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An analysis is presented leading to explicit equations for the limits 

of the Buchstab iteration sieve. Moreover, the limits are computed for some 
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1. INTRODUCTION 

The purpose of this note is to present an analysis leading to explicit 

equations for the limits of the Buchstab iteration sieve and to compute the 

limits for some values of the relevant parameter K. The approximations given 

in Tables 1, 2 and 3 have been computed on a CDC 6600 CYBER 73/173 computer 

system at the Mathematical Centre in Amsterdam. Six years ago H. Diamond 

and W.B. Jurkat made numerical computations for the limits of 10 iterations 

(unpublished). We used their results to test the solutions of our equations. 

The same equations have been obtained in the meantime by D. Rawsthorne. 

The first author would like to thank the Mathematical Centre for fi

nancial support and for providing him with excellent working conditions. 

He also expresses his thanks to Professor H. Diamond and to D. Rawsthorne 

for an interesting conversation. 

2. ASSUMPTIONS 

We shall be using the notations of Halberstam and Richert [7]. Let A 

be a finite sequence of integers and Pa set of primes. For a real number 

z;::: 2 let 

and 

P (z) = TT 
p<z,pEP 

p 

S(A,P,z) = !{a EA; (a,P(z)) = 1}!, 

where i{.}i denotes the cardinality of the set{.}. The fundamental problem 

of sieve theory is to give a lower bound and an upper bound for S(A,P,z) for 

various values of z. The trivial, but useful, bound 

s(A,P,z) ;::: o 

holds without any restriction. In order to get nontrivial estimates one 

must impose on our sequences A and P some regularity conditions. A very 
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elegant and, in practice, fruitful set of conditions has been elaborated by 

Halberstam and Richert in a series of papers [4],[5] and [6]. 

For every d!P(z) denote 

Ad= {a EA; a_ 0 (mod d)}, 

and let IAdl represent the cardinality of Ad, i.e. the number of those ele

ments in A which are divisible by d. 

ASSUMPTIONS: 

(A1) every IAdl can be written in the form 

= w(d) X + r(A,d) 
d 

where Xis a positive parameter independent of d; 

(A2 ) w(d) is a multiplicative function such that OS w(p) 

and 

I 
wspp<z 

PE 

w(p) log p < 1 g z + A p - K O ; 2 , 

for all z > w ~ 2 with some constants A1 > 1, A2 > 1 and K z O; 

(A3 ) there exists n > 0 such that 

I c~(d)!r(A,d)I SX(logX)-c2 
d<xn 

d!P(X) 

1 
5(1--)p 

J.. 1 

for any c 1 > 0 and c 2 > 0, provided X > X(n,c 1 ,c2); here, Q(d) denotes the 

number of prime factors of d. 

Several papers on sieve methods, for example r3J, [1] and especially 

the fundamental paper of SELBERG [12], revealed that under such assumptions 

the sieve problem reduces itself to a search for functions F(s) and f(s) 

for which 

(1) XV(z) (f(s) - E) ::; S(A,P,z) S XV(z) (F(s) + E), 
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where 

V(z) = TT (1 - w(p)), 
plP(z) P 

s = n log X/log z, Eis any positive constant and X > X(E,n,K,c 1 ,c2 ). The 

functions F(s) and f(s) are universal in the sense that they may depend at 

most on the parameter K but not on the sequences A and P. Different sieves 

yield different·pairs of admissible functions F(s) and f(s). The problem 

of finding the best possible functions F(s) and f(s) has not been solved 

effectively in general. Brun's sieve method yields functions which are very 

good for larges. We need 

(2) F(s) and f(s) -s = 1 + 0 (e ) , as s • 00 , 

but much sharper estimates can be derived (see [6]). 

