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0. INTRODUCTION

Let V be a vector space of dimension 2n > 8 over a field K equipped
with a non-degenerate quadratic form Q with maximal Witt index (so totally
singular subspaces of dimension n exist). Let M denote the collection of
maximal totally singular subspaces of V. If we define the relation x ~ Vs
for x,y e M, if and only if dime/i.ny is even, then it is well-known that
~ is an equivalence relation with two equivalence classes. Let P denote
one of these classes. Let L be the collection of totally singular subspaces
of V with linear dimension n-2. Then (P,L, < U 2) is an incidence structure

known as D (K) or D (K). Th i i i
n,max( ) n n( ) e purpose of this paper is to characterize

these incidence structurés. This extends part of Theorem B of [4]. As an ap-
plication of our results, in sections 5 and 6 we obtain another proof of

Cameron's characterization of the dual polar spaces of type Dn'
1. DEFINITION AND NOTATION

(1.1) DEFINITION. By an incidence structure here we will mean a pair of dis-
joint sets P and L whose members we call points and lines respectively, to-
gether with a symetric relation between them, such that each line is incident
with at least two points. If every line is incident with at least three points

then we say (P,L) is thick.

(1.2) DEFINITION. An incidence structure (P,L3;I) is a partial Linear space

(pls) if two points lie on at most one line.

When (P,L3;I) is a pls then no two lines are incident with the same points.
Then we may identify a line with the points it is incident to and replace I
with symmetrized inclusion. We will do this throughout this paper, and drop

the relation I.

(1.3) DEFINITION. The point-graph of (P,L) is the graph (P,T') with vertex

set P and edge set consisting of pairs of points which are collinear.

(1.4) NOTATION. If (P,T) is the point-graph of (P,L), then x'L =

{x} v iy : {x,y} e T}.
IfXcpP, x*= n_x*, and Rad(X) = X n X* .
- xeX



(1.5) DEFINITION. If (P,T') is a graph and x,y € P, then a path of of length
n from x to y is a sequence x = XyoX seeesX =Y with
{Xi’xi+l} € T for i = 0,1,...,n-1. If such a path exists, then the distance
from x to y, denoted d(x,y), is the length of the shortest path from x to y
(such a path is called a geodesic or g - path). If no path connects x and y,
then we write d(x,y) = + =,

(P,L) is comnected if for each pair x,y € P, d(X,y) < », and in this
case diam (P,T) = sup{d(x,y): %,y € P}. If X,Y ¢ P, then
d(X,Y) = min{d(x,y): x € X, v € Y}.

(1.6) NOTATION. If (P,T) is a graph, x € P, then Pk(x) = {y € P: d(x,y) = k}.
In [10] D.G. Higman introduced the notion of a gamma space. This notion is

generalized in [3] to

(1.7) DEFINITION. An incidence structure (P,L) with point graph (P,T) is a
strong gamma space if whenever x ¢ P, £ € L with d(x,£) = k, then either
L c Fk(x) or |£ n Pk(x)l = 1.

(1.8) DEFINITION. (P,L) an incidence structure with point-graph (P,T). A
subset X of P is a subspace if whenever a line £ m—ets X in a least: two
points, then £ is contained in X. X is a simgular subspace if X is a clique.
The rank of a singular subspace X, denote rk(x), is defined to be the length
of a maximal chain of properly ascending subspaces. For example the rank of
a point os O, of a line 1. We will call singular subspaces of rank two

planes. By convention the empty set has rank -1.

(1.9) NOTATION. If (P,L) is an incidence structure, and K some collection
of subspaces, and X ¢ P, then KX ={Ke K: XcK}and K(X) = {K e K: Kc X}.
We denote the collection of all subspaces of by Sub, planes by V, and sin-

gular subspaces by Sing.

(1.10) DEFINITION. For X ¢ P, <X> will denote the subspace spanned by

X, <X> = USegggX S.

(1.11) DEFINITION. A polar space is an incidence structure (P,L) such that
for any point-line pair x,£, either X is collinear with one or all points

of £ [alternatively a (strong) gamma space in which d(x,£) < 1]. The polar



space is non-degenerate if Rad(P) = (). The theorems of BUEKENHOUT and SHULT,
[1], TITS [5] and VELDKAMP [7] classify the non degenerate polar spaces all
of whose singular subspaces have finite rank. Then rk(P,L) =

= max{rk M : M € Sing} + 1.

It is our goal in this paper to characterize incidence structures (P,L)

with point graph (P,T') which satisfy the following axioms

(D1) (P,L) is thick and connected, (P,T') is not complete;

(D2) For d(x,y) = 2,({x,y}l,L({x,y}l)) is a thick non-degenerate polar space
of rank three. If x,£ is a point line pair with £ ¢ Fz(x), then x* n £% is

a singular subspace maximal in {x,y}l for each y € £.

(D3) (P,L) is a strong gamma space. If £ ¢ Fk(x) with k = 3, then

0 # 2toa Fk_l(x) € Sing.

We now describe the typical example:

Let V be a vector space of dimension 2n 2 8 ever a field K and Q a non-
degenerate quadratic form on V with maximal with index (i.e. so that there
exists subspaces U of dimension n with Q(U) = {0}). Let M be the collection
of such subspaces. Define Ll1 & UZ’ for UI,U2 e M if dimU'L/U1 nU, is even.
Then it is well known that ~ is an equivalence relation with two equivalence
classes. Let P be either of these classes. We will define a set of lines on
P : for UI,U2 € P we define U1 and U2 to be collinear if dim Ui/U1 n Uz =2
and then K(UI,UZ) ={UeP:U> Ul n Uz}. Define L = {K(U],Uz) : Ul,U2 col-
linear}. Then we denote (P,L) by Dn,n(K)'

In [4] it is remarked that Dn’n(K) arises as a Lie incidence structure
and satisfies (DI) and (D2). By [3] it follows that D n(K) is a strong

b
gamma space, we next prove

(1.13) PROPOSITION. (P,L) satisfies (D3).

PROOF. Let £ ¢ L, X € P with £ ¢ Pk(x),k > 3, We must show £1 n Fk_](x) # 0
a singular subspace. Let y € £, and z ¢ yl n Pk_l(x). We assert that

z 2y n x. If not, then there is linear three-subspace, N, contained in

2N X, withynDN=@. Then zny c N'" ny (here N' is the collection of all

vectors of V orthogonal to N), but dim z n y = n-2, dim N' n y = n-3, so we



have a contradiction. Thus our assertion follows.

Now set U = yg.ﬁ y ,s0 U is a totally singular n -2 subspace of V. Sinqe
L c Pk(x) ,dim */x n y = 2k for each y € £. Then we must have dim U n x
n-1-2k and dim U n x = n + 1 - 2k, so that there is a subspace A of dimen-

sion two in U'n x complimenting U nx. Set M= U ® A, N =M n x. Note that
M e M\P. Let

A={z=(MnW")+W:W<c x,W>Mn x,dim" /M 0 x = 1} .

