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Three computational techniques for approximation of counterparty exposure for financial
derivatives are presented. The exposure can be used to quantify so-called Credit Valu-
ation Adjustment (CVA) and Potential Future Exposure (PFE), which are of utmost
importance for modern risk management in the financial industry, especially since the
recent credit crisis. The three techniques all involve a Monte Carlo path discretization
and simulation of the underlying entities. Along the generated paths, the corresponding
values and distributions are computed during the entire lifetime of the option. Option
values are computed by either the finite difference method for the corresponding par-
tial differential equations, or the simulation-based Stochastic Grid Bundling Method
(SGBM), or by the COS method, based on Fourier-cosine expansions. In this research,
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numerical results are presented for early-exercise options. The underlying asset dynamics
are given by either the Black–Scholes or the Heston stochastic volatility model.

Keywords: Expected exposure; potential future exposure; Bermudan options; Heston;
numerical computation; finite differences; stochastic grid bundling method.

1. Introduction

During the recent financial crisis, several measures have been taken to make the
financial industry more robust and resistant to financial shocks. The aim is to make
individual participants better capable of handling possible credit events, like mul-
tiple simultaneous defaults. Regulations that are presented in the Basel III accords
include a specific measure, named Credit Valuation Adjustment (CVA), which by
definition is the difference between the risk-neutral valuation of a financial deriva-
tives contract and the value which takes into account the possibility of a defaulting
counterparty. In other words, CVA is the market value of Counterparty Credit Risk
(CCR) (Zhu & Pykhtin, 2007).

The present research focuses on two important building blocks of CCR, Expected
Exposure (EE) and Potential Future Exposure (PFE). The exposure is defined as
the amount of money that may be lost if a counterparty defaults at a particular
time, and cannot meet future payments that are agreed upon in the option con-
tract. Because of the growing practical importance, there are recent articles from
practitioners Antonov & Brecher (2012) and Antonov et al. (2011) that discuss the
computation of the exposure. Since in particular the Heston model is widely used
in practice, it is of interest to estimate the EE/PFE under the Heston model, and
analyze the impact of a stochastic volatility model on the EE/PFE.

In over-the-counter (OTC) market, trades are settled directly between two par-
ties and there is no third party to cover a possible huge loss because of a defaulting
party. For European-style derivatives, without any opportunities to exercise con-
tracts before the maturity date, it is obvious that CCR is important. When a
counterparty defaults before the contract’s maturity, the investment in the OTC
option will be lost and the payoff will not be paid out. In the case of early-exercise
options, such as Bermudan options, CCR is also relevant. In this case, although the
holder has the right to exercise at multiple moments during the life of the contract,
if an option is exercised because of financial distress of a counterparty, the return
on investment is not as was originally expected, and therefore the option was most
likely “mispriced”. Recent studies by Klein & Yang (2010) further elaborate on this
issue.

In this paper, numerical methods are presented to keep track of the option
values and their distributions during the life of the option contracts. All methods
presented contain essentially two elements, a forward sweep for generating future
scenarios and a backward sweep to calculate exposures along the generated asset
paths. The forward Monte Carlo method generates the asset paths from initial time
up to maturity. Along the paths, option values are determined at each exercise time.
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Because of the complexity of this problem, efficient computation of the option prices
is required. The COS Fourier option pricing method may seem a suitable candidate
because of its speed and accuracy particularly for Lévy processes, see Fang (2010).
Also the finite difference method, approximating solutions to partial differential
equations, may be suitable as it typically results in approximate option prices for a
grid of underlying values. This feature may be exploited in the EE context, as all
grid points can then be used to generate option densities. The recent development
of the Stochastic Grid Bundling Method (SGBM), which is a Monte Carlo-based
method is particularly suitable for high-dimensional early-exercise options. Jain &
Oosterlee (2012, 2013), is another candidate because it also rapidly converges and
is accurate.

The setup of this paper is as follows. In Sec. 2, brief descriptions of CVA, expo-
sure and other risk measures that are computed are presented. The underlying asset
dynamics and the Monte Carlo discretization technique applied are also discussed.
In Sec. 3, we describe the computation of the risk measures by the finite differ-
ence method, SGBM and the COS method, respectively. In Sec. 4, the methods are
validated and compared and we present an assessment of the impact of stochastic
volatility on the exposures. Finally, conclusions are presented in Sec. 5.

2. Problem Formulation

2.1. CVA and exposure of Bermudan options under

Heston’s model

CVA can be seen as the price of counterparty credit risk (Zhu & Pykhtin, 2007),
while PFE is a measure for the potential loss. In other words, CVA depends on the
Expected Exposure, while PFE is the loss given a fixed confidence interval. Both
measures depend on the future distribution of exposure.

We will present methods for the computation of the exposure of Bermudan
options under the Heston stochastic volatility asset dynamics, given by

dSt = rStdt +
√

vtStdW 1
t ,

dvt = κ(η − vt)dt + σ
√

vtdW 2
t , (2.1)

dW 1
t dW 2

t = ρdt,

where W 1
t and W 2

t are Wiener processes, correlated by parameter ρ, κ is the speed
of mean reversion parameter in the CIR process for the variance, η represents the
level of mean reversion, and σ is the so-called volatility of volatility parameter; r

is the risk-free interest rate. The state of the process at time tm is denoted by the
pair (Sm, vm) with Sm the price of the underlying and vm the variance.

