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Existentially-mute theories and existence under assumptions.

0.1 Synopsis. The notion of J-mute theories is a generalization of Kleene's
[62] stroke relation, i.e. - the single - axiom theory {C} (where C is a

closed fla) is J-mute exactly when CIC. We show that the property
T bdxAx == In T L Au

(provability in int. arith.; JxAx closed, n a numeral) holds exactly when
T is d-mute.

As a simple application of the method of proof we obtain the result
(already proved by Smorynski [71]) that classical arithmetic is not an ex-—
tension of bounded complexity of intuitionistic arithmetic.

Next we relate the notion of d-mute theories to Kleene's stroke rela-
tion, and we exhibit some simple structural properties of d-mute theories.

Finally we deal with theories which may replace intuitionistic arith-
metic in the treatment above. We call these "J-stable theories". We show

that any extension of int. arith. with an "3-valid" rule is d-stable, where a

{4},
B

rule is 4-valid if for every d-mute theory T

{T}-Ai}i==>T}—B

Among the 3-valid rules we find the uniform reflection principle, but not
Markov scheme.

Our main results are only a slight generalization of theorems of
Scarpellini [72]. New are only the presentation in a system of natural de-

duction, and some peripherial material.

0.2. Preliminary conventions and notations. We use throughout Gentzen's

natural deduction system for intuitionistic arithmetic, and the notions and
results of the metatheory developped by Prawitz ([651,[70]1) for it.

We restrict our attention to the disjunction-free part of intuitionis-
tic arithmetic, since the J-quantifier is intuitionistically definable in

this fragment (for details vid. Leivant [73]). But we still write A v B as



a shorthand for
Ix{[x = 0> A & [x = 1~ BJ} .

We use o, O B etc. as meta-parameters for sets of flas.

0’
b, ¥ etc. are meta-parameters for functionals, i.e. - functions whose

domain and range will be defined every time explicitly. We say that ¢ is

p.r. when the arithmetical function
¢ :x e'%i' is p.r. ,
%' being the Gddel-number of the object x.

SZfis the set of strictly-positive subformulas of the formula A, and
+
s*o U st
o A

Aea

If n is a natural rnumber, then n denotes the numeral n, i.e. -

A, B etc. denote occurrences of the flas A, B... .
IA denotes intuitionistic (Heyting's) arithmetic,

CA - classical (Peano's) arithmetic.

1. Existentially-mute theories.

1.1. Definitions.

Let o be a set of closed (and disjunction free) flas of (first-order)
arithmetic, and let ¢ be a functioned from derivations to natural numbers.
We define a set of flas S¢ g_SH.as follows:
(i J)Aea==pes? ’ :
(ij ) A& Bes?® —s a,B¢ sz
(iij) A>Besd =5 s
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(iv) VxAx € s? = AR e Si for every natural number n.
(v ) dxAx € 5, end T is a derivation for o | dxAx, then A(¢l) € Sz.

{(vi) Only flas which can be shown to be in Sz by clauses (i)-(v) are in Sz.

Let ¢ be a functional from derivations to derivations. We say that y

is & confirmation functioned of ¢/a, if whenever

dxAx ¢ Sz and 1 is a derivation for o | IxAx,

then Il is a derivation for o k A(¢ll). ¢ is a choice-functional for a if

there is a confirmation functional of ¢/a.

If there is a choice functional for o we say that o is J-mute, and if

not - that a is essentially-existential.

1.2. Theorem: Let o be J-mute, JdxAx closed.

o F3IxAx == Jn o An .

More precisely: Let ¢ be a choice-~functional for o, and y a confirma-

tion functional for ¢. If I is a derivation for o + JxAx then we can find,

primitive-recursively in ¢, a number n, and primitive-recursively in ¢ - a
derivation I" for a FAR.

The proof occupies the rest of this section.
1.2.1 Let us say that an occurrence 3xF in a derivation II is a-critical if
(i) 3xF is a closed fla.
(1j) 3xF is the major premise of an instance of 3E.