Then clearly A is a singular subspace of (P,L) with rank 2k - 2, and
A E_Zl n Pk_l(x). Thus to prove the proposition it suffices to prove
£ T, () <A,

Let z € £1 n Fk_l(x). Then from the very beginning of the proof
z2<yn x:ye£>=Unx =Mn x. Now since dim z n x = n+2 -2k,
if W=z n x, then W contains M n x as a hyperplane. Now z must equal

(W'ny) + W, for each y € £. But (W'ny)+ W= (MnW') +W and z € A as desired.

The main result of this paper is

(1.14) THEOREM. Let (P,L) be an incidence structure whose maximal singular
subspaces all have finite rank, and satisfies (D1)~(D3). Then either (P,L)

18 a thick, non-degenerate polar space of rank 4 or for some k 2 5 and field

K, (P,L) Zs isomorphic to D n(K).

5

2. PRELIMINARY LEMMAS

(2.1) LEMMA. Let y € Fz(x). Then S(X,y) = <X,¥, {x,y}l> 18 a polar spce of
rank four. Moreover, if x',y' € S(x,y) with y' ¢ (x")*, then S(x',y') =
S(x,y).

PROOF. See (3.9) and the corollary to (3.11) in [4].

(2.2) NOTATION. The subspaces S(x,y) = <X,y s » where d(x,y) = 2, will be
called Symplectons or Symps. We denote the collection of all symps by Symp.

(2.3) LEMMA. If x € P, £ e Lwith £ E_xl\ {x}, then there is an
S € Symp,



PROOF. See (3.12) of [4].

(2.4) COROLLARY. If M € Sing, then (M,L(M)) is a Desarguesion projective

space.

PROOF. By VEBLEN and YOUNG [6], we need only prove the result if
M=<l,x> withxeP, £ eL, £ E_xl \ {x}. However, this case follows from

(2.3) and Tits' classification of polar spaces [5] .

(2.5) NOTATION. V is the subset of Sing of singular subspaces which contain

lines as maximal subspaces. We call elements of V planes.

(2.6) LEMMA. If there exists a pair x,w € P with d(x,w) = 2 and for each
L e LX,,C NT(w) # @ , then (P,L) Zs a thick, nondegenerate polar space of

rank 4.

PROOF. See (3.13) of [4].
3. INCIDENCE STRUCTURES INDUCED AT A POINT

In this section we induce an incidence structure at a point, called the
residue of the point and identify its structure. Thus, let x € P. The points
of the residue are the lines on x,Lx, the lines are the planes on x, ZX,
with ordinary inclusion as incidence. Thus, if £, m.eLx, £,m will be col-
linear in the residue if and only if m E_ﬂl , and then the line on £ and m

is LX(<£,m>). For £ ¢ Lx’ FX(K) = {m € LX(ZL) -{£} } . We first prove

(3.1) LEMMA. (Lx,gx) i8 a thick, gamma space whose point graph (LX,PX) has
diameter two and satisfies

(A1) It £, m € Lx and m ¢ Px(ﬁ), then FX(K) an(m), together with its lines,
18 a non-degenerate generalized quadrangle and

(A2) If V € gx’ L e L such that LX(V) n PX(Z) =0, and

CX(V,Z) =<me Ll £ ,LX(V) E'Px(m) > € Zx'

PROOF. Clearly (Lx’zx) is thick. We first show (Lx,Nx) is a gamma space.
Let £ € LX,V € Zx and suppose IFX(K) n Lx(V) | = 2. Then there are
m,m, € Lx,(V) such that m, ,m, E_ﬂl. Then V = <m, ,m,> E_Kl, and hence



LX(V) < FX(E).

Next suppose £ = xa, m = xb € Lx’ m ¢ Fx(ﬂ). Then d(a,b) = 2. Since
X € {a,b}l, d(a,b) = 2. Then {a,b}l is a polar-space of rank 3, in particu-
lar {a,b}l n %t # 0. If c € {a,b}l n xl, then xc € FX(E) n Px(m), so diam
{LX,FX} = 2. Also see that FX(K) n Px(m) = LX({a,b}l), and so is a non-de-

generate generalized quadrangle. Therefore (Al) is satisfied.

Finally, suppose V ¢ gx’ L e L, FX(K) n LX(V) = (. Let
k € L(V)\LX, a € £\{x}. Then at nm= ¢. However, at n ot # @, since
x

€ at n m . Therefore a~ n m" ¢ V . It is clear to see that CX(V,E) =

1 1 .
a nm, and the lemma is completed.

(3.2) COROLLARY. For each x, there is an integer N_ 23, and division ring
Kx such that (Lx,gx) 18 isomorphic to Anx,Z(Kx)‘

PROOF. Here An,Z(K) is the gamma space whose points are the projective lines
in PG(n+1,K), and the lines are in one-one corresponse with incident pairs

(no,ﬂz) where 0 is a projective point and T, a projective plane, and the
line is the pencil determined by (ﬂo,ﬁz). The corollary follows from (3.1)

and Theorem A of [2] and [4].
(3.3) LEMMA. The graph (P,Fz) 18 connected.

PROOF. Since (P,I') is connected it suffices to prove if y € T'(x), then
Pz(x) n Fz(y) # 0. By (2.3), if £ = xy, then §XQQ£ # 0. If S € §xgg£, then
Fz(x) n Fz(y) ns#0.

(3.4) LEMMA. For each x € P, KX 18 a field. Moreover all the Kx are isomor—
phic.

PROOF. Let x € P, S ¢ gzggx, LX(S) is a Symp of (Lx,gx), and so

LX(S) = A3,2(Kx)' From Tits' classification of polar spaces (see section 8
of [5]), it follows that Kx is a field and S = D4(Kx)' To prove the latter
part of the lemma it suffices to prove for d(x,y) = 2, then Kx = K_. Thus
if d(x,y) = 2, let S = S(x,y). Then S = D4(Kx) and S DA(Ky)' By (6.13) of
[5] it follows that L = Ky.
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For the sequel we let K be the underlying field. Note that now all



singular subspaces are projective spaces over K. Those of rank t we denote

by tP.
(3.5) LEMMA. Let x,y € P. Then n_=n.

PROOF. By connectedness of (P,I') suffices to prove n_ = ny for y € T'(x). Set
£ = xy. Then £ € Lx’ and (Lx,gx) = Ahx,Q(K)' Then if M € Slngz is choosen

so that rk (M) is maximal, then as a singular subspace of (Lx,gx),

(LX(M)) = nX—]. It therefore follows that rk (M) = n_. By similarly con-

sidering (L_,V ), we see rk (M) = n_ and so n_ = n_ as claimed.
Yy =y y X y
4. PROOF OF THE MAIN THEOREM

We now have that there is an integer n 2 3, and field K such that for
each point x in P, (LX,V ) An 2(K). We will prove by induction on n that
b .

=X
(B,L) &D ) (K.

(4.1) LEMMA. If n = 3, then (P,L) = DA(K) = D4 4(K).

PROOF. Let d(x,w) = 2, S = S(x,w). Then in section three we saw S = D4(K)'
However, it follows that xt c S, and so by (2.5) that P = S.

