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ABSTRACT

According to Basel III, financial institutions have to charge a credit valuation adjust-
ment (CVA) to account for a possible counterparty default. Calculating this measure
and its sensitivities is one of the biggest challenges in risk management. Here, we
introduce an efficient method for the estimation of CVA and its sensitivities for a
portfolio of financial derivatives. We use the finite difference Monte Carlo (FDMC)
method to measure exposure profiles and consider the computationally challenging
case of foreign exchange barrier options in the context of the Black–Scholes as well as
the Heston stochastic volatility model, with and without stochastic domestic interest
rate, for a wide range of parameters. In the case of a fixed domestic interest rate, our
results show that FDMC is an accurate method compared with the semi-analytic COS
method and, advantageously, can compute multiple options on one grid. In the more
general case of a stochastic domestic interest rate, we show that we can accurately
compute exposures of discontinuous one-touch options by using a linear interpolation

Corresponding author: C. S. L. de Graaf Print ISSN 1460-1559 j Online ISSN 1755-2850
Copyright © 2016 Incisive Risk Information (IP) Limited

1



2 C. S. L. de Graaf et al

technique as well as sensitivities with respect to initial interest rate and variance. This
paves the way for real portfolio level risk analysis.

Keywords: finite difference Monte Carlo (FDMC); credit valuation adjustment (CVA); barrier
options; portfolio; exposure computation.

1 INTRODUCTION

Financial crises typically have various causes, but they often have one effect: the call
to model more risk factors. Since 1987, we have known that the volatility used in
option pricing is not constant and can be better modeled as a stochastic process itself
(Heston 1993). More recently, since the Lehman collapse in 2008, measures have been
taken to prevent loss of money from a worthless derivative due to counterparty default.
Currently, having a single price for an option or financial derivative is therefore not
sufficient; institutions also need to know the creditworthiness of their counterparty.

Regulators drafted the Basel III accords (Basel Committee on Banking Supervision
2010), which state that banks need to charge a premium to their trading counterparty
for its creditworthiness. This is done via the so-called credit valuation adjustment
(CVA), which adjusts the price of a derivative according to the creditworthiness of the
counterparty. Moreover, additional capital requirements and limit-monitoring based
on potential future losses should be in place. Computing these measures implies that
the valuation and risk management of even straightforward plain vanilla options is a
high-dimensional and complex problem.

In de Graaf et al (2014), we introduced the finite difference Monte Carlo (FDMC)
method to calculate the exposure profiles of a derivative. This is done for Bermudan
put options, which have an early exercise feature at preset discrete time points. Similar
to the methods that appear in Ng and Peterson (2009) and Ng et al (2010), the FDMC
method uses scenario generation from the Monte Carlo method. Option prices are
computed on a grid, and the finite difference method and option values per path are
obtained by interpolation on this grid. The expected exposure (EE) equals the mean of
the resulting option price distribution, whereas the potential future exposure (PFE) is
a quantile of this distribution. In practice, apart from EE and PFE, the sensitivities to
market factors (such as spot value, interest rate and volatility) are required for hedging
and controlling the counterparty credit risk (CCR) of derivatives portfolios.

In this paper, we extend our previous study. We again incorporate the highly rele-
vant skew effect that is dominantly present in the foreign exchange (FX) market by
choosing the Heston model to drive the underlying FX rate. In the case of constant
interest rates, we consider the estimation of first- and second-order sensitivities with
respect to the spot FX rate. In contrast with the widely used bump-and-revalue method,
we propose a path-dependent estimator that is leveraging from the already estimated
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local sensitivities on the finite difference grid. A rigorous analysis is performed in the
case of barrier options, which pose severe numerical challenges due to the knock-out
feature that results in a discontinuous terminal condition. Similar discontinuities also
arise in portfolios with instruments of different maturities, with the possibility of error
propagation on the computation grid in time. Therefore, we analyze such portfolios
specifically in this work. We validate our results by comparing them with the Monte
Carlo–COS method (Shen et al 2013).

