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Introduction

This report contains a collection of results obtained by the authors
during the. spring of 1966. It is a pre-publication.of an extensive

paper bearing the same title by J. de Groot, E.. Wattel, G. Strecker,
and H. Herrlich. It also uses a. number of results by J. de Groot who

initiated the investigation in this area.

The purpose of the report is to investigate the notion. of compactness
from a basic set-theoretical standpoint. First, compactness is
defined without using the definition of a topologicél space. Later

a slight, but natural, generalization of the notion of a topological

space 1s employed.

In the last chapter a study is made of the class of all pairs of
spaces for which the collection of closed sets of each member of a
given pair is precisely the collection of compact sets of the other

member of the pair.

§1. The compactness operator

1.1. Definition:
A collection of arbitrary sets 4 is called centered in a set H

iff {P(\H | Pe?} has f.i.p. (i.e. the property that each finite

intersection of members of the collection is non-empty).

1.2. Definition:
Let X be a set, and let M be an arbitrary collection of subsets

of X. A set HcX is called compact relative to H provided that

every subcollection of K which is centered in H has a non-empty

intersection in H.

1.3. Notation convention:

Let X be a set, and Ha family of subsets; then we denote by pK
the family of all subsets of X which are compact relative to %,
and by eMthe family of ail finite unions of arbitrary inter-
sections of members of K. Clearly p and € are operators and their

domain is the collection of all families of subsets of X.
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A member of ppX is compact relative to ¥, and we call it a

square-compact relative toM. (For pp we ean also write 02 ete.)

The following two relations involving € and p are well known.

i) ee = e.

ii) pe = p. This. is.a restatement of Alexander's subbase theorem
(ef. [1])-
Lemma, :

Let X be a set, and.let ‘A be an.arbitrary collection of subsets
of X. Let CepM and Sepp. Then Cf\Se(D:}f)ﬂ(oe'x).

Proof: i) CAS e

LetT'c pKbe such that €' is centered in CAS; then &' u{C} is
centered in S. €' U{C}c p'f{, and from Se& pg’)iit follows that
(\[C' u{c}]ns # ¢. Hence N(E€')N(CNS) # ¢ and we conclude
that Cf\Sép%[-

ii) cnsep

Let K'c K such that ¢ is centered in CNS.

Then the collection’XK" = {C NK [ Ké"){'} is a subcollection of pl,
and it is centered in CNS. But CNSe pQOiand hence
NKINCNs) ¢ ¢ NIR) = NER)INC;

NRINCNS) # ¢, and so CNSep¥

Theorem:

For every set X and every collection of subsets 9{, the collection
pef.)(is closed under finite unions and arbitrary intersections
(0%A = eo¥).

Proof: The fact that pgﬂfis closed under finite unions is obvious
from the definition of peﬂi(i.eu the collection of compact sets
relative to o'}« ‘

So we only have to prove that pg’ﬂis closed under arbitrary
intersections. Let §' be a collection of members of p%{, and
suppose N §' = 8, # ¢. We have to prove that S epaf)ﬁ
Let €'c p NAve centered in Sg+
Pick and fix some member S'€$' and consider the system

€" = {cnsns' | ce€', sef'}.

£
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From the .lemma it follows that every member of €" is a member of
ol and €" is centered in S'; hence it has a non-empty intersection
in 8'y but the intersection is a subset of SO' Hence:

nge! )r\SO = f\éC")nSo = N(€")Nns' # ¢, and this proves that

S&ep%(, which proves the theorem.

Lemna:

Let X be a set, and'ﬂ a collection of subsets. Then each member
of o is a member of QB%,(p'xco3’Ji). ,

Proof: Let ce oK and letf'cpzﬂfsuch that §' is centered in C.
Pick and fix some S'e %' and consider the collection

L = [sncns' | seX'}. From lemma 1.4 it follows that every
member of 8" is a member of pJ{ So we have a system §" that is
centered in S'; and hence N (B')NC = N(Z")NS' # ¢ . Thus

ceo ¥,

Theorem:

. 7% L
For every set X and every collection of subsets’«)f, p =p {7{
Proof: By lemma 1.6 p')ﬂ:p3% and thus og’)fcph’)f-
On the other:hand, every member. of.pujf is. compact relative to p30£
and hence it is compact relative to o so pl‘%cpg’%

Proposition:
If for every KeXand Cep; KNnCce¥M; then %Cpg'xand ok = p39{.