(4.2) NOTATION. M will denote a projective space of rank n over K which
underlies (Lx,gx). )
Rt = {x,X} x € X g x7, X € Sub, LX(X) = At,Z(K)' For (x,X) € R, ye X - {x},

we set Xy equal to

U [S(y,2) n,yl].
1
zeX-y

Finally let P' = nP and P = {M e 3P i M = M.

(4.3) LEMMA, Let S e Symp, x € P\S. If L(Snx") # @, then S n x € ,P\P .

PROOF. Clearly S n xl € gégg by (2.1), let £ € L(Snxl) and y € £. Set

m = xy. Consider Ly' There is a subspace ny(S) of "y of rank three such that
Ly(S) consists of all lines of ny(S). Now £ € Py(m) n Ly(S), and, therefore,
the line of ﬂy which m is identified with meets ﬂy(S). Then Py(m) n Ly(S)



is a singilar plane of Ly. Now it follows that S n x— e

S nx e 3P\P_.

3P. As x ¢ S n xl,

(4.4) LEMMA. Assume SI’S € Symp and Z(Slnsz) # (0. Then S. u S, ¢ P .

2 1 2

PROOF. By (2.1), Sl n 82 € Sing. Let x ¢ S] n SZ' LX(Si) are symps of Lx’ and

since g(SlnSZ) 0, Lx(sl) n LX(SZ) = Lx(slnSZ) contains a line of (Lx,gx).

It then follows that Lx(slnSZ) is a maximal singular subspace of rank two,

hence, S] n S2 e P .

(4.5) LEMMA. Let (x,X) € Rt’ y € X = {x}. Then (y,Xy) € Rt'

PROOF. If t = 3, then the result is immediate: for any z ¢ X - yl,

X = S(y,z) n xl. Then Xy = S(y,2z) n y'L and (y,Xy) € R3, we proceed to prove
the lemma in a sequence of short steps. We first introduce some notation.

Symp (X) = {s € Symp : S n x" c X}.

. 1 .
I.Xy € ggg. Let ul,u2 € Xy with u2 € u]. 1f u2 € yu, then result is

clear. Let Si € §1gEX(X) with yuifisi’i = 1,2, If S1 = S,, then the result

is obvious, so we may assume S1 # S,. In particular we may assume

2
. 1
u,u, € Fz(x), so Si = S(x,ui). Now since S1 nu, 2 yu, by (4.3),

Sl n u; € 3P\P_. Then Sl n ué nxt e ZP’ and hence by (4.4),
J-“- = ~ =

<X,S1 n u, : x S] ns, e P . Set M S1 n SZ'

Note that uy N M= ué n M. Let N ¢ 2PX(M), i.e. a hyperplane of M containing

x, with y ¢ N. Let {Mi} € 3PN(Si)’ i= 1,2,Mi # M (there are unique such

9 S MT and

1 . 1 . 1
> € 4P. Let v, € Mi n ui\M, i=1,2. Now v, ¢ uj, for if v, € u,

choices). Then by consideration of L_ we see that M

MM,

then v, € {uz,x}’L n S1 (= Sl n 82 = M, a contradiction. However,

u S( ), a and + nv,v
12UV sVy € S(uy,v ), symp, and so j l] 9
vy, for if v € yt, then v ¢ {Vl,vz} ny ¢ S1 ns

is a point, say v. Now

9 = M. But then

v, € <M,v.> ¢ Sl’ a contradiction. Thus S(u,x) = S(y,s). Since VsV, € X

2 1
and X is a subspace, v ¢ X. Hence S(u,x) € §XEEX(X) and u € Xy.

2

L
II. If u,u, € Xy, d(ul,uz) = 2, then S(ul,uz) ny ¢ Xy.

Pf: Let Si € §XQEX(X) n §zggx., i=1,2, If S, = S, then the result is

1 2°

i
i # SZ’ Then we may also assume upsu, € Pz(x).
Let v € {ul,uz}'L n yl. If v € xl, then v ¢ {x,u}l =]

clear, so assume S

, 850 v € X_1in this
1 y



case. Thus assume Vv € Pz(x). Now consider Ly; The three subspace ﬂy(Si) of

™, meet in a plane U, and this plane contains the line which xy is identi-
fied with. The lines which u.y are identified with meet U in projective
points Ch moreover, since (ul,uz),(ui,x) € Fz,pi are not on xy and,

P, # Pye Now vy "meets" both uy and u,y. If oy is on vy for some i, then

vy 1s contained in ny(Sj), where {i,j} = {1,2}, that is vy € Ly(Sj) and

vV € Sj’ in which case v € Xy' Thus u.y "meets" vy in a point Gi # Pys i=1,2,
From this it follows that there are lines m, = w.y € L (S.) nrT (xy) nrT (vy)‘
with m €T (mz) (choose lines m, to contaln 61 and meet Xy in p01nts q

with q, # q2) Now w. o€ S nvtonxtn y and so W, € X, also d(wl,wz) = 2.
Since y,v € {wl,wz}l, S(wl,wz) € §1gp X) n §zggy As v € S(w],wz) n y it
follows that v € Xy'

IIL. X, 0 x" =Xny

Pf: Let z € X n yl. Then clearly X n zl\yl # 0. Let we Xn zl\yl.
Then z € S(y,w) n yl = Xy. Thus z € Xy n x* and we have shown
Xn yl [ Xy n xl. Conversely, suppose z € X n xl. Let

S € §X§EX(X) n §ygpyz. Then z € S n x* n y'L cXn yl, and we have equality.

V. (y,X) € R..
Pf: From I. and II., Ly(Xy) is a subspace of Ly’ is connected, has diameter

two, and is 2-closed (i.e. if m ,m, € L (X ) with m, é¢T (m ), then

Fy(ml) n Fy(mz) = Ly(xy) From this it follows that Lyix ) t',Z(K) for
some t'. Now let M € tPXy(X). Then M c X n y = xy n x . Hence

1 . 1
M e ‘ ny(X ) and so t < t'. On the other hand, by choosing M' ¢ ¢ ny(Xy)

we get M' ¢ (X), and so t' < t. Thus t = t' and the lemma is proved.

t'

(4.6) DEFINITION. For (x,X), (y,Y) € Rt’ write (x,X) ~ (y,Y) if (x,X) = (y,Y)
or if there exists a sequence
s .

{(Xi’Xi)}i=0 c Rt with (xo,XO) = (x,X), (xS,XS) = (y,Y) and such that for
-each i, X, € Xi and (xi)xi+] = Xi+1'

Suppose (x,X) € Rt,y € P, and 7 = (XO’XI""’XS) a path from x to y.
We shall say X1T is defined if there exists a sequence {(Xi’Xi)}§=0 in Rt
such that x, € X. and (X.) = X., .. When X 1is defined each X. is unique-

i 1 17X{ 41 i+] ™ i

ly determined and we set Xﬂ = XS.
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. 1
(&.7) LEMMA.lLet (x,X) € Rt,y € x \X. Set Y = UzeX\yl [S(y,2z) n yl].
(1) If X ny = {x}, then (y,Y) € Rt+2'
D

(ii) If X n y© # {x}, then (3,Y) € R, .

