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Introduction 

This report contains a collection of results obtained by the authors 

during the spring of 1966. It is a pre-publication.of an extensive 

paper bearing the same title by J. de Groot, E. Wattel~ G. Strecker, 

and H. Herrlich .. It also uses a. number of results by J. de Groot who 

initiated the investigation in this area. 

The purpose of the report is to investigate the notion of compactness 

from a basic set-theoretical standpoint. First, compactness is 

defined without using the definition of a topological space. Later 

a slight, but natural, generalization of the notion of a topological 

space is employed. 

In the last chapter a study is made of the class of all pairs of 

spaces for which the collection of closed sets of each member of a 

given pair is precisely the collection of compact sets of the other 

member of the pair. 

§1. The compactness operator 

1. 1. Definition: 

A collection of arbitrary sets P is called centered in a set H 

iff {Pf\H J Pc'Y} has f.i.p. (i.e. the property that each finite 

intersection of members of the collection is non-empty). 

1.2. Definition: 

Let X be a set, and let 'Jfbe an arbitrary collection of subsets 

of X. A set Hc.X is called compact relative to 1(, provided that 

every subcollection of i( which is centered in H has a non-empty 

intersection in H. 

1.3. Notation convention: 

Let X be a set, and ?Ca family of subsets; then we denote by p-% 
the family of all subsets of X which are compact relative to 'J(, 
and by e'Xthe family of all finite unions of arbitrary inter­

sections of members of i(.. Clearly p and e are operators and their 

domain is the collection of all families of subsets of X. 
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A member of pp,£ is compact relative to pX, and we call it a 

sq_uar.e-c~mpact relative to'X. (For PP we can also write p2 etc.) 

The following two relations involving E and pare well known. 

i) EE = Ee 

ii) p E = p. This- is .. a. restatement of Alexander! s sub base theorem 

(cf. [1] ). 

1.4. Lemma: 

Let X be a sP-t, and ,let -:X. be an,.arbitrary collection of subsets 

of X. Let Ce.p'Xand Sc:pp')(. Then C/1SE.(pj()n(p~). 

Proof: i) C /\ S cP
21(. 

Let-e•c.p:X.be such,that e, is centered in Ct\S; thenC'u{c} is 

centered in S. ,e, U{C}c p'1(, and from SE.p½(it follows that 

(\ ~• u{c}] ns 'F cp. Hence /\(e 1 ) /'l(Cns) f: cp and we conclude 

that C /'\SE. p ¼. 
ii) Cr\Se.p~ 

Let :J{1 c1C. such that 1(! is centered in C f\S. 

Then the collection 'JC' = { C AK I KE'Jf!} is a subcollection of p'f, 

and it is centered in C f\S. But CASE p2~and hence 

/\ (,X' ) () ( C (\S) 'f cf>. {) ('X' ) = n (1i! ) () C; 

()(':>C.){1(Cf\S) 'f' cf>, and so cnsEpX 

1. 5. Theorem: 

For every set X and every collection· of subsets){, the collection 

p2xis closed under finite unions and arbitrary- intersections 

(p2x= Ep4X} • 

Proof: The fact that p21{is closed under finite unions is obvious 

from the definition of p21{.(i.e. the collection of compact sets 

relative to p'j(). 

So we only have to prove that p21(is closed under arbitrary 

intersections. Let -S 1 be a collection of members of p¾{, and 

suppose fl 5' = s 0 'f' cp. We have to prove that s 0 E:.. p ¼c 
Lett:::' c p ?(be centered in s

0
• 

Pick and fix some member S 1c-S 1 and consider the system 

-e" = { c (\ s f\S, I c EC' , s e.1' } . 
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From the -lemma it follows that every-member 0f <C." is a member of 

p'J(; and C" is· centered in S'; hence it has a· non-empty intersection 

in S'; but the intersection is a subset of s0 • Hence: 

(f\'C' )('\SO= nfe'')/\S0 = (\(C')/\S' -/: qi, and this proves that 

So§-P21(, which proves the theorem. 

1. 6. Lemma: 

Let X be a set, and 'J1. a collection of subsets. Then each member 

of p']( is a member of p3'X,(p?(cp3'J[). 

Proof: Let Ce. P?i; and let :S" 1 c P
2 ,Csuch that -5' is centered in C. 

Pick and fix some S'E:.-5' and consider the collection 

,S" = {s n C f'lS' l Se 51 }. From lemma 1.4 it follows that every 

member of $" is a member of PJl• So we have a system 5" that is 

centered in S' ; and hence (\ (1' ) ('\C = n (-'5 11
) () S' -/: qi • Thus 

CE.p3'% 

1.7. Theorem: 

For every set X and every collection of subsets-?f, p21f= p
4{.7(. 

