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Abstract 

Stable models seem to be a natural way to describe the beliefs of a rational 
agent. However, the definition of stable models itself is not constructive. It is 
therefore interesting to find a constructive characterization of stable models, 
using a fi.xpoint construction. The operator we define, is based on the work 
of -among others- F. Fages. For this operator, every total stable model of a 
general logic program will coincide with the limit of some (infinite) sequence 
of interpretations generated by it. Moreover, the set of all stable models 
will coincide with certain interpretations in these sequences. Furthermore, 
we will characterize the least fixpoint of the Fitting operator and the well­
founded model, using our operator. 

1 Introduction 

Stable models, as introduced in [GL88] and extended to three-valued models 
in [Prz90), seem to be a natural candidate for providing general logic pro­
grams with a meaning. However, their definition is not constructive. The 
aim of this paper is to find a constructive characterization of stable models 
for general logic programs, using sequences of interpretations generated by it­
erating a non-deterministic non-monotonic operator. The non-deterministic 
behaviour of this operator is captured by using the notion of selection strate­
gies. Our operator is based on the ideas of F. Fages [Fag91]. The main differ­
ence with the approach of Fages is, that our operator is less non-deterministic 
than his. As a result, our operator is more complex, but this enables us to 
define a notion of (transfinite) fairness with which we can characterize a 
class of stabilizing strategies that contain all total stable models. Moreover, 
the additional structure in our operator allows us to define various classes of 
strategies with nice properties. The difference of our operator with respect 
to the backtracking fixpoint introduced by D. Sacca and C. Zaniolo in [SZ90] 
is twofold: we find all stable models, instead of only all total stable models, 
and1 when an inconsistency occurs, we use a non-deterministic choice over 
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all possibilities for resolving that inconsistency, while th.eir operator uses 
backtracking, which is just one particular possibility. 

In the next section we give a short introduction on general logic pro­
grams and interpretations, and introduce some notations that will be used 
through.out the paper. Section 3 contains an explanation of (three-valued) 
well-supported models and stable models, and a generalization of Fages' 
Lemma, which establishes th.e equivalence between a subset of the set of 
(three-valued) well-supported models and the set of (three-valued) stable 
models. In section 4 we will introduce our operator Sp, and prove that the 
sequences generated by this operator consist of well-supported interpreta­
tions. After this, we will show in sections 5, 6, 7 and 8 how to find total 
stable models, (three-valued) stable models, the least fixpoint of the Fitting 
operator and the well-founded model, respectively, using our operator. In 
section 9, we will take a short look at the complexity of the operator. 

This paper also appears as a technical report [Teu93] at OWL This tech­
nical report contains the full proofs of all theorems and lemmas presented 
in this paper. 

2 Preliminaries and notations 

A general logic program is a finite set of clauses R: A <-Li A •.. /\ Lk, where 
A is an atom and Li (i E [1..k]) is a literal. A is called the conclusi-On of R, 
and {L1, ... ,Lk} is called the set of premises of R. We write concl(R) and 
prem(R) to denote A and {£1, ..• , L1o}, respectively. For semantic purposes, 
a general logic program is equivalent to the (possibly infinite) set of ground 
instances of its clauses. In the following, we will only work with these infinite 
sets of ground clauses, and call them programs. 

We use Bp to denote the Herbrand Base of a program P; A, A' and Ai 
represent typical elements of Bp. Furthermore, /:,p is the set of all literals 
of P; L, L' and Li represent typical elements of /:,p. We use the following 
notations: 

• for a literal L, ..,£ is the positive literal A, if L = -.A, and the negative 
literal •A, if L =A, and 

• for a set of literals S, we write 

- ..,s to denote the set { ..,£ I L E S}, 

- s+ = {A I A E S} to denote the set of all atoms that appear in 
positive literals of S, 

- s- = {A I ...,A E S} to denote the set of all atoms that appear in 
negative literals of S, and 

- s± = s+ U s- to denote the set of all atoms that appear in lit­
erals of S. 
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A two-valued interpretation of a program P maps the elements of B p 
on true or false. In this paper, we will use three-valued interpretations, 
in which an atom can also be mapped on unknown. They are defined as 
follows: 

Definition 2.1 Let P be a program. An interpretation I of P is a set of 
elements from .Cp. An atom is true in I, if it is an element of J+, it is false 
in I, if it is an element of r-, and it is unknown in I, if it is not an element 
of J-:±:. If some atom is both true and false in I, then I is called inconsistent. 
If all atoms in Bp a.re either true or false (or both) in I, then I is called 
~W D 

Example 2.2 Consider program P1 consisting of the clauses p(a) +- -.p(b), 
p(b) <- -ip(a) and q(b) +- q(b). We have that BPi. is the set {p(a), p(b), 
q(a), q(b)}. There a.re 28 = 256 interpretations of P1 , 34 = 81 of them are 
consistent, 34 = 81 of them are total, and 24 = 16 of them are consistent 
and total. 