PROOF. In either case Y = (i)y where X = <X,y>. In (i) clearly (x,X) € R
and in (ii) (x,i) € Rt+1' The result follows from (4.5).

t+2

(4.8) LEMMA. Let (x,X) € Rt,y € X - {x}. Then X = (Xy)x'

PROOF. Since X,X are isomorphic it suffices to prove X ¢ (Xy)x'
Let u € X. If u € yl, then u ¢ X . Then since u € Xy n xl, ue (X )X.

Thus assume u € Tz(y). Then S(u,y) n yl

c Xy’ x € S(u,y) n yl, but
S(y,y) n yl [ xT. Choose v ¢ S(u,y) n yl, vV € Fz(x). Then v € Xy and
S(x,v) n xl c (Xy)x' But S(x,v) = S(u,y) and hence u ¢ S(x,v) n xl [= (Xy)

(4.9) LEMMA. Let (x,X) € Rt’ a,b e X - {x} with b € at. Then (Xa)b

ol

PROOF. Since ixa)b’ X, € (Rt)bi it suffices to prove Xb gl(Xa)b.
Let d €e X - b7, c € S(b,d) n b”. Suppose first that d € a~. Then d € X
and then S(b,d) n pt c (Xa)b. Thus we may assume d € Pz(a).
Since (Xa) is a subspace it suffices to show bc n (Xa)b # {b}. Since
b e Fz(d) and d° n bc # @, we may assume c ¢ dl. Suppose cd n a'L + @, If

ace cl, then ¢ € X and then c € Xa n bt = (Xa)b. Thus we may assume

c € Fz(a). Let c'
Then S(b,c') n bt
cd ¢ Fz(a).

cd n a*. Then c' S(a,d) n at c Xa and c' € Fz(b).

In

(Xa)b and this implies ¢ € (Xa)b. Thus we may assume

Suppose now that x e ct. Then x e (cd)l n a’. Therefore
at n (cd)l € 2P({a,c}l), and so a’ n (cd)l is maximal in {a,c}l. Therefore
there is an e € al n (cd)l n Fz(b). Note e € xl since a'L n (cd)l contains
X. Since e € X n al, e e Xa' Thus S(b,e) n b'L = (Xa)b. However,

c € b'L n el, sO C € (Xa)b.

Therefore we may assume x ¢ (cd)l. In particular c € Tz(x). Now note
that S(b,d) > dc and S(b,d) n a~ 2 bx. Then by (4.3) S(b,d) n a’ 4P If
M = S(b,d) n al, then M n (cd)l # @, and hence (cd)l n a'L # @, and hence
by (DZ)’ at n (cd)l € 2P. Set at n (cd)’L = N. x,b ¢ N. However, N is
maximal in {a,c}'L and b € {a,c}l\N. Therefore, there is an e € N\b'. Now
e € S(a,d) n al, SO e € Xa' c € S(b,e) n bl, SO0 C € (Xa)b and we have
shown Xb c (Xa)b.
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(4.10) LEMMA. (i) Suppose d(x,y) = k 2 1. Then yl n I‘k_l(x), together with
its lines is isomorphic to A K).
2k-1,2

(ii) If £ g T (%), then 2t NCON I 2

PROOF. We first show that (ii) is a consequence of (i). Choose y € £. By (i)

I ~ 1
vy on Pk_l(x) = A2k—1,2(K)' Set Y = <y~ n Fk_](x),y> so (y,Y) € RZk—l and

consider Ly’ Ly(Y) and £. Now either Ty(ﬂ) n Ly(Y) =@orT (L) nL (Y) is

a maximal singular subspace of Ly(Y). Thus, either El n Tk_l(x) =0 or
L . L ..

£ n Fk_l(x) € 2k—2P' Since £ n Tk_l(x) # @ by (D2) and (D3), (ii) now
follows.

We prove (i) by induction on k 2 1. (i) is obvious for k = 1 and 2.
Thus assume (i) is true for k = t 2 2 and suppose k = t + 1. Now let

1 . . 1 ~
aey n Pt(f)' By induction a= n Ft_l(x) = A2t~1,2(K)’
Set A = <a,a n Ft—l(x)>’ so (a,A) € R . Note that for
t+1(x),A n yl = {a}. Now let
be A-{a}, sobe Fz(y). Let ¢ € S(b,y) n yl. Then yec n bt # @, and if
c' eyen bl, then c' ¢ Ft(x) n yl. Thus, if £ € Ly(S(b,y)), then
£ contains a unique point in y'L n Ft(x). Now by (4.7), if Y = U[S(b,y) n yl],
b € A - {a} then (y,Y) € R

Z

in yl n Pt(x), if we set

2t-1
L e La(A)’ £ n Ft_l(x) is a point. Since y € T

2t+1°
=Y n Pt(x), then Z = A2t+1,2(K)'

Since each £ ¢ Ly(Y) contains a unique point

We next show that W Ft(x) n y'L is a subspace. Suppose u,v € £ n W.

Then either £ ¢ W or there is a unique point w € £ n T'_ _(x). But then

t-1
d(x,y) < d(x,w) + d(w,y) =t -1+ 1=t, a contradiction. Now suppose
a,b € W, d(a,b) = 2, c € {a,b}l n yl. Claim yc n W# @. If yce n W =0,

1 .
then yc ¢ T (x). Then by (D3), (yec)  n Pt(x) € Sing. However,

t+1
a,b e (yc)l n Ft(x) and b ¢ al, a contradiction. Thus yc n W # @#. It fol-
lows that {a,b} n W is a non-degenerate generalized quadrangle, and there-

fore that W = AS 2(K) for some s > 2t+] (since W 2 Z). Thus to complete
b

the proof it suffices to prove s = 2t+l,

Now let a ¢ W and m ¢ La(W). Then m ¢ Pt(x) and therefore by induction

1 \ 1
m N Ft_l(x) € 2t_2P(U), U= Ft_l(x) n a~. Suppose that m, € La(W), but

m o< mé. Then m? n Ft_l(x) # mé n Ft—l(x)' For suppose on the contrary,
1 Ny = o1 = s
m) n Pt_](x) = m, n Pt_l(x) M. Let bi €m, i 1,2. Then

y,M ¢ b? n b;. Then @ # y'L nMc Ft_](x) n y'L = @), a contradiction.

e L (W) and m% n T (x)=mlnI‘ (x) = M. Then
y 2 t-1

Next suppose ml,m 1 =1

2
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1 . L
, S M, 2> Claim N n W = N.

Since W = A 2(K) if Ve VW), then Vi We Sing and either Vi o We s ]P
3 - -

or V. n W = V. Suppose N N W e s—lP' Since N ¢ V,N lies in two maximal

by the previous paragraph m . Set N = <m, ,m

singular subspaces, one of rank 3 and one of rank n. Since

M c Fz(y), y ¢ <M,N>L. Since rk (<M,N>) > 4, it follows thaﬁ
rk(<M,N>l) = n. <y,N> is a singular subspace of rank three on N and
<y,N> n <M,N>'L = N. Therefore <y,N>l = <y,N>. However, we are assuming
rk(Nan) =s-1. N n W [= yl. Then <y,Nl n W> is a singular subspace,

<y,Nl n W> > <y,N> and rk(<y,Nan>) =g 22t + 1 25, a contradiction.

