly created~ with 

as value: {VALUE}, and the (undeclared) procedure REMOVE, which destroys the 

lastly creatEid ~· 

integer procedure s(a,b); value a,b; integer a,b; 

begin integer S; 

S:= if.. V(a) = V( zero) then V(b) else 

if.. V(b) = V(zero) then V(a) else 

STORE (V(a), sum, V(b)); 

REMOVE; REMOVE; 

s:= create name (SJ 

ends. 

If the formul.a f produced by ( 3) becomes uninteresting, then a procedure 

call ERASE(f) is necessary to destroy the ~ of f. 

It should be observed that merely assigning to f another value does not destroy 

the ~ of f'; this ~ is only not be pointed at any more by the value of 

f. This means that the user should recognize that garbage is being formed, 

which means that the system is not an automatic garbage-collection system. 

Another disadvantage of the above approach is that a possible omission of 

save will lead to catastrophal results; moreover it is not possible for the 

system to check for such omissions since the values of save(x) and x are 

both pointers to names. 

The second way, Sand P deliver values pointing to values, will now be studied. 

Since the values of their actual param:?ters will now also be pointers to 

values (we want to write S(P(S ••• ), it is not pc•ssiblcc to write. 

f:= S(P(x,x),P(y,y)); 

since the values of x, y and fare pointers to names. 

Instead, we now should have: 

ASSIGN( f,S(P(V(x), V(x)),P(V(y), I'(y))}), (4) 

where V(x) becomes equal to the pointe:r, pointing at the va]uc of x, 
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and where ASSIGN makes the value of the ~ of f equal to the pointer 

pointing at the value where the formula ((x~)+(y~)) is stored. 

It has implicitly been assumed that the ~ of f does exist already, which 

suggests that all the names of the variables, being used as names for formulae, 

are created. upon block entry through appropriate "~ormula declarations". 

Let the procedure SAVE(VALUE) create a new~ with as value: {VALUE}. 

The procedure Smay now be declared as follows: 

integer procedure S(A,B); integer A,B; 

begin integer A1,B1; Al:= A; SAVE(A1); Bl:= B; 

comment The formula with a value pointed at by Al is saved from erasure 

by a possible garbage collection during evaluation of the actual parameter 

B. Afte.r B has been evaluated there is no danger anymore from any state­

ment in this procedure body, so that the temporarily created name for 

Al can be removed by: 

REMOVE(A.1); 

comment REMOVE(A1) has as effect that: 

1. The ·value of Al becomes equal to the value of the lastly created name, 

which, after SAVE(A1), equalled the value of A, but which may have been 

changed after a possible garbage coUeation during "Bl :=B",, 

2. the lastiy created !:!:E!!!f!_ is destroyed.; 

S:= :!:.f. Al= V(zero) then Bl else 

:!:.f. Bl= V(zero) then Al eZse 

STORE(A1, sum, Bl) 

end S. 

We remark that, for storing x+y+z+u, it is more easy to write 

S (V(;x:) ,S(V(y), S(V( z), V(u)))) then S (S(S(V(x), V(y)), V( z)), V(u)); therefore, 

a change of the first four statements of the procedure declaration into: 

Bl:= B; SAVE(B1); Al:= A; REMOVE(B1) 

will, in general, lead to the creation of less simultaneously existing 

temporary names. 
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An important observation is the following. 

If the storage space for the names is chosen in the same array as for the 

values, then the space needed to save Bl, in the above procedure Smay 

be used afterwards for storing the triple: {Al,swn,Bl} without a garbage 

collection; f'urthermore, the saving of Bl will, in general, not cost extra 

storage space (provided Al and Bl are not equal to V(zero)). 

Erasure of the formula f, as introduced by (4) is now simply possible by 

assigning to its name another value; i.e. by assigning to the name of f 

another value. A possible garbage collection will then find out that f 

belongs to thie garbage since there is no ~ pointing to its internal re­

presentation. 

This system may thus be called an automatic garbage-collection system. 

Moreover, syntactic control is possible on the appearance of V, since the 

value of Vis a pointer to a value and the value of xis a pointer to a 

~ (which may be chosen negative, e.g.). 

It does not need saying that the latter, just described, method will be 

followed in the next sections. 

6. Block entry and block exit 

Upon block entry all the variables, to be used as names of formulae, should 

be declared as variables of integral type, and unique names should be created 

for them. To combine this creation and a possible initialization, we use a 

procedure DE, which heading runs as follows: 

Boolean p1•ocedure DE (fii>st time, f, F); value fi1'st time; 

Boolean fi1•.1t t:ime; intege1• f, F; 

Creation of names and the iriitializaticn (to F) 1s then possible by means of 

a "declaration statement", syntatic'-Llly defined as follows: 

<declaration statement,,: : = DE(!!.::!-.!!._, <variat.lc >.,<value>) I 
DE(<declan1tion sLaLement>, <variflbJe;.;., <v9.-1.11e>) 

<value>::= 0j-<Forr-:ul3. expres'lion> 
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Ex:1.m1110.: the variables x and y, to be used as names of algebraic variables, 

and the variable f to be used as name of the formula ( (x~)+(y~)) are 

"declared" as follows: 

inte,7CT' :x,y,f; 

DE ( DE ( DE (true, :x, STORE ( 0, a lgebraia variable, 0)), 

y, STORE(O,algebraia variable,O)), 

f, S(P(IV(:x), V(x)) ,P(V(y), V(y))) J; 

It is neces13ary that, immediately after block entry, DE is called with 

first time= true; afterwards it has to be called with first time= false. 

Example: The _subscripted variables g[i], i = 1, •.• ,10 will be used as names 

for, until now, unknown formulae; they may be "declared" by: 

integer iJ; integer array g[l: 10 ]; 

for i:= 1 step 1 until 10 do DE(i=l, g[i], 0); • 

Upon block exit all the lastly created names after the corresponding block 

entry, are erased by a call of ERASE. These lastly created names are created 

during and eLfter a call of DE with first time = true; hence, each executed 

call: ERASE should correspond with one and only one executed call: "DE(true, ••• )". 

7. Garbage collection with a relocation technigue 

In this section we describe a garbage-collection process which is based on a 

relocation tP-chnique; i.e. after a garbage collection the "non-garbage" 

formulae have been relocated in the array F such that there are no holes 

left in F. 
In the following section the ALGOL 60 program will be reproduced. 

The garbage-collection process is split into two subprocesses: GCPA and GCPB. 

GCPA stores the contents of the values of "non-garbage" formulae in a second 

array Fdrwn, which serves as an image of the array F; it is filled as if it were 

the future array F. 
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GCPB stores the contents of Fdr>wn into F. 

We remark that in an actual, more realistic, system we would not use an 

array Fdrum but secondary storage instead, such as e.g. a drum (See [1] 

chapter 2 (section 2.7)). 

GCPA is described by means of the following algorithm: 

Step 1: If there is a~' then choose the first name and take step.2; 

otherwise, take step 8. 
Step 2: Take as storage cell!!_ the last chosen~- If the value of!!_ is 

zero, then take step 7; otherwise, take step 3. 

Step 3: Choose as value y the value pointed at by the value of!!.· Take step 4. 
Step 4: If y is marked as being treated already, then the value of!!. becomes 

the pointer to the value in Fdrum where the contents of y has been 

stored and take step 7; 

otherwise, take step 5. 
l 

Step 5: ,If .Y. contains pointers to the values, vi' i=1, •• ,n, n.::_1, then 

for i=1, ••• ,n do the following: 

choose as storage cells= v. and 
- -i 

execute the GCPA beginning with step 3 and ending with step 6. 
Take step 6. 

