stichting

mathematisch
centrum

AFDELING ZUIVERE WISKUNDE
ZW 178/82
(DEPARTMENT OF PURE MATHEMATICS)
B.N. COOPERSTEIN

A CHARACTERIZATION OF A GEOMETRY RELATED TO $\Omega_{2 n}^{+}(K)$

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.O.).

A characterization of a Geometry Related to $\left.\Omega_{2 n}^{+}(K) *\right)$
by

Bruce N. Cooperstein **)

ABSTRACT

The halved dual polar spaces related to $\Omega_{2 n}^{+}(K)$ are characterized as incidence structures in terms of a short list of axioms on points and lines.

KEY WORDS \& PHRASES: graphs, incidence structures, (dual) polar spaces, buildings of type D_{n}.

[^0]
0. INTRODUCTION

Let V be a vector space of dimension $2 n \geq 8$ over a field K equipped with a non-degenerate quadratic form Q with maximal Witt index (so totally singular subspaces of dimension n exist). Let M denote the collection of maximal totally singular subspaces of V. If we define the relation $x \approx y$, for $x, y \in M$, if and only if $\operatorname{dim}_{K} x / x \cap y$ is even, then it is well-known that \approx is an equivalence relation with two equivalence classes. Let P denote one of these classes. Let L be the collection of totally singular subspaces of V with linear dimension $n-2$. Then ($\mathrm{P}, \mathrm{L}, \subseteq \cup \supseteq$) is an incidence structure known as $D_{n, \max }(K)$ or $D_{n, n}(K)$. The purpose of this paper is to characterize these incidence structures. This extends part of Theorem B of [4]. As an application of our results, in sections 5 and 6 we obtain another proof of Cameron's characterization of the dual polar spaces of type D_{n}.

1. DEFINITION AND NOTATION

(1.1) DEFINITION. By an incidence structure here we will mean a pair of disjoint sets P and L whose members we call points and $l_{\text {ines }}$ respectively, together with a symetric relation between them, such that each line is incident with at least two points. If every line is incident with at least three points then we say (P, L) is thick.
(1.2) DEFINITION. An incidence structure ($\mathrm{P}, \mathrm{L} ; \mathrm{I}$) is a partial linear space (pls) if two points lie on at most one line.

When ($\mathrm{P}, \mathrm{L} ; \mathrm{I}$) is a pls then no two lines are incident with the same points. Then we may identify a line with the points it is incident to and replace I with symmetrized inclusion. We will do this throughout this paper, and drop the relation I.
(1.3) DEFINITION. The point-groph of (P, L) is the graph (P, Γ) with vertex set P and edge set consisting of pairs of points which are collinear.
(1.4) NOTATION. If (P, Γ) is the point-graph of (P, L), then $x^{\perp}=$ $\{x\} \cup\{y:\{x, y\} \in \Gamma\}$.
If $X \subseteq P, X^{\perp}=\bigcap_{X \in X} X^{\perp}$, and $\operatorname{Rad}(X)=X \cap X^{\perp}$.
(1.5) DEFINITION. If (P, Γ) is a graph and $x, y \in P$, then a path of of length n from x to y is a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=y$ with $\left\{x_{i}, x_{i+1}\right\} \in \Gamma$ for $i=0,1, \ldots, n-1$. If such a path exists, then the distance from x to y, denoted $d(x, y)$, is the length of the shortest path from x to y (such a path is called a geodesic or g - path). If no path connects x and y, then we write $d(x, y)=+\infty$.
(P, L) is connected if for each pair $x, y \in P, d(x, y)<\infty$, and in this case $\operatorname{diam}(P, \Gamma)=\sup \{d(x, y): x, y \in P\}$. If $X, Y \subseteq P$, then $d(X, Y)=\min \{d(x, y): x \in X, y \in Y\}$.
(1.6) NOTATION. If (P, Γ) is a graph, $x \in P$, then $\Gamma_{k}(x)=\{y \in P: d(x, y)=k\}$. In [10] D.G. Higman introduced the notion of a garma space. This notion is generalized in [3] to
(1.7) DEFINITION. An incidence structure (P, L) with point graph (P, Γ) is a strong gamma space if whenever $x \in P, \ell \in L$ with $d(x, \ell)=k$, then either $\ell \subseteq \Gamma_{k}(x)$ or $\left|\ell \cap \Gamma_{k}(x)\right|=1$.
(1.8) DEFINITION. (P, L) an incidence structure with point-graph (P, Γ). A subset X of P is a subspace if whenever a line ℓ meets X in a least two points, then ℓ is contained in $X . X$ is a singular subspace if X is a clique. The rank of a singular subspace X , denote $\mathrm{rk}(\mathrm{x})$, is defined to be the length of a maximal chain of properly ascending subspaces. For example the rank of a point os 0 , of a line 1 . We will call singular subspaces of rank two planes. By convention the empty set has rank -1 .
(1.9) NOTATION. If (P,L) is an incidence structure, and K some collection of subspaces, and $X \subseteq P$, then $K_{X}=\{K \in K: X \subseteq K\}$ and $K(X)=\{K \in K: K \subseteq X\}$. We denote the collection of all subspaces of by Sub, planes by $\underline{\underline{V}}$, and singular subspaces by Sing.
(1.10) DEFINITION. For $X \subseteq P,<X>$ will denote the subspace spanned by $X,\left\langle X>=U_{S \in \underline{\text { Sub }}} X\right.$.
(1.11) DEFINITION. A polar space is an incidence structure (P, L) such that for any point-1ine pair x, ℓ, either X is collinear with one or all points of ℓ [alternatively a (strong) gamma space in which $d(x, \ell) \leq 1]$. The polar
space is non-degenerate if $\operatorname{Rad}(P)=\emptyset$. The theorems of BUEKENHOUT and SHULT, [1], TITS [5] and VELDKAMP [7] classify the non degenerate polar spaces all of whose singular subspaces have finite rank. Then $\operatorname{rk}(P, L)=$ $=\max \{r k M: M \in \underline{\underline{\text { Sing}}}\}+1$.

It is our goal in this paper to characterize incidence structures (P, L) with point graph ($\mathrm{P}, \mathrm{\Gamma}$) which satisfy the following axioms
(D1) (P,L) is thick and connected, ($\mathrm{P}, \mathrm{\Gamma}$) is not complete;
(D2) For $d(x, y)=2,\left(\{x, y\}^{\perp}, L\left(\{x, y\}^{\perp}\right)\right)$ is a thick non-degenerate polar space of rank three. If x, ℓ is a point line pair with $\ell \subseteq \Gamma_{2}(x)$, then $x^{\perp} \cap \ell^{\perp}$ is a singular subspace maximal in $\{x, y\}^{\perp}$ for each $y \in \ell$.
(D3) (P, L) is a strong gamma space. If $\ell \subseteq \Gamma_{k}(x)$ with $k \geq 3$, then $\emptyset \neq \ell^{\perp} \cap \Gamma_{k-1}(x) \in \underline{\underline{\text { Sing }}}$.

We now describe the typical example:
Let V be a vector space of dimension $2 \mathrm{n} \geq 8$ ever a field K and Q a nondegenerate quadratic form on V with maximal with index (i.e. so that there exists subspaces U of dimension n with $Q(U)=\{0\}$). Let M be the collection of such subspaces. Define $U_{1} \approx U_{2}$, for $U_{1}, U_{2} \in M$ if $\operatorname{dim} U i U_{1} \cap U_{2}$ is even. Then it is well known that \approx is an equivalence relation with two equivalence classes. Let P be either of these classes. We will define a set of lines on P : for $U_{1}, U_{2} \in P$ we define U_{1} and U_{2} to be collinear if $\operatorname{dim} U_{i} / U_{1} \cap U_{2}=2$ and then $\ell\left(U_{1}, U_{2}\right)=\left\{U \in P: U \geq U_{1} \cap U_{2}\right\}$. Define $L=\left\{\ell\left(U_{1}, U_{2}\right): U_{1}, U_{2}\right.$ collinear\}. Then we denote (P, L) by $D_{n, n}(K)$.

In [4] it is remarked that $D_{n, n}(K)$ arises as a Lie incidence structure and satisfies (D1) and (D2). By [3] it follows that $D_{n, n}(K)$ is a strong gamma space, we next prove
(1.13) PROPOSITION. (P,L) satisfies (D3).

PROOF. Let $\ell \in L, X \in P$ with $\ell \subseteq \Gamma_{k}(x), k \geq 3$. We must show $\ell^{\perp} \cap \Gamma_{k-1}(x) \neq \emptyset$ a singular subspace. Let $y \in \ell$, and $z \in y^{\perp} \cap \Gamma_{k-1}(x)$. We assert that $\mathrm{z} \geq \mathrm{y} \cap \mathrm{x}$. If not, then there is linear three-subspace, N , contained in $z \cap x$, with $y \cap N=\emptyset$. Then $z \cap y \subseteq N^{\prime} \cap y$ (here N^{\prime} is the collection of all vectors of V orthogonal to N), but $\operatorname{dim} z \cap y=n-2$, $\operatorname{dim} N^{\prime} \cap y=n-3$, so we
have a contradiction. Thus our assertion follows.
Now set $U=y \underset{\epsilon}{\dagger} \ell$, so U is a totally singular $n-2$ subspace of V. Since $\ell \subseteq \Gamma_{k}(x), \operatorname{dim} x / x \cap y=2 k$ for each $y \in \ell$. Then we must have $\operatorname{dim} U \cap x$ $n-1-2 k$ and $\operatorname{dim} U \cap x=n+1-2 k$, so that there is a subspace A of dimension two in $U^{\prime} \cap x$ complimenting $U \cap x$. Set $M=U \oplus A, N=M \cap x$. Note that $M \in M \backslash P$. Let

$$
\Delta=\left\{z=\left(M \cap W^{\prime}\right)+W: W \subseteq x, W \geq M \cap x, \operatorname{dim}{ }^{W} / M \cap x=1\right\}
$$

Then clearly Δ is a singular subspace of (P, L) with rank $2 \mathrm{k}-2$, and $\Delta \subseteq \ell^{\perp} \cap \Gamma_{k-1}(x)$. Thus to prove the proposition it suffices to prove $\ell^{\perp} \cap \Gamma_{k-1}(x) \subseteq \Delta$.

Let $z \in \ell^{\perp} \cap \Gamma_{k-1}(x)$. Then from the very beginning of the proof $z \supseteq<y \cap x: y \in \ell>=U^{\prime} \cap x=M \cap x$. Now since $\operatorname{dim} z \cap x=n+2-2 k$, if $W=z \cap x$, then W contains $M \cap x$ as a hyperplane. Now z must equal $\left(W^{\prime} \cap y\right)+W$, for each $y \in \ell$. But $\left(W^{\prime} \cap y\right)+W=\left(M \cap W^{\prime}\right)+W$ and $z \in \Delta$ as desired.

The main result of this paper is
(1.14) THEOREM. Let (P,L) be an incidence stmucture whose maximal singular subspaces all have finite rank, and satisjies (D1)-(D3). Then either (P,L) is a thick, non-degenerate polar space of rank 4 or for some $k \geq 5$ and field $\mathrm{K},(\mathrm{P}, \mathrm{L})$ is isomorphic to $\mathrm{D}_{\mathrm{n}, \mathrm{n}}(\mathrm{K})$.

2. PRELIMINARY LEMMAS

(2.1) LEMMA. Let $\mathrm{y} \in \Gamma_{2}(\mathrm{x})$. Then $\mathrm{S}(\mathrm{x}, \mathrm{y})=\left\langle\mathrm{x}, \mathrm{y},\{\mathrm{x}, \mathrm{y}\}^{\perp}\right\rangle$ is a polar spce of rank four. Moreover, if $x^{\prime}, y^{\prime} \in S(x, y)$ with $y^{\prime} \notin\left(x^{\prime}\right)^{\perp}$, then $S\left(x^{\prime}, y^{\prime}\right)=$ $S(x, y)$.