Note, that a consistent total interpretation can be seen as a two-valued 
interpretation, because then no atom is both true and false and, because 
]-:±: = Bp, there no atom is unknown. 

3 Well-Supported and Stable Models 

In this section we will introduce well-supported models and stable models. 
Our definition of well-supported models is an extension (to three-valued 
models) of the definition given in [Fag91]. Our definition of three-valued 
stable models follows the definition given in [Prz90]. First, we will introduce 
well-supported models, because they follow quite naturally from the intuitive 
idea of the meaning of a program. After this we will give the definition of 
stable models, which is quite elegant. In the remainder of this section we 
generalize ofFages' Lemma [Fag91J (which states that the class of total stable 
models and the class of total well-supported models coincide) to three-valued 
models. 

So, let's take a look at the intuitive idea of the meaning of a program. 
First of all, an interpretation should be consistent; it doesn't make sense to 
have atoms that are both true and false. Furthermore, one can see a clause 
in a program as a statement saying that the conclusion of that clause should 
be true if that clause is applicable. 

Definition 3.1 Let P be a program, let I be an interpretation of P and let 
R be a clause in P. R is applicable in I, if prem(R) ~I. R is inapplicable 
in I, if -,prem(R) n I# 0. We call •prem(R) n I the blocking-set of R in J. 
0 
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a model oi & program P is 1> con~ister.t 1 of P amch th.11.t, 
for every cl11.:ise in P that is appiicable in l, the CO.'lclusion of that dauae 

i5 true in I 11.nd an a.t.om is fall'!e in l if ll.ll dan11es with that a.tom all 

concluslon are in I. Note, tha.t. we have to s~ate explicitly \h&t 
l hu to be co:U!istent, becau!>'ll in our definition an c:m be 
inroru;illtent. 

In a model of P, atoms can be trul!', even when there \,!i no rell.Wn for that 

atom true. However, an atom should only be true, if there iB some 
kind of "explanation'' for the fact that thait atom i.s true. Tbis c.oncep< ¥r 
~explanation" will be formalized uslng the notion of support order. 

Definition 3.2 Let. P be a program ll.nd let I be an of P. 
A order < on the elements of C.p is a support order 011 I, if, for 

all A E J+, there exists a clause R in P with condumon A such that R is 

applicable L'l I and, for all A.' E prem( Rj+, A1 < A. O 

Example 3.3 Coruiider a model M = {p(a), ...,p(b), 

"'"'"'·muuci 2.2). Any pa..~ial order in which p(b) < 
support order on M. 

of program P1 
and q(b) < q(b) i11 a 

If, for some positive literal L that is true in M, we gather all litera.l.s L1 such 

that L' <* L ( <* is the transitive closure of <), then this set constitutes 
some kind of explanation for the fact that Lis true in M. 

Example 3.4 Consider program P2 consisting of the clauses p ,_ q /\ r, q +­

and r <- -,9, One of the models of P~ is {p, q, r, ..,11}, and {q < p, r < p} is 

a support order on this model. We can read this support order as follows: p 
is true because r and q are true, q ls always true, r is true beca.use s is false, 

and s is false beca.w;e there is no reason why s should be true. 

HoW'ever, such an explanation can be rather a.w kwa.rd, either because it refers 

to the conclusion itself, or because it contains an infinite number of literals. 

Example 3.5 Consider program P3 consisting of the cla.uses p <- q and 
q +-- p. One of the models of P:i is {p, q}, and {p < q, q < p} is a sup­

port order on this model. How~ver, the explanation 'p is true because q is 

true arid q is true beca.use p is true', is not a meaningful explanation for the 

fact that p is true. 

Example 3.6 Consider program P4 consisting of the clauses p{a:) <- p(s(:r:)) 

and One of the models of P4 is {p(s'(O)) ! i ~ 0}, and the partial 
< p(si+1(0)) i;:;:: O} is a support order on this model. How-

ever, any for the fact that p(O) is true in M4 , would be infinite. 
This see.o:i.s to be rather counterintuitive. 

Models for which every support order contains these cyclic or infinite expla­

nations, should not be considered as giving a correct meaning to a program. 
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This ca.n be achieved by using the fact that a support order is well-founded 
if and only if it doesn't contain cyclic or infinite explanations. Now, we can 
give the definition of well-supported models. 

Definition 3.7 Let P be a program, and let M be a model of P. Mis a 
well-supported model of P, if there exists a well-founded support order on 
M. o 

Example 3.8 Consider the program P1 (example 2.2). The interpreta­
tions {p(a), ...,p(b), --..q(a), -iq(b)} and {p(a), -.p(b), -iq(a), -.q(b)} are well­
supported models of P1• 

Another characterization of the meaning of a program is given by the 
definition of stable models. In the two-valued case, this definition uses the 
fact that the meaning of positive logic programs (in which the bodies of 
the clauses contain only positive literals) is well understood; it is given by 
the unique two-valued minimal model of the program. This definition of 
stable models has been generalized by T. Przymusinski to three-valued stable 
models {Prz90]. In this definition, he uses the notion of (three-valued) truth­
minimal models, and a program transformation. 