Step 6: Store the contents of y (possibly being changed in step 5) into a 

value V of FdPum. Mark .Y. as being treated already and store the 

pointer to V into .Y. and into!!.• 

Take step 7. 

Step 7: Choose the next~' if available, and take step 2. 

If there is no~ left, then take step 8. 

Step 8: GCPA is finished. 

The algorithm for GCPB is very simple: The contents of Fd:r>um is exactly 

copied into F and in the same locations; i.e.: 

for i:= 1 step 1 until pointer of F do fE_r j:= 1.,2.,:5 do 

F[i.,j ]:= Fdrum[i.,j ]. 
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Array elements of F, occupying the "top position" in F, will be chosen for 

the names. The organisation of which is as a stack with the pointer: 

pointel' of name, growing downstairs and shrinking upwards. 

A garbage collection will take place if 

pointel' of F = pointel' of name -1, 

where pointel' of Fis the pointer of the values in F; i.e. the current value 

of pointeP of Fis pointing to the lastly created value in F; in the same 

way, the current value of pointel' of name is pointing to the lastly created 

name in F. 

The procedure COLLECT GARBAGE is provided also with a para.meter arl', specified 

as integep arl'ay, in which it is possible to give to COLLECT GARBAGE some 

extra special names, not occuring in the~ list (see the procedure decla­

ration of STORE). 

In order to organize the block entry (creation of~) block exit (erasure 

of names) mechanism, a second stack, the array Zast name, with pointer 

pointel' of Zast name, is used, In this stack the current value of the pointer 

of the ~ list:_, pointel' of name, is stored upon block entry by means of a 

call DE(true, ••• ). Upon block exit the pointer of the~ list is reset to 

the value of the top of Zast name by means of a call of ERASE. 

8. The relocation garbage-collection technigue programmed in ALGOL 60 for 

a simple system. 

In this section the ALGOL 60 program is reproduced describing the relocation 

garbage-collection technique. Some procedures have not been mentioned before: 

the procedure AV for storing an algebraic variable; the procedure ERROR which 

detects a possible error, prints the error message and discontinues the cal­

culation by means of a call of the standard procedure EXIT; 

the procedures PR nZar, PR string, PR, PR intnum and F'R sym, for printing 

and punching a new-line-carriage-return symbol, a string, a real number, 
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an integral. niamber a.nd a symbol; 

the procedure OUTPUT which. outputs a formula without superfluous brackets. 

Finally, the 1>rogra.m ends vi th a.n actual. program which will be discussed, 

together with its also reproduced results, in the section 9. 

begin comment A simple system of ABC - ALGOL 60 procedures for 

formula manipulation with garbage collection (relocation-technique). 

RPR 061168/02 - T8190. R. P. van de Riet; 

integer pointer of F ,pointer of name,pointer of last name, 

max of F 1,max of last name, 

algebraic variable,sum,product,one,zero; 

max of F:= read; max of last name:= read; 

begin integer arrav F[l:max of F,1:3],last name[l:max of last name], 

Fdrum[l:max of F ,1:3],auxiliary array[l:5]; 

procedure INITIALIZE; 

begin pointer of F:= pointer of last name:= 0; pointer of name:= 

max of F + 1; algebraic variable:= 1; sum:= 2; product:= 3; 

DE(DE(.!!!1e,one,AV(0,l)),zero,AV(0,0)); 

~ INITIALIZE; 

procedure COLLECT GARBAGE(n,arr); value n; integer n; 

integer arrav arr; 

begin integE:E, i,j; 

integer procedure SET ON DRTJM(FF); ~ FF; integer FF; 

if FF = 0 then SET ON DH.UM:= 0 else - - -
if F[FF,1] < 0 then SET ON DRUM:= -F[FF,1] else - - -
begin integer t,A,B; t:= TYPE(FF ,A,B); 

if DYADIC OP(t) then 

begin A:= SET ON DRUM(A); B:= SET ON DRUM(B) end; 
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SET ON DnUM:= pointer of F:= pointer of F + 1; 

Fdrum[pointer of F ,1 ]:= A; Fdrum[pointer of F ,2]:= t; 

Fdrum [pointer of F ,3 ]:= B; F[FF ,1 ]:= -pointer of F 

· ~ SET ON DRUM; 

procedm~ DUMP; 

begin PR nlcr; for i:= 1 step 1 ~ max of F do 

begin PR nlcr; PR int num(i); for j:= 1,2,3 do 

begi'!, PR string(~ }); 

if. 7(j > 1 I\ i ~ pointer of name)~ PR int num(F[i,j]) 

~ end end DUMP; 

if pointer of F = pointer of name - 1 then 

begin DUMP; 

comment GCPA:; pointer of F:= O; for i:= max of F step -1 until - - -
pointer of name do F[i,1]:= SET ON DRUM(F[i,1]); 

for i:== 1 step 1 until n do arr[i]:= SET ON DRUM(arr[i]); 

comment GCPB:; .!£!_ i:= 1 step 1 ~ pointer of F ~ 

fdr j:== 1,2,3 do F[i,j]:= Fdrum[i,j]; DUMP; 

ERROR(pointer of F = pointer of name - 1,-pi.o space left:f:.) 

end end COLLECT GARBAGE; 

integer ~ocedure STORE(A,t,B); ~ A,t,B; integer A,t,B; 

begin auxiliary array[l ]:== pointer of F:== pointer of F + 1; 

F[pointer of F ,1]:= A; F[pointer of F ,2]:= t; F[pointer of F ,3 ]:= B; 

COLLECT GARBAG E(l ,auxiliary array); 

STORE:== auxiliary array[l] 

~ STORE; 

integer ~ocedure AV0,r); value l,r; integer l,r; 

AV:= STOHE(l,algebraic variable,r); 
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integer procedure SAVE(FF); value FF; integer FF; 

hcgin ERROR(FF < 0,-\:F negative in SAVE}); 

SAVE:= pointer of name:= pointer of name - 1; 

F[pointer of nnme,1 ]:= FF; 

COLLECT GARBAGE(0,auxiliary array) 

~ SAVE; 

integer procedure V(f); ~ f; integer f; 

begin ERROR(f z. 0,,piame not appropriate in Vi>}; 

V:= F[..f,1] 

~V; 

integer procedure TYPE(FF,A,B); value FF; integer FF,A,B; 

begin ERROR(FF ,:S. 0,~F negative in TYPE}); 

A:= F[FF,1]; TYPE:= F[FF,2]; B:= F[FF,3] 

~ TYPE; 

Boolean ,P_rocedure DYADIC OP(t); ~ t; integer t; 

DYADIC OP:= t = sum V t = product; 

procedure REM.OVE~FF); integer FF; 

.. 

begin F'F~= F[pointer of name,1]; pointer of name:= pointer of name + 1; 

ERROR(pointer of name > max of F - l,fREMOVE no appropriale:i>} 

~ REMOVE; 

Boolean Erocedur~ DE(first time,f,F); ~ first time; 

Boolea1i first time; integer f,F; 

begin.!!,_ first time~ 

begin 1x,infor of la~t name:= pninter of last name + 1; 

ERHOH(pointer of last rn1me > max of last narne, 

fpointer of last name too large'}); 

last name[pointer of ln..;i- name]:= pointer of name 

r;ntl; f:= - SAV,E(F); DE:=~ 

~ DE; 
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procedure ERASE; 

begin point.er of name:= last name[pointer of last name]; 

pointer of last name:= pointer of last name - 1; 

EHHOR(pointer of last name < 1;,!::ERASE not appropriate}) 

end ERASE; 

integer procedure ASSIGN(f,FF); ~ f,FF; integer f,FF; 

begin ERROR(f ,?_ 0,fname not appropriate in ASSIGN}); 

