
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

P.J. Veerkamp

Multiple worlds in an intelligent CAD system

Computer Science/Department of Interactive Systems Report CS-R9057 October

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Multiple Worlds in an Intelligent CAD System

Paul Veerkamp
Department of Interactive Systems

Centre tor Mathematics and Computer Science
P. 0. Box 40 79, 1009 AB Amsterdam, The Netherlands

In this paper we introduce three concepts : (i), a general design model based on stepwise
refinement, (ii), a design object model evalluation scheme to interpret the design object
model and to evaluate it, and (iii), the multi-world mechanism. The multi-world mechanism
stems from (i) and (ii). It enables the designer to create worlds. Worlds are alternative
descriptions of the design object model. These alternatives provide a way to regard the
design object from different view points. We distinguish between dependent and
independent worlds.

CR Categories and Subject Descriptors: D.3, F.4.1, J.6.
Key Words & Phrases: intelligent CAD, design theory, design process model, meta-model,
multiple worlds.

1. Introduction
Nowadays computer aided design (CAD) is widely accepted as a useful tool for designers.
However, the early CAD systems are actually nothing more than sophisticated drafting systems.
Accordingly, there arose a growing need for CAD systems that adequately assist the designer in
performing the design process. Since designing is an intellectual activity which involves a great
deal of problem solving and reasoning, such a CAD system can only be effective if it understands
the designers demands, i.e. if it has some intelligence. Therefore, we aim at developing an
intelligent CAD system which incorporates knowledge about the design object and about the
design process [6].

Using knowledge engineering techniques to create more sophisticated, more user-friendly
and more 'intelligent' software products is quite popular. The number of expert systems is
growing rapidly. However, the majority of those so called "narrow domain expert systems" do
not contribute at all to solving the software crisis. On the contrary those rule based spaghetti
like systems are hard to maintain and difficult to extend. For this reason we choose for a more
general approach and decided to develop a general framework on which an intelligent CAD

system for a certain domain may be built. This. framework is based upon research on the theory
of the design object description, the design process, and design knowledge [1, 7].

The lllCAD1 (Intelligent Integrated Interactive CAD) system is a general system which can
be applied to any domain (e.g. architecture, mechanical engineering, VLSr design etc.). One of
our major concerns was to develop a general framework which enables the designer to encode
design knowledge and the design process in a flexible manner. We decided to spend the first

1 The llICAD project is supported by N FI project NF-51/62-514

Report CS-R9057
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 Paul Veerkamp

year of research on theoretical aspects of CAD, theory of design, theory of knowledge and theory
of design objects. One of the outcomes of this research is IDDL (Integrated Data Description
Language). This language is used in the !!ICAD system to describe the design process and the
design knowledge. It is also used as a data (knowledge) representation language and as an
interface language between the kernel of the system and various modules, such as the user
interface, an application module etc. [9] .

IDOL is based both on the object-oriented programming and on the logic programming
paradigms. The object-oriented programming paradigm is used for the technical description of
the artifact. In IDDL prototypes are used to denote the 'class' of an object. Note that lDDL differs
in this sense from Smalltalk-80 t [3, 4]. So, if we want to create a certain object, the most
appropriate prototype is selected. The advantage of such an approach is that the newly created
object can easily be modified because it does not belong to a certain class; it is an totally
independent object. The prototypes are templates containing attributes and functions. The 'is-a'
and 'part-of' hierarchy is specified in the logic part of IDDL and not in the object-oriented part.
The logic programming paradigm is used to describe the knowledge about the design object and
the design process. The former has been achieved by definite program clauses (5), the latter by
so called if-then rules [2]. For a more detailed description of the part of IDDL concerning the
design object description, see [9].

In this paper we will concentrate on design process. We will give a model according to
which the design takes place. This general design model resulted in some specific language
constructs. One of these constructs is the multi-world mechanism, enabling the designer to
model the design process. The multi-world mechanism allows the designer to create
alternatives. A world can be seen as the state of the design object model at a certain stage of the
design process. Using the multi-world mechanism, the designer creates multiple worlds which
are active at the same time. Concerning these multiple worlds we distinguish between dependent
and independent worlds.

In this paper we will discuss the multi-world mechanism in detail and we will show how it
evolved from the general design model. In the following section, we will present a general
design model. In the third section a framework which evaluates the design object model will be
shown (DOMES, Design Object Model Evolution Scheme), in the fourth section an explanation of
the ideas behind the multi-world mechanism will be found and in the fifth section we win show
how we actually incorporated the multi-world mechanism in IDDL using modal logic.