It is obvious that one is mainly interested in the case that a loss is positive (a
negative loss may be a profit), and therefore the exposure at a future time t < T is
defined as

E(t) := max(U(St, vt, t), 0), (2.2)

1450024-3



June 9, 2014 9:47 WSPC/S0219-0249 104-IJTAF SPI-J071 1450024

C. S. L. de Graaf et al.

where U(St, vt, t) is the (mark-to-market) value of a financial derivatives contract,
like a call or put option.

The expected exposure (EE) at a future time t is given by

EE(t) := E [E(t) | F0] , (2.3)

whereas θ = 97.5% and θ = 2.5% quantiles of the exposure distribution at time t

are denoted by PFE97.5%(t) and PFE2.5%(t), respectively, are given as

PFEθ(t) = inf{x : P(U(St, vt, t) ≤ x) ≥ θ}. (2.4)

Assuming independencea between exposure and the counterparty’s default prob-
ability, we can formulate the expression for CVA as follows (Gregory, 2010):

CVA(T ) = (1 − δ)
∫ T

0

D(t)EE(t)dPD(t), (2.5)

where δ is the recovery rate, D(t) is the risk-free discount factor, and PD(t) denotes
the default probability of the counterparty at time t (Gregory, 2010). Thus to
summarize, the key elements here are: EE, recovery rate and the default probability.
The EE is the amount one may lose at a specific time in the case of a defaulting
counterparty, recovery rate is the percentage that can be recovered in case of default
and the default probability is the probability that a counterparty may default in
a certain period. All three elements are essential for the accurate computation of
CVA. However, in this research, the focus is on the fast and accurate valuation of
the exposure.

A Bermudan option is defined as an option where the buyer has the right to
exercise at a set of (discretely spaced) time points. We denote the set of equally
spaced exercise times by

T = {t1, t2, . . . , tM}, (2.6)

where M denotes the number of exercise times, and the time difference is ∆t. At
the start of the option t0, exercise is not allowed.

At each exercise time, the exercise value, given by the payoff function, and
the continuation value of the option are compared. The payoff function and the
continuation value for the option at time tm are, respectively, defined as:

φ(Sm) = max(γ(Sm − K), 0) with γ =

{
1 for a call,

−1 for a put,
(2.7)

c(Sm, vm, tm) = e−r∆t
E[U(Sm+1, vm+1, tm+1) | (Sm, vm)], (2.8)

where U(Sm+1, vm+1, tm+1) is the option value at time tm+1.

aWrong way risk, which is an important notion in CVA depends particularly on nonzero correlation.
This will be part of our future research.
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It is assumed that the holder of the option will exercise when the payoff value is
higher than the continuation value, and then the contract terminates. At maturity
tM , the option value is equal to the payoff value.

The following recursive scheme can be setup to price a Bermudan option:

U(Sm, vm, tm) =




φ(SM ) for m = M,

max[c(Sm, vm, tm), φ(Sm)] for m = 1, 2, . . . , M − 1,

c(S0, v0, t0) for m = 0.

(2.9)

By definition, the exposure of an option equals zero once the option is exer-
cised; otherwise, the exposure is equal to the continuation value of the option. The
Bermudan option exposure at a future time tm can thus be formulated as:

E(tm) =




0 if exercised,

c(Sm, vm, tm) if not exercised,
m = 1, 2, . . . , M − 1. (2.10)

In addition, E(t0) = c(S0, v0, t0) and E(tM ) = 0.
The key point of calculating the exposure at time tm is to determine the con-

tinuation value.

3. Numerical Methods to Compute Expected Exposure

In this section, three methods are presented to compute the expected exposure for
Bermudan options under the Heston dynamics. All three methods can also be used
to simply calculate the value of a Bermudan option at time t0. In combination with
Monte Carlo forward path simulation, and based on the same common technique,
they can be extended to value the exposure of Bermudan options.

3.1. General pricing approach

The market state depends on two random variables, (Sm, vm), at time point tm
and therefore the exposure E(tm) is also a stochastic variable. An option value
distribution at future time points can be computed by generating scenarios, and
therefore a Monte Carlo simulation is employed.

For the Monte Carlo simulation, the highly accurate Quadratic Exponential
(QE) scheme (Andersen, 2008) is used here to generate the Heston stochastic volatil-
ity asset paths. Starting from simulated underlying values and variances, the expo-
sures can be calculated by a backward valuation procedure. At each path, for each
exercise time, the continuation value is calculated and compared to the exercise
value on the path. When the exercise value is higher than the continuation value,
the option is exercised at this path and the exposure for later time points is set
to zero. At every time point, the resulting exposure values for all paths generate a
distribution, as is illustrated in Fig. 1.
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Fig. 1. Monte Carlo paths simulated from left to right, an exposure distribution is obtained by
calculating option values at the simulated states.

The essential technique of modeling the exposure of Bermudan options can be
presented as follows:

• Generating scenarios/paths by Monte Carlo simulation;
• Calculate continuation/option values and the exercise values to decide whether

to exercise or not;
• Set the exposure at each path as the continuation value if the option is not

exercised; otherwise the exposure equals 0;
• Compute the empirical distribution of the exposure at each exercise time;
• Calculate EE, PFE2.5% and PFE97.5%.

In the remainder of this section, we will describe three methods to calculate the
required continuation/option values at the simulated paths.