Proof: By lemma 1.6 p,Ccp 3X' and thus p½(cp½x 

On the other hand, every member of p 4'1'. is compact relative to p 3~ 
0 0 0 "1t'. 411.( 2/'V and hence it is compact relative to Pi11o so P ~LCP Ju 

1.8. Proposition: 

If for every K€'Xand C E.p'f; K /\CE:'](; then 'J'tcp4J(and p'J( = p3:,(. 

Proof: Let K be a member of '"X We must show first that K is a 

member of p2,X 

Assume that e. 1 c. p )fsuch that e_, is centered,•in K. The collection 

-e_" = { C llK J C E.t'.'.'} is by assumption a system of members of"1:, 

that is centered in each element of e. 11
• From the fact, that every 

member of-t:." is a member of p?{.it follows that (f\ -e.') f\K = f\ e" -/: ,p 

and hence Kc:p?x. The proof that p?f:.= p3"J'(is similar to the proof 

of 1. 7. 

1.9. Remark: 

From 1.3, 1.5, and 1.7 we can derive the following relations between 

the operators P and E. 



(1) 

(2) 
(3) 

( 4) 

££ = £ 

PE: = p 
2 2 

£P = p 

p4 = p2. 
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These relations define the structure of a semigroup with the 

following multiplication table. 

( <f> ) . £ p 

£ £ £P 

p p p2 

p2 p2 p3 

p3 p3 p2 

2 
E:P ep p 

§2. ~espaces and superconnectedness 

2. 1. Definition: 

2 p3 p £P 

2 p3 p £P 

p3 p2 p2 

p2 p3 p3 

p3 p2 p2 

p3 2 p2 p 

A set X together with a collection of its subsets $'will be called 

a T..;space provided that £ f =1; i.e • 7 is closed under the formation 

of finite unions and arbitrary intersections. 1will be called the 

collection of closed subsets of the space, and 'T = {x '\ G I G~ ]} 

will be called the collection of open subsets of the space. 

2.2. Remark: 

Thus for T;;.;spaces there is no mention of whether or not <p and X 

are open or closed. Indeed, in the usual definition of topological 

space there seems to be no compelling reason to force <p and X 

to be closed, except that this was done during the historical 

development of the theory. 

The definition above poses no difficulties for the class of topo­

logical spaces usually studied, for if a T::;-space merely possesses 

two disjoint closed sets and two disjoint open sets, then both <p 

and X will automatically be open and closed. 
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The only apparant drawback is that if the closure of a set is 

defined to be the set together with all of its limit· points, then 

it is not necessarily true that the closure· oi' a dense set is 

closed. Similarly the interior of a nowhere dense set is not 

necessarily open. On the other hand, the de-finition of T,;.;space 

is useful for this paper, e.g. 1.5 can be restated in the form: 

For every family of subsets i{. of a set X, (X, l7£) is a T~space. 

In what follows, "space" will mean T,::space. 

It is clear that every result stated below can be easily restated 

in terms of usual topological spaces. 

2.3. Definition: 

A space is called super-connected provided that every open set 

is connected (cf. [2]). 

2.4. Proposition: 

For any T,:_-space (X,f) the following are equivalent: 

a) The space is. super-connected. 

b) Every non-empty open set is dense. 

c) Xis not the union of two proper closed subsets. 

Proof: 

a) ==> b) • Let U and V be two non-empty open subsets. U \JV is 

connected because it is open, and hence Ut"\V ~~.This implies 

that U is dense. 

b) ==> c). Let F and G be proper closed subsets. Then X ,F and X '\ G 

are open and non-empty (X \ F) f\(X \ G) is dense. Thus X ~ F UG. 

c) ==> a). If Xis not the union of two proper closed sets, then 

no non-empty open set can be contained in a proper closed subset. 

Thus every open set is connected. 

§3. Antispaces 

3.1. Introduction: 

In chapters and 2 we have found the tools for a description 

of pairs of T~spaces in which the compact sets of the first space 

''are precisely the closed sets of the second space, and conversely. 
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Such a pair of spaces is called an antipair and a member of an 

antipair is called an antispace (cf. [2]). 

By def'ini tion an antipair can be f'ormed by a pair of T.;. spaces 

(X, 1) and (X,'JO iff X = P j and 5 = P~and hence '5 = lj. On the 

other hand, (x,5) is an antispace iff ((X,5),(X,Pf)) is an anti­

pair and f = p
25. We are going to study first, what sorts of 

spaces can occur as anti-spaces. Note that each member of an 

antipair determines the other member uniquely, and that every 

property of one member corresponds to an adjoint property of the 

other member of' the anti-pair. 

3.2. Theorem: 

If (X,1) is an arbitrary T~space, then (X,p 2f) is an antispace 

and (X,P 21),(X,P3f) form an antipair. 