2. General Design Model
In developing intelligent CAD systems there are currently two approaches. The automated design
system approach and the apprentice-like approach. The former is used. to develop a CAD system
which is able to design artifacts without human intervention and the latter to develop a CAD

system that assists human designers in performing their design activities. We do not aim at a
system that automates the design process. The IIlCAD system is intended to be an apprentice for
the human designer, rather than having it take control over the design process. However, a

t Smalltalk-80 is a trademark of Xerox Corp.

Multiple Worlds in an lnte/Jigent CAD System 3

system can only assist a designer if it has knowledge about the actual design process. Therefore
we need a theory concerning the design process. And from this theory we may derive a model
according to which the design activities take place in order to understand the designers demands.

In other words the designer decides how to perform the design and the IDCAD system is an
intelligent aid to achieve this goal. In this section we will give the model which guides the
design process and we will show what kind of conceptual models should be provided in the
system to assist the designer during the design process.

We use General Design Theory [8] as a basis to give a formalization of design processes
and design knowledge. The theory is based on axiomatic set theory and models design as a
mapping from the function space where the specifications are described in terms of functions,
onto the attribute space where the design solutions are described in terms of attributes (see Fig.
l). Roughly speaking, one starts with a functional specification of the design object and ends
with a manufacturable description.

Design

l<'ig. 1. Design process model

The basic ideas behind a logical formalization of design processes are as follows:

• From the given functional specifications a candidate is selected and refined in a stepwise
manner until the solution is reached, rather than trying to get the solution directly from the
specifications.

• Hence the design process can be regarded as an evolutionary process which transfers the
model of the design object from one state to another.

• To evaluate the current state of the design object model, various interpretations of the
design object model need to be derived in order to see whether the object satisfies the
specifications or not. We call those interpretations of the design object model worlds and
they can be regarded as interpretations of the design object observed from different view
points.

Considering the general design model, the system starts from the specification S of the design
object and continues the design process until the goal G is reached (see Fig. 2 below).

Fig. 2. Stepwise refinement of the meta-model

At a certain stage of the design process the design object model M1-1 is the current,
incomplete description of the artifact. In order to get a more detailed description some

4 Paul Veerkamp

information is added to the design object model. After this refinement the design object model
Mi_, is transferred to M1 if it is evaluated and approved. This process is continued, obtaining M1+1 ,

etc., until the design object model is a complete, satisfactory description of the artifact. How this
refinement and evaluation process is performed will be shown in the next section.

The process as described above, deals with the ideal situation in which the stepwise
refinement process is a linear process. It can be regarded as a sketch of the design process in
retrospect. In practice, it is rather a process of trial and error, than such a straightforward process
as shown in Fig. 2. During the design process an achieved subgoal might not be satisfactory and
the designer might want to restart from a previous state of the design object model M1• In that
case, the current design object model Mi is discarded and the d!esign process is continued from M1

taking a different direction (see Fig. 3).

Fig. 3. Backtracking to a previous meta-model

From the above we can conclude that at a certain state Mi more than one possible way to
model the design object existed. An alternative was chosen and refined further, resulting in an
unsatisfactory solution. Instead of forcing a designer to take a decision at an early stage of the
design process, the system should enable him to postpone such a decision and let him model
more than one version of the design object simultaneously. At a later stage of the design process
some .of the alternative models may be discarded resulting in one solution. Or some alternative
models may be merged into one design object description. In practice the design process model
might look like Fig. 4 and Fig. 5.

Fig. 4. Multiple views of the same meta-model

From this point of view the system should provide the designer with tools to model the
design object in various ways. It must allow him to retract some of the obtained results and
continue designing from a previous state. The designer might even want to restart from scratch,
although the information obtained during the previous designing should remain (i.e. how not to
do it). Concurrently modelling the design object following two distinct paths should also be
possible. Again the decision in which way the design process should be directed is totally the
responsibility of the designer. The IDCAD system provides the designer with a framework which
assists him in his design activities.

Multiple Worlds in an lntelllgent CAD System 5

__ ..,,,,,,..

--........