Next, we relax the assumption of a constant domestic interest rate by looking at the
three-factor Heston Hull–White model. This implies the use of coarse grids for which
the interpolation is vital. We therefore compare exposure quantities for discontinuous
one-touch (OT) options computed by a linear or spline interpolation. Additionally,
we discuss the applicability of the path-dependent sensitivities with respect to initial
variance and domestic interest rate. Again, the bump-and-revalue method acts as a
benchmark.

The outline of this paper is as follows. In Section 2, we describe CVA and its
sensitivities with respect to the initial underlying values. Section 3 will be the core
of this research, where we describe how to use the FDMC method, together with
our adjustments, to measure the sensitivity of CVA, and how to extend it to handle
multiple options. In Section 4, we present results for a number of test problems; in
Section 5, the conclusions are summarized.

2 PROBLEM FORMULATION

2.1 CVA under the Heston Hull–White model

In the Heston Hull–White model, the volatility and the domestic interest rate are mod-
eled as a stochastic process, such that the volatility smile and interest rate dynamics
can be captured. The three-dimensional dynamics are given by

dSt D .Rd
t � r f/St dt C

p
VtSt dW 1

t ;

dVt D �.� � Vt / dt C �
p

Vt dW 2
t ; (2.1)

dRd
t D �.�.t/ � Rd

t / dt C � dW 3
t ; (2.2)

dW i
t dW

j
t D �i;j dt for i ¤ j 2 Œ1; 2; 3	; (2.3)

where r f is the foreign interest rate, � is the mean-reverting speed in the Cox–
Ingersoll–Ross (CIR) process for the variance, � is the level of the long-term mean
and � is the so-called volatility of volatility. The domestic interest rate Rd

t follows
the Hull–White stochastic differential equation (SDE), where � is the mean-reverting
speed, �.t/ is the level of the long-term mean deduced from the forward curve, and �

is the volatility of the short rate. The SDEs are coupled by the correlated Wiener pro-
cesses. Note that the same dynamics will hold for an equity derivative with stochastic
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interest rate and constant dividend. The FX rate is modeled in more detail if it is
also assumed that the foreign interest rate is stochastic, which we do in a forthcom-
ing research paper. The price U of an option with maturity T and payoff function

.ST ; VT ; Rd

T /, and with the initial value of the underlying volatility and domestic
short rate equal to s, v and rd, respectively, equals

U.s; v; rd; t0/ D EŒe� R T
t0

Rd
�

d�

.ST ; VT ; Rd

T / j St0 D s; Vt0 D v; Rd
t0

D rd	:

(2.4)
Because of the stochastic volatility and interest rate components, pricing formulas

are three dimensional, and an analytic option price is harder to obtain, or not available.
This is why numerical techniques such as the Monte Carlo or finite difference method
are employed to solve the associated partial differential equation (PDE).

For risk purposes, it is obvious that one may be interested in the case where a loss
is positive (a negative loss may be a profit); therefore, the exposure of an option at a
future time t < T is defined as

E.t/ WD max.U.St ; Vt ; Rd
t ; t /; 0/; (2.5)

where U.St ; Vt ; Rd
t ; t / is the value of a financial derivatives contract at time t .

The present EE at a future time t < T is given by

EE.t/ WD EŒE.t/ j F0	; (2.6)

where F0 is the filtration at time t D 0. The discounted version of EE is computed as

EE�.t/ WD EŒD.0; t/ E.t/ j F0	; (2.7)

where D.0; t/ is the discount factor. In this research, the expectation is calculated
under the risk-neutral measure Q.1 In the case of a long position in an option, the
price (2.4) is always positive; thus, the EE (2.6) is equal to the future option price.

