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1 Introduction%)

[P

In this report some aspects of the work carried out by the
applied mathematilcs division of the Amsterdam Mathematical Centre
in connection with the prob;em of the motion of the North Sea are
considered. o :

The general problem of the hydrodynéhic behaviour of & shal-
low sea subjected to a storm can be attacked only byvmeané of
considerable simplifications: linearisation of the hydrodynamic
equations, neglection of vertical motions, etc.

The following equations will be used

DU O U
S N - - L =
s¢ tAu Qv +g = ot
?.l—;—)\v +L/—2u+g,§;_5.—-_v—. 1.4
ot » ; PRy £ h
o(hu) | 2(hv)-, 28 _ o
DX oy Jt

Here g is the acceleration of gravity, N a friction coefficient,
€1l the coefficient of Coriolis, h the depth, u and v averages over
a vertical of the horizontal components of the velocity, ¢ the
elevation of the sealevel above the undisturbed level, U and V the
components of the tangential stress on the surface of the sea due
to the wind.

The North Sea is usually considered as a rectangle }xgx:a,
O <y <b where x = + a, y=0 represent coasts and y=b the open end
at the ocean. The depth is taken constant. The ocean may be con-

sidered infinitely deep and the following boundary conditions hold
X = +a, u=0; y=0, v=0 ; y=b, ¥=0.
The numerical values are approximately

b=850 km, 1n=65 m (harmonic average), N=0,09 h*4’§) =0,48 nl,

Next, 1f W represents the velocity of the wind at sealevel
% U;V - 3.5 x 10‘6 -
{

2

in corresponding units.
In this paper, however, a sgimpler model will be discussed. We
shall consider » nmifo-mT- Fdme_dependent wind upon an infinitely

#) Research carried out under the directlon of Prof.Dr D.van Dantzig.
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wide sea, 1,e, the strip -co <« X <eo , 0<y<b, Moreover only wind
will be considered, the direction of which is perpendicular to the
coast, 1.e. U=0, VzV(t), Under these conditions-:there are no
variations in the stream and the elevation in the x-directlon and
hence the terms in 1.1 with g% disappear. If next the following

units are introduced in 1.1
: b/2w Vgh h oy b/2T km

u,v Vgh km/n ;& h m

the equations 1.1 become

) —
(5-%—4—7\)1,1—.(1\7_0
0 , 08 _
(5’:‘5 +>\) v +QU + —-——(ay =V . 1.2
oV L at
S r3E-0

with the boundary conditions

y=0 v=0 5  y=2TC Q =0, 1.3

In the numerical case the units are as follows

t 1.5 h u,v 91 ¥%m/h
y 135 km < 65 m

and A= 0.4, 80 = 0.71.

5 .2

If W 1z in m/sec, then |Vl= 1.1 x 10™° W<,

2. General solution

[Vl

If upon the eguation 1.2 Laplace transformation is applied,

ONT
§§(y,p) = J[’ e Pt € (y,t)dt ete, 2.7

- CN\D

we obtain the eguations

(p+™) U -LLV =0
(p#k)v+flﬁ+-%§-:=v 2.2
DV =
5?+p§=0.

The boundary conditions are obviously
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=0 ¥=0 ;  y=21 €=0,

From the system 2.2 we may derive

e N 2 p
where a = p(p+)\) +Q m . 2.‘)‘!

The boundary conditiong of 2.3 are

, S U7
y=0 5y = Vv
y:?‘cf \E: O‘

The solution of 2.3 satisfying both boundary conditions 1s

€(y,p) - - v SnlEeyle 2.

5
q ch 2wqg

By means of the inversion theorem of the Laplace transformation we

have
X(y,t) = - -jﬁ-'f Pt sh(en-yla g dp 2.6
g ch 2mwqg

where L is a vertical (6 -ilco, 6 +icw) with Re ¢ > O,
In the following sections the following cases will be studied.