3.2. The finite-difference-Monte-Carlo method

An often used option pricing technique is the finite difference method (Tavella &
Randall, 2000). The method calculates option prices based on the option pricing
partial differential equation, for an entire grid of underlying values and can therefore
be easily used to compute the sensitivities (for example, the derivatives of the option
prices w.r.t. the asset prices). In the scope of this research, the resulting grid of
option values facilitates to determine distributions of option values at different time
points. The method is called the Finite-Difference-Monte-Carlo (FDMC) method.
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Solving the Heston PDE to price European or American options is extensively
studied, see, for example, Foulon & In’t Hout (2010) and Haentjens & In’t Hout
(2013, 2013).

As described in Sec. 3.1, option values for all realized market states need to be
computed. For European options it is well known that option value U satisfies the
PDE:

∂U

∂t
= AU, (3.1)

where in the Heston case the spatial differential operator A is given by

AU =
1
2
σ2v

∂2U

∂v2
+ ρσvS

∂2U

∂S∂v
+

1
2
vS2 ∂2U

∂S2

+ (κ[η − v])
∂U

∂v
+ rS

∂U

∂S
+

∂U

∂t
− rU. (3.2)

For American options, a linear complementarity problem is solved. Using the payoff
function (2.7), the option value in this case satisfies:

∂U

∂t
≥ AU, (3.3a)

U(S) ≥ φ(S), (3.3b)

(U − φ(S))
(

∂U

∂t
−AU

)
= 0, (3.3c)

with one equality sign in either (3.3a) or (3.3b). Note that for each t ∈ [t0, T ]
the option can be exercised. A discrete version easily results in the pricing of a
Bermudan-style option.

In this research, the Brennan–Schwartz (1977) algorithm is used, which is a well-
known technique from literature. At each exercise time, this method first solves
inequality (3.3a) as an equality, after which the option value is taken to be the
maximum of this value and the exercise value.

The boundary conditions used are stated in Table 1. Note that at the v = 0
boundary a so-called degenerated boundary condition is imposed which is obtained
by substituting v = 0 in (3.1).

The schemes used for discretizing (3.2) in asset and variance directions are
second-order accurate central schemes or one-sided second-order schemes needed
at boundaries.

Table 1. Heston model boundary conditions
for a European put option.

Boundary Value

S → ∞ U = 0
S = 0 U = K

v → ∞ ∂2U
∂v2 = 0

v = 0 ∂U
∂t

− rU + rS ∂U
∂S

+ κη ∂U
∂v

= 0
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The option price is computed backwards in time, from maturity T back to time
t0. The equations that need to be solved as a result of the finite difference discretiza-
tion are linear systems of equations. Such a system of equations can be represented
as a matrix-vector problem where the operators are represented by matrices and
the (intermediate) solutions by vectors. For the time integration scheme, a particu-
lar Alternating Direction Implicit (ADI) scheme, namely the Hundsdorfer–Verwer
scheme is employed, which exhibits second-order convergence in time. Next to that,
due to the splitting of matrices, it involves the inversion of tridiagonal matrices while
in general for (fully) implicit schemes, the matrices are not tridiagonal and may have
several nonzero diagonals. For more details we refer to Foulon & In’t Hout (2010).

To ensure that all paths are contained in the computational domain of the finite
difference technique, the boundaries Smax and vmax are prescribed such that all
Monte Carlo path values at all time points are contained.

The paths attain values that are, most likely, not grid points of the finite dif-
ference grid. From this grid, specific option values are determined by interpolation.
Because this interpolation may introduce errors at every point, second-order accu-
rate spline interpolation is used.

In general, only a small part of the discretized grid is a region of interest, there-
fore one can concentrate grid points in that region. This is done by stretching the
grid so that a nonuniform grid results, applied in the variance as well as in the asset
dimension (Haentjens & In’t Hout, 2013). As here we need option values at each
exercise time for many combinations of spot and variance values, nonuniformity is
even more important when we compute exposure.

Because tests show that the impact of the spot dimension on the error is highest,
the nonuniform grid in Haentjens & In’t Hout (2013) is slightly adjusted. The
grid employed is a combination of a uniform and a nonuniform grid. An interval
[Sleft, Sright] containing K is introduced in which the mesh is uniform. We choose:

Sleft = λK and Sright = K, (3.4)

where λ ∈ [0.3, 0.7] can be chosen depending on the quantity that needs to be
computed (PFE or EE). An accurate computation of EE requires accurate pricing
around the mean, which implies a high value of λ, whereas for accurate computation
of quantiles, an accurate computation of extreme values is needed for which a smaller
value of λ should be chosen. So, when we compute the PFE, the dense region is
shifted toward the outer regions of the domain.

Outside the interval [Sleft, Sright], the grid follows a hyperbolic sine function
with:

ξmin = ξ0 = sinh−1

(
Sleft

d1

)
,

ξint =
Sright − Sleft

d1
,

ξmax = ξm1 = ξint + sinh−1

(
Smax − Sright

d1

)
,

1450024-8
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where d1 is a scaling parameter, and ξmin < 0 < ξint < ξmax. Now, to construct a
grid of m1 + 1 points, the nonuniform adjustment 0 = s0 < s1 < · · · < sm1 = Smax

can be constructed via a uniform grid of m1 + 1 points between ξmin and ξmax:
ξmin = ξ0 < ξ1 < · · · < ξm1 = ξmax and the function g:

g(ξi) =: si i = 0, . . . , m1, where

g(ξi) =




Sleft + d1 sinh(ξi) if ξmin ≤ ξi < 0,

Sleft + d1ξi if 0 ≤ ξi ≤ ξint,

Sright + d1 sinh(ξi − ξint) if ξint < ξi ≤ ξmax.