PROOF. See (3.9) and the corollary to (3.11) in [4].
(2.2) NOTATION. The subspaces $\left.S(x, y)=\langle x, y\}^{\perp}\right\rangle$, where $d(x, y)=2$, will be called Symplectons or Symps. We denote the collection of all symps by Symp.
(2.3) LEMMA. If $\mathrm{x} \in \mathrm{P}, \ell \in \mathrm{L}$ with $\ell \subseteq \mathrm{x}^{\perp} \backslash\{\mathrm{x}\}$, then there is an $S \in$ Symp,

PROOF. See (3.12) of [4].
(2.4) COROLLARY. If $M \in$ Sing, then ($M, L(M)$) is a Desarguesion projective space.

PROOF. By VEbLEN and YOUNG [6], we need only prove the result if
$M=\langle\ell, x\rangle$ with $x \in P, \ell \in L, \ell \subseteq x^{\perp} \backslash\{x\}$. However, this case follows from (2.3) and Tits' classification of polar spaces [5] .
(2.5) NOTATION. V is the subset of Sing of singular subspaces which contain lines as maximal subspaces. We call elements of $\underline{\underline{V}}$ planes.
(2.6) LEMMA. If there exists a pair $\mathrm{x}, \mathrm{w} \in \mathrm{P}$ with $\mathrm{d}(\mathrm{x}, \mathrm{w})=2$ and for each $l \in L_{x}, l \cap \Gamma(\mathrm{w}) \neq \emptyset$, then (P, L) is a thick, nondegenerate polar space of rank 4.

PROOF. See (3.13) of [4].

3. INCIDENCE STRUCTURES INDUCED AT A POINT

In this section we induce an incidence structure at a point, called the residue of the point and identify its structure. Thus, let $x \in P$. The points of the residue are the lines on x, L_{x}, the lines are the planes on x, V_{x}, with ordinary inclusion as incidence. Thus, if $\ell, m \in L_{x}, \ell, m$ will be collinear in the residue if and only if $m \subseteq \ell^{\perp}$, and then the line on ℓ and m is $\mathrm{L}_{\mathrm{x}}(\langle\ell, \mathrm{m}\rangle)$. For $\ell \in \mathrm{L}_{\mathrm{x}}, \Gamma_{\mathrm{x}}(\ell)=\left\{\mathrm{m} \in \mathrm{L}_{\mathrm{x}}\left(\ell^{\perp}\right)-\{\ell\}\right\}$. We first prove
(3.1) LEMMA. ($\mathrm{L}_{\mathrm{x}}, \mathrm{V}_{\mathrm{x}}$) is a thick, gamma space whose point graph ($\mathrm{L}_{\mathrm{x}}, \Gamma_{\mathrm{x}}$) has diameter two and satisfies
(A1) It $l, m \in L_{x}$ and $m \notin \Gamma_{\mathrm{x}}(\ell)$, then $\Gamma_{\mathrm{x}}(\ell) \cap \Gamma_{\mathrm{x}}(\mathrm{m})$, together with its lines, is a non-degenerate generalized quadrangle and
(A2) If $\mathrm{V} \in V_{=\mathrm{x}}$, $\ell \in \mathrm{L}_{\mathrm{x}}$ such that $\mathrm{L}_{\mathrm{x}}(\mathrm{V}) \cap \Gamma_{\mathrm{x}}(\ell)=\emptyset$, and $\mathrm{C}_{\mathrm{x}}(\mathrm{V}, \ell)=<\mathrm{m} \in \mathrm{L}_{\mathrm{x}}: \ell, \mathrm{L}_{\mathrm{x}}(\mathrm{V}) \subseteq \mathrm{r}_{\mathrm{x}}(\mathrm{m})>\epsilon{\underset{\mathrm{V}}{\mathrm{X}}}$.

PROOF. Clearly (L_{x}, \underline{V}_{x}) is thick. We first show (L_{x}, N_{x}) is a gamma space. Let $l \in L_{x}, V \in V_{x}^{V}$ and suppose $\left|\Gamma_{x}(l) \cap L_{x}(V)\right| \geq 2$. Then there are $m_{1}, m_{2} \in L_{x},(V)$ such that $m_{1}, m_{2} \subseteq \ell^{\perp}$. Then $V=\left\langle m_{1}, m_{2}\right\rangle \subseteq \ell^{\perp}$, and hence
$L_{x}(V) \subseteq \Gamma_{x}(\ell)$.
Next suppose $\ell=x a, m=x b \in L_{x}, m \notin \Gamma_{x}(\ell)$. Then $d(a, b) \geq 2$. Since $x \in\{a, b\}^{\perp}, d(a, b)=2$. Then $\{a, b\}^{\perp}$ is a polar-space of rank 3, in particu$\operatorname{lar}\{a, b\}^{\perp} \cap x^{\perp} \neq \emptyset$. If $c \in\{a, b\}^{\perp} \cap x^{\perp}$, then $x c \in \Gamma_{x}(l) \cap \Gamma_{x}(m)$, so diam $\left\{L_{x}, \Gamma_{x}\right\}=2$. Also see that $\Gamma_{x}(\ell) \cap \Gamma_{x}(m)=L_{x}\left(\{a, b\}^{\perp}\right)$, and so is a non-degenerate generalized quadrangle. Therefore (Al) is satisfied.

Finally, suppose $V \in \underline{V}_{x}$, $\ell \in L_{x}, \Gamma_{x}(\ell) \cap L_{x}(V)=\emptyset$. Let $k \in L(V) \backslash L_{x}$, $a \in \ell \backslash\{x\}$. Then $a^{\perp} \cap m^{\prime}=\emptyset$. However, $a^{\perp} n m^{\perp} \neq \emptyset$, since $x \in a^{\perp} n m^{\perp}$. Therefore $a^{\perp} n m^{\perp} \epsilon \underset{=}{V}$. It is clear to see that $C_{x}(V, \ell)=$ $=a^{\perp} \cap \mathrm{m}^{\perp}$, and the lemma is completed.
(3.2) COROLLARY. For each x, there is an integer $N_{x} \geq 3$, and division ring K_{x} such that $\left(L_{x}, \underline{V}_{x}\right)$ is isomorphic to $A_{n_{X}}, 2\left(K_{x}\right)$.
PROOF. Here $A_{n, 2}(K)$ is the gamma space whose points are the projective lines in $P G(n+1, K)$, and the lines are in one-one corresponse with incident pairs $\left(\pi_{0}, \pi_{2}\right)$ where 0 is a projective point and π_{2} a projective plane, and the line is the pencil determined by $\left(\pi_{0}, \pi_{2}\right)$. The corollary follows from (3.1) and Theorem A of [2] and [4].
(3.3) LEMMA. The graph $\left(P, \Gamma_{2}\right)$ is connected.

PROOF. Since (P, Γ) is connected it suffices to prove if $y \in \Gamma(x)$, then $\Gamma_{2}(x) \cap \Gamma_{2}(y) \neq \emptyset$. By (2.3), if $\ell=x y$, then ${\underline{\underline{S_{y m p}^{l}}} \ell}_{\ell} \neq \emptyset$. If $S \in \underline{\underline{S y m p}}_{\ell}$, then $\Gamma_{2}(x) \cap \Gamma_{2}(y) \cap S \neq \emptyset$.
(3.4) LEMMA. For each $\mathrm{x} \in \mathrm{P}, \mathrm{K}_{\mathrm{x}}$ is a field. Moreover all the K_{x} are isomorphic.

PROOF. Let $x \in P, S \in \underline{\underline{\operatorname{Symp}}}{ }_{x}, L_{x}(S)$ is a Symp of $\left(L_{x}, V_{x}\right)$, and so $L_{x}(S) \cong A_{3,2}\left(K_{x}\right)$. From Tits' classification of polar spaces (see section 8 of [5]), it follows that K_{x} is a field and $S \cong D_{4}\left(K_{x}\right)$. To prove the latter part of the lemma it suffices to prove for $d(x, y)=2$, then $K_{x} \cong K_{y}$. Thus if $d(x, y)=2$, let $S=S(x, y)$. Then $S \cong D_{4}\left(K_{x}\right)$ and $S \cong D_{4}\left(K_{y}\right)$. By (6.13) of [5] it follows that $K_{x} \cong K_{y}$.

For the sequel we let K be the underlying field. Note that now all
singular subspaces are projective spaces over K. Those of rank t we denote by t^{P}.
(3.5) LEMMA. Let $x, y \in P$. Then $n_{x}=n_{x}$.

PROOF. By connectedness of (P, Γ) suffices to prove $n_{x}=n_{y}$ for $y \in \Gamma(x)$. Set $\ell=x y$. Then $\ell \in L_{x}$, and $\left(L_{x}, V_{x}\right)=A_{n}, 2(K)$. Then if $M \in$ Sing $_{\ell}$ is choosen so that $r k$ (M) is maximal, then as a singular subspace of ($L_{x}, \underline{V}{ }_{x}$), $\left(L_{x}(M)\right)=n_{x}-1$. It therefore follows that $r k(M)=n_{x}$. By similarly considering $\left(L_{y}, \underline{V} y\right)$, we see $r k(M)=n_{y}$ and so $n_{x}=n_{y}$ as claimed.

4. PROOF OF THE MAIN THEOREM

We now have that there is an integer $n \geq 3$, and field K such that for each point x in $P,\left(L_{x}, \underline{V}_{x}\right) \cong A_{n, 2}(K)$. We will prove by induction on n that $(P, L) \cong D_{n+1, n+1}(K)$.
(4.1) LEMMA. If $\mathrm{n}=3$, then $(\mathrm{P}, \mathrm{L}) \cong \mathrm{D}_{4}(\mathrm{~K}) \cong \mathrm{D}_{4,4}(\mathrm{~K})$.

PROOF. Let $d(x, w)=2, S=S(x, w)$. Then in section three we saw $S \cong D_{4}(K)$. However, it follows that $x^{\perp} \subseteq S$, and so by (2.5) that $P=S$.
(4.2) NOTATION. π_{x} will denote a projective space of rank n over K which underlies $\left(L_{x}, \underline{V}\right)$.
$R_{t}=\{x, X\} x \in X \subseteq x^{\perp}, X \in \underline{\underline{S u b}}, L_{x}(X) \cong A_{t, 2}(K)$. For $(x, X) \in R_{t}, y \in X-\{x\}$, we set X_{y} equal to

$$
\bigcup_{z \in X-y^{\perp}}\left[S(y, z) \cap \cdot y^{\perp}\right]
$$

Finally let $P^{+}={ }_{n} P$ and $P^{-}=\left\{M \in{ }_{3} P: M^{\perp}=M\right\}$.
 PROOF. Clearly $S \cap x^{\perp} \in \underline{\underline{\text { Sing }}}$ by (2.1), let $\ell \in L\left(S \cap x^{\perp}\right)$ and $y \in \ell$. Set $m=x_{y}$. Consider L_{y}. There is a subspace $\pi_{y}(S)$ of π_{y} of rank three such that $L_{y}(S)$ consists of all lines of $\pi_{y}(S)$. Now $\ell \in \Gamma_{y}(m) \cap L_{y}(S)$, and, therefore, the line of π_{y} which m is identified with meets $\pi_{y}(S)$. Then $\Gamma_{y}(m) \cap L_{y}(S)$
is a singūlar plane of L_{y}. Now it follows that $S \cap x^{\perp} \in{ }_{3} P$. As $x \notin S \cap x^{\perp}$, $S \cap x^{\top} \in{ }_{3} P \backslash P^{-}$.