2 free motions
b a constant wind starting at t=0
V=0 t <0 ; V= t>0.
¢ periodic motions of the form
— iu..)t
§ (th) = L(y)e
a 2 periodic wind starting at t=0
- V=0 T <0 3 V= -s8in w2 ¢t t» 0,
§3 Free motions

The free motions satisfy the equations 1.2 with V=0, For a
. . . - e v -
free motion where u,v, § contain the time factor eP the value of
p should satisfy ch 2mg=0 (cf. 2.5)., Thus ¥ (y,t) is of the form



0 = oo (e By, wobE.. 3

where p 1s determined by

) 2 s 2
= - (E+ D

*2—‘+Ir s 1{:0,’\,2...

For each k a triplet of eigenvalues is obtained which are the roots

> p3 + 27\p2 + g\x2+£lg + (% + %)2}»p +"K(% + %)2=O.
3.2
In the numerical case ‘h2=0.02,13.2=0.5 the first few eigenvalues
are
k= O -0,0153 , -0.134 + 1 0.749

1 -0,074 , -0,104 + 1 1.028

2 -0,107 , -0.088 + 1 1.434

3 -0,122 , -0,080 + 1 1,866

The real roots form a decreasing sequence converging to - A,

The complex roots are situated left from the line Re p = - % .
R

The real parts converge to - 5 the imaginary parts are approximate-

k 1

The lowest real eigenvalue L, may be approximated by

o« =RAN 3.3
© 1416
or better
BN ) . N
e L oY - 2
1416520 ° 1416 () 4 A7)
The main free motion is
116N & 41600 = ot
/ o= O 0 e O Sir\ %_;_
. \ y )
) b .
? v o= b ol e cos % 3.4
\

o}
- dbt y
y = e cos - .

With the values given above we have always

Y - 0.1
= = 0,18
Thus the mean stream makes the constant angle of about 10° with the

coast.
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é 4 Flevation -at the coast due to a stepfunction wind

If at t=0 the sea 1s at rest and from t=0 onwards a constant
wind V=-1 blows we have for the elevation ¥(y,t) according to
2.6 .

- t sh(2r-y
S(v,t) = gy | ©F (en-y)a 4p | 4.1
pg ¢ch 2wqg

L

The right-hand side may be evaluated by means of the calculus of
residues, The poles are p=0 and the roots of 3.2. The residue at

p=0 gives the stationary solution which is reached for t - o9

ﬁ(y:vm) = 27T~ 7y, h 2

For large valueg of t the main contribution is that from the pole
at <. If for &b the approximation 3.4 is tmken we obtain

] 256512 nNT y .
i(Y;t)ﬁf‘(EW-Y) - EXp - ————= COS . 4.3
1o (1+1601°) 1+16Q2 g

In the numerical case 7\2=O.O2,~f12=0.5 we obtain in particular

for the elevation at the coast

- =C - )
¢ (0,t) = 21 - h.56 001530 _ 5 og =0.074C
_ (0.52 cos 0.749t - 0.01 sin 0.749%)e C» 1346
oL
Another way of obtaining ¥(0,t) is as follows.
We may expand ¥ into the series
— S . o
S= L > (o)) getIT : 4.5

pd 4y J

with  Eo=1, £=2  J 1.

The terms in this series represent the successive reflections at
ocean and coast.

Since for large p 4(32 )?
1=D+5+ —gg—

1

+
rot>/

the jth term of the series 4,5 corresponds to an original vanish-
ing for t < 4jwT,

It is easily seen that ¥ (0,t) is continuous but that at t=4jiT,
J=1,2.,. 1its derivative makes a Jump of Q exp =23 AT,

For O<t«lmw we have in particular
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3 (p+N)
- t(ost) - '93/2{(13-&-)\) +Q2}

From the expansion of the right-hand side in negative powers of p

jH

\
-an expansion of § in rising powers of t results.,
We find in this way in the numerical case

C(0,8) = © {4 - 0.35% £ - 0.0404 £ + 0,00182 t7... %. 4.6

By means of 4.4 and 4,6 ((0,t) has been computed for a number
of t values which are given in table 1 and plotted in figure 1.
We see that the elevation at the coast tends very slowly towards
its ultimate value of 27T,

At t=30 the elevation is still at slightly more than half 1its
ultimate value,

A wind of 30 wm/sec causes an ultimate elevation of 4 meter.