Definition 3.9 Let P be a positive program and let M be a model of P. 
Mis a truth-minimal model of P, if there does not exist a model M' (other 
than M) of P such that M 1+ ~ M+ and M'- ~ M-. D 

Definition 3.10 Let P be a program and let I be an interpretation of P. 
The program If is obtained from P by replacing every negative literal L in 
the body of a clause in P that is true (resp. false; resp. unknown) in I by 
the proposition t (resp. f; resp. u). D 

Now, we are able to give the definition of a stable model. 

Definition 3.11 Let P be a program and let M be an interpretation of P. 
Mis a stable model of P, if Mia a truth·minimal model of ff. D 

Example 3.12 Consider the program P1 (example 2.2), and the model 
{p(a), -ip(b), -iq(a), -.q(b)} of P1 . Mis a stable model of Pi. because it is a 
truth-minimalmodeloftheprogram tf- = {p(a) +-- t, p(b) +-- f, q(b) +- q(b)}. 

The following lemma shows that the class of stable models coincides with 
a subclass of the well-supported models. This lemma is an generalization of 
the lemma by F. Fages [Fag91], which proves that two-valued stable models 
and two-valued well-supported models coincide. The proof we give, closely 
follows the proof given by F. Fages. First, we have to introduce the notion 
of (greatest) unfounded set. 
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Definition 3.13 Let P be a program and let I be an interpretation of P. 
Let S be a subset of 8 p - J±. Sis an unfounded set of I, if all clauses R in P 
such that concl(R) E S are inapplicable in I U -.S. The greatest unfounded 
set Up(l) of I is the union of all unfounded sets of I. D 

Lemma 3.14 (Equivalence) Let P be a program and let M be an inter­
pretation of P. M is a stable model of P iff M is a well-supported model of 
P such that Up(M) = 0. 

Proof (sketch): 
( =>) Let M be a stable model of P. We can find M+ by applying the 
immediate consequence operator on :£?. Using this operator, we can define 
an order on M+. This order is a well-founded support order. Therefore, M 
is a well-supported model of P. 
(-<==)Let M be a well-supported model of P such that Up(M) is empty. Mis 
a model of P and therefore Mis a model of££. Now, by the fact that Mis a 
well-supported model of P, there does not exists a model M1 of ft such that 
M 1+ CM+ and M'- ;2 M-, and by the fact that Up(M) is empty, there 
does not exists a model M' of fl such that M'+ \;;; M+ and M'- :::i M-. 
Therefore, there does not exists a model M' of if such that M 1+ ~ M+ and 
M 1- 2 M-. Thus M is a stable model of P. D 

4 The operator S p 

In this section, we define the operator Sp. This operator is inspired on the 
operator Jt of Fages, but there are some major differences. 

The idea is, to generate all total stable models of a program, by starting 
from the empty interpretation. At each step, we try to extend an interpre­
tation I to a new interpretation I', that brings us "nearer" to a total stable 
model. For this, we use the following strategies: 

1. If there exists a clause R that is applicable in I and concl(R) is not an 
element of I, then we add concl(R) to I (after all, we are looking for 
a model). 

2. If there exists an atom A such that all clauses R that have A as con­
clusion, are inapplicable in I, and -iA is not an element of I, then we 
add •A to I (after all, we are working towards a total interpretation). 

3. If the previous two strategies fail, we can do little more that blindly se­
lect an atom from Bp - 1±, and add it, or its negation, to I. However, 
in contrast with the two previous strategies, this strategy is flawed, in 
the sense that, even when I is a subset of some stable model, I' is not 
guaranteed to be a subset of a stable model. In fact, continuing the 
procedure with I' can lead to an inconsistent interpretation. 
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4. If I is inconsistent, then we should try to find a consistent interpreta­
tion I'. However, we don't want to throw away I completely. We know 
that the inconsistency was caused by some literal chosen by strategy 
3. We will maintain "possible reasons for inconsistency" with our in­
terpretation, in order to identify a literal in I that could be the reason 
for the inconsistency, and find a new consistent interpretation JI by 
removing from I all literals that were added to the interpretation due 
to the presence of this literal. 

Note, that with all four strategies one could have more than one way to 
generate the next interpretation. For example, if there are two reasons for 
the inconsistency of an interpretation, there are two possibilities for resolving 
that inconsistency. As a result, our operator will be non-deterministic. 

We have to maintain "reasons for inconsistency" with our interpreta­
tion. Moreover, we will maintain a support order with our interpretation, 
to help us prove various properties. This leads to the following definition of 
j-interpretations. 