PROOF. By (2.1), $S_{1} \cap S_{2} \in$ Sing. Let $x \in S_{1} \cap S_{2} . L_{x}\left(S_{i}\right)$ are symps of L_{x}, and since $\underline{\underline{V}}\left(S_{1} \cap S_{2}\right) \neq \emptyset, L_{x}\left(S_{1}\right) \cap L_{x}\left(S_{2}\right)=L_{x}\left(S_{1} \cap S_{2}\right)$ contains a line of $\left(L_{x}, \underline{V}{ }_{x}\right)$. It then follows that $L_{x}\left(S_{1} \cap S_{2}\right)$ is a maximal singular subspace of rank two, hence, $S_{1} \cap S_{2} \in P^{-}$.
(4.5) LEMMA. Let $(x, x) \in R_{t}, y \in x-\{x\}$. Then $\left(y, X_{y}\right) \in R_{t}$.

PROOF. If $t=3$, then the result is immediate: for any $z \in X-y^{\perp}$, $X=S(y, z) \cap x^{\perp}$. Then $X_{y}=S(y, z) \cap y^{\perp}$ and $\left(y, X_{y}\right) \in R_{3}$, we proceed to prove the lemma in a sequence of short steps. We first introduce some notation. $\underline{\underline{S y m p}}_{x}(X)=\left\{S \in \underline{\underline{S y m p}}_{x}: S \cap x^{\perp} \subseteq X\right\}$.
I. $X_{y} \in \underline{\underline{\text { Sub }}: ~ L e t ~} u_{1}, u_{2} \in X_{y}$ with $u_{2} \in u_{1}^{\perp}$. If $u_{2} \in y_{1}$ then result is clear. Let $S_{i} \in \operatorname{Symp}_{x}(X)$ with $y u_{i} \subseteq S_{i}, i=1,2$. If $S_{1}=S_{2}$, then the result is obvious, so we may assume $S_{1} \neq S_{2}$. In particular we may assume $u_{1}, u_{2} \in \Gamma_{2}(x)$, so $S_{i}=S\left(x, u_{i}\right)$. Now since $S_{1} \cap u_{2}^{\perp} \geq y u_{1}$, by (4.3), $S_{1} \cap u_{2}^{\perp} \in{ }_{3} P \backslash P^{-}$. Then $S_{1} \cap u_{2}^{\perp} \cap x^{\perp} \in{ }_{2} P$, and hence by (4.4), $<x, S_{1} \cap u_{2}^{\perp} \cap x^{\perp}:-S_{1} \cap S_{2} \in P^{-}$. Set $M=S_{1} \cap S_{2}$.
Note that $u_{1}^{\perp} \cap M=u_{2}^{\perp} \cap M$. Let $N \in{ }_{2} P_{x}(M)$, i.e. a hyperplane of M containing x, with $y \notin N$. Let $\left\{M_{i}\right\} \in{ }_{3} P_{N}\left(S_{i}\right)$, $i=1,2, M_{i} \neq M$ (there are unique such choices). Then by consideration of L_{x} we see that $M_{2} \subseteq M_{1}^{\perp}$ and $<M_{1}, M_{2}>\in{ }_{4}$ P. Let $v_{i} \in M_{i} \cap u_{i}^{\perp} \backslash M$, $i=1,2$. Now $v_{1} \notin u_{2}^{\perp}$, for if $v_{1} \in u_{2}^{\perp}$, then $v_{1} \in\left\{u_{2}, x\right\}^{\perp} \cap S_{1} \subseteq S_{1} \cap S_{2}=M$, a contradiction. However, $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~S}\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right)$, a symp, and so $\mathrm{u}^{\perp} \cap \mathrm{v}_{1} \mathrm{v}_{2}$ is a point, say v . Now $v \notin y^{\perp}$, for if $v \in y^{\perp}$, then $v \in\left\{v_{1}, v_{2}\right\}^{\perp} \cap y^{\perp} \subseteq S_{1} \cap S_{2}=M$. But then $\mathrm{v}_{2} \epsilon\left\langle\mathrm{M}_{\mathrm{p}} \mathrm{v}_{1}\right\rangle \subseteq \mathrm{S}_{1}$, a contradiction. Thus $\mathrm{S}(\mathrm{u}, \mathrm{x})=\mathrm{S}(\mathrm{y}, \mathrm{s})$. Since $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{X}$ and X is a subspace, $v \in X$. Hence $S(u, x) \in \underline{\underline{S y m p}}_{x}(X)$ and $u \in X_{y}$.
II. If $u_{1}, u_{2} \in X_{y}, d\left(u_{1}, u_{2}\right)=2$, then $S\left(u_{1}, u_{2}\right) \cap y^{\perp} \subseteq X_{y}$.

Pf: Let $S_{i} \in \underline{S y m p}_{x}(X) \cap \underline{S y m p}_{x_{i}}, i=1,2$. If $S_{1}=S_{2}$, then the result is clear, so assume $S_{1} \neq S_{2}$. Then we may also assume $u_{1}, u_{2} \in \Gamma_{2}(x)$.
Let $v \in\left\{u_{1}, u_{2}\right\}^{\perp} \cap y^{\perp}$. If $v \in x^{\perp}$, then $v \in\{x, u\}^{\perp} \subseteq S_{1}$, so $v \in X_{y}$ in this
case. Thus assume $v \in \Gamma_{2}(x)$. Now consider L_{y}. The three subspace $\pi_{y}\left(S_{i}\right)$ of π_{i} meet in a plane U, and this plane contains the line which xy is identified with. The lines which $u_{i} y$ are identified with meet U in projective points ρ_{i} moreover, since $\left(u_{1}, u_{2}\right),\left(u_{i}, x\right) \in \Gamma_{2}, \rho_{i}$ are not on $x y$ and, $\rho_{1} \neq \rho_{2}$. Now vy "meets" both $u_{1} y$ and $u_{2} y$. If ρ_{i} is on vy for some i, then vy is contained in $\pi_{y}\left(S_{j}\right)$, where $\{i, j\}=\{1,2\}$, that is $v y \in L_{y}\left(S_{j}\right)$ and $v \in S_{j}$, in which case $v \in X_{y}$. Thus $u_{i} y$ "meets" vy in a point $\delta_{i} \neq \rho_{i}, i=1,2$. From this it follows that there are $\operatorname{lines} m_{i}=w_{i} y \in L_{y}\left(S_{i}\right) \cap \Gamma_{y}(x y) \cap \Gamma_{y}(v y)$ with $m_{1} \in \Gamma_{y}\left(m_{2}\right)$ (choose lines m_{i} to contain δ_{i} and meet xy in points q_{i} with $q_{1} \neq q_{2}$). Now $w_{i} \in S_{i} \cap v^{\perp} \cap x^{\perp} \cap y^{\perp}$ and so $w_{i} \in X$, also $d\left(w_{1}, w_{2}\right)=2$. Since $y, v \in\left\{w_{1}, w_{2}\right\}^{\perp}, S\left(w_{1}, w_{2}\right) \in \underline{\underline{\text { Symp }}}{ }_{x}(X) \cap \underline{\underline{\text { Symp }}} y$. As $v \in S\left(w_{1}, w_{2}\right) \cap y^{\perp}$ it follows that $v \in X_{y}$.
III. $X_{y} \cap \mathrm{x}^{\perp}=\mathrm{x} \cap \mathrm{y}^{\perp}$

Pf: Let $z \in X \cap y^{\perp}$. Then clearly $X \cap z^{\perp} \backslash y^{\perp} \neq \emptyset$. Let $w \in X \cap z^{\perp} \backslash y^{\perp}$. Then $z \in S(y, w) \cap y^{\perp} \subseteq X_{y}$. Thus $z \in X_{y} \cap x^{\perp}$ and we have shown $X \cap y^{\perp} \subseteq X_{y} \cap x^{\perp}$. Conversely, suppose $z \in X_{\perp} \cap x^{\perp}$. Let
$S \in \underline{\underline{S y m p}}_{x}(x) \cap \underline{\underline{\text { Symp }}}{ }_{y z}$. Then $z \in S \cap x^{\perp} \cap y^{\perp} \subseteq x \cap y^{\perp}$, and we have equality.
IV. $\left(y, X_{y}\right) \in R_{t}$.

Pf: From I. and II., $L_{y}\left(X_{y}\right)$ is a subspace of L_{y}, is connected, has diameter two, and is $2-c l o s e d ~\left(i . e . ~ i f ~ m_{1}, m_{2} \in L_{y}\left(X_{y}\right)\right.$ with $m_{1} \notin \Gamma_{y}\left(m_{2}\right)$, then $\Gamma_{y}\left(m_{1}\right) \cap \Gamma_{y}\left(m_{2}\right) \subseteq L_{y}\left(X_{y}\right)$. From this it follows that $L_{y}\left(X_{y}\right) \cong A_{t}, 2(K)$ for some t^{\prime}. Now let $M \in{ }_{t} P_{x y}(X)$. Then $M \subseteq X \cap y^{\perp}=x y \cap x^{\perp}$. Hence $M \in t P_{x y}\left(X_{y}\right)$ and so $t \leq t^{\prime}$. On the other hand, by choosing $M^{\prime} \epsilon_{t^{\prime}} P_{x y}\left(X_{y}\right)$ we get $M^{\prime} \epsilon_{t}{ }^{\prime} P_{x y}(X)$, and so $t^{\prime} \leq t$. Thus $t=t^{\prime}$ and the lemma is proved.
(4.6) DEFINITION. For $(x, X),(y, Y) \in R_{t}$, write $(x, X) \sim(y, Y)$ if $(x, X)=(y, Y)$ or if there exists a sequence $\left\{\left(x_{i}, X_{i}\right)\right\}_{i=0}^{s} \subseteq R_{t}$ with $\left(x_{0}, X_{0}\right)=(x, X),\left(x_{s}, X_{s}\right)=(y, Y)$ and such that for each $i, X_{i+1} \in X_{i}$ and $\left(X_{i}\right)_{x_{i+1}}=X_{i+1}$.

Suppose $(x, X) \in R_{t}, y \in \mathcal{P}$, and $\pi=\left(x_{0}, x_{1}, \ldots, x_{s}\right)$ a path from x to y. We shall say X_{π} is defined if there exists a sequence $\left\{\left(x_{i}, X_{i}\right)\right\}_{i=0}^{s}$ in R_{t} such that $x_{i} \in X_{i}$ and $\left(X_{i}\right)_{x_{i+1}}=X_{i+1}$. When X_{π} is defined each X_{i} is unique$1 y$ determined and we set $X_{\pi}=X_{s}$.
((4.7) LEMMA. Let $(x, X) \in R_{t}, y \in x^{\perp} \backslash X . \operatorname{Set} Y=U_{z \in X \backslash y^{\perp}}\left[S(y, z) \cap y^{\perp}\right]$.
(i) If $\mathrm{X} \cap \mathrm{y}^{\perp}=\{\mathrm{x}\}$, then $(\mathrm{y}, \mathrm{Y}) \in \mathrm{R}_{\mathrm{t}+2}$.
(ii) If $\mathrm{X} \cap \mathrm{y}^{\perp} \stackrel{\rightharpoonup}{\neq}\{\mathrm{x}\}$, then $(\mathrm{y}, \mathrm{Y}) \in \mathrm{R}_{\mathrm{t}+1}$.

PROOF. In either case $Y=(\bar{X})_{y}$ where $\bar{X}=\langle X, y\rangle$. In (i) clearly $(x, \bar{X}) \in R_{t+2}$ and in (ii) $(x, \bar{X}) \in R_{t+1}$. The result follows from (4.5).
(4.8) LEMMA. Let $(\mathrm{x}, \mathrm{x}) \in \mathrm{R}_{\mathrm{t}}, \mathrm{y} \in \mathrm{X}-\{\mathrm{x}\}$. Then $\mathrm{X}=\left(\mathrm{X}_{\mathrm{y}}\right)_{\mathrm{x}}$.