ASSIGN:= F[-f,1]:= FF 

~ ASSIGN; 

integer procedure ERROR(b,s); ~ b; Boolean b; string s; 

if b then 

begin PR nlcr; PR string(s); EXIT; ERROR:= 1 ~ ERROR; 

urocedure PR nlcr; PR string({: 
}); . 

procedure PR string(s); sh·ing s; 

begin PRINTTEXT(s); PUTEXT(s) ~ PR string; 

procedure PR(r); ~ r; real r; 

begin PUNCH(r); PRJNT(r) eud; 

procedure PR int num(a); ~ a; integer a; 

begin integer h; !ta < 0 then begin J>R string(~}); a:= - a end; 

.!f_a ~ 9 ~ PR sym(a) ~ 

hegin b:= a .:..10; a:= a - b x 10; PR int num(b); PR sym(a) end 

end PR int num; 

procedure PR syrn(s); ~ s; .!.ntnger s; 

begin PUS-YM(s); PRSYMls) ~c!_; 
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integer procedure S(A,B); integer A,B; 

begin integer Al,Bl; Bl:= B; SAVE(Bl); Al:= A; 

EUROR(Al < 0 V Bl < 0,tA or B negative in $}); REMOVE(Bl); 

S:= if Al = V(zero) then Bl else if Bl = V(zero) then Al else - - -- -
STORE(Al,sum,Bl) 

~ S; 

integer procedure P(A,B); integer A,B; 

begin integer Al,Bl; Bl:= B; SAVE(Bl); Al:= A; 

ERROR(Al < 0 V Bl < 0,tA or B negative in J>}); REMOVE(Bl); 

P:= .!!. Al = V(zero) V Bl = V(zero) ~ V(zero) ~ 

.!!_ Al = V(one) ~ Bl ~.!!_Bl = V(one) ~ Al ~ 

STORE(Al ,product,Bl) 

~P; 

procedure OUTPUT(name,OUTPUT VARIABLE); value name; integer name; 

procedure OUTPUT VARIABLE; 

begin procedure OP(F ,type); value F ,type; integer F ,type; 

begin integer t,A,B; 

procedure l,BR; .!!.. t < type~ PR string(f{t,); 

procedure RBR; .!!. t < type~ PR string(f)}); 

t:= TYPI<;(F,A,B); 

.!!_ t = algebraic variable~ OUTPUT VARIABLE(F) ~ 

if DYADIC OP(t) ~ 

begin LBR; OP(A,t); 

if_ t = mun ~ PR string(f +}) ~~ 

.!!. t = product~ PR string(f.x:\,-); 

OP(B,t); HBR 

-~ ~ ERHOH(true;ff not appropriate in OUTPUT}) 

~OP; 

OP(V(name),0) 

~ OUTPUT; 



ACTUAL PROGRAM: 

begin integer x,y ,f; 

procedure OV(f}; 
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begin intee-er A,t,B; t:= TYPE(f,A,B); 

if B < 1 then PR int num(B) else - - - -
!!_ B = 2 then PR string(~) ~ 

!!_ B = 3 then PR string(-Fyj:.) ~ 

ERROR(true,terror in output}) 

end; 

procedure PRINT(x,s); integer x; string s; 
begin PR nlcr; PR string(s); PR string(-F (name: }>; PR int num(x); 

PR string(-F) (value: }); PR int num(V(x)); PR string(-F) formula: }); 

OUTPUT(x,OV) 

end; 

PR rilcr; PR string(-Fresults RPR 061168/02}); 

max of F:= 13; INITIALIZE; 

.£2.!!lment garbage:; AV(l0,10); 

DE(DE(DE(true,x,AV(0,2)),y ,AV(0,3)),f ,0); 

PRINT(x,t.x =4•); PRINT(y,·n, =}); 

ASSIGN(f ,S(P(S(V(x), V(y)), V(x)) ,V(y))); 

PRINT(x,h =}); PRINT(Y,'FY =}); PRINT(f,'Ff =}); 

ERASE; 

DE(DE(true,x,AV(0,2)),f,0); 

ASSIGN(f ,P(V(x) ,S(V(x) ,S(V(x), V(one))))); 

PRINT(x,-pc =}); PPJNT(f,ff =}); 

ERASE; 
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max of F:= 18; INITIALIZE; 

comment garbage:; AV(20,20); AV(30,30); 

DE(DE(DE(true,x,A V(0,2)),y ,AV(0,3)),f ,S(P(V(x), V(y)),V(one))); 

PRINT(x,pc =}); PRINT(y ,tY =}); PRINT(f,tf =}); 

ASSIGN(f,S(P(V(f),P(V(x),V(y))), 

S{P(V(f),V(f)), 

S(P(S(V(f),P(V(f),V(y))),V(zero)), 

P (V(x), V(f)) 

) ) ) ); 

PRINT(x,-pc =}); PRINT(y,ty =}); PRINT(f,ff =}); 

ERASE 

end 

end end 100 100 

results RPR 061168/02 

x = (name: -11) (value: 4) formula: x 

y = (name: -10) (value: 5) formula: y 

1 0 1 1 

2 0 1 0 

3 10 1 10 

4 0 1 2 

5 0 1 3 

6 5 

7 4 

8 5 

9 0 

10 5 

11 4 

12 2 

13 1 
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1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 -4 1 3 

6 4 

7 3 

8 4 

9 0 

10 4 

11 3 

12 2 

13 1 

x = (name: -11) (value: 3) formula: x 

y = (name: -10) (value: 4) formula: y 

f = (name: -9) (value: 7) formula: (x+y)xx+y 

1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 3 2 4 

6 5 3 3 

7 6 2 4 

8 0 1 2 

9 1 

10 0 

11 8 

12 2 

13 1 
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1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 3 2 4 

6 5 3 3 

7 6 2 4 

8 _3 1 2 

9 1 

10 0 

11 3 

12 2 

13 1 

x = (name: -11) (value: 3) formula: x 

f = (name: -10) (value: 6) formula: xx(x+x+l) 

x = {name: -16) (value: 5) formula: x 

y = (:dame: -15) (value: 6) formula: y 

f = (name: -14) (value: 8) formula: xxy+l 

1 0 1 1 

2 0 1 0 

3 20 1 20 

4 30 1 30 

5 0 1 2 

6 0 1 3 

7 5 3 6 

8 7 2 1 

9 5 3 8 

10 8 3 6 

11 10 

12 2 

13 9 
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14: 8 

15 6 

16 5 

17 2 

18 1 

1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 3 3 4 

6 5 2 1 

7 3 3 6 

8 6 3 4 

9 _7 3 8 

10 -8 3 6 

11 8 

12 2 

13 7 

14 6 

15 4 

16 3 

17 2 

18 1 

1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 3 3 4 

6 5 2 1 
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7 3 3 6 

8 6 3 4 

9 6 2 8 

10 6 3 6 

11 10 2 7 

12 4 

13 11 

14 6 

15 4 

16 3 

17 2 

18 1 

1 0 1 1 

2 0 1 0 

3 0 1 2 

4 0 1 3 

5 3 3 4 

6 5 2 1 

7 6 3 6 

8 3 3 6 

9 7 2 8 

10 _7 3 6 

11 -9 2 7 

12 4 

13 9 

14 6 

15 4 

16 3 

17 2 

18 1 

X = (name: -16) (value: 3) formula: x 

y = (name: -15) (value: 4) formula: y 

f = (name: -14) (value: 12) formula: (xxy+l)xxxy+(xxy+l)x(xxy+l)+xx(xxy+l) 
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9. Discussion of the actual program and the results 

In order to test the garbage-collection mechanism, some examples, in which 

garbage collections take place, have been treated in the actual program. 

