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Summary, 

A model of the linear potential sweep voltammetry on an extremely thin 

mercury film electrode is considered. The flux at the boundary surface 

of the electrode and the adjoinin~ watery solution is a function of the 

time t and a small parameter e. An asymptotic expansion of the flux for 

small values oft is found. A simple relation between E and the corre­

sp:ndin~ time t , for which the flux reaches a maximum, can be derived. max 

1. Introduction 

Anodic stripping voltammetry is an electro-analytical method for the 

determination of traces of metal in electrolyte solution. Concentrations 
-4 -8 / 0 of 10 to 10 gram litre of metal can be determined. This method has 

found many applications; a description of the method and a review of its 

theory and application is given by BARENDRECHT [1 ,2). 

In this report we consider the current-potential curve, which in this 

case will correspond with the flux-time curve, obtained during the 

oxidation of reduced metal dissolved in an extremely thin, plane mercury 

film electrode. The integral equation for the current-potential curve 

obtained during the dissolution of reduced metal from a mercury film has 

been derived by DE VRIES and VAN DALEN [6,7,8] for the general case, and 

has been solved numerically by Huber's method [6]. 

When the parameter e, describing the effect of mercury film thickness 

and rate of potential change, approaches zero, the integral equation 

for the dimens,ionless flux, z(x), reduces to 

X 
e ( L 1) 

where xis a dimensionless time-variable [8]. For realistic values of 

experimental parameters E < < 1. 

The numerical results obtained by DE VRIES [6j from ( i .1) are given in 

Table 1 and Figure 2. It appears that ztx) is a pe~-::haped function. 
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From Table 1 it can be seen that z , just as S, (the width at half 
max 2 

height), is practically independent of the value of E, provided Eis 

not too large. 

For the position x of z , the following simple approximate relation max max 

X + ln E = - 0.055 max ( 1.2) 

holds. 

The main purpose of this report is to establish such a relation by 

analytical means. 

Table 1. 

1/(EVn) X + ln E z S, max max 2 

250 -0.0537 0.29885 2.9369 

500 -0.0549 0.29801 2.9383 

1000 -0.0552 0.29757 2.9389 

2000 -0.0552 0.29733 2.9397 

3000 -0.0553 0.29726 2.9397 

4000 -0.0555 0.29721 2.9396 

6000 -0.0556 0.29717 2.9397 

8000 -0.0555 0.29715 2,9395 

10000 -0.0554 0.29714 2,9399 

'12000 -0.0556 0.29713 2,9396 

2. Mathematical Model 

The model considered is of the following form. 

0 
In an extremely thin mercury film of thickness La metal M is dissolved. 

In the adjoining solution of infinite extension w1+-ions are dissolved 

(Figure 1). 
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~+ 

x=-L x=O X ➔ 

Fi~ure 1 

The potential of the mercury film will be changed linearly with the 

time t, starting = o. During this change the 0 will produce at t metal M 
w+ C -ions, which will diffuse into the solution. 

We assume that the concen-cration of Mn+, c1 (x,t), satisfies the diffusion 

equation: 

a2c 
D--' 

ax2 

ac 
1 =--

at 
0 "- X < 00 , 

where Dis the diffusion coefficient, 

( 2. 1 ) 

Because the mercury layer is extremely thin, we suppose that the concen­

tration c2 of M0 in this layer is a function oft only, 

-L < x < 0. 

The initial conditions are 

c1 (x,o) = ec0 , 0 < X < 00 

and 

-,L < x < 0, 

where e and c0 are positive constants and e ~ < 1. 

The boundary cond1-cions are 

ac ac 
1 2 

D~= La;-

(2 .2) 

(2.3) 

(2.4) 

(2.5) 
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and 

(2.6) 

for x = 0, t, ..:_ O, where o is a positive constant. 

The definition of t.he flux q(t) at the boundary surface x = 0 is 

ac 1(x;t) 
q ( t) = - D l ax \=o. , 2. 7) 

We now im:;roduce the dimensionless variables 

t, I = ot, (2.8) 

x' = f vf, (2,9) 

c1 
u 

,,, __ 
BC 

0 
(2.10) 

where 
8 VF 1. s = - <, <. 