Table 1

Elevation at the coast due to a stepfunction windfield

t =0 €{0,t} = 0O
1 0.928
2 1.608
3 1.993
h 2,077
5 2,018
6 1.969
8 1,891
10 2.170
12.5 2.496
15 2.537
] 7.5 2,660 ‘
20 2.884
25 3.105
30 3.377
35 3.588
Lo 3.794
50 L,

o

o

N A
3!
(8]

i

2TC
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\V\\\\ ” Elevation ¥ (0,t) at the coast y=0
s W due to a stepfunction windficld
e i
\ ! )
/ H 3 ,
/ | LV =1 £ >0
\\//r\\
2 R,
%A ﬁ»m 3 4
20 30 60 Fo > 100
8 ! . . th " 4 o
mufufm...v 3 reflection at & = Ljic



¢ 5 Periodic motions
. If V==-gin w3t for all t there is a solution of the form

t(%t)=1m{ZW)ei“t}.‘ 5.1

Acecording to 2.0 we have

7(y) = sh(2r-y)qg

g ch 27tg
where
q2 = WIi{ A+ wi) +.(’7.2 L
A+ wi

The maximum elevation at the coast is given by

M((,\_s) =‘Ml R 5.2
a
O.OE,.flE:O.S we have computed Z(0),

In the numerical case "ng
Z{(0) for a number of w values. See table 2

M(v) = | 2(0)] and arg
and figures 2,3,4,
M(@) appears to have an absolute maximum 27 at w =0 and a secondary
maximum at w=0,69 where it is only 2.34. This represents the
resonance with the first eigenfunction which has the period 0.75

and the Coriolis effect for which {1 =0.71. In the case of the

North Sea the dangerous storms extend over a period of about two
days, so that w should be of the order 0.1, Since M@u) is some
measure of the effect of the storm upon the coast we see that

storms of longer duration are more dangerous.

A typical case of a long storm is given by w=0.,1. This storm
extends over a perlod of 107 1i.e. about two days. In this case we

have

. ﬁ(y,t) = M(y) sin (wt - 6(y)) 5.3

where M(y) and €©(y) are given in table 3 and figure 5.
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Table 2

A periodic windfield

I

0 Z | Z | arg 7
0 27t 27T 0
0.01 4,91 - 1 2.15 5.36 o4
0.02 3.38 - 1 2.29 4,08 ~34°
0.05 2.01 - 1 1.46 2.48 -36°
0.1 1,62 - 1 0.90 1.85 ~29°
0.2 1,49 - i 0.57 1.59 -21°
0.3 1,51 - 1 0.50 1.59 ~18°
0.4 1.59 - i 0.53 1.68 ~18°
0.5 1.72 - 1 0.68 1.85 ~22°
0.6 1,84 - 1 1,06 2.12 -30°
0.7 1.56 - 1 1.72 2.32 -48°
0.8 0.67 - i 1.67 1.80 -68°
0.9 0,70 - 1 1.30 1.48 -62°
1.0 0.52 - 1 1.77 1.85 ~7u°
1.1 ~0.30 - i 0.48 0.56 -123°
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Maximum elevation M(w) at the coast
. . 1wt
due to a windfield e v

| th 2w
Mw) = | 2=
I a
2 uﬁ.{(x+gui)2+!22}

N+wl
o1
\ i
S -
{ O
\\ i
., ’/r//,”,_-\\\\§\
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..\\‘ /,/ \ / ’
““‘\\___ Iy N -
\\\//
[#8)
—_—
oiz U)'% é O,r«‘) '

figure 2
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Phaseshift of the &levation at the