The garbage is introduced in two ways: 

explicitly, by the calls AV(l0,10), AV(20,20) and AV(30,30), introducing 

algebraic variables without a~; 

implicitly, by means of ERASE and by means of the Formula expression: 

P(S(V(f),P(V(f),V(y)J),V(zero)) , 

producing the garbage: (f+(f-My)). 

The output of a formula consists of the following: 

1. the value of the variable being its name; 

2. the value of the ~ of the variable being its name; 

3. its ordinary representation as a formula. 

Immediately preceding and immediatly after a garbage collection, the 

interesting part of the contents of the array Fis output (see procedure 

DUMP in the procedure COLLECT GARBAGE) ; i.e. if k is the pointer to a value, 

the values of the array elements F[k,1], F[k,2] and F[k,3] are printed; 

if k is the pointer to a~, then the value of F[k,1] is printed only. 

This output is preceded by a column in which the value of k is printed. 

Remark: All garbage collections occurred after a call of SAVE, as should 

be expected. 

10. The differentiation process 

Calculating the derivative of a formula f with respect to an algebraic 

variable x means going recursively along the branches of the tree representing 

f and producing meanwhile partial results of the derivative. 

However, producing partial results means storing formulae, which means 

possible garbage collections, which means changing the pointers -to the 

values, which finally means that the branches of the tree, being pointers, 

are "slithery". 
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Therefore, in order to have fixed grip on the branches, names are intro­

duced in the following declaration, for holding the branches. 

integer procedure DER(F,x); value F,x; integer F,x; 

beg·in integer t, a, A, b, B; t:= TYPE(F,A,B); 

if_ DYADIC OP(t) then DE(DE(true,a,A),b,B); 

DER:= il F = V(x) then V(one) else 

if_ t =: sum then S(DER(V( a) ,x) ,DER(V(b) ,x)) else 

if_ t =: product then S(P(DER(V(a),x),V(b)),P(V(a),DER(V(b),x))) 

else T/( zero); 

if_ DYADIC OP ( t) then ERASE 

end DER. 

Let the depth of a formula f being defined as follows: 

inteqer pr>oaedure depth(f); value f; integer f; 

begin integer pY'ocedure d(F); value F; integer F; 

beg·in integer t, A, B, dA, dB; t:= TYPE(F,A,B); 

if_ DYADIC OP(t) then 

begin dA:= d(AJ; dB:= d(B); 

d:= (if. dA<dB then dB else dA) +1 

end else d:= 0 

end d; depth:= d(V(f)) 

end depth. 

It can easily be seen that, if depth(f) = n, then, during the computation of 

DER(f,x), there will be a moment at which 2n new names have been created 

simultaneously and n places in the stack last name have been used. 

These 2n nAllies: are created in the procedure body of DER; besides these names, 

names may be c:reated by calls of Sand P. All names occupy temporarily the 

space which af'terv1ards may be used for the storage of the derivative itself. 

A situation is:, however, far from impossible that there is not enough space 

for storing these temporary names, while there would be space for storing 

the derivative. 
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n+1 
Consider, for example, f = l x = ( ••• ((x+x)+x} ... +x), with depth (f) = n; 

i=1 
in calculating DER(f,x), DER introduces for each bracket pair two names 

and one place in last name; moreover S introduces one~ for each bracket 

pair pointing to the value of DER(x,x) =one.Hence, at the moment the 

innermost sum (x+x) is being treated by DER and before the statement 

ERASE is called, there have been created 3 n new names; and n places in 

Zast name have been occupied. 

However, the storage of df/dx needs only n places in the array F. 

We conclude that the method should be refined in two ways: 

1. the saving of values should not be performed by means of declaration state­

ments; for, the declaration statements lead to then places in Zast name. 

2. the saving of values should be performed by a SAVE-REMOVE mechanism intro­

ducing the least as possible number of new names. 

Let us face the problem once again: 

Suppose f= (a~) , the values of F, A and B being the pointers to the values 

off, a and b, respectively. 

During the calculation of ((da/dx~) + (a~b/dx)) a garbage collection is 

possible. We do not have to worry about f, a, and b being erased, since f 

will be a formula of the first or second kind. The problem we are involved 

with is that the pointers to the values off, a and b may change, without a 

corresponding chm1ge of the values of F, A and B. We now observe that it is 

not necessary to know the values of A and B, if we know the value of F; for, 

the values of' A and B can be calculated by means of TYPE from the value of F. 

Let us now try the following procedure declaration: 

1'.nteger ~~,!ed_ure DER(F,x); value F,x; integer F,x; 

bea·-tn i,·,teQ(:;l' £2'~~,11~ A of F; 

bPf;i'.n i1neue::_ A,B; REMOVE (F); SAVE (F); 

TYPE(F,A,B); A of F:= A 

end; 

inteJPY' procedure B of F; 

beg{n f:l:tSf_er A,B; RENOVE (F 1; SAVE (F 1; 

TYPE(F,A,B); B of F:= B 



30 

integer t, A, B; t:= TYPE(F,A,B1; 

il_ DYADIC OP(tl th.en SAVE(FJ; 

DER:= il_ F = V(:c) then V( one) el,se 

il_ t = sum then S(DER(A of F,:c), DER(B of F,:c) J eZse 

il_ t = product then S(P(DER(A of F,:c),B of F), 

P(A of F, DER(B of F,:c)J) 

eZse V(sero); 

il_ DYADIC OP(t) then REMOVE(F) 

end DER. 

We have used in this declaration that SAVE(F) adds a new~ with as value 

the value of F, on the top of the~ stack and that REMOVE(F) makes the 

value of F equal to the value of the top~ and removes this~- On 

first sight the declaration seems what we are looking for: no declaration 

statement and only one newly created ~. However, we have to remember 

that S and P also create names at the top of the ~ stack, so that the 

~ for F will not always be the top~- Hence the above declaration for 

the differentiation process may lead to errors. Fortunately, we can calculate, 

however, how far the~ for Fis sunk into the~ stack by counting the 

number of SAVE' s executed by S and P. 

In the following, and final, procedure declaration for the derivative process, 

the deepness of the~ for Fis being taken into account by means of the 

procedure GET, which digs up the r.wn'i for F, colhbines the actions of the 

procedures A of F and B of F, declared above, and, finally, "buries" the~ 

for Fas deep as it originally la;y. 

integer procedure DEH(F,x); ~ F,x; integer F,x; 

begin integer t,A,B; 

integer µroeudun.: CTET(i,lhs); .!!!1,~ i.lhs; intcge! i; B,Jole.1n lbs; 

begin intE:gt~r j; intee-P1~ ~ HE!\'lLLi]; 

tor j:.::: 1 step 1 1 1ntit i ,lo h EMUVEtREM[1]); - - --
TYPE(HJ·:M[i].A,R); Gl:.T:= ii lbs thu1 A else B; - --~ -
for j:= i step -1 until 1 do SAVl::(HE.\1[j]) - - --.£!!!!. G ET; 
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t:= TYPE(F ,A,B); 

if DYADIC OP(t) then SAVE(F); 

DER:= .!!.. F = V(x) then V(one) else 

.!!_ t = sum ~ S(DER(GET(2,true),x),DER(GET(l,false),x)) else - -if t = product then -- -
S(P(DER(GET(3,true),x),GET(2,false)), - -

P(GET(2,true),DER(GET(l,false),x))) else V(zero); - - -
if DYADIC OP(t) then REMOVE(F) 

~DER; 

Note, that it were possible to construct the procedure GET in such a way 

that it does not use SAVE and REMOVE, but that it operates directly on the 

name list by means of pointer of name and F. 