(1iij) 3xF depends in 0 only on flas in a.
1.2.2. Lemma: Let a,$,) be as in the theorem. Every derivation I for o Fa
is transformeble (by instructions that are p.r. in y) to a derivation I

of the form

n° = {Fi} i < n for a }’A



Lo

s.t. (i)]’I1 is normal and without redundant parameters (n.w.r.p. for
short);

L. . 1
(ij) there is no a-critical occurrence 1n Il 3

(iij) F, « SZ } Cen
(iv) zi € range y

Proof of the lemma: by induction on the complexity of derivations, i.e. -

by cases of inference-rules. The only non-trivial case is an instance of

3E where the major premise is a-critical, i.e. -

A. r.
1 J
a {Gi} o {Hj} [Aa]
A1 T1(a)
e FxhAx B IE
B

with conditions (i)-(iv) on the main subderivations, by ind. ass..

o {G.}
i

A1

IxAx

The part of Z

being normal, every main branch o of A1 has only an elimination-part. 3IxAx
is critical, therefore closed, so IxAx is & strictly-positive subformula of
the top-formula C of o, which belongs to au {Gi} 5_82.

Furthermore, no existential fla other than dxAx may occur in o, because
such an occurrence would necessarily be closed, and would be the major
premise of an instance of 9E, and hence a-critical, contradicting the ind.
ass.. SO IxAx is not a s.p. subformula of any s.p. existential subformula of
C, and therefore JxAx € Si (disregarding the definition of ¢).

Define now

Pj Vi
21 = Df « {Hj} [A(¢a)]
rlen)

B



which obviously possess the desired properties.

1.2.3 Proof of the theorem.

Let the Il of the theorem be given, and let

=

¢

be obtained from I by the lemma.

Case 1: The last inference of I is an introduction, %§K§ say. Since n° is
n.w.r.p. t must be free of parameters, and therefore it represents a numer-

al. Take

Case 2: The last inference of I is an elimination. Repeat the main argument

in the proof of the lemma to conclude that 3JxAx ¢ Si, and take

Case 3: The last inference is an instance of the A-rule - trivial.
* . . . - .
In any case, I is a derivation for a I An for some n, and cbviously

satisfies the desired properties.

1.3. Examples of j-mute theories.

. +
1.3.1 Assume that for every dxAx € Sa we have

(*) o F9xAx == a I An for some n.
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Then o is trivially 3-mute. Theorem 1.2. was proved for this case, which is

certainly the most useful, by Scarpellini [T2].

Note, however, that in general we have here redundant information about o,
o + ¢ +

and that Su 1s a smaller set than Su. If dxAx € Sa’ then An € Su for every

n and in any case, while An € Sz only if there is a derivation II for

o %3xAx, and only for n=¢Il. After we know th. 1.2, (%) holds for every

J-mute o, of course.

1.3.2. The set of all classically-true flas is J-mute. The set of classically

provable flag is not.

+ . .. . .
1.3.3. Every theory o s.t. Su is free of disjunction and 4 is dJ-mute. E.g.-

extend int. arith. with the scheme
Vx—~"A > ~~V¥xA .

1.3.4. If every A € a is classically true, and for every IxAx € Sz'and eve-
ry n An is decidable, then o is J-mute. For then, if o | 3IxAx for IxAx e s:'
then JxAx is true, hence for some n An is true. An is decidable, therefore
}-an.

This is in particular the case if for every dxA € S:.A is quantifier-
free, e.g. - if o consists of almost-negative classically-true formulas. o

may thus be taken to be the set of all instances of the (p.r.) Markov scheme
“VxAx - dx - Ax (A q.f.).

Also, o may contaln true assertions of realizability, i.e. - flas of the
form.n.x A where n classically-realizes A, because these flas are equiva-
lent in intuitionistic arithmetic to almost negative flas (vid. Troelstra

[70] 3.7).