I<'ig. S. Alternative meta-models

3. Design Object Model Evolution Scheme (DOMES)

The design process may be regarded as a constant manipulation of the design object model. A
certain aspect of the artifact is highlighted and some properties about the design object is
changed. This highlighting is done by worlds. A world is an interpretation of the design object
model in a certain context. It is used to derive new properties or update uncertain or unknown
properties about the design object model in order to get more detailed information. After the
world being processed it is evaluated to check whether the newly derived information is
consistent with the old design object model.

A world consists of (a part of) the design object descriptfon together with knowledge about
the design object being valid in that particular world. A simple example of such a world is a
graphical representation of the design object. A part of the design object description is taken and
is processed in a world with graphical knowledge in order to generate an image of that part.
Such a world needs to know how to map the general design object description to a description
suitable for generating such an image. The designer can now interact with this world and change
its contents. After the session the contents of the world being evaluated will be mapped back to
a new design object description.

M.
I

F

Backtrack

Fig. 6. Meta-model evolution

T M. 1
I+

M : Meta-model
e : evaluation
w: world

We call this mechanism the Design Object Model Evolution Scheme (DOMES, see Fig. 6).
From the current design object model, Mi. a world, w, is taken and some action is performed in
it. The world is evaluated after its termination. This evaluation checks the w i on consistency with
Mi. i.e. there are no facts that contradict each other and all constraints over the design object
model are still met. The design object model M1 is transferred to M1+1 , if the evaluation succeeds.
In case of failure, all results of w1 are discarded and the process will restart from M1• This

6 Paul Veerkamp

backtracking is performed in dialogue with the users, so that the next attempt can be more
successfu I.

As a conclusion we may say that the DOMES consists of the following sequence of steps:

1. A world on the design object model is created.

2. From this world new information about the design object is generated.

3. At a certain time the world terminates and the newly derived information is evaluated.

4. Th is either results in a new design object model, or it results in backtracking to a previous

model.

There are two possibilities : either the current state of knowledge is complete and consistent or
there is some incompleteness or incons istency. In the first case the goal has been reached and we
have finished the design process. In the latter case the design object model Mi needs to be
processed further in order to resolve the incomple teness or inconsistency.

A world is a set of data, the current state of the design object model, which can be
manipulated by the user. It can either be the full artifact description or just a part of it on which
the attention is focused. By creating a world the user is actually modelling a copy instead of the
design object model itself. As long as a world remains active it does not care about
inconsistencies with the outside environment. The only concern is its own internal consistency.
The implication is that the user can model a specific part of the artifact independently from the
whole. When the world is being closed its contents is evaluated and if consistent merged with
the design object description. When the world is inconsistent with the design object model, it is
either being improved in dialogue with the user until consistency is achieved, or the world is
rejected. In the former case the design process is continued with Mi .. 1 • For the latter it is restarted

from Mi··

This means that we need language constructs to evaluate a design object model by creating
worlds and to derive new properties or to update uncertain or unknown properties in such a
world in order to get more detailed knowledge about the design object. We define qj as the set of
propositions at state i of design object model Mi with an interpretation in world wi. The crucial
point is: how do we proceed from M; to M; .. 1 ? In other words, how do we define qj and how do we
derive new information from this world? We may define this kind of progress by:

M; .. 1 "'M; u eval(wi)

Multiple worlds may be active at the same time in order to interpret the current state of the
design object in different ways. From this point of view it seems natural to choose modal logic
as representation language, since modal logic deals with interpretations of a model in several
worlds.

4. Multiple Worlds

The multi-world mechanism enables the system to create alternative descriptions of the design
object model. This leads to two or more worlds being active at the same time. Concerning this
mechanism we distinguish between two types of alternativ·es: dependent and independent
worlds. The first option offers the possibility to regard the design object model from different
view-points to model the design object in various ways. However, in this case the worlds refer to

Multiple Worlds in an Intelligent CAD System 7

the same design object model, and hence the worlds depend on each other. The second one
allows ilhe designer to model the design object in different directions by following distinct paths.
In this case the worlds refer to different design object models and hence the worlds are
independent. In the following two subsections we will expand on both concepts.

4.1. Dependent worlds.

We call two or more worlds dependent if they refer to the same design object description. The
same set of data is concerned, but seen in a different context. They can be regarded as different
views on the same model. The user can interact with these worlds separately. The dependency
of the worlds comes into being when the worlds are closed. After the closure of dependent
worlds these worlds are compared with each other on consistency. Note that all dependent
worlds need to be closed at that time. If so, the contents of the worlds will be merged into one
containing all the changes. This resulting world is then checked for consistency with the design
object model, resulting in a next design object model M1+1 (see Fig. 7).