Smaller values of d1 result in a lower density in [Sleft, Sright], whereas higher values
of d1 will result in a higher density of grid points in this interval.

For the v direction, more points at the boundary v = 0 are desired and for
larger values of v, the mesh can be less dense. Let m2 be the number of points to be
considered and d2 another scaling parameter. Define equidistant points ν0 < ν1 <

· · · < νm2 , given by νj = j · ∆ν, with ∆ν = 1
m2

sinh−1(vmax
d2

), for j = 0, . . . , m2.
Now the grid 0 = v0 < v1 < · · · < vm2 = vmax is defined by: vj = d2 sinh(νj),
j = 0, . . . , m2.

These grids are smooth in the sense that there are real-valued constants
C0, C1 and C2 such that:

C0∆ξ ≤ ∆si ≤ C1∆ξ and |∆si+1 − ∆si| ≤ C2(∆ξ)2.

When the finite difference method is used to price a single option, only a single
grid point at initial time is used. The FDMC method however uses a large portion
of the grid points for option pricing at all exercise times which makes this method
computationally attractive.

3.3. Stochastic-grid-bundling method

The Stochastic-Grid-Bundling Method (SGBM) is a Monte Carlo method that
combines regression, bundling and simulation. It was proposed by Jain & Oost-
erlee (2012, 2013) for pricing multi-dimensional Bermudan options under Black–
Scholes dynamics. The SGBM method generates a direct estimator, a lower
bound for the option value, as well as an optimal early-exercise policy. Here,
we extend the SGBM method from Jain & Oosterlee (2013) towards the Hes-
ton model, and exposure distributions along the time horizon are naturally
obtained.

Suppose we deal with a Bermudan option with tenor T and M exercise dates.
First a stochastic grid is generated, i.e. we generate H paths of the underlying under
the Heston model. It is easy to see that the option value at time tM = T is equal
to the corresponding payoff value, which gives us the initial setting for the SGBM
method at each path.

1450024-9
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At time tk, k = M − 1, . . . , 1, these paths are clustered into β bundles, based
on their stock and variance values. The bundle set at time tm is denoted by
{Bp,m}β

p=1. Paths within the same bundle are assumed to share some common
properties. We adapt the so-called multi-dimensional recursive bifurcation bundling
method (Jain & Oosterlee, 2013) by means of a rotation.

Within each bundle, basis functions {gk(S, v)}B
k=0 are defined for the regression

of option values.b The essential idea in SGBM is that, for paths in the pth bundle
Bp,m at time tm, a set of coefficients {αp,m

k }B
k=0 exists, so that for the option values

of these paths at time tm+1, the following relationship holds

U(Sm+1, vm+1, tm+1) ≈
B∑

k=0

αp,m
k gk(Sm+1, vm+1). (3.5)

When the option values U (Sm+1, vm+1, tm+1) at the stochastic paths are deter-
mined, the coefficient set {α̂p,m

k }B
k=0 can be obtained by regression. Equation (3.5)

can be substituted into (2.8) which gives us:

c(Sm, vm, tm) = e−r∆t
E[U(Sm+1, vm+1, tm+1) | (Sm, vm)]

≈ e−r∆t
E

[
B∑

k=0

α̂p,m
k gk(Sm+1, vm+1) | (Sm, vm)

]

= e−r∆t
B∑

k=0

α̂p,m
k E[gk(Sm+1, vm+1) | (Sm, vm)]

= e−r∆t
B∑

k=0

α̂p,m
k fk(Sm, vm). (3.6)

When the functions {fk(·, ·)}B
k=0 are known, the continuation values at time tm

can be computed, and, subsequently, the option values at time tm can be obtained
with the scheme in (2.9). At time t0, we deal with one bundle, as all paths originate
from (S0, v0), and the option value at time t0 is equal to the continuation value
c(S0, v0, t0). In this way, option values are calculated backward in time from tM to
t0. By (2.10), the exposure at each path along the time horizon is calculated as a
by-product. We are thus able to determine the empirical exposure distribution at
each time point for the calculation of EE and PFE.

We choose the basis functions {gk(S, v)} such that analytic formulas for their
expectations are available. Analytic formulas of these expectations bring exact infor-
mation into the recursive procedure. Under the Heston dynamics, the basis functions
are chosen as

gk(S, v) := (log(S))k, (3.7)

where k = 0, . . . , B.

bFor the definition of basis function see Longstaff & Schwartz (2001).

1450024-10
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When k = 0, the basis function is the constant; when k > 1, the expectation of
gk is the kth moment of log(S).

There is a well-known relationship between the moments of the model and its
characteristic function. The joint characteristic function of Heston’s model is avail-
able (see, for example, Fang & Oosterlee, 2011) and thus analytic formulas for the
expectation fk(·, ·) can be derived. Note, however, that the stochastic grid is based
on (S, v)-values; only the regression is based on log-variables.

The optimal exercise strategy is determined by comparing the immediate exer-
cise value and the continuation value, and the exercise decision is made when the
immediate exercise value is highest. We store the strategy and the corresponding
realized cash flows at each path during the backward procedure. The option value
can be calculated as the mean of the discounted cash flow as in Longstaff & Schwartz
(2001).