Proof: Let K be a member of “A. We must show first that K is a
member of 02%

Assume that €'c 0¥ such that €' is centered in K. The collection
€" = {CnK | ce€'} is by assumption a system of members of’f,
that is centered in each element of €". From the fact, that every
member of €" is a member of pMit follows that (n£')NK = NE" £ ¢
and hence Kepg){. The proof that p = p39£is similar to the proof
of 1.7;

Remark:

From 1.3, 1.5, and 1.7 we can -derive the following relations between

the operators p and <.

£



(1) ee = ¢
(2) pe=op
(3) eo® =p°
(b) o* = o2

These relations define the structure of a semigroup with the

following multiplication table.

(¢) £ P o? 03 €p
£ € €p 92 93 £0
P o 02 03 02 02
p 02 03 02 03 03
P 03 02 03 02 92
EQ €0 02 03 02 02

§2. T_spaces and superconnectedness

2.1.

2.2.

Definition:

A set X together with a collection of its subsets §’Will be called

a T-space provided that ef=i; l.€. ; is closed under the formation
of finite unions and arbitrary intersections. € will be called the
collection of closed subsets of the space, and = {X NG i Ge 5}
will be called the collection of open subsets of the space.:

Remark:

Thus for T.spaces there 1s no mention of whether or not ¢ and X
are open or closed. Indeed, in the usual definition of topological
space there seems to bé no compelling reason to force ¢ and X

to be closed, except that this was done during the historiecal
development of the theory. .

The definition above poses no difficulties for the class of topo-
logical spaces usually studied, for if a Tespace merely possesses
two disjoint closed sets and two disjoint open sets, then both ¢

and X will automatically be open and closed.



The only apparant drawback is that if the closure of a set is
defined to be the set together with all of its limit points, then
it is not necessarily true that the closure of a dense set is
closed.- Similarly the interior of a .nowhere dense set 1s not
necessarily. open. On the other hand, the defindition of T.space

is useful for this paper,.e.g. 1.5 can be restated in the form:
For every family of subsets ¥ of a set X, (X,pgﬁj is a T.space.
In what follows, "space" will mean T-space.

It is clear that every result stated below can be easily restated

in terms of usual topological spaces.

2.3. Definition:
A space is called super-connected provided that every open set
is connected (cf. [2]).

2.4. Proposition:
For any T space (X,j) the following are equivalent:

a) The space 1s. super-connected.

b) Every non-empty open set is dense.

¢) X is not the union of two proper closed subsets.

Proof:

a) ==> b). Let U and V be two non-empty open subsets. UuV is
connected because it is open, and hence UAV # ¢. This implies
that U is dense.

b) ==> c). Let F and G be proper closed subsets. Then X \F and X \C
are open and non-empty (X \F) A(X\G) is dense. Thus X # FUG.

¢) ==> g). If X is not the union of two proper closed sets, then
no non-empty open set can be contained in a proper closed subset.

Thus every open set is connected.

§3. Antispaces

3. 1s Introduction:

In chapters 1 and 2 we have found the tools for a description
of pairs of T- spaces in which the compact sets of the first space

“are precisely the closed sets of the second space, and conversely.
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Such a pair of spaces is called an antipair and a member of an
antipair is called an antispace (cf. [2_]).

By definition an antipair can be formed by a pair of T spaces
X,i) and (X,0) iff %= pFand § = oMand hence 4 = pzj On the
other hand, (X 5) is an antispace iff ((X, 5) (X, oj)) is an anti-

pair and f = p! 5 We are going +to study first, what sorts of
spaces can occur as anti-spaces. Note that each member of an
antipair determines the other member uniquely, and that every
property of one member corresponds to an adjoint property of the

other member of the anti-pair.

Theorem:

If (X, 5) is an arbitrary T.space, then (X,peg) is an antispace
and (X,p f) X 035 form an antipair.

Proof: By theorem 1.T. p g o f Hence p2(p25) = 025; and the
theorem follows from 3.7.