PROOF. Since X, X, X_{y} are isomorphic it suffices to prove $X \subseteq\left(X_{y}\right)_{x}$.
Let $u \in X$. If $u \in y^{\perp}$, then $u \in X_{y}$. Then since $u \in X_{y} \cap x^{\perp}, u \in\left(X_{y}\right)_{x}$. Thus assume $u \in \Gamma_{2}(y)$. Then $S(u, y) \cap y^{\perp} \subseteq X_{y}, x \in S(u, y) \cap y^{\perp}$, but $S(y, y) \cap y^{\perp} \subseteq x^{\perp}$. Choose $v \in S(u, y) \cap y^{\perp}, v \in \Gamma_{2}(x)$. Then $v \in X_{y}$ and $S(x, v) \cap x^{\perp} \subseteq\left(X_{y}\right)_{x}$. But $S(x, v)=S(u, y)$ and hence $u \in S(x, v) \cap X^{\perp} \subseteq\left(X_{y}\right)_{x}$. (4.9) LEMMA. Let $(x, X) \in R_{t}, a, b \in X-\{x\}$ with $b \in a^{\perp}$. Then $\left(X_{a}\right)_{b}=X_{b}$.

PROOF. Since $\left(X_{a}\right)_{b}, x_{b} \in\left(R_{t}\right)_{b}$, it suffices to prove $X_{b} \subseteq\left(X_{a}\right)_{b}$. Let $d \in X-b^{\perp}, c \in S(b, d) \cap b^{\perp}$. Suppose first that $d \in a^{\perp}$. Then $d \in X_{a}$ and then $S(b, d) \cap b^{\perp} \subseteq\left(X_{a}\right)_{b}$. Thus we may assume $d \in \Gamma_{2}(a)$.

Since $\left(X_{a}\right)_{b}$ is a subspace it suffices to show $b c \cap\left(X_{a}\right)_{b} \neq\{b\}$. Since $b \in \Gamma_{2}(d)$ and $d^{\perp} \cap b c \neq \emptyset$, we may assume $c \in d^{\perp}$. Suppose $c d n a^{\perp} \neq \emptyset$. If $a \in c^{\perp}$, then $c \in X_{a}$ and then $c \in X_{a} \cap b^{\perp} \subseteq\left(X_{a}\right)_{b}$. Thus we may assume $c \in \Gamma_{2}(a)$. Let $c^{\prime}=c d \cap a^{\perp}$. Then $c^{\prime} \in S(a, d) \cap a^{\perp} \subseteq X_{a}$ and $c^{\prime} \in \Gamma_{2}(b)$. Then $S\left(b, c^{\prime}\right) \cap b^{\perp} \subseteq\left(X_{a}\right)_{b}$ and this implies $c \in\left(X_{a}\right)_{b}$. Thus we may assume $c d \subseteq \Gamma_{2}(a)$.

Suppose now that $x \in c^{\perp}$. Then $x \in(c d)^{\perp} \cap a^{\perp}$. Therefore $a^{\perp} \cap(c d)^{\perp} \in{ }_{2} P\left(\{a, c\}^{\perp}\right)$, and so $a^{\perp} \cap(c d)^{\perp}$ is maximal in $\{a, c\}^{\perp}$. Therefore there is an $e \in a^{\perp} \cap(c d)^{\perp} \cap \Gamma_{2}(b)$. Note $e \in x^{\perp}$ since $a^{\perp} \cap$ (cd) ${ }^{\perp}$ contains x. Since $e \in X \cap a^{\perp}$, $e \in X_{a}$. Thus $S(b, e) \cap b^{\perp} \subseteq\left(X_{a}\right)_{b}$. However, $c \in b^{\perp} \cap e^{\perp}$, so $c \in\left(X_{a}\right)_{b}$.

Therefore we may assume $x \notin(c d)^{\perp}$. In particular $c \in \Gamma_{2}(x)$. Now note that $S(b, d) \supseteq d c$ and $S(b, d) \cap a^{\perp} \supseteq b x$. Then by (4.3) $S(b, d) \cap a^{\perp} \in{ }_{3} P$. If $M=S(b, d) \cap a^{\perp}$, then $M \cap(c d)^{\perp} \neq \emptyset$, and hence $(c d)^{\perp} \cap a^{\perp} \neq \emptyset$, and hence by $\left(D_{2}\right), a^{\perp} \cap(c d)^{\perp} \in{ }_{2} P$. Set $a^{\perp} \cap(c d)^{\perp}=N$. $x, b \notin N$. However, N is maximal in $\{a, c\}^{\perp}$ and $b \in\{a, c\}^{\perp} \backslash N$. Therefore, there is an $e \in N \backslash b^{\perp}$. Now $e \in S(a, d) \cap a^{\perp}$, so $e \in X_{a} \cdot c \in S(b, e) \cap b^{\perp}$, so $c \in\left(X_{a}\right)_{b}$ and we have shown $X_{b} \subseteq\left(X_{a}\right)_{b}$.
(4.10) LEMMA. (i) Suppose $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{k} \geq 1$. Then $\mathrm{y}^{\perp} \cap \Gamma_{\mathrm{k}-1}(\mathrm{x})$, together with its lines is isomorphic to $\mathrm{A}_{2 \mathrm{k}-1,2}(\mathrm{~K})$.
(ii) If $\ell \subseteq \Gamma_{k}(x)$, then $\ell^{\perp} \cap \Gamma_{k-1}(x) \in{ }_{2 k-2} P$.

PROOF. We first show that (ii) is a consequence of (i). Choose $y \in \ell$. By (i) $y^{\perp} \cap \Gamma_{k-1}(x) \cong A_{2 k-1,2}(K)$. Set $Y=\left\langle y^{\perp} \cap \Gamma_{k-1}(x), y\right\rangle$ so ($\left.y, Y\right) \in R_{2 k-1}$ and consider $L_{y}, L_{y}(Y)$ and ℓ. Now either $\Gamma_{y}(\ell) \cap L_{y}(Y)=\emptyset$ or $\Gamma_{y}(\ell) \cap L_{y}(Y)$ is a maximal singular subspace of $L_{y}(Y)$. Thus, either $\ell^{\perp} \cap \Gamma_{k-1}(x)=\emptyset$ or $\ell^{\perp} \cap \Gamma_{k-1}(x) \in{ }_{2 k-2} P$. Since $\ell^{\perp} \cap \Gamma_{k-1}(x) \neq \emptyset$ by (D2) and (D3), (ii) now follows.

We prove (i) by induction on $k \geq 1$. (i) is obvious for $k=1$ and 2 .
Thus assume (i) is true for $k=t \geq 2$ and suppose $k=t+1$. Now let $a \in y^{\perp} \cap \Gamma_{t}(x)$. By induction $a^{\perp} \cap \Gamma_{t-1}(x) \cong A_{2 t-1,2}(K)$.
Set $A=\left\langle a, a^{\perp} \cap \Gamma_{t-1}(x)\right\rangle$, so $(a, A) \in R_{2 t-1}$. Note that for $\ell \in L_{a}(A)$, $\ell \cap \Gamma_{t-1}(x)$ is a point. Since $y \in \Gamma_{t+1}(x), A \cap y^{\perp}=\{a\}$. Now let $b \in A-\{a\}$, so $b \in \Gamma_{2}(y)$. Let $c \in S(b, y) \cap y^{\perp}$. Then yc $\cap b^{\perp} \neq \emptyset$, and if $c^{\prime} \in y c \cap b^{\perp}$, then $c^{\prime} \in \Gamma_{t}(x) \cap y^{\perp}$. Thus, if $\ell \in L_{y}(S(b, y))$, then ℓ contains a unique point in $y^{\perp} \cap \Gamma_{t}(x)$. Now by (4.7), if $Y=U\left[S(b, y) \cap y^{\perp}\right]$, $b \in A-\{a\}$ then $(y, Y) \in R_{2 t+1}$. Since each $\ell \in L_{y}(Y)$ contains a unique point in $y^{\perp} \cap \Gamma_{t}(x)$, if we set $Z=Y \cap \Gamma_{t}(x)$, then $Z \cong A_{2 t+1,2}(K)$.

We next show that $W=\Gamma_{t}(x) \cap y^{\perp}$ is a subspace. Suppose $u, v \in \ell \cap W$. Then either $\ell \subseteq W$ or there is a unique point $w \in \ell \cap \Gamma_{t-1}(x)$. But then $d(x, y) \leq d(x, w)+d(w, y)=t-1+1=t$, a contradiction. Now suppose $a, b \in W, d(a, b)=2, c \in\{a, b\}^{\perp} \cap y^{\perp}$. Claim $y c \cap W \neq \emptyset$. If yc $\cap W=\emptyset$, then $y c \subseteq \Gamma_{t+1}(x)$. Then by (D3), (yc) ${ }^{\perp} \cap \Gamma_{t}(x) \in$ Sing. However, $a, b \in(y c)^{\perp} \cap \Gamma_{t}(x)$ and $b \notin a^{\perp}$, a contradiction. Thus yc $\cap W \neq \emptyset$. It follows that $\{a, b\}^{\perp} \cap W$ is a non-degenerate generalized quadrangle, and therefore that $W \cong A_{s, 2}(K)$ for some $s \geq 2 t+1$ (since $W \supseteq Z$). Thus to complete the proof it suffices to prove $s=2 t+1$.

Now let $a \in W$ and $m \in L_{a}(W)$. Then $m \subseteq \Gamma_{t}(x)$ and therefore by induction $m^{\perp} \cap \Gamma_{t-1}(x) \in{ }_{2 t-2} P(U), U=\Gamma_{t-1}(x) \cap a^{\perp}$. Suppose that $m_{1}, \in L_{a}(W)$, but $m_{1} \subseteq m_{2}^{\perp}$. Then $m_{1}^{\perp} \cap \Gamma_{t-1}(x) \neq m_{2}^{\perp} \cap \Gamma_{t-1}(x)$. For suppose on the contrary, $m_{1}^{\perp} \cap \Gamma_{t-1}(x)=m_{2}^{\perp} \cap \Gamma_{t-1}(x)=M$. Let $b_{i} \in m_{i}$, $i=1,2$. Then $y, M \subseteq b_{1}^{\perp} \cap b_{2}^{\perp}$. Then $\emptyset \neq y^{\perp} \cap M \subseteq \Gamma_{t-1}\left(\frac{1}{x}\right) \cap{ }^{1} \perp(\phi$, a contradiction.

Next suppose $m_{1}, m_{2} \in L_{y}(W)$ and $m_{1}^{\perp} \cap \Gamma_{t-1}(x)=m_{2}^{\perp} \cap \Gamma_{t-1}(x)=M$. Then
by the previous paragraph $m_{2} \subseteq m_{1}^{\perp}$. Set $N=\left\langle m_{1}, m_{2}\right\rangle$. Claim $N^{\perp} \cap W=N$. Since $W \cong A_{s, 2}(K)$ if $V \in \underline{\underline{V}}(W)$, then $V^{\perp} \cap W \in \underline{\underline{\text { Sing }}}$ and either $V^{\perp} \cap W \in{ }_{s-1} P$ or $V^{\perp} \cap W=V$. Suppose $N^{\perp} \cap W \in{ }_{s-1} P$. Since $N \in \underline{\underline{V}}, N$ lies in two maximal singular subspaces, one of rank 3 and one of rank n. Since $\mathrm{M} \subseteq \Gamma_{2}(\mathrm{y}), \mathrm{y} \nexists\langle\mathrm{M}, \mathrm{N}\rangle^{\perp}$. Since $\mathrm{rk}(\langle\mathrm{M}, \mathrm{N}\rangle) \geq 4$, it follows that $\mathrm{rk}\left(<\mathrm{M}, \mathrm{N}>^{\perp}\right)=\mathrm{n} .\langle\mathrm{y}, \mathrm{N}\rangle$ is a singular subspace of rank three on N and $\langle\mathrm{y}, \mathrm{N}\rangle \cap\langle\mathrm{M}, \mathrm{N}\rangle^{\perp}=\mathrm{N}$. Therefore $\langle\mathrm{y}, \mathrm{N}\rangle^{\perp}=\langle\mathrm{y}, \mathrm{N}\rangle$. However, we are assuming $r k\left(N^{\perp} n W\right)=s-1 . N^{\perp} \cap W \subseteq y^{\perp}$. Then $\left\langle y, N^{\perp} \cap W\right\rangle$ is a singular subspace, $\left\langle y, N^{\perp} \cap \mathrm{W}\right\rangle \geq\langle y, N\rangle$ and $\mathrm{rk}\left(\left\langle\mathrm{y}, \mathrm{N}^{\perp} \cap \mathrm{W}\right\rangle\right)=\mathrm{s} \geq 2 \mathrm{t}+1 \geq 5$, a contradiction.