Having studied the derivative process and the value - ~ mechanism in 

such details we leave to the reader the Problem: 

What may go wrong in the declaration statement: 

DE(DE(true, a, A) b, BJ, 

in the very first declaration of DER? 

Concluding this section we observe that it turned out to be far from trivial 

to construct a "water-proof" differentiation process. This is due to the 

fact that the branches of the tree representing a formula are "slithery" 

in a relocation gar"bage-collection technique. 

It is for this reason that we study in the next sections a garbage-collection 

technique without relocating the non-garbage formulae. 

11. Garbage collection with a free-list technique 

In a garbage-collection system relocating formulae, the free storage cells 

are characterized by lying in a certain area of the storage space; i.e. the 

pointer k of a free cell satisfies: 

pointer of F < k. < pointer of name. 
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This characterization of' free cells is no longer possible if' "non-garbage" 

formulae are not relocated such that there remain holes in the storage 

space. 

There are two other ways to characterize a free cell: 

1. the free cell is flagged; 

2. the free cell is pointed at by the "outer world". 

The implication of' flagging a free cell is that the system has to go through 

the storage space in order to find a new free cell; this may be very time­

consuming, in particular, if' there are only a few free cells left. 

Another disadvantage is the need for an extra bit: the flag. 

The second way will be studied now. 

We use a free-list technique as follows: 

Suppose, that the first free cell has an address contained in the varia~le 

free ce'l"l. 
Suppose, furthermore, that the (n+l)-st free cell as an address contained 

in then-th free cell (assuming that there is at least one free cell). 

Suppose, finally, that the address of the last free cell is contained in 

the variable "last free ce"lZ. 
The finding of a free cell is now obvio~s: it is pointed at by the value of 

free ce"l"l and the value of free ce"l"l is changed in order to point to the 

second free cell (if available). Adding a new free cell to the free-cell 

list is also a trivial matter: it is connected with the last free cell pointed 

at by the value of "last free ceZZ and the value of Zast free ceZZ is changed 

in order to point to the new free cell. 

Evidently, a garbage collection is necessary if 

free ceZZ = Zast f~ee ce"l"l 
and the last free cell has been used. 
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In section 4 we have introduced names, which, in the relocation garbage­

collection technique, have two purposes: 

1. as information for the system to determine which formulae are "non­

garbage"; 

2. as storage cells in which the pointers to values can be stored (these 

storag,e cells have to be known by the system during a garbage collection). 

Since we now have a situation tha the value of a "non-garbage" formula 

remains unchanged, it is not evident that we have to introduce names; for, 

a variable, being the name of a formula, may now contain itself the pointer 

to the va:Lue of that formula. So, let us temporarily discard the notion of 

names and concentrate on the problem of how "non-garbage" formulae can be 

identified without using names. 

Assume that the only formulae present in the storage space are "non-garbage" 

formulae. 
' 

Let a certain formula f be condemned to be garbage dependent on whether: 

1. it is not a subformula of a "non-garbage" formula and 

2. it is not pointed at by a variable being a name off. 

The information: being not a subformula of a "non-garbage" formula can be 

found (in a non-trivial way) in the storage space itself. 

The information that there is not a variable pointing at the value off 

must be stored in the value off itself; for, we do not use names. This 

information can not consist of a single flag since f may have more than one 

names; therefore, this information should be a number defining how many 

names f has. Let us call this number the reference counter off. This number 

may then also be used to count how many times f is a subformula of another 

formula (how many times it is referenced). The treatment off, condemned to 

be garbage, can now be easily performed by the following "erase" process: 

Step 1 : Choose as value the value of f. Take step 2. 

Step 2: If the value of the last chosen value y points to the values 

Yj_., i = 1 , ••• ,n, then 

for i = 1, ••• ,n do the following: 

choose as value: v. ; perform the "erese" proc:::ss beginning 
-i 

with step 2 and ending with step 5. 

Take step 3, 
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Step 3: Decreiase the reference counter of y by one. 

If the reference counter is zero then take step 4; otherwise, 

take step 5. 

Step 4: Erasei y by connecting it with the free-cell list • 

Take step 5. 
Step 5: The eirase process is finished. 

There are two serious drawbacks attached to this approach: 

1. The reference counters will occupy much space; each value, whether it 

will be re:ferenced often or seldom, will occupy a counter of a length 

dictated ·by the maximum number of possible references. 

This maximum number will, in general, be reached for the values of algebraic 

variables 11 being referenced often. 

2. An erase c:all should explicitly be stated by the user; he should then 

constantly be aware of the appearance of garbage. 

An easy block-entry-block-exit device is not possible. 

Having observed the consequences of dropping the names, we now proceed by 

introducing the names again. 

From now on, we shall not use the array F of the preceding sections, but we 

shall use instead the arrays C and C type declared as: 

integer: ar>Pay CU:max of C,1:2], C typ€d[1:max of C] • 

The array elements of C will be used for names and "non-type"-parts of values. 

The array elements of C t;ype will be used for storing tht "type"-parts of 

values (i.e. F[k,2] in section 3). In a l~ter, more realistic, system, we 

shall not usei C type anymore, but we shall store the whole value in a compact 

way in the array elements of C. 

The free cells are connected with each other as follows: 

the value of j'ree oeU points to first free cell: 

{ C[fr>ee c:e U, 1 ], C[free oe U, 2]} ; 

consider a certain free cell: {C[k,1],C[k,2]} , 

then the next free cell is: {C[C[k,1],1].,C[C[k,1],2]}; 

the last free cell is: {C[Zast [Pee aeli,l],C1.last [Pee cell,2]}. 
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The names are connected with each other as follows: 

the last ~ is {C[fost name.,1].,C[Z.ast name.,2]} ; 

consider a certain~: {C[k.,1].,C[k.,2]} , 

then the preceding ~ is: {C[C[k., 2]., 1 ]., C[C[k., 2]., 2]}, provided C[k., 2 ];tO ; 

let the first ~ be: { C[f., 1 ]., C[f., 2]}, then 

the value of C[f.,2] is zero. 

Let a~ be {C[k.,1].,C[k.,2]}, then 

the value of C[k.,1] determines the possible value of the~­

If C[k.,1] = O, then there is no value, otherwise the value of 

the~ is {C[C[k.,1].,1].,C type[C[k.,1]].,C[C[k.,1].,2]} 

Creation of a new name is performed by adding the first free cell (if available) 

to the end of the name list. 

Erasure of the lastly created n~ (REMOVE}, and thus condemning the value 

of this name; possibly as being garbage, is performed by adding the last 

name to the free-cell list. It is thus necessary to keep track of the last 

~; it is not necessary to know the first name. 

Erasure of an arbitrary name!!. is performed by: 

1, the names preceding and following!!. are connected; 

2. n is connected with the free-cell list. 

As in section 7 there are two ways to create and erase names: 

1. By means of a call: SAVE(F); a new name is created having a value pointed 

at by the value of F. 

This creation is cancelled ty a call of REMOFE, destroying the lastly 

created and still living ~-· 

2, By means of a declaration statement: 

DE( ••. DE(DE(true.,f1.,F~),f9.,F2) ••• .,f ~F ), ---~ • ., nn 
which creates n new name~ whose pointers a.re assigned to f. and whc-se 

1., 

values are, if F,i,:/J, puint.e1 s to the valu1::~. po.i.nted at by the values cf 

F. (i = 1, ... ,n). The effect of this statement is cancelled by a call 
1., 

of ERASE. 
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The block-entry-block-exit mechanism uses a stack in which the current value 

of Zast name is stored upon block entry (DE(true, ••• )}. This stack is also 

organized as a list with pointer: pointer of staak. 