1.3.5. Remark: Note that the condition A € o« ==> A classically true in

example 1.3.4. may not be dropped. Take as an example o = {~G,M}



where

G = ¥x = Prov(x,"G") (GSdel's fla)
and M is an instance of Markov scheme:

M = ¥x-Prov(x,"G™) > Ix-+Prov(x,"G7).

M is classically true, 7'G is not, and both are almost-negative.

o is not J-mute:
a F3IxvProv(x, G")
hence, Prov(x,"G™) being p.r.,
o F dxProv(x,”G7) .
If o is 4-mute, then
o bk Prov(n,"G¢") for some n.
But G is unprovable, so
a Fo=1
or M G
and hence, classically, F G,contradicting the famous underivability of G.

2. A simple application of the method:

Classical arithmetic is not an extension of bounded quantifier—complexity

of intuitionistic arithmetic.

As a corollary of the hierarchy theorem (see Rogers [67] §1L4.7.X), and



also as a particular case of Kreisel-Lévy [68] th.L, we have

2.1 Lemma: Given n, there is a close formula F which is undecidable from

true formulas of qu.-—complexity <n.

2.2. Theorem (Smorynski [71]): Classical arith. (CA) is not an extension of

bounded complexity of intuitionistic arith. (TA).

Proof: Suppose T is a set of true flas of qu.-complexity <n,

s.t{*) CA>TIA + 1. Let F be given by the lemma. By (%), there is a deriva-
tion A (in Gentzen's system of natural deduction for IA), which we may
assume to be normal and without redundant parameters (in the sense of

Prawitz [70]), for
T FTAFn \% ““Fn .

(1) If the last inference in A is an instance of the A-rule, then we get
trivially T F‘Fn, contradicting the choice of Fn.
(2) If the last inference is an introduction, then t decides Fn’ contradic-
tion again.
(3) The last inference is not an instance of induction, because A is normal,
and Fn close. |
(4) If the last inference is an elimination, let ¢ be a main path in A. o
is then composed of elimination-steps only, and Fn V"IFn is a subformula
of the top-formula A of o. Necessarily then, the qu.—comp. of A > n.

A cannot be the conclusion of an instance of induction, because A is
n.w.r.p. So A € 1, contradicting the assumption that t is of qu. com. <n.

Thus we get a contradiction from (*).
2.3. Remark: Smorynski has proved a more general result: he showed that
CA#IA+T

for every consistent 1 of bounded complexity (not necessarily composed of



true formulas only).

3. Connection with Kleene's stroke-relation.

3.1. Let A be a closed fla. By th. 1.2 {A} is J-mute iff for every closed
4xCx

A F3xCx == In Al Cn .

So, by Kleene [62] (2.2., 2.7., 2.11) {A} is d-mute iff A|A.
This may be proved directly, as a corollary of the following

Proposition: Let ¢ be a choice-functional for {A}, where A is a closed fla.

For every B ¢ SX’ AFB = A|B.

Proof: By induction on the complexity of B.

(1) Basis:The "smallest" flas in SX (i.e. - the flas F ¢ Si s.t. no proper

subformula of F is in SA) are, by the definition of Sﬁ, either (i) prime

¢
flas; or (ij) existential flas 3xGx s.t. A M 3xGx.
In the first case the lemma holds trivially, and in the second - by the

definition of l.

(2)B&cesd , ApBEC=
B,Cesz , AFB,AlC=> (ind. hyp.)
A|lB,A]| C=» A| B&C.

(3) (B+C)e SX-==> C e sj;

If AF B~ Cand A B then A |-C; hence, by ind. hyp. A | c. So
AbB=—4a]|cCc , iie.-a|B~>cC.
(Note that the condition A | B in the definition of A | B> C is not

used here).

(4) ¥xBx € SX === Yn Bn ¢ Sz .
So, Al VxBx == W A |Bn
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= Wn A | Bn (ind. hyp)
== A | ¥xBx .