The SGBM method has some advantages compared to the well-known Longstaff–
Schwartz method, although both are based on regression. The Longstaff–Schwartz
method uses only the “in-the-money” paths to get the optimal stopping strategy
and the corresponding cash flow. In SGBM, all paths are used and the optimal
stopping strategy is merely a by-product. By applying bundling, the approximation
of the linear coefficients can be optimized locally. Furthermore, information from
the model dynamics is included by application of the analytic formulas for the
expectation of the basis functions, whereas the Longstaff–Schwartz method only
employs the dynamics in the path generation.

3.4. The COS-Monte-Carlo method

In the third computational method, we combine the generated stochastic MC grid
with the COS method, introduced in Fang & Oosterlee (2011). Based on the same
stochastic grid as, for example, in Sec. 3.3, the COS method is used for the calcu-
lation of the continuation values at each path along the time horizon. We call this
combined method the COS-Monte-Carlo (CMC) method.

As in Fang & Oosterlee (2011), we work in the log-domain, denoted by (x, u) :=
(log(S), log(v)). Suppose that the path values (xm, um) at time tm are known. We
can write the joint density function at tm+1, conditioned on values at tm, as

fx,u(xm+1, um+1 |xm, um) = fx|u(xm+1 |xm, um+1, um) · fu(um+1 |um), (3.8)

where fx|u(·) is the conditional log-stock density, and fu(·) the conditional log-
variance density. Notice that here we have fu(um+1 |xm, um) = fu(um+1 |um).

The continuation value defined in (2.8) at time tm is the expectation of the
option value at time tm+1 w.r.t the joint density function. One can choose a proper
integration range [a, b] × [av, bv] in log-stock domain and log-variance domain, so
that the integral can accurately be approximated. We refer to Fang & Oosterlee
(2011) for details on the definition of this range based on initial state (x0, u0).

In this paper, we are not only concerned with the option value at time t0, but
also with continuation values along the time axis. To assure accuracy, we need a
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common integration range which is sufficiently large for all paths at each exercise
time. We define it as

[a, b] :=
H,M⋃

h,m=1

[ah,m, bh,m],

[av, bv] :=
H,M⋃

h,m=1

[ah,m
v , bh,m

v ],

(3.9)

where [ah,m, bh,m] and [ah,m
v , bh,m

v ] are the ranges for the log-stock and log-variance
domains, respectively, for the hth path at tm, by the suggestions in Fang (2010)
and Fang & Oosterlee (2011).

The integration can now be written as follows:

c(xm, um, tm) ≈ e−r∆t

∫ bv

av

fu(um+1 |um) ·
[∫ b

a

U(xm+1, um+1, tm+1)fx|u

× (xm+1 |xm, um+1, um)dxm+1

]
dum+1. (3.10)

An analytic formula for the log-variance density fu(·|·) is available (see Fang &
Oosterlee, 2011), and the conditional log-stock density fx|u(·|·, ·, ·) can be recovered
from the corresponding characteristic function (Fang & Oosterlee, 2011) by apply-
ing the COS expansion. The recovered density of the log-stock process from the
characteristic function (Fang & Oosterlee, 2011) is given by

fx|u(xm+1 |xm, um+1, um) ≈ 2
b − a

·
N−1∑′

n=0

Re
{

Φ
(

nπ

b − a
; um+1, um

)
einπ xm−a

b−a

}

× cos
(

nπ
xm+1 − a

b − a

)
, (3.11)

where
∑′

indicates that the first term is multiplied by 1
2 , Re(·) returns the real part

of the value, the function Φ is defined as Φ( nπ
b−a ; um+1, um) := Φ( nπ

b−a ; 0, um+1, um),
which is the characteristic function of the log-stock process.

We use the Gaussian-quadrature rule (Fang & Oosterlee, 2011) for the approxi-
mation of the outer integral in (3.10). The log-variance integral range is discretized
on a grid, denoted by {ςj, ς0 = av, ςJ = bv}J

j=0. The characteristic function of the
log-stock process at time tm+1 conditioned on the log-variance and (xm, um) is
denoted by Φ(ω; xm, ςj , um).

By interchanging the inner integral and the summation obtained by the COS
expansion, the continuation value can be written as

c(xm, um, tm) ≈ e−r∆t
J−1∑
j=0

wjfu(ςj |um) ·
N−1∑′

n=0

An,j(tm+1)

×Re
{

Φ
(

nπ

b − a
; ςj , um

)
einπ xm−a

b−a

}
, (3.12)
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where the wj are the weights of the quadrature nodes ςj , j = 0, 1, . . . , J − 1;
An,j(tm+1) is the Fourier-cosine coefficient defined as follows:

An,j(tm+1) =
2

b − a

[∫ b

a

U(xm+1, ςj , tm+1) cos
(

nπ
xm+1 − a

b − a

)
dxm+1

]
. (3.13)

At time tM , the values of the coefficients An,j(tM ) can easily be obtained as
the option value at time tM equals the payoff value. The expression for An,j(tM )
becomes

An,j(tM ) =

{
Gn(a, 0) for a put,

Gn(0, b) for a call,
(3.14)

where the Gn-functions are the cosine coefficients of the payoff function, given as:

Gn(l, u) =
2

b − a

∫ u

l

φ(y) cos
(

nπ
y − a

b − a

)
dy. (3.15)

Fortunately, for specific payoffs, an analytic formula for Gn(l, u) is available (see
Fang & Oosterlee, 2011).

From maturity tM a backward recursive calculation can be used to obtain all
coefficients An,j(tm).