Let {C[k,1],C[k,2]} be a cell of this stack, then C[k,1] contains a value of 

Zast name and C[k,2] determines (if f0} a preceding cell of the stack, 

The cell for which k = pointer of staak is the last cell of the stack. The 

cell for which C[k,2] = 0 is the first cell of the stack. 

By means of a picture we shall now illustrate the organization of the arrays 

C and C type. 

Since the cells of C may be thought of as beads on a string, which may be 

shuffled without breaking the string, we shall draw the cells of the list 

of free cells, the cells of the list of names, the cells of the list of 

values and the cells of the stack compactly. 

By means of the arrows the pointers are made visible. 



last name ➔ 

pointer of stack ➔ 

free ceZZ ➔ 

Zast free ceZZ ➔ 

k 
-
2 

4 

7 

9 

12 

14 

15 

17 

20 

3 

5 

8 

10 

13 

16 

18 

1 

6 

11 

19 

-

--
,.. ,-
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C[k,1] 

~ 0 
~ ·#> 0 

;,. 0 

;;. 0 

~ 7 

- 7 

7 
.. 20 

12 

-f- 2 

--- 4 
- 7 

9 

12 
- 17 

14 

0 
-

5 

c: . 19 

C[k, 2] C type[k] formula: 

1 "alg var" 1 

0 "alg var" 0 

2 "alg var" X 

3 "alg var" y 

9 "+" x+y 

9 "w' x~ 

12 "w' x4x+y) 

15 "+" ( x+y )4 x+y )+x4 x+y) 

12 "w' (x+y)~x+y) 

0 

' 3 ~~ 
5 ,D 
8 list of names 

' 
► 

10 ·1 
13 -~ 
16 . 

0 _D} stack 
1 

l 
J free list 

fig. 2. The storage organization. 

The above example has been taken from the program output described in the 

next section; "alg var", "+", and "w' are symbolic representations for 1, 

2, and 3, respectively. 
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The garbage-collection process may now be described by means of the following 

algorithm: 

Step 1 : If there is a ~, then choose the last name and take step 2; 

otherwise, take step 7. 
Step 2: Choose as value y_ the value pointed at by the last chosen~· 

Take step 3. 

Step 3: If y_ is marked, as being treated already, then take step 6; 
otherwise, take step 4. 

Step 4: If v contains pointers to the values, v., i = 1, ••• ,n, n>1, - ~ -
then for i = 1, ••• ,n do the following: 

Choose as value v the i-th value v. and execute the - ~ 

garbage-collection process beginning with step 3 and 

ending with step 6, without executing it. 

Take step 5. 

Step 5: Mark v as being treated already. 

Take step 6. 
Step 6: If there is a preceding ~, then choose this ~ and take step 2; 

otherwise, take step 7. 
Step 7: Mark the storage cells constituting the list of names and the stack. 

Connect all the unmarked storage cells with the list of free cells. 

Remove all the marks introduced above. 

Take step 8. 
Step 8: The process is finished. 
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12. The free-list garbage-collection technique programmed in ALGOL 60 

for a simple system 

In this section the ALGOL 60 program is reproduced. The following procedures 

have not been mentioned already: 

LHS, which becomes equal to the value of the left-hand side part of a 

storage cell {C[k,1],C[k,2]}, 

RHS, which becomes equal to the value of the right-hand side part of a 

storage cell, 

STIL, stores a number in the left-hand side part of a storage cell, 

STIR, stores a number in the right-hand side part of a storage cell, 

ST, stores two numbers in a storage cell, 

ST TYPE, stores the "type"-part of a value into C type, 

(Remark, the above procedures have been introduced to make a future re­

organization of the storage cells more easy.) 

join to free space, connects a cell with the free-cell list. 

Since the values of formulae are fixed now, we can take advantage of it by 

assigning the pointers of the values, not to names only, but also to variables, 

which are distinguished from variables, being names of formulae, by their 

identifiers in which capital letters are used. 

In this way ONE and ZERO have values pointing to the values of the variables 

one and zero. 

For a discussion of the actual program and its results we refer to the next 

section. 
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begin comment A simple system of ABC - ALGOL. 

Garbage collection with a free list. 

RPR 181168/02 - T 8190, R. P. van de Riet; 

integer free cell,last free cell,last name,pointer of stack,max of C, 

algebraic variable,sum,product,one,zero,ONE,ZERO; 

max of C := read; 

begin integer array C[l:max of C,1:2],auxiliary array[l:5],Ctype[l:max of C]; 

Boolean array traced[l:max of C]; 

procedure INITIALIZE; 

begin integer i; .!2!, i:= 1 step 1 ~ max of C !!2. C[i,1]:= i + 1; 

free cell:= 1; last free cell:= max of C; 

last name:= pointer of stack:= 0; 

algebraic variable:= 1; sum:= 2; product:= 3; 

DE(DE(true,one,AV(0,1)),zero,AV(0,0)); 

ONE:= V(one); ZERO:= V(zero) 

~ INITIALIZE; 

integer procedure LHS(k); ~ k; integer k; 

LHS:= C[k,1]; 

integer procedure RHS(k); ~ k; integer k; 

RHS:= C [k,2 ]; 

_procedure STIL(k,v); value k,v; integer k,v; 

C[k,1]:= v; 

procedure STIR(k,v); value k,v; integer k,v; 

C[k,2]:= v; 
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procedure ST(k,vl,vr); ~ k,vl,vr; integer k,vl,vr; 

begin C [k,1 ]:= vl; C [k,2 ]:= vr end; 

integer procedure SAVE(F); value F; integer F; 

begin integer k; ERROR(F < O,f F < 0 in SAVE}); 

k:= LHS(free cell); ST(free cell,F,last name); 

SAVE:= last name:= free cell; 

COLLECT GARBAGE (0 ,auxiliary array ,k) 

end SAVE; 

procedure REMOVE; 

begin join to free space(last name); 

last name:= RHS(last name); 

ERROR(last name = 2,- ~REMOVE not appropriate}) 

~ REMOVE; 

procedure join to free space(k); value k; integer k; 

begin STIL(last free cell,k); last free cell:= k end; 

integer procedure STORE(A,t,B); value A,t,B; integer A,t,B; 

begin integer k; ERROR(A < 0 V B < 0, 

~ or B not appropriate in STORE}); 

STORE:= free cell; k:= LHS(free cell); 

ST(free cell,A,B); ST TYPE(free cell,t); 

auxiliary array(l ]:= free cell; 

COLLECT GARBAGE(l,auxiliary array ,k) 

~ STORE; 

procedure ST TYPE(k,t); value k,t; integer k,t; 

Ctype[k]:= t; 

integer procedure AV(l,r); value l,r; integer l,r; 

AV:= STOHE(l,algebraic variable,r); 
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Boolean procedure DYADIC OP(t); value t; integer t; 

DYADIC OP:= t = sum V t = product; 

procedure COLLECT GARBAGE(n,arr,fc); ~ n; integer n,fc; 

integer array arr; 

begin integer i; 

procedure TRACE(F); ~ F; integer F; 

ifF>0then -
begin.!!_, traced[F] ~ 

begin integer t,A,B; t:= TYPE(F ,A,B); 

.!!_ DYADIC OP(t) ~ ~ TRACE(A); TRACE(B) end; 

traced[F]:= ~ 

~~ TRACE; 

procedure DUMP; 

begin integer i,j; PR nlcr; PR string(i=free cell = }); PR int num(free cell); 

PR string(t last free cell = }); PR int num(last free cell); 

PR string(t last name = }); PR int num(last name); 

PR string(t ptr of stack = }); PR int num(pointer of stack); 