(5) 3IxBx € g¢ , A F3xBx by a derivation II
— 4 FB(s1) , B(eN) € S} .
So, by ind. hyp. A |F B($T), and A | 3xBx .

3.2. The equivalent 3.1 has the following peculiarity: while the definition
of A | A involves all subformulas of A, the definition of "{A} is 3-mute"

. + . - 3
involves only (part of) 8,- The following proposition may throw some light on

this.

Proposition: If C > JxBx b 3xBx (where C » JxBx is closed), then
either (i) C » 3xBx FC (and hence FmC);
or (ij) ¢ » 3xBx F Bn for some n.

The proof is very similar to that of th. 2.

4. Structural properties of Jd-mute theories.

4.0. If o is a finite set (of closed flas), then a is 3J-mute iff (Aa) | (Aa),
where (Aa) is the conjunction of all flas in a. So, the main interest in
J-mute theories concerns those which are not finitely axiomatizable, and to
which the method of Kleene's | does not apply. There is therefore some inte-
rest in considering the relation between a set of flas and its finite subsets,

w.r.t. the notion of J-muteness.

4.1. We have, first, the obvious "compactness" property:

Proposition: If every finite ayce is d-mute, then o is J-mute. We have,
more generally: if for every finite ayco there is an J-mute aé s.t.
aoggégg, then a is I-mute.

Proof: If a I 3xCx (3xCx closed) then for some finite ays o F 3xCx, hence

aé b cn and o FCO for some n.

4.2, For essentially-existential (i.e. - not J-mute) theories this compact-
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ness properly may fail. That is,

Proposition: There is an 3-mute theory o s.t. every finite ance is essen-

tially existential.

Proof: Arithmetic is essentially undecidable, so there is a sequence of true

flas {An}n< s-t. A is not decided in CA by A A;. Let us write every A,

in the {V,&fk} - fragment. 1<n
Define B0 =pf A1 VA,
and for n > 1 B, = pp A & [An+1 V"An+1]
B ﬁg{Bk}kw‘
Classically IrE:A B, > A - (k=1,2,...)

B is d-mute trivially, but no finite BO c B is 3-mute: Suppose that some
finite BO = {Bi.}j<n c B is d-mute. Let m = max {i.}.
J J<n
We have then BO GA Am V"Am, and BO being Jd-mute, BO EA Am. G1Am is

false). But then A A, I—A A , contradicting
iep 1 CATm
the construction of {A }
n n<

w
4L.3. Let us finally note that the "compactness" properly in L.1 cannot be
strengthen by fixing a certain bound on the size of the finite o.ca which

0
have to be J-mute. In other words:

Proposition: For every natural number n, there is an essentially-existential

set o s.t. every @, co with less than n formulas in 3-mute.

4.3.1. Lemma: There is a sequence

A= {Ai}i<m of true flas, s.t. for no n,

A~ {An} %A An :
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Proof: Let A, be undecidable. Assume that {Ai]i<n is defined, and let B be

some true {Ai}i<n - undecidable fla. Define

A = A A.->B .
n . 1 n
1<n

We show now that A ~ {An} %A ATt is enough to see that if

(*) {Ai}i<k ~ {An} %A An, then
(%) il ~ ) Fa,

because then An is unprovable from any finite subset of A ~ {An}. Suppose

(x), and assume first that k > n, and that not (**), i.e. -

(dexx ) (A} =

e

A A. > B , so, since k > n,
. 1 k
1<k

A~ Bk*" A, and from (%%x)

then {A }i<k , An > Bk |_'An .

i#n

i
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From classical propositional calculus then

{Ai}i<k F Ay o

izn

Contradicting (x).

Assume now k < n, i.e. -

{Ai}if_k = A
then {A.}. F‘A
1°1<n n

ie. = {Ai}i<n i A; > B

i<n
so {A.}. B , contradicting the choice of B .
i"i<n n n
4.3.2. Proof of the proposition.