For the computation of the EE, however, interpolation is needed for the calcula-
tion of the continuation value at each time step for each path. We use interpolation
to reduce the calculation costs, because the calculation of function Φ( nπ

b−a ; ςj , um)
takes significant CPU time. Instead of calculating the value of function um for
each path and time step tm, we compute an N × J × J matrix Φ with ele-
ments (Φ( nπ

b−a ; ςj , ςp)), j, p = 0, . . . , J, n = 1, . . . , N . For a fixed p, we extract the
corresponding 2D slice from the 3D matrix to calculate the continuation value
c(xm, ςp, tm) at time tm.

One can easily determine vector {c(xm, ςp, tm)}J
p=0, storing the continuation

values of each path on the variance grid by matrix calculation. As in the FDMC
method, by spline interpolation, an accurate continuation value c(xm, um, tm) at
each path can be obtained.

After the calculation of the continuation value, the exposure can be determined
easily by applying the formulas in Sec. 2.1.

Compared to the COS method for pricing option values, the CMC method is
significantly slower when the number of MC paths is high. One reason is that, at
each exercise time, an additional calculation of the continuation value is performed,
for which interpolation is required for each path. Next to that, as we need to choose
a wider integration range to assure accuracy for EE and PFE, we also need a large
number of Fourier-cosine terms and variance grid points to get converged results,
which has a significant impact on the computational speed.

At the same time, the CMC method maintains the very high accuracy of the
COS method. The errors due to the truncated integration ranges, the quadrature
and the propagation error have been discussed in Fang & Oosterlee (2011). The
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error of the spline interpolation on the variance grid is small when J is sufficiently
large as the continuation value is a continuous function of the variance. Because of
the high accuracy, we will use the results of the CMC method as reference values
in the discussion of the numerical results.

4. Numerical Results

In this section, we start with an assessment of the impact of stochastic volatility on
the EE and PFE profiles. Next, we consider a detailed analysis of the convergence
and accuracy of the methods by means of numerical experiments.

As there are no exact values available for the exposure of Bermudan put options
under the Heston stochastic volatility model, we will use the converged results of the
COS method as reference values.c As mentioned in Sec. 3.4, the COS method is a
highly accurate method for pricing Bermudan options. When valuing the exposure,
the high accuracy is maintained as long as the integration range is chosen properly
(see Sec. 3.4). We reduce the impact of Monte Carlo noise in the comparative
analysis by using 105 paths.

To investigate the proposed three methods, three different sets of parameters
are tested, see Table 2. These test cases were used recently in Fang & Oosterlee
(2011), Haentjens & In’l Hout (2013), and Vellekoop & Nieuwenhuis (2009) and
reference values are thus available for individual option prices. Moreover, in these
test cases, we stress the parameters of the stochastic volatility process by considering
different levels for the initial variance, the mean-reversion parameters, vol-of-vol and
correlation parameters. These parameters are chosen such that in Tests A and C
the well-known Feller condition is satisfied, while in Test B it is not.d Apart from
the different settings for the model parameters, we consider different maturities,
interest rates and moneyness levels.

Table 2. Parameter sets for Tests A, B and C.

Test A Test B Test C

Spot (S) 10 100 9
Strike (K) 10 100 10
Interest (r) 0.04 0.04 0.10
Exercise Times 50 50 50
Initial Vol (

√
v0) 0.5745 0.1865 0.2500

Tenor (T ) 0.25 0.25 1.00
Mean Reversion (κ) 0.80 1.15 5.00
Mean Var (η) 0.3300 0.0348 0.1600
Vol of Var (σ) 0.700 0.459 0.900
Correlation (ρ) 0.10 −0.64 0.10

cThe convergence of the COS method has been discussed in Fang & Oosterlee (2011), and we will
set the number of Fourier terms to N = 29 and the number of the variance grid points to be J = 29.
dIt is known that when the Feller condition is not satisfied, the variance process can become zero
and numerical methods can suffer from this issue.
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4.1. Comparison of Black–Scholes to Heston to assess impact of

stochastic volatility on exposure

Here it is shown that stochastic volatility clearly has an impact on exposure profiles.
It is most significant for the PFE97.5% quantile in the tests considered. We restrict
the analysis to Tests A and B because in Test C the mean reversion level is not equal
to the initial variance and thus it is not clear which level to use for the variance in
the Black–Scholes model. In Fig. 2, the results are plotted for the parameters from
Tests A and B.

In general, independent of the underlying dynamics, the plots show that the
EE starts at the initial option value, after that, the level drops because of the
early exercise possibility. The PFEs also start at the initial option value, because
at this stage there is no uncertainty, i.e. the minimum value for which the prob-
ability is higher than a specific benchmark that equals this initial value. Starting
from t = 0, PFE2.5% drops to zero soon while PFE97.5% is always higher than
the EE. Due to the early exercise possibility, paths will “terminate” i.e. exercise
will take place so that more than 2.5% of the values are equal to zero soon. With
the same argument, the minimum value for which 97.5% of the prices are lower
is much higher and only drops at a later stage as more and more paths are being
exercised.

When the results for Black–Scholes are compared to Heston, one can conclude
that the most significant difference is for PFE97.5%, in both cases. The difference
in PFE97.5% is a factor 10 times larger than the difference for EE and PFE2.5%.
Intuitively this makes sense, due to the fact that the mean reversion level is equal
to the constant variance level in the Black–Scholes model, the EE is not heavily
affected. However, since the volatility is stochastic, extreme cases may occur more
frequently (with the parameters chosen), resulting in fatter tails of the distribution
that have a significant impact on PFE.