Thus, if $m_{1}^{\perp} \cap \Gamma_{t-1}(x)=m_{2}^{\perp} \cap \Gamma_{t-1}(x)$, then $\left\langle m_{1}, m_{2}\right\rangle^{\perp} \cap W=\left\langle m_{1}, m_{2}\right\rangle$. Suppose now $m_{1}, m_{2} \in L_{y}(W), m_{2} \subseteq m_{1}^{\perp}$ and $\left\langle m_{1}, m_{2}\right\rangle^{\perp} n W=\left\langle m_{1}, m_{2}\right\rangle$. Set $M_{i}=m_{i}^{\perp} \cap \Gamma_{t-1}(x)$. We prove $N_{1}=N_{2}$. Let $n \in L\left(N_{1}\right)$. Then $n \subseteq \Gamma_{2}(y)$, but $\mathrm{m}_{1}^{\perp} \subseteq \mathrm{n}^{\perp} \cap \mathrm{y}^{\perp}$. However, $\mathrm{rk}\left(\mathrm{n}^{\perp} n \mathrm{y}^{\perp}\right)=2$ and $\mathrm{n}^{\perp} \cap \mathrm{y}^{\perp} \subseteq \mathrm{W}$. Also, from the type of L_{a} we see that $\left\langle y, n^{\perp} n y^{\perp}\right\rangle \in P^{-}$. Therefore $n^{\perp} n y^{\perp}$ is a maximal singular plane of W. However, each line of W lie in a unique singular plane of W which is maximal in W . Since $\left.\mathrm{m}_{1} \subseteq<\mathrm{m}_{1}, \mathrm{~m}_{2}\right\rangle$ and $\left.\left.<\mathrm{m}_{1}, \mathrm{~m}_{2}\right\rangle^{\perp} \mathrm{n} \mathrm{W}=<\mathrm{m}_{1}, \mathrm{~m}_{2}\right\rangle$, it follows that $\left\langle\mathrm{m}_{1}, \mathrm{~m}_{2}\right\rangle=\mathrm{n}^{\perp} \cap \mathrm{y}^{\perp}$. Now $\mathrm{N}_{1}=\mathrm{m}_{1}^{\perp} \cap \mathrm{n}^{\perp} \supseteq \mathrm{m}_{2}$.
Therefore $N_{1} \subseteq N_{2}$. Since $\operatorname{rk}\left(N_{1}\right)=\operatorname{rk}\left(N_{2}\right), N_{1}=N_{2}$ as claimed.
Now we have shown there is an injective map Φ from $V_{\text {max }}$ (W)
$\left\{V \in \underline{\underline{V}}(\mathrm{~W}): \mathrm{V}^{\perp} \cap \mathrm{W}=\mathrm{W}\right\}$ into $2_{\mathrm{t}-2} P(\mathrm{U})$. Now for $\mathrm{V}_{1}, \mathrm{~V}_{2} \in \mathrm{~V}_{\max }(\mathrm{W})$, define $\Delta\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)=\left\{\mathrm{W} \in \mathrm{V}_{\max }(\mathrm{W}): \mathrm{V}_{\mathrm{i}} \cap \mathrm{W} \in \mathrm{L}_{\mathrm{a}}, \mathrm{i}=1,2\right\}$. Set $\lambda\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)=\left\{\mathrm{V} \in \mathrm{V}_{\max }(\mathrm{W}): \mathrm{V} \cap \mathrm{V}^{\prime} \in \mathrm{L}_{\mathrm{a}}\right.$, for every $\left.\mathrm{V}^{\prime} \in \Delta\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)\right\}$. If we set $\Lambda=\left\{\lambda\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right): \mathrm{V}_{1} \neq \mathrm{V}_{2} \in V_{\max }(\mathrm{W})\right\}$, then $\left(\mathrm{V}_{\text {max }}(\mathrm{W}), \Lambda\right) \cong \operatorname{PG}(\mathrm{s}-2, \mathrm{~K})$. Now ${ }_{2 t-2} P(U)$ is naturally isomorphic to $\operatorname{PG}(2 t-1, K)$. We finally show that Φ is a morphism of projective spaces. Since Φ is injective this will imply $\mathrm{s}-2 \leq 2 \mathrm{t}-1$ from which we deduce $\mathrm{s} \leq 2 \mathrm{t}+1$ as desired.

Let $\lambda=\lambda\left(v_{1} v_{2}\right) \in \Lambda$. Set $M_{i}=v_{i}^{\perp} \cap \Gamma_{t-1}(x)$. Then $M_{1} \cap M_{2}=\{u\}$ is a point. Then $\{y, u\}^{\perp} \subseteq W,\{y, u\}^{\perp} \cong A_{3,2}(K)$ and $a \in\{y, u\}^{\perp}$. It is clear to see that $\mathrm{V}_{\text {max }}(\mathrm{W}) \cap \underline{\underline{V}}_{\mathrm{a}}\left(\{\mathrm{y}, \mathrm{u}\}^{\perp}\right)=\lambda\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ and from this our claim now follows.
(4.11) NOTATION. If $d(x, y)=k \geq 2$, set $R(x, y)=\left\langle x^{\perp} \cap \Gamma_{k-1}(y), x\right\rangle$. (So ($\left.x, R(x, y)) \in R_{2 k-1}\right)$.
(4.12) LEMMA. Let $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{k} \geq 2$ and be a geodesic from x to y . If $\mathrm{X}=\mathrm{R}(\mathrm{x}, \mathrm{y})$, then X_{π} is defined. Moreover, $\mathrm{X}_{\pi}=\mathrm{R}(\mathrm{y}, \mathrm{x})=\left\langle\mathrm{y}, \mathrm{y}^{\perp} \cap \mathrm{\Gamma}_{\mathrm{k}-1}(\mathrm{x})\right\rangle$.

PROOF. Induction on $k \geq 2$. Suppose $k=2$. Then $X=R(x, y)=$ $x^{\perp} \cap S(x, y)=\left\langle x,\{x, y\}^{\perp}\right\rangle$. For $z \in\{x, y\}^{\perp}, X_{z}=z^{\perp} \cap S(x, y)$ and $y \in X_{z}$. Thus, if $\pi=(x, z, y)$, then X_{π} is defined and $X_{\pi}=\left(X_{z}\right)_{y}=S(x, y) \cap y^{\perp^{z}}=$ $<y,\{x, y\}^{\perp}>=R(y, x)$.

Assume now that the result is true for $a 11 \mathrm{k} \leq \mathrm{t}$ and let $\mathrm{k}=\mathrm{t}+1$. Let $\pi=\left(x=x_{0}, x_{1}, \ldots, x_{t+1}=y\right)$ be a geodesic path from x to y. Set $x_{1}=a$. We show that $A=R(a, y)=\left\langle a, \Gamma_{t-1}(y) \cap a^{\perp}\right\rangle \subseteq X_{a}$. Of course it suffices to show $\Gamma_{t-1}(y) \cap a^{\perp} \subseteq X_{a}$ since $X_{a} \in \underline{\underline{S u b}} a$. Let $b \in \Gamma_{t-1}(x) \cap a^{\perp}, c \in\{x, b\}^{\perp}$. Then $d(c, y)=t$ and $c \in \Gamma_{t}(y) \cap x^{\perp}$. Choose $c \in \Gamma_{2}(a) . c \in X=R(x, y)$ and $a^{\perp} \cap S(a, c) \subseteq X_{a}$. However, $S(a, c)=S(x, b)$ and hence $b \in X_{a}$. Now if $\rho=\left(a=x_{1}, x_{2}, \ldots, x_{t}=y\right)$, then by induction A_{ρ} is defined. Since $A \subseteq X_{a}$, (X_{a}) ρ is defined. But $\left(X_{a}\right) \rho=X_{\pi}$ and hence X_{π} is defined. Note by induction we also have $X_{\pi} \geq y^{\perp} \cap \Gamma_{t-1}(a)$. However,

$$
\underset{a \in x^{\perp} \cap \Gamma_{t}(y)}{\left[y^{\perp} \cap \Gamma_{t-1}(a)\right]=y^{\perp} \cap \Gamma_{t}(x) .}
$$

Therefore, $X_{\pi} \geq\left\langle y, y^{\perp} \cap \Gamma_{t}(x)\right\rangle=R(y, x)$. Since both $\left(y, X_{\pi}\right)$ and $(y, R(y, x)) \in R_{2 t+1}$ we have $X_{\pi}=R(y, x)$.

Now let $(x, x) \in R_{t}$. suppose $d(x, y)=k>\left[\frac{t+1}{2}\right]$. Then
$x^{\perp} \cap \Gamma_{k-1}(y) \cong A_{2 k-1,2}$. Since $2 k-1>t, x^{\perp} \cap \Gamma_{t-1}(y) \notin X$. We remark that at this point it now follows diam $(P, \Gamma)=\left[\frac{\mathrm{n}+1}{2}\right]$.

Now set

$$
D(x, X)=\bigcup_{k \geq 1}^{U}\{y: d(x, y)=k, R(x, y) \subseteq X\} \cup\{x\}
$$

(4.12) REMARK. $x^{\perp} \cap D(x, X)=X$
(4.13) LEMMA. Let $(x, X) \in R_{t}, y \in X-\{x\}, Y=X_{y}$. Then $D(x, X)=D(y, Y)$. PROOF. As $Y_{X}=X$ by (4.8) it suffices to prove $D(y, Y) \subseteq D(x, X)$. Recall