Definition 4.1 A j-triple, is a triple (L, T, 'lf;), such that L is an element 
of Lp, and T and t/; are subsets of C.p. A j-interpretation J of P is a set 
of j-triples such that for every literal in C.p, J contains at most one j-triple 
with that literal as the first element. We call T the sv.pport-set of L and 'I/; 
the culprit-set of L. For a set S of j-triples, we will use ?J to denote the set 
oflitera.ls {LI {L,r,'lj;) ES}. o 

Note, that our support-set differs from the justification in a justified atom 
of Pages, because it can be infinite, and it is defined on literals instead of 
atoms. Moreover, our support-set is intended to contain a set of premises for 
a positive literal, and a. set of elements of blocking-sets for negative literals, 
whereas the justifications of Fages contain a complete explanation for the 
fact that an atom is true. Using the support-sets in a j-interpretation J, we 
can define a partial order on the literals in J. 

Definition 4.2 Let J be a j-interpreta.tion. We define <J to be the partial 
order such that A' <J A iff (A, T, 'I/JI E J and A' Er+ (note, that A is a 
positive literal). D 

In the interpretations on which Sp will operate, the culprit-set will contain 
the "possible reasons for inconsistency" and the partial order <J will be a 
support order on J. 

In the definition of the operator Sp, we will use the conflict-set, choice-set 
and culprit-set of a j-interpretation J. The conflict-set of a j-interpretation 
J contains j-triples for every literal L for which there are one or more reasons 
for adding them to J, according to strategies 1 and 2. 

Definition 4.3 Let P be a program and let J be a j-interpretation of P. 
The conflict-set Conflictp(J) of J is the set of j-triples (L, -r, 'If;} such that 
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• L rt J, 

• if L = A, then there exists a clause R in P with conclusion A that is 
applicable in J such that r = prem(R), 

• if L = -iA, then every clause R in P with conclusion A is inapplicable 
in J, and for every clause R in P with conclusion A exists a literal L R in 
the blocking-set of R in J such that r = { L R I R E P /\ concl ( R) = A}, 
and 

• 7Ji = U{ '!/>' J { 11, r', 'if;') E J /\ L' E r}. 
0 

For aj-triple {L, 7, 7Ji) in Gonflictp(J), 7 contains the reason for adding L to 
J, and 1/J contains all literals that could be the cause of L being an element 
of Gonjlictp(J), while..,£ is an element of J. 

The choice-set of J contains j-triples that could be added to J on behalf 
of strategy 3. The support-sets and choice-sets of these j-triples reflect the 
fact that there is no real support for adding these literals to J. 

Definition 4.4 Let P be a, program and let J be a j-interpretation of P. 
The choice-set Ghoicep(J) of P is the set 

{{L, 0, {L}) I LE ..,(f3p - Y)} 
0 

The culprit-set of an inconsistent j-interpretation J, is the set of all "possible 
reasons for inconsistency"; that is, the set of literal that are common to the 
culprit-sets of all literals Lin J whose negation -,£ is also an element of]. 

Definition 4.5 Let P be a program and let J be a j-interpretation of P. 
The culprit-set Oulpritp( J) of J is the set 

n{'r,/JU7Ji' I (A,7,7/J) E J /\ \..,A,r1,7ji') E J} 

0 

Note, that if J is consistent then Oulpritp(J) = 0. We are now capable of 
defining our operator Sp. 

Definition 4.6 For a general logic program P, we define the operator Sp 
as follows: 

{ 
J-{(L,r,1/J)IP1Ei/l} 

S (J) = JU{p2} 
p Ju {p3} 

J 
where P1 E Gulpritp(J) 

P2 E Gonf lictp( J) 
p3 E Ohoicep(J) 

, if Culpritp( J) I- 0 
, if Oonf lictp(J) I- 0 
, if Ohoicep(J) # 0 
, otherwise 

0 
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Note, that in this definition the order of the conditions is relevant (i.e. a rule 
is only applied if its condition is satisfied and the conditions of all previous 
rules failed). 

The operator as we defined it, is non-deterministic, in the sense that it 
non-deterministically chooses an element (p1, p2 or Pa) from a set of can­
didates. Because we want to manipulate this non-deterministic behaviour, 
we extend the operator with a selection strategy, that encapsulates this non­
deterministic behaviour of Sp. 

Definition 4. 7 Let P be a program. A selection strategy p for P is a non­
deterministic function that, for a j-interpretation J of P, chooses Pl among 
Culpritp(J), pz among Oonf lictp(J) and Pa among Choicep(J). D 

Note, that p can be deterministic if we consider more information. For 
instance, we could use a selection strategy that bases its choices for some 
j-interpretation J on the way in which J was generated (i.e. previous appli­
cations of Sp). We will use the notation 8~ to indicate that we are using 
the operator on a program P with a selection strategy p for P. 