12!, i := 1 step 1 !!!!.!!!. max of C .22. traced[i ]:= false; 

i:= last name; .!2!:, i:= i while i f 0 .22. 
begin traced[i]:= true; i:= RHS(i) end; 

i:= pointer of stack; 12!. i:= i while i + 0 .!!2_ 
begin traced[i]:= ~ i:= RHS(i) end; 

i:= free cell; 12!. i:= i ~ i f last free cell .!!2_ 
begin traced[i]:= ~; i:= LHS(i) end; 

traced[last free cell]:=~ 

for i:= 1 step 1 ~ max of C do 

begin PR nlcr; PR int num(i); 

PR string{t }); PR int num(LHS(i)); 

PR string(f :f:,); PR int num(RHS(i)); 

.!!. 7 traced[i] ~ begin PR string(f }); PR int num(Ctype[iD ~ 

end -
~ DUMP; 
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,!!_ free cell f last free cell ~ free cell:= fc ~ 

begin DUMP; free cell:= 0; 

for i:= 1 step 1 ~ max of C ~ traced[i ]:= ~; 

for i:= 1 step 1 until n do TRACE(arr[i]); - ------
i:= last name; !2!, i:= i while i =I= 0 do 

begin TRACE(LHS(i)); traced[i]:= true; i:= RHS(i) end; 

i:= pointer of stack; !2!, i:= i while i f 0 .22, 
begin traced[i ]:= true; i := RHS(i) ~ 

!2!, i:= 1 step 1 ~ max of C .22, 
.!!_ 7 traced[i] then 

begin .!!_ free cell = 0 ~ free cell:= last free cell:= i ~ 

join to free space(i) 

end; ERROR(free cell = o,{:no space left}); DUMP 

~ ~ COLLECT GARBAGE; 

integer procedure TYPE(F ,A,B); value F; integer F ,A,B; 

begin ERROR(F _:s, 0 V F > max of c,,t:F not appropriate in TYPEi,); 

A:= LHS(F); B:= RHS(F); TYPE:= Ctype[F] 

~ TYPE; 

Boolean procedure DE(first time,f,F); value first time; 

Boolean first time; integer f,F; 

begin !!_ first time then 

begin integer k; k:= LHS(free cell); ST(free cell,last name,pointer of stack); 

pointer of stack:= free cell; COLLECT GARBAGE(0,auxiliary array,k) 

end; 

f:= - SAVE(F); DE:=~ 

~DE; 
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procedure ERASE; 

begin integer st; ERROR(pointer of stack ~ l,,½:ERASE not appropriate}); 

join to free space(pointer of stack); st:= LHS(pointer of stack); 

pointer of stack:= RHS(pointer of stack); 

.!2.!:, st:= st while st f last name _22, REMOVE; 

~ ERASE; 

integer procedure ASSIGN(f,F); value f,F; integer f,F; 

begin ERROR(f < - max of C V f ,2:. O, 

-ptame not appropriate in ASSIGN}); 

ASSIGN:= F; STIL(--f,F) 

~ ASSIGN; 

integer procedure ERROR(b,s); Boolean b; string s; 

if b then 

begin PR nlcr; PR string(s); EXIT; ERROR:= 1 end; 

integer procedure V(f); ~ f; integer f; 

V:= if f ,2:. O ~ ERROR(true,-ptame ,2:. O in v}) ~ 
LHS(--f); 

integer procedure S(A,B); integer A,B; 

begin intege1· Al,Bl; Bl:= B; SAVE(Bl); Al:= A; REMOVE; 

S:= if Al = ZERO then Bl else if Bl = ZERO then Al else 

STORE(Al ,sum,Bl) 

~ S; 

- -- - __,. 



integer procedure P(A,B); integer A,B; 

begin integer Al,Bl; Bl:= B; SAVE(Bl); Al:= A; REMOVE; 

P:= if Al= ZERO V Bl = ZERO then ZERO else 

.!!_ Al = ONE ~ Bl ~ .!!_ Bl = ONE then Al else 

STORE{Al ,product,Bl) 

end P; 

procedure OUTPUT{f,OUTPUT VARIABLE); value f; integer f; 

procedure OUTPUT VARIABLE; 

begin procedure OP(F ,type); value F ,type; integer F ,type; 

begin integer t,A,B; 

procedure LBR; if t < type ~ PR string{{:(}); 

procedure RBR; .!!_ t <type~ PR string{{:*); 

t:= TYPE{F,A,B); 

if t = algebraic variable then OUTPUT VARIABLE{F) else - - -
if DYADIC OP(t) then -
begin LBR; OP{A,t); if t = sum~ PR string{,f:+:t>} ~ 

PR string{tx}); OP(B,t); RBR 

end else ERROR{true,-l:F not appropriate in OUTPUT}) -- -
~OP; 

OP{V(f),0) 

end OUTPUT; 

procedure PR string(s); string s; 

begin PRINTTEXT{s); PUTEXT(s) end; 

procedure PR nlcr; PR string(-\: 

:},); 

procedure PR num(a); ~ a;~ a; 

begin PRINT{a); PUNCH{a) end; 
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procedure PR int num(a); ~ a; integer a; 

begin integer b; .!!_ a < 0 !!!2!!. begin PR string(t-}); a:= -a end; 

.!!. a i 9 ~ PR sym(a) ~ 

begin b:= a.:., 10; a:= a - b x 10; PR int num(b); PR sym(a) ~ 

end; 

:erocedure PR sym(a); ~ a; integer a; 

begin PRSYM(a); PUSYM(a) end; 

ACTUAL PROGRAM: 

begin integer x,y ,f; 

procedure OV(F); value F; integer F; 

begin integer A,t,B; t:= TYPE(F ,A,B); 

if B < 1 then PR int num(B) else --- ----
.!!_B = 2 ~ PR string({:,4) !!!!! 
.!!_B = 3 ~ PR string(tr}> ~ 
ERROR(true,,\::error in outpu~) 

~;· 

procedure PRINT(x,s); integer x; string s; 

begin PR nlcr; PR string(s); PR string(t (name: :\>); 
PR int num(x); PR string(f ) (value: :\>); PR int num(V(x)); 

PR string(f ) formula: :\>); OUTPUT(x,OV) 

max of C:= 15; INITIALIZE; 

DE(DE(DE(true,x,AV(0,2)),y ,AV(0,3)),f,0); 

PR nlcr; PR string(fResults RPR 181168/02:\>); 

ASSIGN(f,S(P(V(x),V(x)),P(V(y),V(y)))); PRINT(f,f:f =}); ASSIGN(f,ZERO); 

ASSIGN(f,S(P(V(x),V(x)),P(V(y),V(y)))); PRINT(f,,\::f =}); 

ERASE; 



max of C:= 20; INITIALIZE; 

DE(DE(DE(true,x,AV{0,2)),y ,AV(0,3)),f,S(V(x), V(y))); 

PRINT(f,-Ff =}); 
ASSIGN(f,S(P(V(f),P(V(x),V(y))), 

S(P(V(f),V(f)), 

S(P(S(V(f),P(V(x),V(y))),V(zero)), 

P{V(x),V(f)) 

) ) ) ) ; 

PRINT(f,t{ =}); 

ERASE; 

end 

end end 100 

Results RPR 181168/02 

f = (name: -11 ) (value: 15 ) formula: xxx+yxy 

free cell = 14 last free cell = 14 last name = 14 ptr of stack = 6 

1 0 0 

2 0 1 

3 2 0 

4 0 0 

5 4 3 

6 5 1 

7 0 2 

8 7 5 

9 0 3 

10 9 8 

11 4 10 

12 7 7 

13 9 9 

14 9 11 

15 12 13 

1 

1 

1 

1 

3 

3 

2 
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free cell = 12 last free cell = 15 last name = 14 ptr of stack = 6 