‘coast arg Z(0,uw ) with respect to'a

_ periodic windfield of period w3

O 0{1 o,.S 4L0
5
w
| /’\
_3o°‘KJ///
_600 4 \
. \o//;/\
. l arg Z{0,w)

-—-go g

§

figure 3
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Graph of Z(0,w) where |2} is the maximum

elevation at’ the coast and arg Z the phasceshifs
. . . . 1w

due to a periodic windfield e g

2 3 4 5 6 aw
: : 5 . ! { { L
— |
Re, I !
/
™ /
\ \'\(,U = O., & /
G =01 \
& \\ \;I
' 3\
. /N
v/

+ figure 4

7 Z(0,w)
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Table 3

Elevation due to periodic windfield - sin 0.1 t©.

y M o

0 1.85 -29°
31‘“ 1,13 450
%w 0.69 -60°

T 0.42 -73°
%iw 0.2k -85°
%Tc 0.11 -89°
2T 0 ~95o
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Maximum elevation at the sesa

M(y) = Max € (y,t) due to the
periodic windfield -gin 0,1 t

figure 5
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§ & Elevation at the coast due to a suddenly starting periodic wind
If initially the sea is at rest and if at t=0 a sinusoidal wind

starts .
= V = - sin wt 6.1

the elevation € (y,t) is determined by

t h(2m- '
S (v,t) = 2—:{? e s S (Erey)d g 6.2
P +wT g ch 2wg

L

The right-hand side may be evaluated by means of the calculus of
residues, The poles at p= +iw give the quasi-stationary solution

which is reached for t-— oo
T(yst) e Im{Z(Y)eiwt§ .

This is the periodic solution which has been considered in the
preceding section, For large valuesgs of t we have an appreciable
contribution from the pole at cxo only.

I the following approximation is used

- A
H G @ T
© 1416 52
we have - AR? 5
. - 2 1+160)
.§(Y;t) vﬂihl{Z(Y)el£Ot 1 + 256X§1 ere-l ch 5 e Cos %.
3w (116007)7 e
6.3
. 2 2 . "
In the numerical case A“=0.02, {l°=0.5 we have <xoz—030ﬂ53 and
accordingly
6.4

C(y,t) «n In i?j(y)eiu‘)t} . 9_.955_;2_92_3___ o-0.0153t
A

provided w >>0,01,

In the cage wW=0.1 the following computations have been
carried out. The values of ¥ (0,t) are given in table 4, In figure
6 both Y(0,t) and the guasi-stationary motion Im-{Z(O) etert }
are given,

It appears that the second term in the right-hand side of 6.4
accounts for a rather considerable and slowly decreasing contribu-

tion.
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Table 4

Elevation at the coast due to a sinusoidal windfield, o =0,1

T (ze*°Y ¢ dife,

t = O -0.897 0 0.897
1 -0.732 0.047 0.779

2 -0.557 0.175 0.732
T -0.353 0.363 0.716
oTC 0,226 0,960 C.734
3T 0.783 1,443 0.660
4o 1.263 1.891 0.628
51t 1.619 2.209 0.590
61T 1.817 2.359 0.542
71T 1.837 2.353 0.516
8T 1.678 2.166 0.488
9Tt 1.353 1.811 0.458
10 TC 0,897 1.333 0.436
117 0.353 7 0.766 0,413
12 T -0.226 0.165 0.391
13 7T ~0.783 -0.412 0.371
14 T -1.263 -0,910 0.353
15 1T -1.619 -1,284 0.335
16 TC -1.817 -1.498 0.319
17 TC -1.837 -1.533 0.304
18 © -1.678 -1.389 0.289
19 T -1.353 -1.,078 0.275
0.262

20 7T -0,897 -0.635
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The maximum value of ¥(0,t) is reached at about t=6,57 ,l.e. 1.5
later than the moment of maximum wind intensity. The shape of the
actual motion follows very closely that of the gquasi-stationary
motion.