. 1 1 1
Thus, if m, N Ft_l(x) = m, ant_l(x), then <m ,m,>" N W= <m ,m,>.
Supposi now ml,m2 € Ly(W), m2 < ml and <m],m2> nws= <m1,m2>. Set
Mi =m, N T _l(x). We prove N] = N2. Let n € L(Nl)' Then n ¢ Fz(y), but

1
m; ¢ ot n y~. However, rk(n

nyl) = 2 and o' n yl c W. Also, from the
type of La we see that <y,nl n yl> € P . Therefore nl n y'L is a maximal
singular plane of W. However, each line of W lie in a unique singular plane

. . . . . 1
of W which is maximal in W. Since m, < <m1,m > and <m,,m,> N W = <m,,m,>,

N 1 ZL N 172 1
it follows that <m,my> =10 Ny, Now N1 =m nn 2m,.
Therefore N1 [ NZ' Since rk(Nl) = rk(Nz), Nl = N2 as claimed.

Now we have shown there is an injective map ¢ from VmaX(W)
{(VveVW: viaw = W} into 2t—2P(U)f Now for V],V VmaX(W), define
A(VI’VZ) {W e Vmax(w) : Vi nwe La’ i=1,2}. Set ‘
A(VI,VZ) {V € VmaX(W) : VnV' e La’ for every V' € A (V],Vz)}. If we set
A= {A(v],vz): V] # V2 € VmaX(W)}, then (VmaX(W),A) = PG(s-2,K). Now
P(U) is naturally isomorphic to PG(2t-1,K). We finally show that ¢ is

26

2t-2
a morphism of projective spaces. Since & is injective this will imply

s — 2 < 2t - 1 from which we deduce s < 2t + 1 as desired.

t_](x). Then M] n M2 = {u} is a

Let XA = x(vlvz) e A. Set Mi = vi nrT
point. Then {y,u}'L c W, {y,u}l = A3 2(K) and a € {y,u}l. It is clear to
b

see that Vmax(W) n Za({y,u}l) = A(Vl,vz) and from this our claim now follows.

(4.11) NOTATION. If d(x,y) = k > 2, set R(x,y) = <x n I, _ (y),%.
(So (x,R(x,y))eRy, 1) -

(4.12) LEMMA. Let d(x,y) =k 2 2 and be a geodesic from x to y. If
X = R(x,y), then X1T 18 defined. Moreover, X1T = R(y,x) = <y,y'L n Pk_l(x)>.
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PROOF. Induction on k 2= 2., Suppose k = 2. Then X = R (x,y) =

xt n S(x,y) = <x,{x,y}l> . For z € {x,y}’L ,Xz =ztn S(x,y) and y € Xz.
Thus, if m = (x,z,y), then XTr is defined and XTr = (Xz)‘y = S(x,y) n y'L =
<y,{ %3} > = R(y,%) .

Assume now that the result is true for all k < t and let k = t + 1.

Let m = (x=x0,x1,...,xt+] = y) be a geodesic path from x to y. Set x, = a.

We show that A = R(a,y) = < a, Ft—l(y) n a'L > c Xa' Of course it suffi(]:es to ‘
show I‘t_](y) nat < Xa since Xa € -Sl—tfa . Let b € I‘t_l(x) n at , C € {x,b}"L .
Then d(c,y) = t and c € I‘t(y) n xJ' . Choose ¢ € I‘Z(a). c € X = R(x,y) and

at n S(a,c) < Xa . However, S(a,c) = S(x,b) and hence b ¢ Xa.r Now if

p = (a=x],x2,...,xt =y) , then by induction Ap is defined. Since A ¢ Xa’
(xa)p is defined. But (Xa)p = X_rr and hence X1r is defined. Note by induction

we also have X'n 2 yJ' n I‘t_ (a) . However,

1

L 1
U [y"'nr__, (@]l =y nT _(x).
aéxlnI‘t(y) t=1 t

Therefore, X1r 2 <y,y“L n I‘t(x)>
(v,R(y,x)) € R

R(y,x). Since both (y,Xﬂ) and
R(y,x).

2t + 1 we have X'n

Now let (x,X) € Rt . suppose d(x,y) = k > [—t:zt—l- . Then

1 - . _ 1
0l = A2k—1,2 - Since 2k-1>t, x n T __ (y) ¢ X. We remark that

at this point it now follows diam (P,T) = [P—;—] .

Now set

D(x,X) = U {y: d(x,y) = k, R(x,y) < X } u {x}
k=1

(4.12) REMARK. x* n D(x,X) = X
(4.13) LEMMA. Let (x,X) € Rt’ y €e X-{x}, Y= Xy . Then D(x,X) = D(y,Y).

PROOF. As Yx = X by (4.8) it suffices to prove D(y,Y) ¢ D(x,X). Recall

X = U N [S(y,z) n yl].
ZEX-y

Now let z e D(y,Y) with d(y,z) = k. Of course if z = x, then z € D(x,X). This
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leaves four cases to consider:
(1) d(x,z) =k-121;

(i1) d(x,z) k+1
(iii) d(x,z) = k, d(xy,z) = k-1
(iv) =xy ¢ Pk(z) .

we

ve

(i) Let u € xt n Fk_z(x). Then u € Fz(y) . If v € {u,y}l , then

vV € Pk_l(z) n yl . Thus {u,y}l.E Y and hence y'L n S(u,y) = <y,{u,y}l‘S Y.
Now choose v € {u,y}'L n Pz(x). Then S(y,u) = S(x,v). Then <t n S(x,v) =
xT n S(y,u) E-Yx = X. Thus u € X.

(ii) Let u € Fk(z) nxt. Suppose u € y”L . Then d(yu,z) = k. Let
vV € Fk_l(z) n (yu)l . Then v € Y n Fz(x). X = Yx B_Xl n S(x,v) and so u € X.

Thus assume u € Fz(y). Now let v e-{x,u,y}l . d(z,v') <k + 1 for each

1

v' € xv since v' € yl and d(y,z) k. However, if d(xv,z) =k +1, then
(xv)'L n Fk(z) € Sing, contradicting u,y € (xv)lrwfk(z). Then without loss of
generality we may assume Vv € Fk(z). By the first part of this paragraph
v € X. Now Rad ({x,y,u}L) = {x}, hence there is a w ¢ {x,y,u}lrw Fz(z). Then
also w € X. Then X 2 S(v,w) n x* and so u € X.
(iii) Let w = xy n Pk_l(z). Let u € Fk_](z) n xl . If u € y'L , then
ueYn xl E-Yx = X. So assume u € Fz(y). As in (ii) we can find a,b with
1
ae Fz(b), a,b € {x,u,w}  n Fk-]

a,b € Fk_](z) n yl < Y. Then S(a,b) n yl < Y. As x € S(a,b) it follows that

(z). Then also a,b € yl and so

S(a,b) n xl_i YX = X. Since u € at n bt xt , u e X,

(iv) Let u € T (z) n xt . If u e(xy)'L , then u € YIWXL<E x. Thus assume

k-1
u e Tz(y). Now (xy)’L n rk_](z) € op=2 P and u ¢ (xy)l n Fk_](Z). Clearly,
we may assume k > 1, for otherwise u = x. Thus ut n (xy)l n Fk_](z) € L.