Let A= {Ai}i<w'be as in lemma 4.3.1., let

D. = A. VA,
1 1 1

E. = ( A D.)&A.
1 . 1
J=n
j#i

and define o = {Ei}iin (n+1 flas)
a is obviously J-mute. Let, on the other hand, 8 ¢ o contain m flas, m < n.
Since the basic derivability properties of A, are invariant under permuta-—
tions, we may assume, w.l.g., that

B = {Ei}i<msn :
Then, since E1 € B and n > 1

B F A v=aa .

n n

If B is d-mute, then
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Ajsevees ADiseees D }fA A
b= A,
and Agseens Am CA "n

contradicting the basic property of A.

5. d—stable theories.

5.0 It was conjectured by Zukasiewicz [52] that the "disjunction property"
of a theory T

Eavs—bkaor b s
characterizes, among the propositional calculi, the intuitionistic prop.
cal. from above; i.e.- no proper extension T of int. prop. cal. possess the
"disjunction property".

This conjecture was refuted by a counter-example (Kreisel-Putnam [57]),
and then - by an infinity of (finitely axiomatizable) counter-examples
(Gabbay-de Jongh [69]).

Kleene [62] proved a stronger property of the int. prop. cal., namely -

ctEAvB:c@AorciE,B
for exactly those C which are characterized by a given property (C|C). He
subsequently conjectured that this property characterizes the int. prop.
cal. from above, a conjecture which was proved by de Jongh [TO].

An analogous property for intuitionistic arith. is:

(*) a IFI—A IxAx = In  « }?AAH
(IxAx closed) exactly when o is J-mute.

But for IA this property is not a characterization from above among
theories of arithmetic. I.e. - if we define "a is J-mute" with TA replaced

throughout by T, then (%) holds for proper extensions T of IA. For instance,
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let B be the set of instances of the scheme

Vx 1A >TTVxAx
which is not provable in TA (vid. Kleene [52] p. 511, th. 63 (iv)). Then
"o is J-mute" with IA+8 replacing throughout IA in def. 1.1 means exactly
"o U B is J-mute" (relative to IA now), and (%) for IA+B follows.

We focus now our attention on extensions of IA which satisfy (*).

5.1. Definition: An extension T of IA is J-stable if whenever o is J-mute

relative to T (i.e. - when TA is everywhere replaced by T in def. 1.1) then

a

T JdxCx ==> dn a[E Cn

for every closed fla JIxCx.

5.2. Existentially-valid inference rules.

Definition: A rule of inference p -

{A.}.

171
B P

is valid (modulo o and w.r.t. a theory T) if for each assignment * of numer-

als to parameters,

{al;A’i‘}i = o h_ﬁ B”

We say that p is 3-valid if it is valid modulo a for every J-mute set of

flas o (and w.r.t. IA).
5.3. Examples: (1) The uniform reflection principle

PLA]
A RP
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where
— (7N
PLA] Zpe Ix PrOVIA (x,2).

For suppose that x is an assignment of numerals to parameters, and

that o F3x Prov (x,M)”, with o 3-mute. Then

(+) o FProv(E;N)* for some n.
But Prov(ﬁ;N)* is decidable in IA, so either
(i ) F Prov(a /™™, and then - since Prov(a ®* = Prov(n,A™) - taking the
derivation whose G3del-number is n - we get a derivation for

*
Ha &

and ipso facto,

o FAF;
.. }_“' - ranx ‘_ _
or (ij)F 'Prov(n,4A) , and then from (+) a¥F 0 =1 , and
a b4 .

(2) Let F = {HxFix}i be a set of closed flas s.t. for every (classically-)

true (3xF) ¢ F there is exactly one number n_ s.t. FﬁF.

F
For instance -

FO = {HxT(e,e,x)}e is such a set.