Fdr a storm with a peak value of 35 m/sec we obtain in this way a
maximum elevation of 2.05 m occurring about 7 hours later than
the time of maximum wind intensity. The quasi-stationary motion

would have given a maximum elevation of 2.55 m,

é 7. & half-plane sea

In order To appreciate the influence of the ocean a comparison
should be made with the model of a half-plane sea y > 0. In this
case the windfield 1s assumed to extend over the whole area,

The eguations are as in §:2. But here we have the solution

- - e
S(y,t) = -V —5 7.1
with q given by 2.4,
The quasi-stationary motion generated by the windfield V=-sin wt
becomes . -
€(0,t) = Im (Zelcnt) 7.2
with 1
oo (A +w0i)® ) 7.3

(u>i)§§(k+«oi)2+512}5
For a number of o values the values of |Z| are given below to-
gether with the corresponding values of the ocean case

| 2| halfplane |z| strip
W = 0 27C 210
- 0.1 1,84 1.85
0.2 1.59 1.64
0.5 1.85 1.85
0.7 2.26 2.32
0.9 1.62 1.48

We observe here the same resonance at about w= (L.
If o 1is of the order 0.1 the results from the two models differ
only very slightly. Thus for long storms the influence of the

ocean may be expected to be very small,
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If the sea is initially at rest and if at t=0 the windfield

-3in w t starts we obtain for the particular case w =0,"

€ (0,t) halfplane C(0,t) dtrip
. t =0 0 0
2T 0.96 0.96
b 1.89 1.89
6 T 2.37 2.36
8T 2.18 2.17
10 7 1.37 1.33

This confirms the assertion given above,

(Vo7

8 The case {1l = 0O

For {2 =0 the solution 2.6 reduces to

, ” t o= = -
C(y,8) = - o j/ ePU T(p) 2REeyia 4 8.1

?mi i g ch 2%qg

jo

where now
B qg = p(tj'*‘\?\).

The eigenvalues are determined by
2

p(o9N) + (£ 4 4) =0,  k=0,1,2...

so that for each k a pair of conjugate complex eigenvalues

’ Lo/ 22 8,2

pk == -g- k'{"a h 7\

are obtained,

2 . .
For A°=0.,02 the first few eigenvalues are

k=0 -0.0707 + i 0.240
= 1 ~0.0707 + 1 0,747
= 2 -0.0707 + i 1.248
=3 -0.0707 + 1 1,748

The corresponding eigenfunctions are agailn

i

pt | k 5
cos (§ + E)Lyé

€

b If at t=0 the sea is at rest the windfield V=-1, t >0 causes

the elevation
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sh(?2
S (y,t) = §1~ jf . -3)g dp.
L pg ¢h 27tg

The stationary solution is obviously

550(3/30\3) = 2T =Y.

Table 5
Elevation at the coast due to a stepfunction windfield.
£1=0.
t = O C(o,t) =0
1 ' 0.964
2 1.867
3 2.71%
4 3.505
5 4,252
6 4.958 .
g 6.253 |
10 7423
15 8.007
20 6.600
25 5.343
30 5.814
35 6.355
4o 6.585
50 6.157

oo , 27C
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| RECHY

R, (j=1,2...)