Proof: By theorem 1.7. P4j = P2f. Hence p
2

(p
2f) = P2f; and the 

theorem follows from 3.1. 

3.3. Definition: 

A space is. called a CC-space provided that every compact subset is 

closed. 

A space is called a G-space provided that a subset A is closed 

if and only if each intersection of A with a closed compact 

subset is compact (A is closed <==> 'r/C; C compact closed; C f\A 

compact, cf. [2] ). (Note that every C-space is a topological space.) 

A space is called a c*-space iff it is a compact antispace. 

Remark: The definition of C-spaces is very closely related to the 

definition of k-spaces (cf. [1] ). In particular a space is a 

C-space if and only if it is a CC-space and a k-space. 

3.4. Theorem: 

For every T.;.,;space (X, -1,) the following statements are equivalent: 

(i) (X,f) is a C-space. 

(ii) (X,,) is a CC-antispace. 

(iii) There is a c*-space (X,?() such that p'X= i. 
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Proof: (i) ==> (ii). Assume that (x,5) is a C-space. The inter­

section of a compact set with a closed compact set is always 

compact. By definition every compact set is closed, and (X,j) 

is a CC-space. 

Now we prove that 7- = P
2j. Let Ge.5. Let e..'c.. Pj be centered in G. 

Then if c0 ~e,; G'1C0 4!: P] and G()C6j for.every C6C and this 

system {G/\C I C6.e1
} is centered in Gf\C0 and hence 

(){G{)C I c~e,} = (11e 1
) l'\G # <j>. Thus G~p2$; so jc. lf. 

Let AE.P~. By lemma .1.4., for every C'=:- Pj,A l'lCE!: p5 and hence A is 

closed by the definition. of.a C-space. Thus p21cf; P
2
; = f. 

This proves that (X,f) is an antispace. 

(ii) ==> (iii_).. (X,j) .is an,antispace., and.hence (X,'J),(X,pf) is 

an antipair; and (X,Pf) is an .. antispace,. In (X,j) every compact 

set is closed, and hence in (X,Pf) every closed set is compact. 

This implies that (X,Pj) is a compact antispace, and 1' = p(p]). 
Hence (X,Pj) is the c*-space·with the required property. 

(iii)==> (ii). ,(X,'J() is a c*-space, and hence (X,p1f) is a 

CC-space and an antispace. 

(ii) ==> (i). (x,tj) is a CC-antispace, and hence P
2 j =1 · Let 

h::1 then· A/\C is compact for every C e:pf 
Let A be a set such that Af\C is compact for eve~y· compact closed 

set C. Lete1 be an arbitrary system of compact sets centered in A. 

-l = { C /\A I C 6 e!} is a collection of closed compact sets centered 

in any one of its members. Thus f\e = f\e 1
/\ A f:. <j>. Hence by 

definition A E.p
2
] and so At::.1 • This proves that (x,5) ·is a 

C-space. 

Co,rollary: (X, {j) is a C-spaee, if and only if (X,P'f) is a 

c*-space, and conversely. 

3.5. Proposition: 

For every collection of subsets 1f.of a set X, p?(= p(1(up9Ji). 

Proof: (1iup 21())'J( and hence p')()p(?(Up 2.!Jt). Let Ccp,Xand let 

'n c ('XUP2.:J.o be a system that is centered in C. Then ':x! can be 

split up into two parts ; -X c. 11'. and -:,f C p %('; -:n° v'Jt = 'X.1 and both 

,B and'1-t are centered in C. Hence c
0 

= (f\~)f"\C # <P and is an 
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element of P':(. We must prove now that (n 1(.1 
) = (t}''Jt) fl (l)')f.O) fl C = 

= (/'\'lf) f\ c
0 # <P. Suppose that (f\'?(..

2
) /\ c

0 
= <P. Then there exists n 

a finite subcollection {~}~=
1 

of'Jf.
2 

such that ( ()~~)()CO = qi. 
i=J i 

From lemma 1 .4 and ,theorem 1 .5 it follows that 
2 n 2 o ..v. 2 MCO 

C = ( (\ 'XO )I\ C # <P and is an element- of PJL; but C /\ (/'\'Jt. ) = <p. 
i=1 o i o o o f·-D}m By definition there-must be a.finite subcollection 'JL 0_

1 
such that 

m O 2 n 2 m O J J-
( (\ IJ(o) fl C = <P and hence ( (\ 'j(o )/\ ( /) I':){ o) (\ C = </J and this 

0 =1 J . =:1 J. 0 =1 J 
d1ntradicts the assumption tliat·1('. is ~-entered in C. 

Now it· follows that (/\01!) n C ,J: <P and hence C£p(';:)ivp¾o; thus 

P~CP ('J(up¾o; so p'3(= p (?(vp2.:,o. 