3. ITERATION SIEVE OF BUCHSTAB 

In 1938 A.A. BUCHSTAB [3] had a beautiful idea of improving sieve 

results by means of the following elementary relation 

(3) s(A,P,z) = s(A,P,w) - I 
w:5p<z 

PEP 

s(A ,P,p), 
p 

which holds for every z > w ~ 2. From a given pair of admissible functions 

F0 (s) and f 0 (s) satisfying (1) and (2) he obtains from (3) a new pair 

00 

Fl (s) 1 -
-K I Cf0 Ct-1) - l)dtK = s 

s 
00 

f 1 {s) 1 -
-K I (F0 (t-1) - l)dtK, = s 

s 

which for some values of the variables may turn out to be better than the 

original pair. One can then repeat the Buchstab procedure with the new pair 

of admissible functions 
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min (F O ( s) , F 1 ( s) ) and max ( f O ( s) , f 1 ( s) ) , 

thus getting further improvements. If we used Brun's results to initiate 

this process, then in the limit we would arrive at the Rosser sieve. A 

detailed exposition of Rosser's sieve, based on a different idea however, 

can be found in [BJ. 

4. STATEMENT OF THE PROBLEM 

In 1950 A. SELBERG [11] discovered a very powerful upper bound sieve 

method which gives 

(4) s(A,P,z) 1 
s XV(z) (o(s) + s), 

where o(s) is the continuous solution of the differential-difference 

equation 

(5) 

-1 
A 

-K-1 
-Ks a (s-2) 

if O < s s 2 

if s > 2, 

with A=2KeKYf(K+1), y the Euler constant (see [7], p.194). Selberg's sieve 

is very strong for large values of K and small values of s. If K > 1 and s s 2 

then the upper bound (4) is even stronger than that obtained by Rosser' s 

si'eve. Consequently, this might lead to better limit functions of the Buchs tab 

iterations. The first iteration has been carried out by ANKENY and ONISHI [1] 

and the second iteration by PORTER [9]. It is not difficult to write down a 

system of equations which should be satisfied by the limit functions F(s) 

and f(s). There must exist two numbers a~ 1 and S ~ 1 (sieving limits) such 

that 

F ( s) = 1/o (s) if s s a, 

f(s) = 0 if s :s; s, 
(6) 

K-1 K 
(s F ( s) ) ' = KS f(s-1) if s > a, 

K K-1 
(s f (s) ) ' = KS F(s-1) if s > s. 



Hence one can compute F(s) and f(s) by the method of steps. It remains to 

determine two unknown constants a and S. They should be obtained from the 

asymptotic behaviour (2). The aim of this note is just to solve the dif

ferential-difference problem (6) effectively and to compute a and S for 

special values of K with 1 < K ~ 2.0. our arguments are much the same as 

those used in [8] for the Rosser sieve. We would like to draw the reader's 

attention to a very elegant and almost forgotten doctoral thesis of J.J.A. 

BEENAKKER [2] in which the author develops a theory of the differential

difference equation 

axf' (x) + f(x-1) = 0. 

This equation is a special case of those which have been investigated in 

[8] independently but later. 

5. SOME DIFFERENTIAL-DIFFERENCE EQUATIONS 

Here we collect some results of [8] concerning the differential

difference equation 

(7) sG' (s) = -aG (s) - bG (s-1), s > a, a;:: 1. 

It is often convenient to study such an equation together with its adjoint 

equation 

(8) (sg(s))' = ag(s) + bg(s+l). 

For any real numbers a, b there exists a solution g(s) of (8) which is 

regular on the half-plane Res> 0 and satisfies 

( ) a+b-1 
g s ~ s as s • 00 , s real. 

If a+b < 1 we have the surprisingly simple formula 

(9) 

00 

g( s) - ---1-- J exp(-sz + b - r ( 1-a-b) 
0 

J
z -u 1-: 

0 

dz 
du) a+b· 

z 

5 
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If a+b 2 1 one should take the analytic continuation of g(s) with respect 

to a and b. To this end, expand the function 

z I -u 
R(z) = exp(b l-~ du) 

0 

into a Taylor series 

n 
R(z) = R(O) + R' (O)z + ... + R(n) (0) ~ + R (z), 

n! n 

say, and integrate termwise getting 

g(s) = I (-l)lR(l) (O) (a+;-l)sa+b-1-f 

f=1 
00 

1 f -sz -a-b + -r-(-1-_-a--b-) e Rn (z) z dz. 