Then we can find v € Fz(u) n (xy)l n (z). Let a € {x,u,v}'L . Since

u e (a')lrWF

r
k—l(z) for each a' € ax, d%z:a') < k . However, if d(xa,z) = k
we get a contradiction : u,v € (ax)l n Pk_l(z) € Sing. Therefore

d(xa,z) = k-1, so without loss we may assume a € Fk_](z) and av E_Tk_](z).
Let b € Pk_z(z) n (av)l . Since v € {y,b}l ,d(y,b) = 2. Since

{y,b}l E_Fk_](z), S(y,b) n ylig Y. Consequently, Y > S(y,b) n vl . Since

veYnx , veX. Since b € S(y,b) n vt , be YV. As x € Y n vt , X € Yv'
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Now d(x,b) = 2, so x" n S(x,b) E_(Yv)X =Y = X by (4.9). As a € {x,b}l,

{x}, so we can find ac € {x,u,v}'L n Fk_](z)

a € X. However, Rad ({x,u,v}l)
with ¢ € Pz(a). Then as above, ¢ € X. Then xt n S(a,c) < X, and so

u € {a,c,x}l < S(a,c) n xT

(4.14) COROLLARY. Let (x,X) € Rt’ y- € D(x,X) and m a geodesic from x to y,
then X s defined , X = D(x,X) n y'L and 1f Y = X s then D(x,X) = D(y,Y)

PROOF. This follows from (4.13) and induction on d(x,y).

(4.15) REMARK. The corollary implies that D(x,X) € Sub and for any
a,b € D(x,X) and every geodesic path m from a to b is contained in D(x,X).
It follows that D(x,X) satisfies the hypotheses of the main theorem. Thus,

if t < n, then by induction D(x,X) = Dt+1,t+l(K) .

Now set Pt+l = {D(x,X) : (x,X) € Rt}, P = Pn—l' For D],D2 € P, define

D, & D, if and only if D, n D, #0 .
Now suppose DI’DZ e?P, D]7: D2. Let x € D1 n D, By considering

L, LX(Di) ,» i=1,2, we see that I, (D, n D,) = L (D) n LD, = An—1,2'

Since this is true for each x € Dl n D2 we have

€ P_

(4.16) LEMMA. If D,D Y

e?,DlaéDzanlenDz#w, then D, n D

2 1 2

Now if D, X D, , set K(D],Dz) ={DeP:D2D
T = {!_(DI,DZ) :D,D eP,D

@,0).

;0 Dz} and

= Dz} . Thus we have an incidence structure

2 1

(4.17) LEMMA. Let D € P, x € P~ D. If I,(x) n D # @, then x*n D#Q .

PROOF. Let w € Pz(x) nD. LW(D) = An—],Z(K)’ LW(S(x,W)) = A3’2, let ﬂW(D)
be the hyperplane of T underlying LW(D) and nw(x) the three subspace
underlying LW(S(x,w)). Then ww(x) meets nW(D) in a least a plane so

Lw(D) n LW(S(x,w)) a contains a singular plane of LW' Therefore
3P(S(x,w)nD) 0 . If Me 3P(S(x,w)nD), then Mrwxle V(D), in particular

D n xt # @ as claimed.

(4.18) LEMMA. If D e P, x € P-D, then x nD # 0.
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PROOF. Set s = d(D,x). Wish to prove s = 1.'Suppose on the contrary that
s > 1. Choose z € D with d(x,z) = s and let x = XgpX seeesX =2 be a
62 * Then d(x,y) = s—2.

Since d(s,x) = s ,y € P-D. Since Fz(y) nD # @, by (4.17) yl n D# @.

If w e yl'n D, then w € D and d(x,w) < s—-1, a contradiction . Therefore

geodesic from x to z. Let y = x

s =1,

(4.19) NOTATION. For x € P ;g ={DeP:x e D}. For
DeP, A() = {D':D=D'}.

(4.20) LEMMA.'Q, together with its lines, is a projective space of rank n

over K.

PROOF. Clearly X is a singular subspace of (P,L). We define a map from

X to {X: (X :(x,X) € Rn—l} by D+ D nxt . Suppose D € X. Then this map

Dz) to {X : (x,X) € Rn—l’x E.D]

. Then X, together with its lines is isomorphic to

1207

carries A (D n D, nx’}. However,

(x,D1 noD

19
L

pN X ) € Rn—Z

the incidence structure whose points are the hyperplanes of Hx (= PG (n,K))

and lines are the subspaces of codimension two with inclusion as incidence.

This is of course a projective space of rank n over K as claimed.
(4.21) LEMMA. Suppose x £ D ¢ P . Then X n A(D) is a hyperplane of X.

PROOF. We know D n xt # . Since D is geodisically closed, xl.n D e Sing.
Let y € D n xl, wy(D) the hyperplane of ﬂy underlying Ly(D)' The line which
xy is identified with meets wy(D). Then Py(xy)ln Ey(D) is a singular sub-
space of Ly of rank n - 2 and therefore rk(Dnx ny” ) =n - 1. Since

y e Dn x' e sin s, Dn x' =Dn x n yl. Set N=Dn x. rk (<N,x>) = n, and

+ . . .
soM=<N,x>¢ P = nP' Then LX(M) is a maximal singular subspace of rank

n - | and consists of all lines of HX lying on a point HD of HX. Now suppose
D' ¢ ® and D n D' # @. Then D n D' ¢ ﬁn—Z and x ¢ D' - (DnD'). By the above
K=Dnx e n—ZP and rk(<PnD'nxl,x>) =n-1. Set K=<DnD"'n xl,x>, LX(K)

is a singular subspace of LX of rank n - 2. If HX(D') is the hyperplane of
HX corresponding to LX(D'), then HX(D') contain HD. It now follows that
A(D) n K ={D" € R : Hk(D') =) HD} and this is a hyperplanme of R.

The next two results finish the proof.
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(4.22) PROPOSITION. (P,L) Zs a thick, non-degenerate polar space, D__ ., (K).

n+l

PROOF. Clearly (P,L) is thick. Let A = A(DI,DZ) eL, DeP. Let x € D] n D2.
If x € D, then A c A(D), so assume x ¢ D. Then A(D) nNx is a hyperplane of

X by (4.2), in particular either A'c A(D) or | A nA(D)I = 1. Thus (P,L) is a
polar space. Now suppose D e P. If y e D, then ;y(D) = An—l,Z(K)' Since

Ly = An,Z(K) ,yllﬁ D, so D # P. If x € P-D, then by (4.21) X ¢ A(D), so

D ¢ Rad(P) and as D was arbitrary, Rad(P) = @ . Also by (4.21), ¥ is a
maximal singular subspace of (P,L) and so by (4.20), rk(P,L) = n+1.