M.
I

Backtrack

Fig. 7. Dependent worlds

T
M. 1

I+

M : Meta-model
e : evaluation
w: world

Sometimes there is a need for a intermediate check on consistency. This can be done with
an explicit update call from a world. When such a call occurs, all dependent worlds, including
the one that called, are checked for consistency. A permanent change in one of the worlds is
transferred to the others if appropriate. A change is appropriate if it fits in the context of a world.

In IDDL there exists a construct to generate dependent worlds. We call it the and
mechanism. With this and-mechanism the user is able to create multiple worlds on the same
design object description to obtain an unambiguous result. To give an example: suppose a
designer is designing an aeroplane. At a certain stage the designer wants to concentrate on the
wing. By using the and-mechanism three worlds on the wing are generated; a graphical image, a
finite element method analysis, and a wind tunnel simulator. These are different views on the
same data from which new results are obtained. These results lead to new description of the
wing which again leads to a more complete description of the aeroplane.

8 Paul Ve9rkamp

4.2. Independent worlds

Another mechanism, the or-mechanism, is used to generate independent worlds. Two worlds are
called independent if they refer to different design object descriptions. Independent worlds
allow the user to model multiple design solutions concurrently. The user can then compare those
worlds and choose the best solution. After the closure of independent worlds each world is
checked for consistency separately. This may result in multiple distinct design object models,
say Mi+1 and M'1+1 (see Fig. 8). Each of them can then be processed further as a candidate for the
design solution.

Backtrack

M.
I

Backtrack

Fig. 8. Independent worlds

T

T

M. 1
I+

M . 1 J+

M : Meta-model
e : evaluation
w: world

By using the or-mechanism the user is able to create multiple worlds on the design object
description, that differ slightly in contents. To use the same example as mentioned above:
suppose the designer is still designing the same aeroplane. In order to design a wing there are
more possibilities for a certain parameter. The designer may now choose to generate multiple
worlds by using the or-mechanism.. Each of these worlds has a different value attached to this
particular parameter. The worlds will all lead to a different result, and the designer may choose
to continue with the most promising result. The other worlds may either be discarded or
suspended. The designer might want to suspend a world when it is not sure whether or not the
world that has been chosen will lead to the desired solution. The chosen world may be discarded
after all and the suspended world may be favoured.

The or-mechanism differs from the and-mechanism in this sense that the or-mechanism
may lead to more than one design object model being active at the same time. And hence a lot of
extra administration has to be kept since more copies of the design object description has to be
maintained. We are very well aware of the combinatorial explosion which might be caused by
applying the or-mechanism. However, we consider it to be the responsibility of the user to use
the or-mechanism with care. The decision to continue with multiple design object models in
parallel is always taken by the user. There will be an intelligent user interface as part of the
system, that allows the user to take such a decision in dialogue with the system.

Multiple Worlds in an Intelligent CAD System 9

5. Modal logic
ln the above section we have introduced the multi-world mechanism. The language constructs
which are used to control the mechanism are not yet shown, though. As stated before, all active
worlds are independent entities during their existence. However, at certain points we want to
evaluate different worlds and compare them. We have enriched IDOL with modal operators for
facilitating the comparison of different worlds. We will show the basic notions that a system of
modal logic is intended to express and show its application in IDOL afterwards.

Modal logic can be seen as the logic of necessity and possibility. Among true propositions
we can distinguish between those which merely happen to be true and which are bound to be
true. We call a proposition which is bound to be true a known propos ition (Kp, it is known that
p); a proposition that happens to be true is called an believed proposition (Bp, it is believed that
p). In other words: a believed proposition is a proposition that is not known to be not true
(~K~P=Bp).

We have informally introduced the monadic proposition forming operators K and B. These
operators are not truth functional, i.e. the truth value of the proposition cannot be deduced, not
even when the truth-value of the argument is given. However there exist a strategy to determine ·
the validity of a known or believed proposition. We shall not give the exact definition of this
validity checking but show it informally. A known proposition, Kp, is valid in a certain world iff
p is valid in all worlds accessible to that world. A believed proposition, Bp, is valid in a certain
world iff p is valid in a certain world accessible to that world. Since we are using the system T,
the accessibility relation encloses all the worlds that are active at that moment.