As said before, we want to find a stable model for P by starting from the 
empty interpretation. In order to do this, we have to define the (ordinal) 
powers of Sj,. 

Definition 4.8 Let P be a program and let p be a selection strategy for P. 
Let S~ be the operator as defined. we define the powers of S~ inductively: 

{
0 ,ifa=O 

Sj, i"'= Sj,(Sj, i"'-1) , if a is a successor ordinal 
U.a<a n13s'l'<"' s~ F , if a is a limit ordinal 

CJ 

The definition for zero and successor ordinals are quite standard. The defi­
nition for limit ordinal is the same as the one used by Pages; it states that 
at a limit ordinal a, we retain only the j-triplea that where persistent in the 
preceding sequence of j-interpretations; that is, for every j-triple in Sj, i'", 
there exists an ordinal (3 smaller that a, such that, for all 'Y E (,8 •• o), this 
j-triple is an element of s~ F. 

Using the powers of Sj,, we define the following infinite sequence of j­
interpret ations. 

Definition 4.9 Let P be a program and let p be a selection strategy for 
P. The ~equence for P and p is the infinite sequence of j-interpretations 
rt= Jo, ... , J,,,, .. ., where J"' = Sj, j"', for all ordinals a. o 

We will now work towards a proof of the fact that certain fixpoints of 
Sp are stable models of P. First, we have to prove that the application of 
Sp on a j-interpretation results in a j-interpretation, and that every element 
of a sequence is a j·interpretation. 



Lemma 4.10 Eet P IJ.e a 
.i i.s a )-interpreti'i.tion, then 

P, If 

Th11: of this lemma follow:.1 from !be definition of Sp :md is 
therefore omitted, 

be a sequence 
of P. 

a progn:im P. element J<>. of 

The of this lemma is inductioo on a:, and 
We will now prove that for every J°' in a sequence rt, 

the partial order < J~ is a support order and a weH-foundt'li order. 

Theorem 4.12 (Supportedness) Let 
Far et'trjf J0 in rp, the order <Ja 

l;e a s eq11.ence .:i 

11 ,wpport order on 

Proof (sketch.): The uses induction on o:. If a is a successor 

P. 

then we construct a support order <J.,, us.ing the support order < J.,_ 1 • If a 
is a limit we use the fact that for al.I f3 smaller than a: a support order 
<J$ exists, the fact that every J-literal in J" was persistent in the preceding 
s;e.quence of j-interpretations, and the fa.et that if a j-tripie (L, r, lfl) is a.n 
elen1ent then for all L' E r there exists a j-triplc {L1, r1, 1;11) in J°'. O 

Theorem 4.13 (WeU-Foundedness) Let rt be a sequence for a program 
P. For et•ery in rp, the order<;,,. is well-founded. 

Proof: Suppose that <;., is not well-founded. Then, there exists an infinite 

u"'·""'""~'"I<. chain ... <J@ .ih <Jn Ai <;., Because A, E J!, there exists 
a least ordinal A such that {3; ~ o: and for some Ti and for all 'Y E [,8; .. a], 

r,, E J"'. Also, because E J!, there exists a least ordinal /3i-1 

such that .Bi-l :s; a: and for some r;-i and tP>-li for all 'YE [,8,_1 .. aij, we 
have that {A,_1 , r,-i, !J';-1) E J7 . Furthermore, we have that A.; <;. Ai-i, 

which implies that A; E r,_ 1, and therefore (3; < 13,_ 1. As a. result, we have 
that ... < ~ < {31 < 80 is an infinite decreasing cha.in. But the < order on 
ordinals is well-founded. Thus, the assumption that.<;,, is not well-founded 
is in contradiction with the fact that the < order on ordinals is well-founded. 
Therefore, we can conclude that <;_,, is well-founded. O 

We will now show that all fixpoints of Sp that appear in sequences are 
consistent. 

Lemma 4.14 Let rt be a sequence jor G program P. Let Jo. be an element 
of r/,. If] 0 iJ inconsistent, then J c.+1 is consistent. 

Proof (sketch): The actual proof is rather long, because it involves proving 
two auxiliary lemmas. Therefore, we will do with a. short sketch of the proof. 
If some is inconsistent, then there exists exactly one A such that both 
A. a.nd -.A are eleme!lts of J0 • By the definition of Sp, we have that J"'+l 
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is consistent if Gulpritp(J) is non-empty. This is true if one of the culprit­
sets of A and •A is non-empty. We then sb.ow that the incollSistency of Ja 
implies that at least one of the two culprit-sets is non-empty. o 

Theorem 4.15 (Fixpoint Consistency) Let rp be a sequence for a pro· 
gram P. Let la be an element of rp. If J,.. is a fixpoint of Sp, then JOI is 
consistent. 