To see that this is of type D it suffices to show that the residue at a point
D of §';f

D ° is of type D. The map

A—> N D' fromL_ to P (D) is a bijective morphism
' D n—-1
DeA
(lines of ib go to ?;rz(D), and the latter is a polar space'Dn(K). This com-

pletes the proposition.

THEOREM. (P,L) = D (K)

n+l,n+l

PROOF. The map x — X is a map from P onto a subset of the maximal singular
subspaces of (§,f). Now if £ € LX,'then £ = ﬂy€£ ? is easily seen to have

rank k-1 by passing to LX(D ezhif and only if the hyperplane ﬂx(D) contains
the line "xy" of ﬂx). From this it follows that {¥ :X €P} is contained in

a single class and y ¢ x" if and only if rk(Xn¥) = rk(X) -2 = rk(?)—z- Since
Lx = An,Z(K) it follows that {%X : x €P} is an entire class and the proof is
complete.

5. NEAR 2n-Gons

In this section we recall the definition of a near 2n-gons as introduced

by SHULT and YANUSHKA [8], and some related notions.

(5.1) DEFINITION. An incidence structure (P,L) with point-graph (P,A) and
metric d( , ) = dA ( , ) is a near 2n-gon if (P,A) is connected with diameter
n and for any pair (x,£) € P x L with d(x,£) = t, there is a unique y € £

with d(x,y) = t.
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y € £ with d(x,y) = t.

(5.2) REMARK. If (P,A) is a bipartite graph, then (P,A) is a near 2n-gon for
some n. In this case lines all have two points. Conversely, a near 2n-gon
with two points on each line is bipartite graph. We will refer to such near-

2n—-gons as thin.
(5.3) NOTATION. For x € P, A(x) is as usual and xt = A(x) u{x}.

(5.4) DEFINITION. A subset X of P is 2-closed if, whenever x, y € X,d(x,y) = 2,
1 1
then x" ny” ¢ X .

(5.5) DEFINITION. In a near 2n-gon, a quad is a subset Q of P satisfying
(1) Q is 2-closed
(ii) diam (Q,A]Q) = 2

(iii) Q contains an ordinary quadrangle
Note a quad, together with its lines is a generalized quadrangle.

(5.6) DEFINITION. (i) In a near 2n-gon (P,L) we say quads exists if whenever

d(x,y) = 2 there exists a quad containing x and y.

(ii) Let x € P, Q a quad of (P,L). The pair (x,Q) is classical if there 1is
a unique point y € Q with d(x,Q) = d(x,y) = d and {z € Q: d(x,2z) =

d+1} =Qn y™T.

(5.7) DEFINITION. A dual polar space is the incidence structure whose points
are the maximal isotropic (singular) subspaces of a non-degenerate polar

space and whose lines are the next to maximal isotropic subspaces.
Note when the polar space is of type Dn the near 2n-gon is thin.
Cumeron has the following characterization of dual polar spaces [9] .

(5.8) THEOREM. An incidence structure (P,L) Zs a dual polar space of rank n
if and only if the following hold ’

(1) (P,L) Zs a near 2n-gon;

(ii) quads exist;

(iii) every point—-quad pair is classical.
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We give a proof of this in the case that (P,L) is thin using our main

theorem. More precisely we prove.

(5.9) THEOREM. Let (P,A) be a comnected bipartite graph of diameter n = 3.

Further assume

(i) If d(x,y) = 2, then |x" ny-|>2;

(ii) In the near 2n-gon (P,A) quads exist and all point-quad pairs are clas-
stcal.
Then one of the following occurs

(i) n = 3, there is a skew field K such that (P,A) is the dual polar space
of type D3(K); or

(ii) n 2 4, there is a field K such that (P,A) is the dual polar space of
type Dn(K).

6. CHARACTERIZATION OF THIN CLASSICAL NEAR 2n-GONS

As usual Ai(x) = {y :d(x,y) = i} . Let P = PILJPZ be the partition of P

as the connected components of A If x,y € Pi and d(x,y) = 2, then there

2° .
is a unique quad on x and y which we denote by Q(x,y). Let Q be the collection

of quads.
6.A. In this subsection we assume n = 3 and show conclusion (i) if (5.8) holds
(6.1) LEMMA. Suppose Q],Q2 e Q ,Q] # Q, and Q, nQ, # 0 . Then QnQy € A.

PROOF. Let x € Q] n Q,. Suppose x € P1 . Choose u; €Q; N Az(x) = Qi n Pl
Then d(ul,uz) =2, Set Q = Q(ul,uz). Now x ¢ Q for otherwise Q = Q =Q,-
Therefore, the unique point v € Q with d(v,x) = d(Q,z) is in P2 and d(v,x)= 1.
Then v € x— n ui E-Qi and {x,v}eA . If Q] n Q2 i{x,v}, then either

]Ql nQ, n PII > ]or |Q1 nQ,n P2] > 1. In either case we get Q, = Q,,a

contradiction.

We shall for the remainder of this subsection say two distinct quads
are "collinear" if they meet. If Q],Q2 are collinear, let
K(Q],Qz) ={QeQ:Q>2 Q, n QZ} . Let A = {)\(QI,QZ) 2 Q) # Q2€ 2, Q1”Q29‘¢}.

We immediately have
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(6.2) LEMMA. (Q,MA) Zs a partial linear space.

Note that lines are in one-to—one correspondence with edges in A. For
such an edge, {x,a} , we will write A{x,a} for the corresponding line. The

next lemma gives a concrete description of this line.

(6.3) LEMMA. In {x,a} € A, A {x,a} = {Q(x,y) v € A(a) - {x}}

PROOF. If y € A(a),y # x, then Q(x,y) 2 {x,a} and Q(x,y) € A{x,al . On the
other hand, if Q € A{x,a} , then for any y € Q n Az(x) , v € A(a) and
Q = Q(x,y).

(6.4) PROPOSITION. (Q,A) Zs a polar space of type D,.

PROOF. First we show (Q,A) is a gamma space : let X = A{x,a} for {x,a} € A
and Q € Q. If Q n {x,a} # @ , then Q is collinear with each point of A so
we may assume Qn {x,a} = @ . We show in this case Q is collinear with at
most one point of A . Suppose Q € A, Q n Q] # 0. Let Qn Q1 = {y,b} where
{a,y} , {b,x} € A . Suppose that Q] # Q, € A. Then y ¢ Q2 , but a € Q, n A(y).
If Qn Q, # ¢, then Q, n A(y) € Q. Since a € Q we cannot have Q n Q, #0

as asserted. Thus (Q,A) is a gamma space. Now consider a line A = A{x,a} and
a point Q € Q \A . Since diam (P,T) = 3, Qn A(a) # § . By (6.3) this implies
Q is collinear with some point of L and consequently (Q,A) is a polar space.
Since the induced structure on the lines of (Q,A) contains a fixed Q is

isomorphic to the dual of Q it follows from TITS [ 51 (Q,I) = D3(K), K a

Now it is obvious to see that for x € P, X = {Qe Q:x € Q} is a
maximal singular subspace of the polar space (Q,A). The result in this case

follows.
6.B. Hence-forth assume n 2 4. Set P = Pl and T = A2| P.