Remark-:. From, .Alexander's, subbase theorem it, follows that 

pe:('J!vp9Ji) = P'X We will denote E(jiup~ by'.1C°. 

3.6. Theorem: 

Fbr every T.;..space, (X,j) the following statements are equivalent. 

(i) (x,l1) is a C-space. 

(ii) (X,p') is a c*-space. 

(iii) (X,P~) is a compact space. 

(iv) (X,P
2
') is a CC-space. 

(v) X6P
2

~. 
2 

(vi) Pj CP J. 
Proof: The pattern of proof is: (i) ==> (ii); ·(ii)==> (iii); 

(iii) ==> ( i V) ; ( i V) ==> (i); (iii) <==> ( V) ; ( V) <==> (vi)• 

(i) ==> (ii). Let (X,p 21) be a C-space. (r = (~Up~)) and hence 

~+')P 2j. Because (X,p25) is a CC-space (cf. 3.4), (x,f) must be 

a CC-space. We will prove first that i+ c:: p 
2f 

Let Gt='j+· Let C' be a subsystem of P5'(= P'{, cf. 3.5) that is 

centered in G. Let c0 be an arbitracy element of~,. Then 

GllC~Epr = Pi Every element ofe' is a member ofl+ because 

(x,5 ) is a CC-space. e.1 is centered in G f\C
0 

and therefore 

Gf\(f'\e') = (/\e') f\C0 1\G # cp. Thus Ge:p~ and1+c::.p
2
~. Hence 

~+ = p~; (X,,+) is*a C-space. And now it follows from (3.4) 

that (X,P,7) is a C -space. 

From (3.5) it follows, that (X,p'r is a c*-space. 

" 
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* (ii) ==> (iii). Follows. from.the definiti(Dn of a C -space. 

(iii) ==> (iv). Trivial. 

(iv) => (i) •. Follows· from {3.4) and (3 .2). 

(iii) <=>(v). Trivial. 

(v) ==> (vi~. Follows from (1.4). 
(vi) ==> (v). Trivial. 

3.7. Theorem: 

* If (X,j) is a. CG-space, then (X,PfjJ is a C -space. 

Proof: Pjc.j, by definition.1 has as- compact· sets exactly Pj· 

From the inclusion it f'ollows,that p2 (J) :> p(1) and the rest 

follows from 3.6. 

3.8. Theorem: 

If (x,1) is an antispace, then (X,e(JUP~)) is a CC-space; 

(X,,f\P~) is a c*-space and PE(?u P~ = f fl Pl" 

Proof: (1v Pjb$, thus p(~v p~)c:.P~C(ju P$) and hence 

(X,E(i u Pj)) is a CC-space. 

Now we only have to prove that P~UP1) =$(\p?and then the 

theorem follows from 3.7. 

If AE.P(~\J p1), then AE:p1and A~p~ =~. (Note that P(7-VPj)c:.p7' 

and p(1u P$) c.p2j.) Hence A6? f\Pj; this implies that 

p <1 u Pjk$ /\ P$· 
Now fix an: arbitrary set BG j n P} = p 

2$ n p ~-

For every subset C of B we can find by lemma 1.4 that C6p1 if 

and only if C Gp~ =7 ·• This implies, that the T;2spaces (B,j) and 

(B,p}) coincide where?= {GllB J Ge}}· From the fact that B6p~ 

it follows that BGP(]u pi), and this proves that ff'\Pf c..p(5u P7-); 

thus p(jv Pf) =7 f\ p1' and hence (X,j /\p',) is a c*-space. 

Corollary: For every T.:,space (X,~, the space (X,p(p5,f\P
2
~)) is 

a C-space. 

3.9. Remark: It should be noticed that there exist compact C-spaces and 

in that case the compact sets and the closed sets coincide. These 

spaces are anti-spaces, and the "adjoint" member of their antipair 

,.is identical with the space itself. These spaces are exactly the 
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maximal compaQ;t.. srpaoes; i.e. spaces such that there is no finer 

topology that leaves the -space compact. This notion may serve as 

a generalization ,of. compact Hausdorff. 

A more proi'ound treatment of C-spaces and'd:wmpact C-spaces can 

be found in [2]. 

We conclude with some results that express a. partial duality 

between compactness and super-connectedness in antispaces. 

3.10. Proposition: 

Every antispaoe, which·. is not a C-1space is super-connected, 

Proof: From 3.6· we can conclude f0r any antispace (X,1) that 

(X,fjJ is a C-space iff Xe} When (X,~ is not a C-space, X is 

not closed, and,hence qi is not open, thus any two non-empty 

open subsets intersect. 

Corollaries: If no member of an antipair is a C-space, then both 

members are super-connected. 

Every non-compact ant ispace has an adjoint space that is super­

connected. 

Every non-compact C-space determines, and is determined by some 

compact super-connected space. 
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