Proof: Suppose la. is inconsistent. Then, by lemma 4.14, 10+1 is consis­
tent. But then JOI#; lo:+l· This is in contradiction with the fact that J,,, is 
a fixpoint of Sp. o 

5 Total stable models as limit fixpoint of Sp 

We will now take a look at the fixpoints of Sp that appear in the sequence 
of P (we will call them limit fixpoints), and prove that they are the total 
stable models of P. First, we have to define the class of sequences that will 
contain a. fixpoint: stabilizing sequences. 

Definition 5.1 A sequence I'/ is stabilizing, if there exists an ordinal o, 
such that, for all ordinaJ.s {3 greater than o, Jex= 1(3. The closure ordinal 
of r; is the least ordinal o, such that, for all ordinals {3 greater than a, 
J,.. = Jfl. D 

Definition 5.2 Let P be a program. A j-interpretation J is a limit fixpoint 
of Sp, if there exists a selection strategy p for P, such that the sequencer; 
is stabilizing and J = Ja., where a is the closure ordinal of I'p. D 

Theorem 5.3 Let P be a program. If J is a limit fixpoint of Sp, then J is 
a total stable model of P. 

Proof: J is a limit fixpoint of Sp. Therefore, there exists a selection strategy 
p such that rt is stabilizing and J =Ja, where Q is the limit ordinal of 
I'p. By the Fixpoint Consistency Theorem (4.15), J°' is consistent. By 
the construction of Sp and the fact that Ja= la+1, J"' is a total model of 
P. Also, by the Supportedness Theorem (4.12) and the Well-Foundedness 
Theorem (4.13), <i .. is a. well-founded support order for J"'. Therefore, ] 
is a total well-supported model of P. Because J is total, Up(]) is empty. 
From the Equivalence Lemma (3.14), we conclude that J is a total stable 
model of P. D 

So, the limit fixpoints of Spare total stable models of P. We will now 
show the converse: every total stable model is a limit fixpoint of Sp. We 
define, for every stable model M of P, a class of selection strategies p such 
that M is contained in I'p. 
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Definition 5.4 Let P be a program and let M be a stable model of P. 

A selection strategy for M is a selection strategy that, for all J such that 

Jc M, selects a j-triple (£, r, 1/;) from Conflictp(J) or Ghoicep(J) such 

that LEM. D 

Lemma 5.5 Let P be a program and let M be a stable model of P. Then, 

there exists a selection strategy p for M and for some J0 in rp, M = J or.· 

Proof (sketch): We first prove by inspection of the definition of Sp that, 

for an arbitrary stable model M of P and an arbitrary j-interpretation J 

of P such that J C M, there exists a selection strategy p for P such that 

Sf,(J) i;;; M. From this we can conclude that there exists a selection strategy 

p for M. We then proceed by proving by induction on a that if a is the least 

ordinal such that, for J" Erp, J,, rt. M, then J,, = M. D 

Theorem 5.6 (Characterization) Let P be a program. The limit fix­

points of Sp, coincide with the total stable models of P. 

Proof: We have from theorem 5.3 that all limit fix.points of Sp contain 

stable models of P. Also, by lemma 5.5, there exists for every (total) stable 

model M of P a selection strategy p such that M is contained in an element 

of rp. Because Mis total, it follows that Mis a limit fixpoint of Sp. D 

6 A characterization of stable models, using Sp 

In this section, we characterize the stable models of a program P, using our 

operator Sp. As we have seen, the total stable models coincide with the limit 

fixpoints of Sp. This means that we cannot characterize the set of all three­

valued stable models as a set of fixpoints of Sp. Instead, we identify the set 

of stable models of a program with some set of j-interpretations appearing 

in the sequences for that program. 

Lemma 6.1 Let P be a program and let M be an interpretation of P. M 

is a stable model of P iff there exists a j-interpretation J in a sequence for 

P, such that M = J, J is consistent, Conflictp(J) = 0 and Up(J) = 0. 

Proof (sketch): 
( ~) Let J be an element of a sequence for P such that J is consistent, 

Gonflictp(J) = 0 and Up(J) = 0. By the Supportedness Theorem (4.12) 

and the Well-Foundedness Theorem ( 4.13), J is a well-supported interpreta­

tion of P. Also, we know that J is consistent and that Up(J) == 0. Because 

Conflictp(J) = 0, we know that J is a model of P. Finally, by the Equiva­

lence Lemma (3.14), J is a stable model of P. 
(=*)Let M be a stable model of P. By lemma 5.5, there exists a strategy 

p such that there exists an element J of rt where M = J. Clearly, M 

is consistent. So, we only have to prove that Conflictp(J) = 0 and that 
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Up(])= 0. The proofs of Conflictp(J) = 0 and Up(J) = 0 are both based 
on the fact that M is a. truth-minimal model of :;(?-. D 

7 Relating the flxpoint of the Fitting operator to 
the sequences for P 

In the operator Sp, we have a preference for using elements of Oonflictp to 
extend an interpretation. Tlie definition of Gonf lictp bares resemblance to 
the sets Tp and Fp used by the Fitting operator [Fit85]. We can identify 
the least fixpoint of the Fitting operator it>p with a special }interpretation 
that appears in every sequence for P (in fact, it is the last element of the 
maximal prefix shared by all sequences for P). First, we give a definition of 
the Fitting operator. 