Fig. 2. EE and PFE profiles under the Black–Scholes and Heston model, differences are significant
for 97.5% PFE.
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Fig. 3. Distribution of option values under Heston and Black–Scholes for Test B at exercise time
17 of 50. The PFE97.5% is shaded in red (BS) or blue (Heston), respectively, in the right plot the
axes are changed to make the boundary more clear.

The early exercise value also depends on the volatility so that for any path,
there is a different exercise value. From Fig. 3, it can be seen that the distribution
computed under the Black–Scholes dynamics is chopped off at a specific maximum
option value, whereas the distribution under the Heston dynamics has a smoothly
varying tail. The mass that is originally in the cut of tail in the Black–Scholes case
is here located at the left-side boundary.

Although these results show that stochastic volatility has an impact on the
exposure profiles, a more rigorous analysis, based on market calibrated parameters
instead of model parameters, will be subject of further research. Here instead we
will focus on the accuracy and numerical convergence of our proposed methods.

For the analysis of the accuracy and convergence of the three proposed methods,
we concentrate on Tests B and C. The results for EE and PFE97.5% obtained for the
different methods are shown in Fig. 4 and Table 3 (the results for PFE2.5% are not
shown in the table). The methods are tested on a set of H = 105 generated Monte

Fig. 4. EE, PFE2.5% and PFE97.5%, for 105 paths and 50 exercise times.
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Table 3. Relative L2 difference between three methods for 105 paths.

Error Measurement Test B Test C

EE ‖FD − COS‖2 5.8864e-03 1.8966e-03
‖SGBM − COS‖2 8.0645e-03 1.4943e-03

PFE97.5% ‖FD − COS‖2 1.4133e-02 2.7113e-03
‖SGBM − COS‖2 4.5856e-03 3.9364e-03

Carlo paths. In the following subsections, the convergence and error behavior of the
FDMC method and SGBM is discussed.

4.2. Error FDMC

The error for pricing options with the finite difference method for the Heston PDE
is extensively studied, see, for example, Foulon & In’t Hout (2010). The error is
mainly introduced near the boundaries, but can be controlled by a combination of
a large number of grid points and the use of a nonuniform grid. In all finite difference
computations, the grids are nonuniform, as discussed in Sec. 3.2. The free parameter
λ in (3.4) to determine the region [λK, K] in spot direction is determined depending
on the quantity that is being measured: For PFE a smaller value is desired, whereas
for EE the value is larger, in any case λ ∈ [0.3, 0.7]. The variance grid is very dense
around the v = 0 boundary, independent of the measured quantity. The number
of grid points in spot (S) and variance (v) directions are denoted by m1 and m2,
respectively. By experiment we know that the numerical error is dominated by the
error in spot direction, and therefore the number of grid points in the S direction
is chosen as m1 = 2m2. With this fixed ratio, the decay in error is measured
by decreasing a generic measure ∆s defined as ∆s := 1

m2
. If we decrease ∆s by

increasing the number of grid points, the numerical convergence is second order
when we price a single Bermudan option in Test C, whereas it is almost second
order for Test B, see Fig. 5. The grid is chosen to be very dense in the region of
the initial market parameters (S0, v0), and the price is extracted from the grid by
accurate spline interpolation.

When EE and PFEθ are computed, multiple prices at each exercise time are
needed. In this case, interpolation is needed for each path and exercise time which
is expected to have an impact on the error. To investigate the scale of this error,
the same convergence tests are done as in the single option case. In this case, the
finite difference solution is compared to the semi-analytic CMC method described
in Sec. 3.4. The same random scenarios are used for computing the EE for the
CMC and the FDMC methods. As shown in Fig. 6, in both Tests B and C, the
convergence of the error is similar for EE as it is for pricing a single option. The
decrease of the error is of second order in the number of grid points in Test C and
almost second order in Test B.

For PFE, in Test B the convergence from the start is only first order. In this
test, the Feller condition not satisfied. The mesh used in this case has a dense region
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Fig. 5. Convergence plots by increasing the number of grid points in space for a single Bermudan
option. The relative L2 norm is used to measure the difference with the reference COS value.

Fig. 6. Convergence plots by increasing the number of grid points in space for computing EE and
PFE. The relative L2 norm is used to measure the difference with the reference value obtained by
the CMC method.

around the strike, whereas for a PFE computation, the strike region is generally
not of highest relevance. To enhance the accuracy of the PFE, the nonuniform grid
in S-direction can be adjusted (which we leave for later study). Because PFE and
EE are mostly computed independently, a conclusion is that measuring PFE or EE
would imply using two different grids.

The convergence with respect to ∆t is not presented in this research because
tests show that the error is dominated by the spatial error.

4.3. Error SGBM

Here we focus on the convergence of SGBM regarding the option value, the EE and
PFE. We use five basis functions (including the constant) defined in Eq. (3.7). In
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the recursive bifurcation bundling method, an essential property is that the number
of bundles must be of the form 4j, j = 0, 1, 2, . . . , for details we refer to Jain &
Oosterlee (2013). The bundling scheme is slightly adapted to deal with the two-
dimensional Heston dynamics.

In the tests, a large number of paths H = 105, and bundles β = 44 are chosen.
In Sec. 3.3, there are two ways of calculating the option value at time t0. One

way is to estimate the coefficient set over all paths at time t1 and to apply regression
at time t0 (the so-called direct estimator); the other is to store the optimal strategy
and take the mean of the discounted cash flow (the so-called path estimator):

• The results calculated directly from the set of Monte Carlo paths is called direct
estimator results;

• The results calculated by the second set of paths, but with the coefficients from
the first set of paths is called the path estimator.