1 0 0 

2 0 1 1 

3 2 0 

4 0 0 1 

5 4 3 

6 5 1 

7 0 2 1 

8 7 5 

9 0 3 1 

10 9 8 

11 4 10 

12 13 7 

13 15 9 

14 9 11 

15 12 13 

f = (name: -11 ) (value: 15 ) formula: xxx+yxy 

f = (name: -13 ) (value: 12 ) formula: x+y 

free cell = 18 last free cell = 18 last name = 18 ptr of stack = 6 

1 0 0 

2 0 1 1 

3 2 0 

4 0 0 1 

5 4 3 

6 5 1 

7 0 2 1 

8 7 5 

9 0 3 1 

10 9 8 

11 12 19 2 

12 7 9 2 



13 12 10 

14 7 9 3 

15 7 12 3 

16 17 13 

17 20 15 2 

18 14 16 

19 7 9 3 

20 12 12 3 

free cell = 11 last free cell = 19 last name = 18 ptr of stack = 6 

1 0 0 

2 0 1 1 

3 2 0 

4 0 0 1 

5 4 3 

6 5 1 

7 0 2 1 

8 7 5 

9 0 3 1 

10 9 8 

11 19 19 

12 7 9 2 

13 12 10 

14 7 9 3 

15 7 12 3 

16 17 13 

17 20 15 2 

18 14 16 

19 7 9 

20 12 12 3 

f = ,. ·. ,·.le~ -13 ) ( value: 19 ) formula: (x+y)xXXy+(x+y)x(x+y)+xx(x+y) l.-
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13. Discussion of the actual program and its results 

The actual program chosen performs the same formula manipulations as the 

actual program discussed in section 3. The garbage is now formed by means 

of a reassignation off, an ERASE call and by execution of the Formula 

expression: 

P(S(V(f),P(V(x),V(y))),V(zero)), 

which creates the "garbage" formula: (f+(x'")")). 

The output consists again of two parts: 

1 • The pointer to the ~, the pointer to the value and the ordinary 

appearance of a formula are printed. 

2. The contents of the storage cells (C and C type) is printed immediately 

before and immediately after a garbage collection. These results are 

preceded by the values of free ae ii, 1-ast free ae ii, 1-ast name, and ptr 

of staak. 

Since the values of the formulae are fixed in the garbage-collection system 

we can now almost return to the old situation where there was no need for 

surrounding formula names with "V(" ·and")". 

This can be accomplished by introducing besides x, y and f, the integer 

variables X, Y, F, the latter ones for holding the pointers to the values 

The last example of the actual program might then read: 

begin integer x,y,f,X,Y,F;· 

end 

DE(DE(DE(true~x,AV(0, 2)) ,y,AV( 0, 3)) ,f,S(V(x), V(y))); 

X:= V(x); Y:= V(y); F:= V(f); 
ASSIGN(f,S(P(F,P(X,Y)), 

S(P(F,F), 
S(P(S(F,P(X,Y)),ZERO), 

P(X,Fl 

1 111; 

PRINT (f, f f t ); 
ERASE 
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Note, that a statement: F:= S(P(F,P(X,YJJ, .•. , would be erroneous; therefore, 

another assignment statement is necessary: 

DOUBLE ASSIGN(f,F,S(P(F,P(X,Y)), ••. ), 

which not only changes the value of the name off but changes the value of 

Falso. 

In order to refine the definition of Formula expression of section 3 to cope 

with this new situation we change the syntactical rule for <Value of a 

formula variable> into: 

<Value of a formula variable>::= V(<formula variable>Jj<Value variable> 

and add the following syntactical rule: 

<Value variable>::= <variable>. 

14. The new derivative process 

A procedure for calculating a derivative is easily written down. In order to 

be able'to write: 

DER(S(F,P(F,X)),x), 

we save explicitly the value of the first actual parameter of DER. So, each 

call of DER involves one new name; note that each call of the DER of section 

10 involves a number of new names equal to the depth of the formula to be 

differentiated. 

integer Eroc~ DER(F ,x); ~ F ,x; integer F ,x; 

begin integer X,A; integer procedure D(F); value F; integer F; 

begin intege,!_ t,A,B; t:= TYPE(F ,A,B); 

D:= if F = X then ONE else - - -
if t == sum~ S(D(A),D(B)) ~ 

if t = product then S(P(D(A),B),P(A,D(B))) ~ ZERO 

end D; 

X:= V(x); SAVE(F); DER:= D(F); REMOVE 

end DER; 
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15. Testing the garbage-collection system 

For test purposes we declare the following procedure: 

integer ~~edure GARBAGE; 

begin intege!_ i,n; n:= 0; i:= free cell; 

!2!_ i:= i ~while i f last free cell~ 

begin n:= n + 1; i:= LHS(i) end; GARBAGE:= 1; 

for i:= 2 _step 1 until n do AV(l00,100) 

end GARBAGE; 

Next, we chSLnge in the procedurebody of DER, the statement t:= TYPE(F,A,B) 

into t:= GARBAGE* TYPE(F,A,B); and we test the procedure DER by means of 

the following actual program: 

ACTUAL PHOORAM: max of C:= 40; INITIALIZE; 

begin integer~ d,f ,x,y ,F ,X, Y; 

procedure PRINT(s,f); begin PR nlcr; PR string(s); OUTPUT(f,OV) end; 

procedure OV(F); value F; integer F; 

begin integ~ t,A,B; t:= TYPE(F ,A,B); 

if B < 1 then PR int num(B) else - - - -
if B = 2 ~ PR string(t,4) else 

.!!_ B = 3 then PR string(ty}) 

end• _, 
integer procedure SG(A,B); SG:= GARBAGE x S(A,B); 

integer procedure PG(A,B); PG:= GARBAGE x P(A,B); 

DE(DE(DE(DE(true,x,A V(0 ,2) ),y ,A V(0,3) ),f ,SG(V(x), V(y))),d,0); 

X:= V(x); Y:= V(y); F:= V(f); PRINT(tf = },f); 

ASSIGN(d,SG(DER(PG(F ,SG(F ,PG(F ,F))),x), 

DER(PG(F ,SG(F ,PG(F ,F))),y))); 

PRINT(-fderivative = }.d); 

ERASE 

end 

end end 100 
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which, after the dumps, produced by COLLECT GARBAGE have been removed, 

resulted in 

f = x+y 

derivative = x+y+(x+y)x(x+y)+(x+y)x(l+x+y+x+y)+x+y+(x+y)x(x+y)+(x+y)x(l+x+y+x+y) 

It is remarked that the procedure DER of section 10 has been tested with a 

similar procedure GARBAGE. 

It turned out that the above, free-list technique, procedure was about three 

times faster than the relocation-technique procedure. 

16. Relocation-versus free-list technique 

The apparent advantages of the relocation technique with respect to the 

free-list technique are: 

1. direct access to free space; 

2. formulae are stored compactly, thus making it easily possible to store more 

complicated structures as e.g. arrays {coefficients of a truncated power 

series or of a polynomial). 

The apparent disadvantages are: 

1. the intricate manner a procedure like DER should be constructed; 

2. relocating formulae implies creation of more names due to the fact that 

the tree branches are "slithery"; 

3. secondary storage is needed for the garbage-collection process thus 

reducing the speed of this process considerably; 

4. a Formula expression of the form: 

S(P(X,Y), U) 

is not possible, while it is with the free-list technique. 

The main disadvantage of the free-list technique is that complicated structures 

as arrays cannot be stored compactly but should be stored in a "pointer-wise" 

way. 

It is clear, however, that the free-list technique will be chosen to be 

expanded and to be used in the future. 
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