Definition:

A épace is. called a CC-space provided that every compact subset is
closed.

A space is called a C-space provided that a subset A is closed

if and only if each intersection of A with a closed compact

subset is compact (A is closed <==> YC; C compact closed; CNA
compact, cf. [2:[). (Note that every C-space is a topological space.)
A space 1s called a C*—sp_ace iff it is a compact antispace.

Remark: The definition of C-spaces is very closely related to the
definition of k-spaces (cf. [‘!:l), In particular a space is a

C-space if and only if it is a CC-space and a k-space.

Theorem:

For every T space (X,ﬁ) the following statements are equivalent:
(i) (X,i) is a C-space.

(ii) (.X,ﬁ) is a CC-antispace.

(iii) There is a C -space (X/J0) such that o= ?.
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Proof: (i) ==> (ii). Assume that,(X.,j) is a.C~space. The inter-
section of a compact set with a closed compact set is always
compact. By definition every compact set is closed, and (X,j’)

is a CC-space.

Now we prove that §= 025. ‘Let Géi. Let €' p; be centered in G.
Then if COeC'; GnCOé 95 and,GnCég for every Ce& €' and this
system {GNC | Ce€'} is centered in GAC, and hence

(\{G(\C | CéC'} = (NE'")NG # ¢. Thus Géng; 50 fcpgf.

Let Aep%. By lemms 1.4., for every Ce pi,A NCe piand.hence A is
closed by the definition. of.a C-space. Thus Desci; 025 = f

This proves that (X,i) is an antispace.

(i1) ==> (iii). (X,i);is.anaantispace, and .hence (X,f),(x,pi) is
an antipair; and (X,pi} is an.antispace. In (X,i) every compact
set is closed, and hence in (X,p?) every closed set is compact.
This implies that (‘X,pg) is a compact antispace, and §= p(pi).
Hence (X,0€) is the C*-space«- with the required property.

(iii) ==> (ii). (X, )0 is a .C*—space, and hence (X,0%) is a
CC-space and:an antispace.

(ii) ==> (i). (X',?,) is a CC-antispace, and hence p2§=5. Let

Ae‘j, then ANC is compact for every Cepi.

Let A be a set such that ANC is compact for every compact closed
set C. Let €' be an arbitrary system of compact sets centered in A.
€= {C NA | Céé'} is a collection of closed compact sets centered
in any one of its members. Thus N€ =NE'NA # ¢. Hence by
definition A ep2§ and so Aei . This proves that (X,g) is a

C~space.

Corollary: (X,i) is a C-space, if and only if (X,pi) is a

C¥-space, and conversely.

Proposition:
For every collection of subsets Mof a set X, p'K= p(?fUp%i)a

Proof: (7[\)0270‘)'9( and hence D'}f)p(’?[Upe’Ji), Let CepPand let
®cC (’.‘)fUpafﬁ) be a system that is centered in C. Then ‘X' can be
split up into two parts;wcmand%CD%s ’.ﬁo\}?f =M and both
'f’?fp a;nd'?i2 are centered in C. Hence CO = ((’\'39){\0' # ¢ and is an
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element of 0¥, We must prove now that (aK') = (nfiiz)n(n'xo)nc =
(f\'ﬁg)f\c # ¢. Suppose that (n’)tg)nc = ¢. Then there exists
a finite subcollection {fﬁi = of’.ﬁ such that ( n'.}ie)nc = ¢,
From lemms 1. L and .theorem 1.5 it follows that i=1
2 = ( (\’)f, )NC # ¢ and is an element of e but C /\(f\'?io) = .
By defln:iitlon there must. be. a. finite. subcollectlon f)E } such that
(/\’1)()0 = ¢ and hence (A’D{)n(n’j’[J)ﬂC d)and this
cgntradlcts the assumptlon t?iat o is. gentered in C.
Now it follows that (NK' )NC # ¢ and hence Cép('.‘)fuo%i); thus

oMo Kuvo); so o= oKV,

Remark:. From Alexander's..subbase theorem it follows that

pe(’:)iupgf.)i) = pf -We will denote e (% Voo vy .