If we restrict ourselves to the internal state of a world, the modal operators do not influence
the consistency of that particular world. Whether a proposition is a known or a believed
proposition does not matter, it is always considered to be true within the world in which it
appears. The modal operators are used when worlds are compared with each other.

We use a different operator M to express default values. Mp means p is consistent with the
theory. A proposition is consistent if its negation cannot be derived. A default proposition, Mp, is
considered to be valid if ~ p cannot be found. With this mechanism we have the possibility to
deal w ith non-monotonicity. During the design process some properties about the design object
may not be known yet, so we can assume some default values. But as soon as some
contradictory information is derived we remove the default property and assume the newly
obtained information. On the other hand, when a proposition is derived, which is a tautology
with a default proposition, the default proposition becomes a normal proposition. A proposition,
which is derived from a default fact is asserted as an believed proposition.

The modal operators only appear in the design object model and not in the worlds derived
from that model. They are used when the worlds are evaluated and checked for consistency. If
several worlds are created by using the multi-world mechanism, these worlds only consist of
non-modal propositions. Known propositions serve as so-called 'guard dogs'. These are the
propositions which must hold at any time and any place. A known proposition must be true in
all worlds being evaluated. A believed proposition is a proposition which may be true .in one
world but false in another. A world will never be discarded because of an believed proposition.
If a believed proposition causes inconsistency, it is simply neglected, and will therefore not be

10 Paul Veerkamp

asserted to the design object model. Believed propositions can be seen as assumptions which are
used as. long as they seem to be true.

Another modal operator % is used to denote uncertainty. A proposition is unknown if
neither its truth nor its falsity can be derived within the theory. An unknown proposition, %p, is
considered to be valid if neither p nor ~p can be found. Note that we now actually have
introduced a third truth value (i.e. unknown). The reason we do not explicitly introduce a third
truth value is that we want to keep our logic as simple as possible. So we have the open world
assumption, but if we request p the knowledge base will return false if it finds ~p or it cannot find
p. Therefore, to be sure about the uncertainty of pone has to request %p explicitly.

6. Conclusions

Once we extend first order predicate logic with these operators we have a powerful tool to
describe design knowledge in a flexible manner. Since the design object is constantly updated
during the design process, we need to describe it in a dynamic way. IDDL is provided with a
multi-world mechanism which is realised with modal logic. This mechanism enables the user to
describe a design object seen from various viewpoints and to model several version of the design
object concurrently. The modal logic can further be used to express default and uncertain
information about a design object. The design process is an evolutionary process which modifies
the design object description. In our view, IDOL equipped with modal logic enables the IIICAD

system to describe design knowledge and to control the design process in an elegant and robust
manner.

Acknowledgements

Among the other members of the IIICAD group I would especially like to thank Yarol Akman,
Paul ten Hagen and Tetsuo Tomiyama for their invaluable help in writing this paper.

References

1. V. Akman, P.J.W. ten Hagen, and T. Tomiyama, "Design as a Formal, Knowledge
Engineering Activity," CWl-Report CS-R8744, September 1987.

2. R. Davis and J. King, "An Overview of Production Systems," in Machine Intelligence 8,
ed. E.W. Elcock and D. Michie, pp. 300-332, Ellis Horwood Ltd., Chichester, 1977.

3. A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, Mass., 1983.

4 . A. Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley,
Reading, Mass., 1984.

5. J. W. Lloyd, Foundations of Logic Programming, Second, Extended edition, Springer
Verlag, Berlin, 1987.

6. T. Tomiyama and P.J.W. ten Hagen, "The Concept of Intelligent Integrated Interactive
CAD Systems," CWI-Report CS-R8717, April 1987.

7. T. Tomiyama and P.J.W. ten Hagen, "Representing Knowledge in two Distinct
Descriptions: Extensional vs. Intensional," CWl-Report CS-R8728, June 1987.

Multiple Worlds in an lntelltgent CAD System 11

8. T. Tomiyama and P.J.W. ten Hagen ... Organization of Design Knowledge in an Intelligent
CAD Environment.·· CWI Report CS-R8720. Amsterdam. April 1987.

9. B. Veth ... An Integrated Data Description Language for Coding Design Knm\ ledge."· in
Intelligent CAD Systems I: Theoretical and Methwlolo>-:irnl Aspects. ed. Paul ten Hagen
and Tetsuo Tomiyama, pp. 295-313. Springcr-Vcrlag, lleidc:lhcrg. 1988.