(6.5) NOTATION. If x,y € P, d(x,y) = 2(so dr(x,y) = 1), set xy = Q(x,y) n P.
Set L = {xy :x,y¢€ P,dr(x,—) =1}. For x € P, X = r(x) v{x}.

(6.6) LEMMA. (P,Q) Zs a strong T-space.

PROOF. Let x,y,z € P with y € T(X) , X,y € Fd(z). Set Q = Q(x,y). Let a € Q
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dA(z,Q) = dA(z,a). If a € P, then dA(z,x)-—Z
{a} = £ n Fd~—1(z)' If a € P2 , then dA(z,a) = 2d -1 and

2d -2. In this case

xy =P nQ="Pn Aa) ¢ A2d(z) = Fd(z), and so in this case xy E‘Pd(z).

(6.7) LEMMA. Let £ e L , x eP and £ < Fd(x) with d > 2. Then £°n Fd_l(x)
*

18 a non-empty singular subspace of (P, ). (L™ = szy*)

PROOF. Note, if a € P then A(a) is a singular subspace of (P,L). By def- .

2 b
inition of quads, there is a unique Q € L, Q 3_[, which we denote by
Q(£). Let a € Q such that dA(x,a) = dA(x,Q). Since £ < Fd(x) = A2d(x), a e P2'

Therefore dA(a,x) = 2d - 1. Choose y € A(a) n A Then y € £* since

2d-2 (%)
y, £ < A(a). Also y € Fd_](x) , SO Fd_l(x) ne” 0 .
We next show for any y € Fd_](x) nﬂ* that y € A(a) which will prove
Fd_l(x) nL* is a I'-clique by our first remark. Let u,v € £. Consider Q(y,u).
Now A(y) n A(u) E-A2d-l(x)' If v € Q(y,u), then Q(y,u) = Q(u,v) = Q(£) con-
tradicting dA(x,y) =2d-2and Qn P E_Fd(x). Therefore dA(Q(y,u),v) > 1. But
dA(y,v) = dA(y,u) = 2 and so it follows that if b is the unique point of
Q(x,u) closest to v, then b € P2 and dA(b,v) =1,
Since b € A(y) ,dA(b,x) < 2d-1. Since b € A(u) n A(v), b € Q(u,v) = Q. But

QnA (x) = {a}, so b =a. Since (P,Q) is a strong I'-space Pd_l(x) n£*

2d-1
is a subspace and the lemma is proved.

(6.8) LEMMA. Let x,y € P ,dr(x,y) = 2,z € T(x) nT(y). Then there exists
v eI'(x)nT(y) n Fz(z).

PROOF. Let a € P2 n Q(x,z), b e P2 n Q(y,z). As dr(x,y) = 2, a # b. Since

z € A(a) n A(b) we have dA(a,b) = 2 and z € Q(a,b). Let u € Q(a,b) n P, u # z.
z ¢ Q(x,y) n Q(y,u). For if z € Q(x,y) n Q(y,u) , then Q(x,y) = Q(z,u) = Q
(y,u). Thus dr(x,y) = 1, a contradiction. Now P n Q(x,y), P n Q(y,u) < T(z).

It follows that there is a unique a],b] in Q(x,u) n A(z), Q(y,u) n A(z),

respectively, namely a and b. Let a, € A(x) n A(u), a, # a and b2 choosen

2

similarly. Then az,b2 € A3(z). Then Q(az,bz) n I'(z) = {u}. Now if

vV € A(az) n A(bz), v #u, then v € T(X) n T(y) n Fz(z).

(6.9) LEMMA. Let £ ¢ Q,x e Pwith £ € I, (x). Then C(x,8) = x'n £* properly

contains a Lline.



22

PROOF. Set Q = Q(£). Let a be the unique poiht in Qn A3(x). Let x,b,y, a
be a geodesic from x to a. Then Q(a,b) n P is a line contained in C(x,£).
Now let c € Q(x,y) n Py, c # b. Then y € Q(a,c) and Q(a,c) # Q(a,b).
Therefore P n Q(q,c) n Q(a,b) = {y}. But PnQ(a,c) is a line in C(x,£) and
P n Q(a,c) # P n Q(a,b) and (6.9) is proved.

(6.10) LEMMA. TIf x,y € P ’dP(X’Y) = 2, then T(x) nT(y) Zs a polar space of
rank three,

PROOF. T(x) n I'(y) is a I'-space with thick lines. By (6.8) T'(x) n T'(y) is
non-degenerate. From (6.7) it follows that I'(x) n I'(y) is a polar space.

Now let z € T'(x) n T(y), ue T'(x) n T(y) n I'(z). Since xz c I'(u),
yz ¢ I'(u), there is a unique b € Q(x,z) n A(u) and a unique ¢ € Q(y,z) n A(u).
Then u € P n Q(b,c). It fellows that the lines on z in I'(x) n I'(y) is a grid
isomorphic to [Q(y,z) n P2] x [Q(x,2z) n Pz]. From this iﬁ follows that

maximal singular subspaces of I'(x) n I'(y) are planes and rk(I(x) n r'(y)) = 3.

We have now shown that (D1)-(D3) hold for (P,L). Thus, either
(P,L) = Dn,n(K) for some field K or (P,L) is a polar space of rank 4. However,
in the latter case, by the end of 6.10 and TITS [5] we have
(P, L) = D4(K) = D4,4(K). Now the points in P2 can be identified with the
maximal singular subspaces of (P,L) with projective dimension n-1. From this
identification it now follows that Pl u P2 can be identified with the maximal
singular subspaces of an orthogonal space V of dimension 2n(28) over a field
K, with index n, such that two are collinear if and only if they meet in an

(n-1) dimensional subspace. This completes the proof of (5.10).

Acknowledgement: I would like to thank the participants in the Algebra

Seminar at the Mathematisch Centrum for providing me the opportunity to
present this material, and especially Arjeh Cohen for many fruitful dis-

cussions.

[1] BUEKENHOUT, F. & E.E. SHULT, On the Foundations of Polar Geometry,
Geometriae Dedicata 3(1974), 155-170.



[2]

£3]

[4]

[5]

L6]

L7]
£8]
£9]

23

COHEN, A.M., On a Theorem of Cooperstein, submitted to European J. of

Combinatorics.

COHEN, A.M. & B.N. COOPERSTEIN, Some Properties of Lie Incidence Struc-—

tures, in preparation.

COOPERSTEIN, B.N., A Characterization of Some Lie Incidence Structures,
Geometrical Dedicata (1977), 205-258.

TITS, J., Building of Spherical Type and Finite BN-pairs, Springer—Verlag,
1974,

VEBLEN, O. & J.W. YOUNG, Projective Geometry, Vol. 1., Blaisdell Publish-
ing, New Young, 1938.

VELDKAMP, F.D., Polar Geometry, I-IV. Indag. Math 21,512-551 (1959).
SHULT, E.E. & A. YANUSHKA, Near n-gons and Line systems.

CAMERON, P.J., Dual Polar Spaces, Geometrial Dedicata 12(1982), 75-85.

[10] HIGMAN, D.G., Gamma and Delta Spaces, Abstract of talks at Hans Sur-

Lesse Conference, 1979.