$$
X_{y}=\underset{z \in x^{-y}}{\cup}\left[S(y, z) \cap y^{\perp}\right]
$$

Now let $z \in D(y, Y)$ with $d(y, z)=k$. Of course if $z=x$, then $z \in D(x, X)$. This
leaves four cases to consider:
(i) $d(x, z)=k-1 \geq 1$;
(ii) $d(x, z)=k+1$;
(iii) $d(x, z)=k, d(x y, z)=k-1$;
(iv) $x y \subseteq \Gamma_{k}(z)$.
(i) Let $u \in x^{\perp} \cap \Gamma_{k-2}(x)$. Then $u \in \Gamma_{2}(y)$. If $v \in\{u, y\}^{\perp}$, then $v \in \Gamma_{k-1}(z) \cap y^{\perp}$. Thus $\{u, y\}^{\perp} \subseteq Y$ and hence $y^{\perp} \cap S(u, y)=\left\langle y,\{u, y\}^{\perp} \subseteq Y\right.$. Now choose $v \in\{u, y\}^{\perp} \cap \Gamma_{2}(x)$. Then $S(y, u)=S(x, v)$. Then $x^{\perp} \cap S(x, v)=$ $x^{\perp} \cap S(y, u) \subseteq Y_{x}=X$. Thus $u \in X$.
(ii) Let $u \in \Gamma_{k}(z) \cap x^{\perp}$. Suppose $u \in y^{\perp}$. Then $d(y u, z)=k$. Let $v \in \Gamma_{k-1}(z) \cap(y u)^{\perp}$. Then $v \in Y \cap \Gamma_{2}(x) . X=Y_{x} \supseteq x^{\perp} \cap S(x, v)$ and so $u \in X$. Thus assume $u \in \Gamma_{2}(y)$. Now let $v \in\{x, u, y\}^{\perp} \cdot d\left(z, v^{\prime}\right) \leq k+1$ for each $v^{\prime} \epsilon x v$ since $v^{\prime} \in y^{\perp}$ and $d(y, z)=k$. However, if $d(x v, z)=k+1$, then $(x v)^{\perp} \cap \Gamma_{k}(z) \in \underline{\underline{\text { Sing }}}$, contradicting $u, y \in(x v)^{\perp} \cap \Gamma_{k}(z)$. Then without loss of generality we may assume $v \in \Gamma_{k}(z)$. By the first part of this paragraph $v \in X$. Now $\operatorname{Rad}\left(\{x, y, u\}^{\perp}\right)=\{x\}$, hence there is $a w \in\{x, y, u\}^{\perp} \cap \Gamma_{2}(z)$. Then also $w \in X$. Then $X \supseteq S(v, w) \cap X^{\perp}$ and so $u \in X$.
(iii) Let $w=x y \cap \Gamma_{k-1}(z)$. Let $u \in \Gamma_{k-1}(z) \cap x^{\perp}$. If $u \in y^{\perp}$, then $u \in Y \cap X^{\perp} \subseteq Y_{x}=X$. So assume $u \in \Gamma_{2}(y)$. As in (ii) we can find a, b with $a \in \Gamma_{2}(b), a, b \in\{x, u, w\}^{\perp} \cap \Gamma_{k-1}(z)$. Then also $a, b \in y^{\perp}$ and so $a, b \in \Gamma_{k-1}(z) \cap y^{\perp} \subseteq Y$. Then $S(a, b) \cap y^{\perp} \subseteq Y$. As $x \in S(a, b)$ it follows that $S(a, b) \cap x^{\perp} \subseteq Y_{x}=X$. Since $u \in a^{\perp} \cap b^{\perp} \cap x^{\perp}, u \in X$.
(iv) Let $u \in \Gamma_{k-1}(z) \cap x^{\perp}$. If $u \in(x y)^{\perp}$, then $u \in Y \cap x^{\perp} \subseteq x$. Thus assume $u \in \Gamma_{2}(y)$. Now $(x y)^{\perp} \cap \Gamma_{k-1}(Z) \in{ }_{2 k-2} P$ and $u \notin(x y)^{\perp} \cap \Gamma_{k-1}(Z)$. Clearly, we may assume $k>1$, for otherwise $u=x$. Thus $u^{\perp} n(x y)^{\perp} \cap \Gamma_{k-1}(z) \in L$. Then we can find $v \in \Gamma_{2}(u) \cap(x y)^{\perp} \cap \Gamma_{k-1}(z)$. Let $a \in\{x, u, v\}^{\perp}$. Since $u \in\left(a^{\prime}\right)^{\perp} \cap \Gamma_{k-1}(z)$ for each $a^{\prime} \in a x, d\left(z, a^{\prime}\right) \leq k$. However, if $d(x a, z)=k$ we get a contradiction $: u, v \in(a x)^{\perp} \cap \Gamma_{k-1}(z) \in \underline{\underline{\text { Sing }}}$. Therefore $d(x a, z)=k-1$, so without loss we may assume $a \in \Gamma_{k-1}(z)$ and $a v \subseteq \Gamma_{k-1}(z)$. Let $b \in \Gamma_{k-2}(z) \cap(a v)^{\perp}$. Since $v \in\{y, b\}^{\perp}, d(y, b)=2$. Since $\{y, b\}^{\perp} \subseteq \Gamma_{k-1}(z), S(y, b) \cap y^{\perp} \subseteq Y$. Consequently, $Y_{v} \supseteq S(y, b) \cap v^{\perp}$. Since $v \in Y \cap X^{\perp}, v \in X$. Since $b \in S(y, b) \cap v^{\perp}, b \in Y_{v}$. As $x \in Y \cap v^{\perp}, X \in Y_{v}$.

Now $d(x, b)=2$, so $x^{\perp} \cap S(x, b) \subseteq\left(Y_{v}\right)_{x}=Y_{x}=X$ by (4.9). As $a \in\{x, b\}^{\perp}$, $a \in X$. However, $\operatorname{Rad}\left(\{x, u, v\}^{\perp}\right)=\{x\}$, so we can find ac $\in\{x, u, v\}^{\perp} \cap \Gamma_{k-1}(z)$ with $c \in \Gamma_{2}(a)$. Then as above, $c \in X$. Then $X^{\perp} \cap S(a, c) \subseteq X$, and so $u \in\{a, c, x\}^{\perp} \subseteq S(a, c) \cap x^{\perp}$.
(4.14) COROLLARY. Let $(\mathrm{x}, \mathrm{x}) \in R_{\mathrm{t}}, \mathrm{y} \cdot \in \mathrm{D}(\mathrm{x}, \mathrm{x})$ and π a geodesic from x to y , then X_{π} is defined, $\mathrm{X}_{\mathrm{T}}=\mathrm{D}(\mathrm{x}, \mathrm{X}) \cap \mathrm{y}^{\perp}$ and if $\mathrm{Y}=\mathrm{X}_{\pi}$, then $\mathrm{D}(\mathrm{x}, \mathrm{X})=\mathrm{D}(\mathrm{y}, \mathrm{Y})$ PROOF. This follows from (4.13) and induction on $d(x, y)$.
(4.15) REMARK. The corollary implies that $D(x, X) \in \underline{\underline{\text { Sub }}}$ and for any $a, b \in D(x, X)$ and every geodesic path π from a to b is contained in $D(x, X)$. It follows that $D(x, X)$ satisfies the hypotheses of the main theorem. Thus, if $t<n$, then by induction $D(x, x) \cong D_{t+1, t+1}(K)$.

Now set $\overline{P_{t+1}}=\left\{D(x, x):(x, x) \in R_{t}\right\}, \bar{P}=\bar{P}_{n-1}$. For $D_{1}, D_{2} \in \bar{P}$, define $D_{1} \approx D_{2}$ if and only if $D_{1} \cap D_{2} \neq \emptyset$.

Now suppose $\mathrm{D}_{1}, \mathrm{D}_{2} \in \overline{\mathrm{P}}, \mathrm{D}_{1} \approx \mathrm{D}_{2}$. Let $\mathrm{x} \in \mathrm{D}_{1} \cap \mathrm{D}_{2}$. By considering
$L_{x}, L_{x}\left(D_{i}\right), i=1,2$, we see that $L_{x}\left(D_{1} \cap D_{2}\right)=L_{x}\left(D_{1}\right) \cap L_{x}\left(D_{2}\right) \cong A_{n-1,2}$. Since this is true for each $x \in D_{1} \cap D_{2}$ we have
(4.16) LEMMA. If $\mathrm{D}_{1}, \mathrm{D}_{2} \in \overline{\mathrm{P}}, \mathrm{D}_{1} \neq \mathrm{D}_{2}$ and $\mathrm{D}_{1} \cap \mathrm{D}_{2} \neq \emptyset$, then $\mathrm{D}_{1} \cap \mathrm{D}_{2} \in \overline{\mathrm{P}}_{\mathrm{n}-2}$.

Now if $D_{1} \approx D_{2}$, set $\ell\left(D_{1}, D_{2}\right)=\left\{D \in \bar{P}: D \geq D_{1} \cap D_{2}\right\}$ and $\overline{\mathrm{L}}=\left\{\ell\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right): \mathrm{D}_{1}, \mathrm{D}_{2} \in \overline{\mathrm{P}}, \mathrm{D}_{1} \approx \mathrm{D}_{2}\right\}$. Thus we have an incidence structure $\overline{(P, \bar{L})}$.
(4.17) LEMMA. Let $D \in \bar{P}, x \in P-D$. If $\Gamma_{2}(x) \cap D \neq \emptyset$, then $x^{\perp} \cap D \neq \emptyset$.

PROOF. Let $w \in \Gamma_{2}(x) \cap D . L_{w}(D) \cong A_{n-1,2}(K), L_{w}(S(x, w)) \cong A_{3,2}$, let $\pi_{w}(D)$ be the hyperplane of π_{w} underlying $L_{w}(D)$ and $\pi_{w}(x)$ the three subspace underlying $L_{w}(S(x, w))$. Then $\pi_{w}(x)$ meets $\pi_{w}(D)$ in a least a plane so $\mathrm{L}_{\mathrm{w}}(\mathrm{D}) \cap \mathrm{L}_{\mathrm{w}}(\mathrm{S}(\mathrm{x}, \mathrm{w}))$ a contains a singular plane of L_{w}. Therefore ${ }_{3} P(S(x, w) \cap D) \neq \emptyset$. If $M \in{ }_{3} P(S(x, w) \cap D)$, then $M \cap x^{\perp} \in \underline{\underline{V}}(D)$, in particular $D \cap x^{\perp} \neq \emptyset$ as claimed.
(4.18) LEMMA. If $\mathrm{D} \in \overline{\mathrm{P}}, \mathrm{x} \in \mathrm{P}-\mathrm{D}$, then $\mathrm{x}^{\perp} \cap \mathrm{D} \neq \emptyset$.

PROOF. Set $s=d(D, x)$. Wish to prove $s=1$. Suppose on the contrary that $s>1$. Choose $z \in D$ with $d(x, z)=s$ and let $x=x_{0}, x_{1}, \ldots, x_{s}=z$ be a geodesic from x to z. Let $y=x_{s-2}$. Then $d(x, y)=s-2$.
Since $d(s, x)=s, y \in P-D$. Since $\Gamma_{2}(y) \cap D \neq \emptyset$, by (4.17) $y^{\perp} \cap D \neq \emptyset$.
If $w \in y^{\perp} \cap D$, then $w \in D$ and $d(x, w) \leq s-1$, a contradiction. Therefore $\mathrm{s}=1$ 。
(4.19) NOTATION. For $x \in P, \hat{x}=\{D \in \bar{P}: x \in D\}$. For $D \in \bar{P}, \Delta(D)=\left\{D^{\prime}: D \approx D^{\prime}\right\}$.
(4.20) LEMMA. $\hat{\mathrm{x}}$, together with its Zines, is a projective space of rank n over K.

PROOF. Clearly \hat{x} is a singular subspace of $\overline{(P,} \bar{L})$. We define a map from \tilde{x} to $\left\{\mathrm{X}:\left(\mathrm{X}:(\mathrm{x}, \mathrm{X}) \in R_{\mathrm{n}-1}\right\}\right.$ by $\mathrm{D} \mapsto \mathrm{D} \cap \mathrm{x}^{\perp}$. Suppose $\mathrm{D}_{1}, \mathrm{D}_{2} \in \hat{\mathrm{x}}$. Then this map carries $\lambda\left(D_{1}, D_{2}\right)$ to $\left\{X:(x, X) \in R_{n-1}, X \geq D_{1} \cap D_{2} \cap x^{\perp}\right\}$. However, ($x, D_{1} \cap D_{2} \cap x^{\perp}$) $\in R_{n-2}$. Then \hat{x}, together with its lines is isomorphic to the incidence structure whose points are the hyperplanes of $\Pi_{x}(\cong P G(n, K))$ and lines are the subspaces of codimension two with inclusion as incidence. This is of course a projective space of rank n over K as claimed.
(4.21) LEMMA. Suppose $\mathrm{x} \notin \mathrm{D} \in \overline{\mathrm{P}}$. Then $\hat{\mathrm{x}} \cap \Delta(\mathrm{D})$ is a hyperplane of $\widehat{\mathrm{x}}$.