Definition 7.1 Let P be a program. The Fitting operator \lip is defined as 
follows: 

\I>p(l) = T'p(J) U Fp(I) 
where Tp(l) ={A I 3Repconcl(R) =A/\ prem(R) ~I} 

Fp(I) = { -iA I '<IRePconcl(R) =A-+ -,prem(R) n I ::ft 0} 

0 

The pow~rs of the Fitting operator can be defined in the same way as we 
did for Sp. Although the definition of Fitting differs in the case of limit 
ordinals, we can safely use our definition, because it> p is monotone, and for 
monotone operators both definitions coincide. 

Lemma 7.2 Let fp be a sequence for a program P. Let Cl! be the least ordinal 
such that Gonflictp(Ja) = 0. Then, J°' is the least fixpoint of the Fitting 
operator \I> p. 

Proof: Let M be the least fixpoint of <l>p. We have that M =\I> j? (0), 
where </> is the closure ordinal of 4ip. We will prove that J.,, ~ M and 
Ja. 2 M. 

1. We will prove by induction on {3 that if f3 $ a then Jr; ~ M. For 
Jo = 0, the lemma holds trivially. Assume that for all I < {3 :$. a, 
Jr~M. 

If f3 is a successor ordinal, we have that Jf3 = 113_1 U { {L, r, 'If;)}. By 
induction hypothesis, we have that Jf3-l ~ M. Also, by the defini­
tion of Oonflictp(J) and if)p, we have that Gonflictp(Jp-1) ~ M. 
Therefore, Jµ ~ M. 

If (3 is a limit ordinal, we have, because {3 $ o, that Jp = Ur<.B Jr. By 
induction hypothesis, we have that Jr ~ M, for all 'Y < {3. Therefore, 
Jp ~ M. 
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2. We have to prove that Ja 2 M. It is enough to prove that L rf. Ja 
implies that L r/. M. Suppose L r/. Ja. There a.re two case.a: 

• Lis p08itive. 

By definition of Sp and the fa.et that Con/lictp(J0 } = 8, we know 
that all cla.uses with conclusion Lare not a.pplicable in J.,.. There­
fore, by the definition of \Tip, L r/. Tp(M}. AB a result, 11re have 
that L rt. M, bees.use M = fl\p(M) ;;;;! Tp(M). 

• L is negative. 

By definition of Sp and the fa.et that Con/lictp(J0 ) = 0, we know 
that there exists a. clause R in P with conclusion -.L such that 
-,prem(R)nJ"' =0. By this and the definition of ~P we have 
that L r/. Fp(M), and therefore L r/. M. 

0 

8 Finding the Well-Founded Model using Sp 

Although the well-founded model, as introduced in [GRS91), is a. stable 
model, and therefore can be found using the results in section 6, we wa.nt 
to give special consideration to this model, because it is one of the most 
interesting stable models (together with the total stable models). In this 
section, we vill show that the well-founded model of a program ca.o. be found 
using a special class of selection strategies, the well-founded 8trategie8. First, 
we will give a definition of the well-founded model (for a proper definition, 
we refer to [GRS91]). 

Definition 8.1 Let P be a program. The well-founded model of P is the 
smallest stable model of P (with respect to the knowledge ordering). a 

Now, we introduce the class of well-founded strategies. 

Definition 8.2 Let P be a program. A selection strategy p for P is a 
well-founded strategy, if, for all J such tha.t p has to select a.n element of 
Choicep(J) and Up(J) :f: 0, p selects a.n element of Up(J). O 

Lemma 8.3 Let rt be the sequence for a progro.m P o.nd a well-founded 
selection strategy for P. Let Q be the lea.at ordinal such that J"' is a stabte 
model of P. Then J"' is the well-founded model of P. 

Proof: Let M be the well-founded model for P. We have to prove tha.t 
every well-founded strategy is a selection strategy for M. Let J be a. } 
interpretation such that Jc M. Clearly, J is consistent. If Gon/lictp(J) 
is non-empty, we ca.n select an arbitrary element from Conflictp(J). (See 
lemma 5.5). So, suppose that Gonf lictp( J) is empty. Then, because Jc M, 
Conflictp(J) has to be non-empty. Clearly, Up(])~ Conflietp(J). So, to 
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prove tha.t every well-founded strategy is a selection strategy for M, we have 
to prove tha.t Up(J) is non-empty. Now, suppose that Up(J is empty. Then, 
J is smaller than M in the truth-ordering and J is a stable model of P. But 
this is in contradiction with the fact that Mis the well-founded model of P. 
0 

9 On the complexity of Sp 

The fact that we can generate all stable models as limits of sequences of 
interpretations, does not mean that we are in general capable of finding 
them in finite time. M. Fitting has already shown in [Fit85] that the closure 
ordinal of his operator 4>p could be as high as Church-Kleene w1, the first 
nonrecursive ordinal. Because our opera.tor in some sense 'encapsulates' 
the Fitting operator, we cannot hope to do better with our operator. It 
would be interesting to define classes of programs whose stable models can 
be generated in an "acceptable" amount of time. 