0 

This formula defines g(s) for Re(a+b) < n+2. The idea of solving problem 

(6) rests on the observation that the "inner product" 

<G,g> 

s 

sG(s)g(s) -b J G(x)g(x+l)dx 

s-1 

is constant for s 2 a. 

6 •. EQUATIONS FOR THE SIEVING LIMITS 

Letting 

P(s) = F(s) + f(s) and Q (s) = F (s) - f (s), 

by (2) we get 

( 10) P(s) = 2 + O(e-s) and Q(s) = 0 (e -s) ass • 00 

As we will see later, we have a 2 S, which we henceforth assume for simplic

ity. Therefore, by (6) one can easily deduce that 



sP' (s) = -KP(s) + KP(s-1) ifs> a, 

sQ' ( s) = -KQ ( s) - KQ ( s-1) ifs> a. 

The corresponding adjoint equations take the form 

(sp(s))' Kp(s) - Kp(s+l), 

(11) 

(sq(s))' = Kq(s) + Kq(s+l). 

By (9) we obtain 

co z 

(12) p ( s) = J exp(-sz -K J 
0 0 

1-e -u 

u 
du)dz. 

The formula for q(s) is slightly more complicated. For all K < 2 we have 

(13) q (s) 
2K-1 

= s 
2K-2 2 2K-3 

K(2K-1)s + ½K(K-1) (2K-1) S 

00 z 

7 

1 I [ J 1-e -u + _r_(_1_--2k_)_ e-sz exp(K u 

0 0 

2 l dz 
du)-1-kz-¼K(2K-1)z j 2K • 

z 

We remark that if 2K is a positive integer then q(s) is a polynomial of 
-1 2K-1 

degree 2K-1 with rational coefficients. Since p(s) ~ s and q(s) ~ s 

ass • 00 , by (10) we derive 

<P,p> = 2 and <Q,q> 0. 

Hence, on takings= a we get 

(14) 

a 

aP(a)p(a) + K f P(x)p(x+l)dx = 2, 

a-1 

a 

aQ(a)q(a) - KI Q(x)q(x+l)dx 0. 

a-1 
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Note that 

1-K -K (s p(s))' = -Ks p(s+1), 

1-K -K 
(s q(s))' = Ks q(s+1). 

Therefore, by partial integration we obtain 

a 

KI f(x)p(x+1)dx = -af(a)p(a) + (a-1)f(a-1)p(a-1) 

a.-1 a, 

I 1-K K 
+ x p(x)dx f(x), 

a.-1 

and similarly 

a 

K f f(x)q(x+l)dx = a,f(a)q(a) - (a-1)f(a.-1)q(a-1) 

a.-1 a, 

I 1-K K 
- x q(x)dx f(x). 

a.-1 

By (6) we have 

K __ {f
0

: cr~t_:l 
X f (x) µ 

if$~ X ~ a,+1, 

if X < S, 

so that, by (14) we finally obtain 

( 15) 

a, 

KI p(x+l) dx = 2 
a(x) 

S-1 

S-1 

q(x+l) dx = 0, 
a (x) 

provided S ~a~ 13+1, and 



a 
P (a) 

K J p (x+l) 
dx + (a-l)f(a-l)p(a-1) 2 a cr(a) + = cr (x) 

a-2 
(16) 

a 

a 9J!& -
K J q (x+l) 

dx - (a-1)f(a-1)q(a-1) = 0, cr (a) cr (x) 
a-2 

provided a~ S+1. In the latter case we can find one equation with one un

known parameter a: 

(17) 

a 
r 

crra) {p(a)q(a-1) + q(a)p(a-1)} + K j [q(a-1)p(x+1) 

a-2 
dx 

- p(a-1)q(x+1)]0 (x) = 2q(a-1). 