L 
( 2. '; 1 ) 

Eliminating c2 wit.h t.he aid of (2.6), we find: 

a2u 2 3u 
0 x' = E < < O'.) 

ax 12 ' dt I 
l2,12J 

u = 1 ' 
t I = o, ( 2. 3) 

a -t.' 
= d't , ( e u) , x ' = 0 , (2. 4) 

(2. !5) 

In the following the dashes of the dimensionless variables will be 

omitted. Instead of q_ we shall consider the function zlt::;t), which is 

defined by 

Z(E,'t) (2.16) 
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This function can be determined either by means of an integral equation, 

which is suited to numerical treatment, or by means ·or the corresponding 

difference equation, which can be treated analytically. 

In order to derive these equations a Laplace transformation with respect 

tot is applied to the function u(x,t), 

u(x,s) -st 
e u(x,t)dt. 

With the aid of the initial condition (2.3), formula (2.12) becomes 

2-du 2 · - .. 
- 2 = e: ( s·u ... 1 ) • 
ox 

(2.18) 

The general solution of this equation which is bounded at infinity is 

of the form 

1 "cp(e,s) -i::.xvs 
~(x,s) = - + --- e 

s 'Vs 

where "cp(e,s) is an unknown function. 

To find the integral equation we proceed in the following way. 

Using the relation t2.16) we have 

z(e,s) = e'cp(e,s). 

(2.19) 

(2.20) 

Taking the special case x = 0 the inverse Laplace transform of (2.19) 

is given by 

u(O,t) (2.21) 

On the other hand, by integrating (2.14) with respect tot, we have 

u(O,t) t = e t ft e z(e,r) d1. (2.22) 
JQ 

Combining (2.21) and (2.22) we find the integral equation which deter­

mines z(e,t) 



t t rt 
e - e ] z(e:,r) dt = 

JQ 
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(2. 23) 

This equation is mentioned in the introduction (1.1), where xis used 

instead oft as the independent variable. 

The corresponding difference equation is derived by taking the Laplace 

transform of formula (2.14) 

( au,) su(O,s+1) - 1, 
c1x x=O = 

and substituting (2.19) into this equation, which gives 

~(e::,s+1) + e:"q;'°(e,s) = __,._1_.,... 
,~ s s(s+1)" 
vs+1 

(2.24) 

(2.25) 

In the following section we consider a method by means of which this 

equation can be treated. 

3. Method of solution 

By replacing s bys-~ we bring (2.25) in the following more syrmnetrical 

form, which is appropriate to analytical treatment, 

-, 1 - 1 
$(e:,s+2) + e:p(e:,s-2) = 1 

, ,--:;' s 1 ""'(_s_+..,.-2,.,..)...,.(_s __ .,..l .... ) • 
Vs+~ - 2 "' 

( 3. 1 J 

This equation can be reduced to a very simple difference equation by 
1 1 

multiplying both sides with the factor e:-s- 2r 2(s+~) and by substituting 

(3.2) 

and 

-h(s) -s-~( 2 ,.-1 ~( . 1 ) = E: S -4) f S-t-2 • (3.3) 

In this way we find 

r(s+~) + r(s-n = h(s). (3.4) 
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This difference equation is solved by 

f(s) 1 Jioo h(s + z) dz, 
= 2i , COS 1TZ 

-100 

( 3. 5) 

for Res>~, as one can easily see by substituting (3.5) in (3.4), 

To find the general solution of the difference equation the general 

solution of the homogeneous equation, 

f(s+~J + f(s-~) = O, 

has to be added to (3.5). 

(3.6) 

The last mentioned solution is a periodic function. Because its inverse 

Laplace transform has to exis--c, this function must vanish everywhere 

(VAN DER POL & BREMMER [5], p. 278). 

With the aid of (2.16), (2.19) and (3.2) we find for the Laplace 

transform of z ( c:, t) : 

z(s,s) = E~(c:,s) 
s+1 1-

= e: s 2 f(s) 

1 2 (s) 

With (3,3) and (3.5) this results into 

1 ·1 0 1 

z(c:,s) 
e:2s2 f"" e: -ip r2 ( s+i_E+~) 

= I (s+ip+~)(s+ip-~)ch dp. 
2f 2(s) J -00 

np 

(3.7) 

(3.8) 

It is difficult to reduce this integral to a simpler expression in view 

of the presence of the root of the gamma function in the integrand. 

However, a discussion is possible by using asymptotic methods. 

For small values of the --cime tan asymptotic approximation of z(e:,t) 

is found, as is indicated in section 4. 