The numerical results for the path estimator should be similar to the results for the
direct estimator. Table 4 presents the difference between the direct estimator and
the path estimator for EE and PFE. Again the error is measured in the relative L2

norm. We can see that the difference between the two results is only of order 10−3.
The option value is the maximum value obtained among all possible stopping

rules, indicating that the option value calculated by the “optimal” strategy will be
less than or equal to the real option value. This provides a criterion for conver-
gence. The result calculated by the optimal strategy will be the lower bound of the
Bermudan option value.

We examine the convergence of the Bermudan option value w.r.t the number
of bundles for SGBM. The tests are done for 10 simulations, and the results are
presented in Fig. 7. We take the regression results of the direct estimator and the
results of the optimal strategy of the path estimator for comparison. As we can see,
in both Tests B and C, the results of the path and the direct estimator resemble
each other better when the number of bundles increases. The two results are very
close to the COS reference value for β = 44, see Table 5.

In addition to the convergence of the Bermudan option value, we examine the
convergence of EE and PFE in Fig. 8. The results of the CMC method is used as the
reference value. With the same set of 105 generated paths, we increase the number of
bundles from 1 to 44 for the calculation of the SGBM method. It shows that the error

Table 4. The difference between the direct estimator
and path estimator for EE and PFE. The number of
bundles equals 44 and the number of paths is 105.

EE PFE

Test B 2.8541e-03 6.3035e-03
Test C 1.9462e-03 5.9252e-03
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Fig. 7. Convergence with respect to the number of bundles β = 4j , for the Bermudan option value;
the total number of paths H = 105; the reference value in Test B equals 3.2066 and in Test C
1.4990. The red dashed line is the direct estimator, blue is the COS reference value, and the black
dashed line the path estimator.

Table 5. The difference between the direct and the path estimator for a
Bermudan option value when the number of bundles equals 44. The results
are computed via 10 simulations (s.e. is standard error).

COS (reference) Direct estimator (s.e.) Path estimator (s.e.)

Test B 3.2066 3.2091 (2.8613e-03) 3.1924 (1.3768e-02)
Test C 1.4990 1.4964 (7.2086e-04) 1.4926 (3.0376e-03)

Fig. 8. Convergence with respect to the number of bundles 4j ; the total number of paths equal 105.

decreases when increasing the number of bundles. The EE results exhibit a higher
accuracy than the PFE97.5% results, when the number of bundles is equal to 44.

The convergence of the EE and PFE, w.r.t the number of paths, is examined
in Fig. 9. We choose the number of bundle equal to 43, and increase the average
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Fig. 9. Convergence with respect to the average number of paths in each bundle; the number of

bundles is equal to 43. The black line indicates an asymptotic convergence with 1/
q

H̃β , where

H̃β denotes the average number of paths per bundle.

number of paths in each bundle. The differences of EE and PFE between direct
estimator and path estimator are compared. The average number of paths in each
bundle is increased from 25 to 2000. It shows that the difference between the path
and the direct estimator decreases when the average number of paths in each bundle
(i.e. the total number of paths) increases.

These results support the fact that SGBM converges (to the reference values)
for Bermudan options, EE and PFE97.5%.

5. Conclusion

In this paper, three different approaches for computing exposure profiles within the
context of counterparty credit risk are presented. The underlying asset exposure
is driven by the Heston stochastic volatility model and Bermudan put options are
priced. In all three methods, scenarios are generated by a Monte Carlo scheme and
option values are priced at each path at each exercise time. The pricing procedure
is done by either the developed FDMC method, SGBM or the CMC method.

The CMC method is a combination of the Monte-Carlo method and the COS
method which can be used for computing exposures. We adapt the COS method
to make it more general and thereby applicable to a wide range of possible states
(Sm, vm), while maintaining its high accuracy. This comes at the cost of compu-
tational speed (under the Heston dynamics, particularly when the Feller condition
is not satisfied). However, considering its high accuracy, this method is used as a
benchmark value to analyze the accuracy and convergence of EE and PFE com-
puted by FDMC and SGBM. By using this benchmark, it is shown that the FDMC
method, SGBM and CMC method agree for multiple tests.

As a first result, it is shown that the impact of stochastic volatility on exposure
profiles is most significant for PFE97.5%; whereas the distribution computed under
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the Black–Scholes dynamics suffers from the tail being chopped off at a certain
maximum option value boundary, under the Heston dynamics this feature is not
present.

Because any finite difference solution generates option values for an entire grid
of underlying values, the FDMC method is promising. The computation time in
this method is dominated by the computation of the solution on the grids at each
exercise time. When these are stored, the EE computation boils down to an inter-
polation procedure for all paths at each exercise time. By using the COS method
as a benchmark, it is shown that the error introduced by the interpolation is neg-
ligible. Compared to the CMC method, the error is within the range of 10−3. A
possible improvement of this method would be the implementation of a nonuniform
adaptive grid, which adapts its dense region to the density of the generated paths
at the specific exercise time, but this comes at a price in CPU time.

SGBM has been extended to the Heston model for computing exposures. We test
the convergence of SGBM w.r.t the number of paths and the number of bundles in
several ways. For the two considered tests, the computation of EE and PFE shows
to be highly accurate with an error compared to CMC in the order of 10−3. SGBM
is an efficient Monte Carlo method when valuing exposure distributions along a
time horizon.
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