PROOF. We know $D \cap x^{\perp} \neq \emptyset$. Since D is geodisically closed, $x^{\perp} \cap D \in$ Sing. Let $y \in D \cap x^{\perp}$, $\pi_{y}(D)$ the hyperplane of π_{y} underlying $L_{y}(D)$. The line which $x y$ is identified with meets $\pi_{y}(D)$. Then $\Gamma_{y}(x y) \cap L_{y}(D)$ is a singular subspace of $L y$ of rank $n-2$ and therefore $r k\left(D \cap x^{\perp} n y^{\perp}\right)=n-1$. Since $y \in D \cap x^{\perp} \in$ Sing, $D \cap x^{\perp}=D \cap x^{\perp} \cap y^{\perp}$. Set $N=D \cap x^{\perp}$. rk $(\langle N, x\rangle)=n$, and so $M=\langle N, x\rangle \in P^{+}={ }_{n} P$. Then $L_{x}(M)$ is a maximal singular subspace of rank $n-1$ and consists of all lines of $\Pi_{x_{-}}$lying on a point Π_{D} of Π_{x}. Now suppose $D^{\prime} \in \mathcal{X}_{x}^{d}$ and $D \cap D^{\prime} \neq \emptyset$. Then $D \cap D^{\prime} \in \bar{P}_{n-2}$ and $x \in D^{\prime}-\left(D \cap D^{\prime}\right)$. By the above $K=D \cap x^{\perp} \epsilon{ }_{n-2} P$ and $r k\left(\left\langle P \cap D^{\prime} \cap x^{\perp}, x\right\rangle\right)=n-1$. Set $K=\left\langle D \cap D^{\prime} \cap x^{\perp}, x\right\rangle, L_{x}(K)$ is a singular subspace of L_{x} of rank $n-2$. If $\Pi_{x}\left(D^{\prime}\right)$ is the hyperplane of Π_{x} corresponding to $L_{x}\left(D^{\prime}\right)$, then $\Pi_{x}\left(D^{\prime}\right)$ contain Π_{D}. It now follows that $\Delta(D) \cap \hat{x}=\left\{D^{\prime} \in \hat{x}: \Pi_{k}\left(D^{\prime}\right) \supseteq \Pi_{D}\right\}$ and this is a hyperplane of \hat{x}.

The next two results finish the proof.
(4.22) PROPOSITION. ($\overline{\mathrm{P}}, \overline{\mathrm{L}}$) is a thick, non-degenerate polar space, $\mathrm{D}_{\mathrm{n}+1}(\mathrm{~K})$. PROOF. Clearly (\bar{P}, \bar{L}) is thick. Let $\lambda=\lambda\left(D_{1}, D_{2}\right) \in \bar{L}, D \in \bar{P}$. Let $x \in D_{1} \cap D_{2}$. If $x \in D$, then $\lambda \subseteq \Delta(D)$, so assume $x \notin D$. Then $\Delta(D) \cap \widehat{x}$ is a hyperplane of \tilde{x} by (4.2), in particular either $\lambda \subseteq \Delta(D)$ or $|\lambda \cap \Delta(D)|=1$. Thus ($\overline{\mathrm{P}}, \overline{\mathrm{L}}$) is a polar space. Now suppose $D \in \bar{P}$. If $y \in D$, then $L_{y}(D) \cong A_{n-1,2}(K)$. Since $L_{y} \cong A_{n, 2}(K), y^{\perp} \nsubseteq D$, so $D \neq P$. If $x \in P-D$, then by (4.21) $\widehat{x} \nsubseteq \Delta(D)$, so $\mathrm{D} \notin \operatorname{Rad}(\overline{\mathrm{P}})$ and as D was arbitrary, $\operatorname{Rad}(\overline{\mathrm{P}})=\emptyset$. A1so by (4.21), $\widehat{\mathrm{x}}$ is a maximal singular subspace of ($\overline{\mathrm{P}}, \overline{\mathrm{L}}$) and so by (4.20), $\mathrm{rk}(\overline{\mathrm{P}}, \overline{\mathrm{L}})=\mathrm{n}+1$.
To see that this is of type D it suffices to show that the residue at a point D of $\overline{\mathrm{P}}, \overline{\mathrm{I}}_{\mathrm{D}}$, is of type D . The map

$$
\lambda \longmapsto \cap_{D^{\prime} \in \lambda} D^{\prime} \text { from } \bar{L}_{D} \text { to } \bar{P}_{n-1} \text { (D) is a bijective morphism }
$$

(lines of \bar{L}_{D} go to $\bar{P}_{n-2}(D)$, and the latter is a polar space $D_{n}(K)$. This completes the proposition.

THEOREM. $(\mathrm{P}, \mathrm{L}) \cong \mathrm{D}_{\mathrm{n}+1, \mathrm{n}+1}(\mathrm{~K})$
PROOF. The map $\mathrm{x} \longmapsto \widehat{\mathrm{x}}$ is a map from P onto a subset of the maximal singular subspaces of (\bar{P}, \bar{L}). Now if $\ell \in L_{x}$, then $l=\cap_{y \in \ell} \hat{y}$ is easily seen to have rank $k-1$ by passing to $L_{x}\left(D \in \hat{\ell}\right.$ if and only if the hyperplane $\pi_{x}(D)$ contains the line "xy" of π_{x}). From this it follows that $\{\widehat{x}: \widehat{x} \in P\}$ is contained in a single class and $y \in x^{\perp}$ if and only if $\operatorname{rk}(\hat{x} \cap \hat{y})=\operatorname{rk}(\hat{x})-2=\operatorname{rk}(\hat{y})-2$. Since $L_{x} \cong A_{n, 2}(K)$ it follows that $\{\hat{x}: x \in P\}$ is an entire class and the proof is complete.

5. NEAR $2 \mathrm{n}-\mathrm{Gons}$

In this section we recall the definition of a near 2 n -gons as introduced by SHULT and YANUSHKA [8], and some related notions.
(5.1) DEFINITION. An incidence structure (P, L) with point-graph (P, Δ) and metric $d()=,d_{\Delta}($,$) is a near 2 n-$ gon if (P, Δ) is connected with diameter n and for any pair $(\mathrm{x}, \ell) \in \mathrm{P} \times \mathrm{L}$ with $\mathrm{d}(\mathrm{x}, \ell)=\mathrm{t}$, there is a unique $\mathrm{y} \in \ell$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{t}$.

```
y \inl with d(x,y) = t.
```

(5.2) REMARK. If (P, Δ) is a bipartite graph, then (P, Δ) is a near $2 n-$ gon for some n. In this case lines all have two points. Conversely, a near 2 n -gon with two points on each line is bipartite graph. We will refer to such near-2n-gons as thin.
(5.3) NOTATION. For $x \in P, \Delta(x)$ is as usual and $x^{\perp}=\Delta(x) \cup\{x\}$.
(5.4) DEFINITION. A subset X of P is $2-c l o s e d ~ i f, ~ w h e n e v e r ~ x, ~ y ~ X, d(x, y)=2$, then $x^{\perp} \cap y^{\perp} \subseteq x$.
(5.5) DEFINITION. In a near $2 n$-gon, a quad is a subset Q of P satisfying
(i) Q is $2-c$ losed
(ii) diam $(Q, \Delta \mid Q)=2$
(iii) Q contains an ordinary quadrangle

Note a quad, together with its lines is a generalized quadrangle.
(5.6) DEFINITION. (i) In a near $2 n$-gon (P, L) we say quads exists if whenever $d(x, y)=2$ there exists a quad containing x and y.
(ii) Let $x \in P, Q$ a quad of (P, L). The pair (x, Q) is classical if there is a unique point $y \in Q$ with $d(x, Q)=d(x, y)=d$ and $\{z \in Q: d(x, z)=$ $d+1\}=Q \cap y^{\perp}$.
(5.7) DEFINITION. A dual polar space is the incidence structure whose points are the maximal isotropic (singular) subspaces of a non-degenerate polar space and whose lines are the next to maximal isotropic subspaces.

Note when the polar space is of type D_{n} the near $2 n$-gon is thin.
Cumeron has the following characterization of dual polar spaces [9] .
(5.8) THEOREM. An incidence structure (P, L) is a dual polar space of rank n if and only if the following hold
(i) (P, L) is a near 2n-gon;
(ii) quads exist;
(iii) every point-quad pair is classical.

We give a proof of this in the case that (P, L) is thin using our main theorem. More precisely we prove.
(5.9) THEOREM. Let (P, Δ) be a connected bipartite graph of diometer $n \geq 3$. Further assume
(i) If $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$, then $\left|\mathrm{x}^{\perp} \cap \mathrm{y}^{\perp}\right|>.2$;
(ii) In the near $2 n-g o n(P, \Delta)$ quads exist and all point-quad pairs are classical.

Then one of the following occurs
(i) $n=3$, there is a skew field K such that (P, Δ) is the dual polar space of type $\mathrm{D}_{3}(\mathrm{~K})$; or
(ii) $n \geq 4$, there is a field K such that (P, Δ) is the dual polar space of type $\mathrm{D}_{\mathrm{n}}(\mathrm{K})$.

6. CHARACTERIZATION OF THIN CLASSICAL NEAR 2n-GONS

As usual $\Delta_{i}(x)=\{y: d(x, y)=i\}$. Let $P=P_{1} \cup P_{2}$ be the partition of P as the connected components of Δ_{2}. If $x, y \in P_{i}$ and $d(x, y)=2$, then there is a unique quad on x and y which we denote by $Q(x, y)$. Let 2 be the collection of quads.
6.A. In this subsection we assume $n=3$ and show conclusion (i) if (5.8) holds
(6.1) LEMMA. Suppose $Q_{1}, Q_{2} \in 2, Q_{1} \neq Q_{2}$ and $Q_{1} \cap Q_{2} \neq \emptyset$. Then $Q_{1} \cap Q_{2} \in \Delta$.

PROOF. Let $x \in Q_{1} \cap Q_{2}$. Suppose $x \in P_{1}$. Choose $u_{i} \in Q_{i} \cap \Delta_{2}(x)=Q_{i} \cap P_{1}$. Then $d\left(u_{1}, u_{2}\right)=2$. Set $Q=Q\left(u_{1}, u_{2}\right)$. Now $x \notin Q$ for otherwise $Q=Q_{1}=Q_{2}$. Therefore, the unique point $v \in Q$ with $d(v, x)=d(Q, z)$ is in P_{2} and $d(v, x)=1$. Then $v \in x^{\perp} \cap u_{i}^{\perp} \subseteq Q_{i}$ and $\{x, v\} \in \Delta$. If $Q_{1} \cap Q_{2} \neq\{x, v\}$, then either $\left|Q_{1} \cap Q_{2} \cap P_{1}\right|>1$ or $\left|Q_{1} \cap Q_{2} \cap P_{2}\right|>1$. In either case we get $Q_{1}=Q_{2}$, a contradiction.

We shall for the remainder of this subsection say two distinct quads are "collinear" if they meet. If Q_{1}, Q_{2} are collinear, let $\lambda\left(Q_{1}, Q_{2}\right)=\left\{Q \in 2: Q \geq Q_{1} \cap Q_{2}\right\} . \operatorname{Let} \Lambda=\left\{\lambda\left(Q_{1}, Q_{2}\right): Q_{1} \neq Q_{2} \in Q, Q_{1} \cap Q_{2} \neq \emptyset\right\}$. We immediately have
(6.2) LEMMA. ($2, \Lambda$) is a partial Zinear space.

Note that lines are in one-to-one correspondence with edges in Δ. For such an edge, $\{x, a\}$, we will write $\lambda\{x, a\}$ for the corresponding line. The next lemma gives a concrete description of this line.
(6.3) LEMMA. In $\{x, a\} \in \Delta, \lambda\{x, a\}=\{Q(x, y) y \in \Delta(a)-\{x\}\}$

PROOF. If $y \in \Delta(a), y \neq x$, then $Q(x, y) \geq\{x, a\}$ and $Q(x, y) \in \lambda\{x, a\}$. On the other hand, if $Q \in \lambda\{x, a\}$, then for any $y \in Q \cap \Delta_{2}(x), y \in \Delta(a)$ and $Q=Q(x, y)$.
(6.4) PROPOSITION. ($2, \Lambda$) is a polar space of type D_{3}.