The first class of programs that comes to mind, is the class of programs 
P whose Herbrand Base Bp is finite. The following result is similar to the 
results obtained in [Fag91] a.nd [SZ90]. First, we have to define a class of 
selection strategies whose sequences are guaranteed to be stabilizing. 

Definition 9.1 Let P be a program and let p be a selection strategy for P. 
We call p fair if, for all ordinals Cl! and all ordinals f3 smaller than a, J<:J. = Jp 
implies that the selection made by p for Ja differs from the selection made 
by p for Jp. D 

Lemma 9.2 Let P be a program. If p is a fair strategy for P, then the 
sequence rt is stabilizing. 

Proof: Suppose there exists a fair strategy p such that rt is not stabilizing. 
Then, we have that, for all ordinals a, Ja-:/: Jo.+l· Because J°' is defined 
for all ordinals a, there exists at least one j-interpreta.tion J, such that for 
any ordinal a:, there exists an ordinal f3 such that f3 >a and Jp = J. This 
j-interpretation J has a set C associated with it, from which p makes a. 
selection (0 is one of Culpritp(J), Conflictp(J) and Ohoicep(J)). This 
set G is non-empty, because otherwise we would have that J = St(J), and 
is countable (but possibly infinite), because Bp is countable. Because p is 
fair, we have that for any two j-interpretations J .. and Jp in r;, such tha.t 
Ja = Jp and a¥: /3, the element selected by p for la differs from the element 
selected by p for Jp. Therefore, there exists an ordinal 'Y after which every 
element of G has been selected once for J. But we know that there exists 
an ordinal o such that 6 > i and J = J6. At that point, p cannot make a 
fair selection. This is in contradiction with the fact that p is a fair selection 
rule. Therefore, if p is fair then r/, is stabilizing. D 
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Lemma 9.3 Let P be a program with a finite Herbrand base Bp. Let p be 
a fair strategy for P. The closure ordinal of the sequence rt is finite. 

Proof: First, note that by lemma 9.2 rfl is stabilizing, and that therefore it 
has a closure ordinal. Because Bp is finite, the number of j-interpretations 
is finite. Furthermore, for any j-interpretation J, the sets Conflictp( J), 
G hoicep( J) and Oulpritp( J) are finite. Because of this and the fact that p 
is fair, any j-interpretation J that is not the limit fixpoint of rt will occur 
only finitely many times in r;. As a result, we have that the closure ordinal 
of rt is finite. D 

Note, that this result is not very surprising. If Bp is finite, the set of inter­
pretations for P is finite, which means that one can simply enumerate the 
set of all interpretations of P and test which of them a.re stable models of 
P. Thus, any operator should be capable of finding a solution in finite time 
in this case. 

There remains the question of what is the best method for finding stable 
models of programs in the case of finite Herbrand Bases; genera.ting and 
testing all consistent interpretations of a program or using Sp with some 
carefully chosen family of selection strategies. We have good hope, that the 
second option will, in general, perform better than the first option. First 
of all, by inducing some order on the atoms in the Herbrand Base of a 
program, like Sacca and Zaniolo did with their backtracking operator in 
(SZ90], we can restrict ourselves to a family of 'ordered' selection strategies, 
in which the redundancy in partial interpretations being considered is greatly 
reduced (though not eliminated completely). Moreover, although in general 
the number of well-supported partial interpretations of a program. ca.n be 
greater than the number of consistent total interpretations of a program, 
we think that in the typical case the number of well-founded interpretations 
taken into consideration by Sp when using a family of ordered selection 
strategies will be much smaller. To reinforce this claim, we will have to 
take a closer look at these ordered selection strategies and implement the 
operator to experiment with it. 

10 Conclusion 

In this paper, we have presented an operator that generates sequences of 
interpretations. We have shown that the limits of these sequences are exactly 
all total stable models of a general logic program. Moreover, the set of all 
stable models can be identified as a subset of the interpretations generated 
by the operator. Furthermore, we have shown that the least fixpoint of the 
Fitting operator appears in all sequences generated by our operator, and 
that we can find the well-founded model, using a class of special selection 
strategies. 
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It would be interesting to find classes of selection strategies that can be 
implemented efficiently, are complete (i.e. are capable of finding all (total) 
stable models), and have small closure ordinals. The class of ordered strate­
gies seems to be a good candidate, and it might be possible that we are 
capable of restricting this class further. 
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