T

reflection at t=4jw

?- ~—
/ .
/ \\‘ Pl R N
——
\\ \.‘l‘/ .
/ Elevation ¥X(0,t) at the coast due to a stepfurjction windfield
/
S V=0 t <0
/// case {1 =20 V == t>-0
,'/ R -4 R 2. R 5
/
47T A7 AT
e ; ; ]
) L0 40 50
figure 7
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A periodic windfield

20

r

Table 6

O

w 7 7| arg 7

0 270 27T 0
0,01 6.29- 1 0.12 6.29 -1°
0.02 6.32- 1 0.23 6.32 -29
0.05 6.43- 1 0.62 6.46 -5°
0.1 6.87- 1 1.54 7.8 -13°
0.2 6.71- i 6.93 9.65 ~46°
0,3 ~2.42- i 5.35 5.76 -112°
0.4 -1.01- 1 1.54 1,84 -123°
0.5 0.16- i 0.80 0.81 ~79°
0.6 1.05- 1 0.87 1.37 ~4°
0.7 1.57- 1 2.29 2.77 -55°
0.8 -1.05- 1 2,07 2.32 -117°
0.9 ~0.54- i 0.68 0.87 -128°
1.0 0.02- 1 0,42 0.4 -87°
1.1 0.54- 1 0.50 0.74 -39
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T M (w)

Maximum elevation M(w ) at the
coast due to a windfield e*@?

case {1l = 0,

tg 2w va-‘hwi

Mw) =

\/we—/\wi

0.9, 0.4 0b o8 10
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; arg 7(0,w) : /
() W/ i —
-120 = 0 \
Phaseshift of the elevation at the coast figure §

arg 7(0,w) with respect to a periodic

windfield of period e, case (1= 0.
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For arbitrary vy and t we find by means of the calculus of residues

A
-2t oo Kk 1
> ccs(g + E)y
e S A AU
C(y,t)=(2m-y)- — éib (k . 4)2 { cos vt o+ i sin th?g,
o T 8.3
where v, = %\/(k+%)2—'hg.

As 1In section 4 we have also the alternative expansion

2N
$(0,8) = 2 (-1)? g, f e © 10(22\— \/T2-16j2TC2}d'C, 8.4

O 44
where the summation breaks off at J:%‘ﬁ%‘}.

In the numerical case ‘X2m0.2 C(0,t) is given by table 5 and
figure 7.

¢ The periodic solutlons which are generated by the windfield
V=-sin Wt are of the form 5.1 with q given by

qg - - w° & Nw i,

At the coast y=0 we have in particular
<£O,t) = Tm itg 27T W = Al e]_u)’c} 8.5
V2wl

S (0,£) = M sin [wt-0]),

or

In the numerical case ‘R2=O.02 M snd ® have been compubed for 2
number of usvalues, See table 6 and Tigures 8,9 and 10,



Elevation at the coast due

T

10 T
11
12w
13 1
4T
151
16 TC
17T
48 Tc
191
20T

07~

Table 7

w =0,1 , {1 =0,

to a sinuoidal windfield.

In (zet?F) g giff,
-1,54 0 1.54
0.65 0.55 ~-0.10
2,78 2,67 -0.,11
4,6k 4,59 ~0.13
6.04 5.96 -0.08
6.85 6.85 -0,00
7.00 7,04 0.04
6,45 6,50 0.05
5.28 5.31 0.03
3.58 3.59 0.01
1.54 1.53 ~-0.01

-0.65 -0,67 ~0.02
-2.78 -2,79 -0,01
e -4, 64 -0,00
-6,04 -6,04 +0,00
-0e85 -6, B4 0.01
-7,00 ~-6,99 0,01
-6.45 -6 .45 -
-5.28 -5,28 -
-3.58 -3,58 -
-1.b4 ~ Ol -



4

/%\ lf (O,t)

t <0

Elevation at the coast e
due to the windfield V =4 '
{—sin w t £t >0
—-=— TBlevation at the coast
due to the windfield V = -sin w §
-0 <t <o
case w2=0.1 ,{1 =0
i\ -—»—‘} _t
o ‘\ 19T 2o [/
\ //
figure 11