PROOF. First we show $(2, \Lambda)$ is a gamma space : let $\lambda=\lambda\{x, a\}$ for $\{x, a\} \in \Delta$ and $Q \in Q$. If $Q \cap\{x, a\} \neq \emptyset$, then Q is collinear with each point of λ so we may assume $Q \cap\{x, a\}=\emptyset$. We show in this case Q is collinear with at most one point of λ. Suppose $Q \in \lambda, Q \cap Q_{1} \neq \emptyset$. Let $Q \cap Q_{1}=\{y, b\}$ where $\{a, y\},\{b, x\} \in \Delta$. Suppose that $Q_{1} \neq Q_{2} \in \lambda$. Then $y \notin Q_{2}$, but a $\in Q_{2} \cap \Delta(y)$. If $Q \cap Q_{2} \neq \emptyset$, then $Q_{2} \cap \Delta(y) \in Q$. Since $a \in Q$ we cannot have $Q \cap Q_{2} \neq \emptyset$ as asserted. Thus ($2, \hat{\Lambda}$) is a gamma space. Now consider a line $\lambda=\lambda\{x, a\}$ and a point $Q \in 2 \backslash \lambda$. Since $\operatorname{diam}(P, \Gamma)=3, Q \cap \Delta(a) \neq \emptyset$. By (6.3) this implies Q is collinear with some point of L and consequently ($2, \Lambda$) is a polar space. Since the induced structure on the lines of ($2, \Lambda$) contains a fixed Q is isomorphic to the dual of Q it follows from $\operatorname{TITS}[5](2, \Gamma) \cong D_{3}(K), K a$

Now it is obvious to see that for $x \in P, \hat{x}=\{Q \in Q: x \in Q\}$ is a maximal singular subspace of the polar space (Q, Λ). The result in this case follows.
6.B. Hence-forth assume $n \geq 4$. Set $P=P_{1}$ and $\Gamma=\Delta_{2} \mid P$.
(6.5) NOTATION. If $x, y \in P, d(x, y)=2\left(\operatorname{so~} d_{\Gamma}(x, y)=1\right)$, set $x y=Q(x, y) \cap P$. Set $L=\left\{x y: x, y \in P, d_{\Gamma}(x,-)=1\right\}$. For $x \in P, x^{*}=\Gamma(x) \cup\{x\}$.
(6.6) LEMMA. ($P, 2$) is a strong Γ-space.

PROOF. Let $x, y, z \in P$ with $y \in \Gamma(x), x, y \in \Gamma_{d}(z)$. Set $Q=Q(x, y)$. Let $a \in Q$
$d_{\Delta}(z, Q)=d_{\Delta}(z, a)$. If $a \in P$, then $d_{\Delta}(z, x)-2=2 d-2$. In this case $\{a\}=\ell \cap \Gamma_{d-1}(z)$. If $a \in P_{2}$, then $d_{\Delta}(z, a)=2 d-1$ and $x y=P \cap Q=P \cap \Delta(a) \subseteq \Delta_{2 d}(z)=\Gamma_{d}(z)$, and so in this case $x y \subseteq \Gamma_{d}(z)$.
(6.7) LEMMA. Let $\ell \in L, x \in P$ and $\ell \subseteq \Gamma_{d}(x)$ with $d \geq 2$. Then $\ell^{*} \cap \Gamma_{d-1}(x)$ is a non-empty singular subspace of $(P) .,\left(\ell^{*}=\hat{y} \in \ell^{y^{*}}\right)$.

PROOF. Note, if $a \in P_{2}$, then $\Delta(a)$ is a singular subspace of (P, L.). By definition of quads, there is a unique $Q \in L, Q \geq \ell$, which we denote by $Q(\ell)$. Let $a \in Q$ such that $d_{\Lambda}(x, a)=d_{\Delta}(x, Q)$. Since $\ell \subseteq \Gamma_{d}(x)=\Delta_{2 d}(x)$, $a \in P_{2}$. Therefore $d_{\Delta}(a, x)=2 d-1$. Choose $y \in \Delta(a) \cap \Delta_{2 d-2}(x)$. Then $y \in \ell^{*}$ since $y, \ell \subseteq \Delta(a)$. A1so $y \in \Gamma_{d-1}(x)$, so $\Gamma_{d-1}(x) \cap \ell^{*} \neq \emptyset$.

We next show for any $y \in \Gamma_{d-1}(x) \cap \ell^{*}$ that $y \in \Delta(a)$ which will prove
 Now $\Delta(y) \cap \Delta(u) \subseteq \Delta_{2 d-1}(x)$. If $v \in Q(y, u)$, then $Q(y, u)=Q(u, v)=Q(\ell)$ contradicting $d_{\Delta}(x, y)=2 d-2$ and $Q \cap P \subseteq \Gamma_{d}(x)$. Therefore $d_{\Delta}(Q(y, u), v) \geq 1$. But $d_{\Delta}(y, v)=d_{\Delta}(y, u)=2$ and so it follows that if b is the unique point of $Q(x, u)$ closest to v, then $b \in P_{2}$ and $d_{\Delta}(b, v)=1$.
Since $b \in \Delta(y), d_{\Delta}(b, x) \leq 2 d-1$. Since $b \in \Delta(u) \cap \Delta(v), b \in Q(u, v)=Q$. But $Q \cap \Delta_{2 d-1}(x)=\{a\}$, so $b=a$. Since (P, Q) is a strong Γ-space $\Gamma_{d-1}(x) \cap \ell^{*}$ is a subspace and the lemma is proved.
(6.8) LEMMA. Let $\mathrm{x}, \mathrm{y} \in P, \mathrm{~d}_{\Gamma}(\mathrm{x}, \mathrm{y})=2, \mathrm{z} \in \Gamma(\mathrm{x}) \cap \Gamma(\mathrm{y})$. Then there exists $v \in \Gamma(x) \cap \Gamma(y) \cap \Gamma_{2}(z)$.

PROOF. Let $a \in P_{2} \cap Q(x, z)$, $b \in P_{2} \cap Q(y, z)$. As $d_{\Gamma}(x, y)=2$, $a \neq b$. Since $z \in \Delta(a) \cap \Delta(b)$ we have $d_{\Delta}(a, b)=2$ and $z \in Q(a, b)$. Let $u \in Q(a, b) \cap P, u \neq z$. $z \notin Q(x, y) \cap Q(y, u)$. For if $z \in Q(x, y) \cap Q(y, u)$, then $Q(x, y)=Q(z, u)=Q$ (y, u). Thus $d_{\Gamma}(x, y)=1$, a contradiction. Now $P \cap Q(x, y), P \cap Q(y, u) \subseteq \Gamma(z)$. It follows that there is a unique $\mathrm{a}_{1}, \mathrm{~b}_{1}$ in $\mathrm{Q}(\mathrm{x}, \mathrm{u}) \cap \Delta(\mathrm{z}), \mathrm{Q}(\mathrm{y}, \mathrm{u}) \cap \Delta(z)$, respectively, namely a and b. Let $a_{2} \in \Delta(x) \cap \Delta(u), a_{2} \neq a$ and b_{2} choosen similarly. Then $a_{2}, b_{2} \in \Delta_{3}(z)$. Then $Q\left(a_{2}, b_{2}\right) \cap \Gamma(z)=\{u\}$. Now if $v \in \Delta\left(a_{2}\right) \cap \Delta\left(b_{2}\right), v \neq u$, then $v \in \Gamma(x) \cap \Gamma(y) \cap \Gamma_{2}(z)$.
(6.9) LEMMA. Let $\ell \in R, \mathrm{x} \in P$ with $\ell \subseteq \Gamma_{2}(\mathrm{x})$. Then $\mathrm{C}(\mathrm{x}, \ell)=\mathrm{x}^{*} \cap \ell^{*}$ properly contains a line.

PROOF. Set $Q=Q(\ell)$. Let a be the unique point in $Q \cap \Delta_{3}(x)$. Let x, b, y, a be a geodesic from x to a. Then $Q(a, b) \cap P$ is a line contained in $C(x, \ell)$. Now let $c \in Q(x, y) \cap P_{2}, c \neq b$. Then $y \in Q(a, c)$ and $Q(a, c) \neq Q(a, b)$. Therefore $P \cap Q(q, c) \cap Q(a, b)=\{y\}$. But $P \cap Q(a, c)$ is a line in $C(x, \ell)$ and $P \cap Q(a, c) \neq P \cap Q(a, b)$ and (6.9) is proved.
(6.10) LEMMA. If $\mathrm{x}, \mathrm{y} \in P, \mathrm{~d}_{\Gamma}(\mathrm{x}, \mathrm{y})=2$, then $\Gamma(\mathrm{x}) \cap \Gamma(\mathrm{y})$ is a polar space of rank three.

PROOF. $\Gamma(x) \cap \Gamma(y)$ is a Γ-space with thick lines. By (6.8) $\Gamma(x) \cap \Gamma(y)$ is non-degenerate. From (6.7) it follows that $\Gamma(x) \cap \Gamma(y)$ is a polar space.

Now let $z \in \Gamma(x) \cap \Gamma(y), u \in \Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$. Since $x z \subseteq \Gamma(u)$, $y z \subseteq \Gamma(u)$, there is a unique $b \in Q(x, z) \cap \Delta(u)$ and a unique $c \in Q(y, z) \cap \Delta(u)$. Then $u \in P \cap Q(b, c)$. It follows that the lines on z in $\Gamma(x) \cap \Gamma(y)$ is a grid isomorphic to $\left[Q(y, z) \cap P_{2}\right] x\left[Q(x, z) \cap P_{2}\right]$. From this it follows that maximal singular subspaces of $\Gamma(x) \cap \Gamma(y)$ are $p l a n e s$ and $r k(\Gamma(x) \cap \Gamma(y))=3$.

We have now shown that (D1)-(D3) hold for (P, L). Thus, either $(P, L) \cong D_{n, n}(K)$ for some field K or (P, L) is a polar space of rank 4. However, in the latter case, by the end of 6.10 and TITS [5] we have $(P, L) \cong D_{4}(K) \cong D_{4,4}(K)$. Now the points in P_{2} can be identified with the maximal singular subspaces of (P, L) with projective dimension $n-1$. From this identification it now follows that $P_{1} \cup P_{2}$ can be identified with the maximal singular subspaces of an orthogonal space V of dimension $2 n(\geq 8)$ over a field K, with index n, such that two are collinear if and only if they meet in an ($n-1$) dimensional subspace. This completes the proof of (5.10).

Acknowledgement: I would like to thank the participants in the Algebra Seminar at the Mathematisch Centrum for providing me the opportunity to present this material, and especially Arjeh Cohen for many fruitful discussions.
[1] BUEKENHOUT, F. \& E.E. SHULT, On the Foundations of Polar Geometry, Geometriae Dedicata 3(1974), 155-170.
[2] COHEN, A.M., On a Theorem of Cooperstein, submitted to European J. of Combinatorics.
[3] COHEN, A.M. \& B.N. COOPERSTEIN, Some Properties of Lie Incidence Structures, in preparation.
[4] COOPERSTEIN, B.N., A Characterization of Some Lie Incidence Structures, Geometrical Dedicata (1977), 205-258.
[5] TITS, J., Building of Spherical Type and Finite BN-pairs, Springer-Verlag, 1974.
[6] VEBLEN, O. \& J.W. YOUNG, Projective Geometry, Vol. I., B1aisde11 Pub1ishing, New Young, 1938.
[7] VELDKAMP, F.D., PoZar Geometry, I-IV. Indag. Math 21,512-551 (1959).
[8] SHULT, E.E. \& A. YANUSHKA, Near n-gons and Zine systems.
[9] CAMERON, P.J., Dual PoZar Spaces, Geometrial Dedicata 12(1982), 75-85.
[10] HIGMAN, D.G., Gamma and DeZta Spaces, Abstract of talks at Hans SurLesse Conference, 1979.

[^0]: ${ }^{*)}$ Supported in part by the National Science Foundation. I would also like to thank the Mathematisch Centrum in Amsterdam for their support and hospitality during which part of this paper was written. **)

 University of California, Santa Cruz, CA 95064