For larger values oft the 

calculating the maximum of 

structure of the right-hand 

difference equation 

' t 1 . f fac or ( _, . ) ( +· ) prevents us rom 
S"t-lPT2 S lp-2 

z ( e:, t). We can trace this factor back to the 

side of (3.1). Therefore we first solve the 



8 

(3.9) 

which does not contain the disturbing factor (s-~)- 1(s+~)-1• 

With the aid of the solution of this equation we find a fairly good 

approximation of z(e,t), as will be shown in section 5. 

This last approximation also shows the desired type of relation 

between e and t • max 

4. The asyrnptotic expansion for small values oft 

We want to expand the function z(e,t) for small values oft. This can 

be done by expansion of z(e,s) for large values of sand by inverse 

Laplace transformation of the resulting series. 

To find the expansion of 

(4.1) 

we make use of the beta function ( see WHITTAKER and WATSON [9], p. 253), 

defined by 

and by 

B(s,ip+!) = r(s)r(ip+!) 
r(s+ip+~) 

J 
1 1 0 1 

B(s,ip+~) = 
0 

ys- (1-y) 1p- 2dy. 

(4.2) 

(4.3) 

In (4.3) we substitute y = e-u, by which the integral transforms into 

2 ° 1 
U U 1p-2 
2 ! + 3! - ... ) du 

re,;, • , r- 0 1 • 1 

J -su 1p-2 1p-2 11p-2 
= e u 1- 2' + l 3' + 

0 • • 

(ip-~)(ip-¾) 2 ] 
3 }u + ••• du 

( 2 ! ) 

r(ip+~) _ ip-! 
= Q i 2' 1p+- • s 2 

r ( ip+¾) 

• ip+3/2 
s 

+ • • • • (4.4) 
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So, with (4.4), we find the required quotient (4.1) 

Also, 

1 
r 2 (~+ip+~) = 

r2 ( s) 
+ ••• } • 

1 1 ( 1 _ 2ip + ) 
(s+ip+~)(s+ip-~) = 2 s ••• • 

s 

With these results, (3.8) becomes 

z(e,s) " 
1 /2 -5/4 foe 

E: s 
2 J _oo 

-ip ip/2 
e: s 
----- dp. ch np 

( 4. 5) 

(4.6) 

(4.7) 

This integral may be considered as an exponential Fourier transform: 
1 

/. 4 r00 e-ip ln(e/s 2 ) 

z(e,s),, e1 2s-51 I ------dp 
np -np 

J _oo e + e 

E: =---,.--
s(s2+e) 

in virtue of ERDELYI [3] , ( 3. 2. 15) • 

The inverse Laplace transform of (4.8) is 

lt 1 
z(e,t) - 1 - e erfc(et 2 ), 

ERDELYI [3], ( 5. 3. 5). 

(4.8) 

(4,9) 

This approximate solution agrees with the numerical results of de Vries 

for small values oft (see Figure 2). 

5. An approximation method for the neighbourhood of the maximum of z(e,t) 

In this section we reach an approximate solution of (3,1), 
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by means of the solution of (3.9), 

, 1 

Just as in section 3, we multiply both sides of (3.9) with £-s- 2f 2 (s+~). 

In the new equation we substitute 

( 5. 1 ) 

and 

k(s) (5.2) 

hence 

g(s+~) + g(s-~) = k(s). {5.3) 

In the same way as in section 3 a solution of the difference equation 

is found, so that 

(5.4) 

With (3.7) and (3.8), 

( s+ip+~) ( s+ip-; )ch rrp dp ( 5. 5) 

The functions ij;(E,s) and $(£,s) are related by the Euler equation 

2 "Si:" "7 
£ -0 -• + 2(1-s)E -0 • + s(s-1)i = ij; 

o£2 a£ ' 
(5.6) 

as can easily be verified by differentiation of (5.5). 

This equation can be solved, the resulting i(e,s) has the same degree 

of exactitude as the approximation of ij;-(£,s), which is used. 

An asymptotic expression for ij;-(£,s) is 

(5.7) 

brought about with the aid of (4.5). 
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The fact that e is a small quantity makes it possible to expand~ in the 

following manner 

(5.8) 

Substituting this series in the Euler equation (5,6), with 

s 
ljJ = ---

s2 + E 

and comparing the coefficients of equal powers of e, we get 

~o 
1 = 

(s 2+e)(s-1) 
(5.9) 

~, -2 = - 2 
(s 2 +e) (s-1 )(s-2) 

(5.10) 

We have chosen this incomplete way of expanding to preserve the factors 
1 

s 2 +e 
' 

which generate the desired relation between t and ln e. In the max 
case of the complete expansion, the coefficients of the £-powers are 

polynomials ins. Under inverse Laplace transformation this results in 

a power series in t, which hides completely the relation mentioned 

above. 