Theorem:

For every T. space (X, 5) the following statements are equivalent.
(1)  (X,p 5) is a C—space.

(ii) (x 05) is a C - -space.

(iii) (X,r4§) is a compact space.

(iv) (X,pzﬁ) is a CC-space.

(v) xeo?é.

(vi) 95(_‘025

Proof: The pattern of proof -is: (i) ==> (ii); (ii) ==> (iii);
(iii) ==> (iv); (div) ==> () (iii) <==> (v); (v) <==> (vi).

(i) ==> (ii). Let (X,p 5 be a C-space. (5‘- (5!)02%)) and hence
5 3p5 Because (X,p 5) is a CC-space (ef. 3.4), (X,i) must be
a CC—SPace, We will prove first that 5, ¢p2§

Let Géﬁ, . Let £' be a subsystem of pﬁ(" pir ef. 3.5) that is
centered in G. Let CO be an arbitrary element of €'. Then

G NnC ép? = 95. Every element of €' is a member of§+ because

(X,§ ) is a CC-space. &' is centered in G NC,. and therefore

Gn(n e') (nﬁ') ACyNG # ¢. Thus Gep% agd §+c p%. Hence
pgg (X is a C~-space. And now it follows from (3.4)

that X,pi) is a C*-space.

From (3.5) it follows, that (X,pg) is a C*—space.

I3
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(ii) ==> (iii). Follows. from.the definition of a C*—SPacea
(iii) ==> (iv). Trivial.

(iv) ==> (i). Follows from {3.4) and (3.2).

(iii) <==>:(v). Trivial.

(v) ==> (vi). Follows from (1.4).

(vi) ==> (v). Trivial.

Theorem:

If (X,4) is a. CC~-space, then (X,oi) is a C*-—space.

Proof: picj by definition. has: as compact sets exactly 0§,
From the inclusion it follows,that p (5)30(5) and the rest
follows from 3.6.

Theorem:

If (X,?) is an antispace, then (X,e( ups,)) is a CC-space;
(X,ﬁnpﬁ) is a C*—space and ps(%,up =§(\ pi.

Proof: 5 95)35 , thus o Svps)c’.pﬁc(su p?) and hence

(X, ef u 05)) is a CC-space.

Now we only have to prove that 95“' 95) -5 n p?and then the
theorem follows from 3.7.

If Aep(gu pg), then Aepfi and Aép?gL 5 (Note that p(gu p?)coﬁ
and p(ﬁu ps) cp i Hence Aé? np? this implies that

o(?u pﬁ)c%/\ 0.

Now fix an'arbitrary set’ Béinpﬁ, =p 5(\ p;

For every subset C of B we can find by lemma 1.4 that Cép? if
and only if. Cép%, » This implies, that the T-;spaces (B,i) and
(B,pi) coincide where: 5, = {G nB | Géﬁ,} From the fact that Be&p
it follows that Bép(iu p%,), and this proves that ;t\pfcp 5’U p?)
thus p(?u p?) —i /\pi and hence (Xﬁnp? is a C - -space.

Corollary: For every T.space X,s,), the space (X,p( pinp 5)) is

a C-space.

Remark: It should be noticed that there exist compact C-spaces and
in that case the compact sets and the closed sets colncide. These
spaces are anti-spaces, and the "adjoint" member of their antipair

«is identical with the space itself. These spaces are exactly the
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maximal compact. . spaces; .l.e..spaces.such that there is no finer
topology that leaves the space compact. This notion may serve as
a generalization.of. compact Hausdorff.

A more profound treatment of C-spaces and:.compact C-spaces can
be found in [2].

We conclude with some results that express a partial duality

between compactness and super-connectedness: in antispaces.

- 3.10.. Proposition:

Every antispace, which.is not a C-space is super-connected.
Proof: From 3.6 we can conclude for any antispace (X,ﬁ) that
(X,?) is a C-space iff Xe? When (X,?) is not a C-space, X is
not closed, and -hence ¢ is not open, thus.any two non-empty

open subsets intersect.

Corollaries: If no member of an antipair is a C-space, then both
members are super-connected.

Every non-compact antispace has an adjoint épace that is super-
connected.

Every non-compact C-space determines, and is determined by some

compact super-connected space.
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