Let p be the rule of instantiation for F, i.e. -

P ((JxFx)eF)

where for false (JxFx) ¢ F we define np = 0, say.

p is J-valid trivially. The rule of instantiation for the FO defined
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above is of course not recursively definable.

(3) We shall see in the sequel that Markov's scheme
“VxPx > Jdx = Px (P qu.-free)
is not j-valid (though it is valiad).
5.4. We understand, from now on, that when p is asserted to be an 3-valid

rule, then we are also given an assignment of derivations to derivations

which attach to a derivation A for a kA a derivation rPror a F‘B, whenever

P with closed A,B and I-mute a.

o |

When p is an inference-rule, we write 1A° for TA extended with the rule P

Theorem: If p is d-valid, then IAP is 3-stable.

Let us first stress some properties of derivations in 1A° .

5.4.1. Definition: Let p be valid modulo a. A p-o reduction is a transfor-

mation of derivations of the form

(AP p-free)

w| > > e

(provided all open assumption of the original derivation are in a, and Ai’
B are closed). A derivation of IAP is <p,a>-normal if it cannot be reduced,
either by a p-a reduction, or by one of the reductions defined by Prawitz
[70]. If p is d-valid, we say that a derivation is p-normal, if it is

<p,a>-normal for every J-mute a. Let p be now some J-valid rule.
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5.4.2. Lemma: Every derivation can be transformed by a finite number of re-

ductions into & p-normal derivation (without redundant parameters ).

5.4.3. Remark: The proof of the lemma is not an immediate corallary of the
normalization theorem. If we normalize a derivation - except for p-reduc-
tions, and turn then to the p-reductions, then new logical detours may
appear, even if AP is always normal.

If, conversely, we first do with all p-reductions, and turn then to
usual reductions, then new possible p-reductions may be created. That is,

we may have an instance of —»-reductions of the form

[0}

[c] A
P fcl
A 21
B ° A
§~ P
L 5
(+-reduction) 2
A D
—_— D
C C~>D I
. D
I

The indicated instance of p may be irreducible in the original deriva-

tion, because the open assumptions of [C] do not form an J-mute set of flas,

L

while it is reducible in the reduct shown on the right, because the open

A
assumptions of [C] do form such a set.

Ly

Also, new p-detours may arrise from V-reductions, e.g. -
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VxAx VxAx
Aa Ao
Ba 4 5 Bo
VxBx (V-reduction)
Bo

If {VxAx} is J-mute then the indicated instance of p is irreducible in the

original derivation, but reducible in the V-reduced one.

5.4.4. Proof of the lemma

We Jjust have to modify slightly Prawitz [70] proof of the normalization
theorem for arithmetic. All notions are relativized to the extended system.

Thus, to the definition of strong validity we add the clause:

is p-strongly-valid if either

Wi > e

a
A
(i ) o is not J-mute and|A|is p-strongly-valid,

or (ij) o is J-mute, and for every assignment * of numerals to parameters,
*

o

(A*)P is (p-)strongly-valid.
*

A

The modifications required in the proof of the normalization-theorem

are straightforward, and we leave them out.

5.4.5. Proof of the theorem.

The proof is completely analogous to that of lemma 1.2.2. and theorem

1.2. The only argument to be added is this: In the proof of lemma 1.2.2.,
. 1 1.

no instance of p may occur in the branch o in A , because A is p-normal.

The same argument is used for case 2 in the proof of th. 1.2.
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5.4.6. Remark: Theorem 5.4. was proved, for the uniform reflection princi-

ple, by Scarpellini [T2].
5.5. Corollary: Markov's scheme

+VxPx ( (P qu.-free)
ALY M)
IxPx

is not J-valid.
Proof: Take a = {G} where
G = Vx=Prov(x,d).
o is d-mute relative to any theory, because no 4 occur in o.

If (M) is J-valid, then - using th. 5.4. - IA(M) is J-stable, and we
can conclude,like in 1.3.5, that *EA G, which is not the case.
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