To find the general solution of (5.6) we combine this particular 

solution with the solution of the homogeneous Euler equation (INCE [4], 
p. 141), 

~(e,s) = ~h(e,s) + -----­
(s2+e)(s-1) 

2£ -..--2 _____ + ... , ( 5. 11) 

(s 2+£) (s-1)(s-2) 

where 

- - s - s-1 ~h(e,s) = A(s)e + B(s)e , (5.12) 

with A(s) and B(s) arbitrary functions of s. 
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To calculate the inverse Laplace transforms we need the following 

relations 

and 

1 • 
-- = 
s-1 • 

1 • 
-;:: 
s-2 

t 
e ' 

2t 
e 

see ERDELYI [3j,('5.2.1) and (5.3.4). 

(5.13) 

(5.14) 

(5.15) 

The function ¢0 now corresponds with the subjoined convolution integral 

1 • rt t T 1 E2t 1 
_ ~ j e - {(wT)- 2-Ee erfc(Er 2 )}dT 

( s 2 +E )( s-1 ) ; 0 

1 t 1 E t € E2t l 
= -- e erf( t 2 ) - --2 e + --2 e erfc ( et 2 ). 

1-E2 1-€ 1-E 

We calculate the inverse transform of ¢1 in the following way. 

The convolution of (5.14) and (5.16) gives 

1 ~ 

(s 2+e)(s-1)(s-2) • 
ft ( . , 

2 t-T){ 1 1 f( 2) e --2- e er T 

0 1-E 

__ E_ e1 + 
2 

1-€ 

€ E2T 1 1 t l ,/J_ 2t l 
+ ~ e erfc(n 2 )}dT = - --2 e erf(t 2 ) + --2 e erf(2t) 2 + 

1-E 1-E 2-€ 

€ t 
+ --- e 2 

1-E 

e 2t 
- --2 e 

2-E 

Differentiation of this result with respect to E yields 

(5.16) 
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2c-2 2 ; 
"" E t -+ ------ te erfc ( Et 2 ) 

(1-E2)(2-E2) 
(5.18) 

If the inverse Laplace transform of A(s), respectively B(s), is A(t), 

respectively B(t), the inverse transform of ~his 

1 
~h(E,t) = A(t+ln E)H(t+ln E) + E B(t+ln E)H(t+ln E), (5.19) 

where H denotes the Heaviside step function. See ERDELYI [3] , ( 4. 1 • 4). 

The flux function becomes 

z(E,t) = E$(E,t) = B(t+ln E)H(t+ln E) + EA(t+ln E)H(t+ln E) + 

2c: 2(2+E2 ) 

(2-E2)2 

2t 
e 

For small values of c:, 
. t ,. 

z(E,t) -- {B(t+ln E) + EA(t+ln E}rH(t+ln E) + Ee erf(t 2 ) + 

In the region O < t < - ln E 

t 1 2 t 2t z(E,t) ~ c:e erf(t 2 ) + E (e - e ). 

(5.20) 

(5 ,21) 

(5.22) 

Rough computations easily show that for the range of E, indicated 

in Table 1, this function z(c:,t) has a maximum in this region, for such 
az 

large values of t, that we can write for at: 

az(E,t) ~ Eeterf(t!) + E + E2(et_2e2t) 
at (nt)2 

t t Ee ( 1-2c:e ) • (5.23) 
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t 1 - 2e:e = 0 

holds. By taking the logarithm, we find a simple relation between e: 

and the accessory values oft max 

t + ln e: = - ln 2, max 

as was required in the introduction. 

If we choose e: = (2000VTI)- 1, we find 

t ., 7.48 
max 

and 

z ~ 0 .25. max 

(5.24) 

Compared to Table 1, the maximum is shifted to a smaller value oft. 

This is caused by the different constants, which appear in the relations 

(1.2) and (5.24). 

In Figure 2 the function z(e:,t) is plotted for the chosen value of e:. 

When we compare the results of de Vries with those obtained with the 

aid of formula (5.22), we find a remarkable agreement. We notice that 

the maximum is shifted down the curve when asymptotic methods are used. 

The nature of the problem is such, that the current approximation 

methods fail, so that we have to resort to the complicated method of 

this section. 

Bearing this in mind, the numerical agreement is fairly good. 
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Asymntotical results and 

numerical results of 

de Vrie--:- for e: = ( 2000f )- 1 • 
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Figure 2 
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