-98..
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§ 9 The case A= 0

We shall show below that the absence of a damping coefficient
gives rise to a qguite anomalous behaviour of the elevation. Since
there 1s no dissipation of energy any disturbance from the wind

causes an infinitely repeated oscillation of the surface of the

sea, We have v77?~"37"
. = sh(fn-y) Vp +L

C(y,6) = -V = = e 9.1
\/p2+£i§ chete Vpe+ 01°

For a unit disturbance V=- d(t) we have for the elevation at the

const ¢ (0,t) = B 2w Vol 2
b4 A R
V%2+§12

C(0,8) = %_(w)k £ Jo(fl\/t?‘-%kz %), 9.3

i
O
no

Thus we observe at the kth reflection always a jump of MAK%:Z.
For the case V=-1, t>0 we find ¢ f
— { () s
€ (0,t) = 2 (-1 & Z( g (& \/t%%kcw‘?) 3T,
© KT g.,h

The values of § for a number of © values are given in table 8.
They show clearly the irregular behaviour of S.

The eigenfunctiors in this case are

2
exp {ti V/(% + %) r0)° } cos(% + %)y s 9.5

i.e. purely oscillatory.
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Table 8

Elevation at the coast due to a stepfunction windfield, A=0.

t =0 T= 0 t = 26 €= 1.18
1 0,96 28 2.15
2 1,69 30 1.49
3 2.05 32 1.29
b 2,02 34 1.30
5 1.71 36 1.33
6 1.32 38 1.90
7 1,02 . Lo 1,36
8 0.95 Lo 0.83
9 1.10 Ll : 1.23

10 1,38 L6 1,86
12, 1.79 : 48 ‘ 1.15
14 1,74 50 0.91
16 1.20
18 0.78
20 1.97
20 1.89
2 0,91
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10 COhClUglOﬂb ahd“fihal‘remarks,v

r &

Tbl% report is Onlj ar flPSt step towards the solution of the

N

much more compllc te problem of the determlnatlon,of the influence
of ar aWbltPary w1ndfleld upon the elevatlon of the rectangular

North Sea model -a <x<a,. 0 <y <b ?5 e
In thls rpport the 1nfluanoe of the long SLdeS x~+a hao b@en }eft
out of con51deratlon. L T

wlth fdgufd to the wn11uence of the L”LCtiOﬂ term N ve ob~

serve thQE 1t P@SUlES 1n the eneral damplng Tactor
: : Xt

2

B3 e B . ®

In spite of tbe smallness of 7{ this'influence is ¢onSiderab1e.’ﬂ

For t=16 (an Jav) its value is about 1/3, For t=32 (twdvdays)

it is aboqt'ﬁ/9. ' B o
In thé_recfangular North Sea model a Similar;éffectvmay be

gxpected.fHQWeVer, a:pegdliapféffect is caused by the mdin free

motion witb"ﬁhé‘eXCeptionallj small damping factor of about

—  " : exp - ~j:§-g

1+464L

&

For t=32 its value is still 0.62. o

The force bf Coriolig appears to enhance the inertia'of the
system. We pbint out the striking difference in the response of
the sea to 2 sfep—funotion, flgu.ﬂvand 7, in the cases ﬁ7_2=0‘5
and L =0. A

In the‘césé of the rectangular model of the North Sea this
effect is cerﬁéinly less pronounced since the long sides suppress
the mean stream in the x-direction, |

As weaﬁrd§”fhe'1bf1Uﬁﬂﬂe of a periodical storm of irequeﬂcy
oA w‘w:u(mn”r dlfjere“ob exists between the cases fl.%O and {1 :O'
Ir 57, =0.5 a re@onancs occurs at w =0 and the next one at about
w=L1 which, howerLﬁ 15 of minor importance, In this case the
presence of an ocean boundary has hérdly any influence.

If £L =0 thene?is an important resonance at w =0.25 and a less
important one at. nu =0.75 (see fig.8). Here the presence of the
ocean boundary ig eqseQLAKI o

For the rectaqvu1ar model this does not help very much. How-

ever, this modGIAW1Ll be investipated in a2 future report,