Having computed a we can find f(a-1) from any of (16). To get S we use the 

formula 

(18) 
K 

(a-1) f(a-1) 

7. NUMERICAL COMPUTATION 

a-1 
r 

= J 
s 

dtK 
cr(t-1) · 

On the basis of the above formulas we have found that the critical 

9 

value for K with the property a= S+l is approximately equal to K0 =1.8344323 

for which we actually have a= S+l = 4.8819016. In the ranges 1 < K < KO resp. 

K0 <KS 2 we used (15) resp. (17)-(18) to compute the following approxima

ti'ons ( for details, see [ 10]) • 

TABLE 1. K a s 
1.1 2.6139542 2.2222008 
1.2 2.9707579 2.4440641 
1.3 3. 2966727 2.6666073 
1.4 3.6086127 2.8903541 
1.5 3.9114805 3.1158210 
1.6 4.2070237 3.3431530 
1. 7 4.4971333 3.5720603 
1.8 4.7837692 3.8023257 
1.9 5.0692758 4.0338225 
2.0 5.3577276 4.2664498 
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The cases of rational values of K may turn out to be useful for future 

applications. Having this in mind we prepared the following 

TABLE 2. K a. B 

1.0002 2.0223222 2.0004502 
1.001 2.0503075 2.0022478 
1.01 2.1652207 2.0223726 
4/3 3.4018518 2.7410304 
5/3 4.4008963 3.4955984 
5/4 3.1360309 2. 5552172 
7/4 4.6407926 3.6870329 
7/6 2.8568941 2.3700618 

11/6 4.8787741 3.8793592 
8/7 2.7730138 2.3172387 
9/7 3.2511596 2.6347537 

10/7 3.6959687 2.9545759 
9/8 2.7082466 2.2776350 

11/8 3.5315852 2.8342762 

8. A COMPARISON WITH ROSSER'S SIEVE 

In Rosser's sieve the functions F(s) and f(s) are the continuous solu

tions of the following differential-difference equation 

= 0 

K-1 
= KS f(s-1) 

if s ~ '3i 

if s > f31 
{

(s:F(s))' 

(s f(s))' = K-1 
KS F(s-1) ifs> S1, 

such that F(s) = 1 + O(e-s) and f(s) = 1 + O(e-s) ass •~. It turns out 

that s1-1 is the greatest real zero of q(s) and 

On the basis of these formulas we computed 
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TABLE 3. 
K B Al 

1 2 2ey = 3.56214484 

1.1 2.26057452 4.40840026 

1.2 2.52866481 5.51094507 

1.3 2.80289152 6.95285156 

1.4 3.08226086 8.84647618 

1.5 
s+n 

3.36602540 11.34422212 --= 
2 

It has been proved in [8] that 

where c 1 is the solution of clog c = c + 1, c 1 = 3.59112147 .... It would 

be interesting to find analogous asymptotic formulas for our limits a and B 

given by (16). It is very likely that our Sis asymptotically equivalent to 

the Ankeny and Onishi limit for the first step of Buchstab's iterations. The 

limit vis the unique solution of 

00 

J ( l - 1) dtK = 
o(t-1) 

V 

As K • 00 they showed that 

V ~ CK 

where 

K 
V • 

2 
C = 

e log 2 
2.44518586 .... 

Hence, the power of Selberg's sieve for large K is evident. 

For some reasons it is interesting to know the local behaviour of 

sieving limits in the vicinity of K = 1. For Rosser's sieve we are able to 

show that 

2 B1 = 2 + (3-2a) (K-1) + 0( (K-1) ) as K • 1+, 
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where 
00 z 

a = I -z J 1-e-u e [exp( --u- du) 

0 0 

dz 
- 1 - z]-2 = .21892758 .... 

z 
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