Another important risk assessment is given by the PFE. The quantiles q D 97:5%
and q D 2:5% of the exposure distribution at time t are defined as

PFEq.t/ D inffx W P.EE.t/ 6 x/ > qg: (2.8)

While computing CVA, we assume that the exposure and counterparty’s default
probability are independent. In the case of the discount factor, exposure and default
probability all being independent, we can formulate the expression for CVA as follows
(Gregory 2010):

CVA.t0; T / D .1 � ı/

Z T

t0

EE�.t/ d PD.t/; (2.9)

1 Typically, the future states can also be modeled under a real-world measure. This is possible when
the FDMC method is used, but as this research focuses on the numerical applicability of this method,
the risk-neutral measure Q is assumed.
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where ı is the recovery rate and PD.t/ denotes the default probability of the coun-
terparty at time t . The three essential elements are thus recovery rate, discounted EE
and default probability.

In practice, CVA is hedged, and thus practitioners compute the sensitivity of the
CVA with respect to its dependencies. We assume that the default probability is
independent of exposure, such that the sensitivity with respect to � (where � can be
S0, V0 or Rd

0) can be rewritten as

@ CVA.t0; T /

@�
D @

@�

�
.1 � ı/

Z T

t0

EE�.t/ d PD.t/

�

D .1 � ı/

Z T

t0

@ EE�.t/

@�
d PD.t/: (2.10)

Following the same arguments, the second derivative with respect to � can be
computed as

@2 CVA.t0; T /

@�2
D @

@�

�
.1 � ı/

Z T

t0

@ EE�.t/

@�
d PD.t/

�

D .1 � ı/

Z T

t0

@2 EE�.t/

@�2
d PD.t/: (2.11)

By computing these sensitivities in this way, we need an efficient computation of the
derivatives @ EE�.t/=@� and @2 EE�.t/=@�2 for every t 2 Œt0; T 	.

To conclude, the CVA of a portfolio is determined by all the future mark-to-market
(MtM) values of all the options in the portfolio (Basel Committee on Banking Supervi-
sion 2010). Further, if we want to compute the sensitivities, we also need the derivative
at all future market scenarios. These requirements call for a valuation method that
can compute option prices and derivatives for a wide range of market scenarios. In
this paper, we will show that the FDMC method can compute these quantities quickly
and accurately.

3 COMPUTATION OF COUNTERPARTY EXPOSURE AND
SENSITIVITIES

3.1 The FDMC method

As presented in de Graaf et al (2014), the FDMC method uses the scenario generation
of the Monte Carlo method and the pricing approach of the finite difference method.
The market states are simulated by the quadratic exponential (QE) scheme (Andersen
2008). Next, a grid in the s-, v- and rd-directions is created. This grid is chosen to
be sufficiently large to capture all attained values of the scenario generation. On this
grid, prices at any simulation date are calculated by the finite difference procedure.
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The specific state .Sm; Vm; Rd
m; t / is interpolated on the grid to obtain the option price

U.Sm; Vm; Rd
m; t / at each path, for each time point. At every time point, the resulting

future option values for all paths generate a distribution, and from this distribution
the exposure profiles can be calculated. The EE can be obtained by averaging over all
the prices at all the time points. The higher (97.5%) and lower (2.5%) PFEs can be
computed by taking quantiles.

In the case of a path-dependent barrier option, if the underlying state hits the barrier
level B , the option is exercised at this path, and the exposure for later time points is
set to zero. The essential technique of modeling the exposure by the FDMC method
can be presented as follows:

� generate scenarios/paths by Monte Carlo simulation;

� calculate option values and, for barrier options, check which paths hit the
barrier;

� set the exposure at each path equal to the option value if the option is not
exercised; otherwise, the exposure and all future exposures of this path are set
equal to 0;

� compute the empirical distribution of the exposure at each exercise time;

� calculate EE, PFE2:5% and PFE97:5%.

One important difference between the FDMC method and other approaches, such
as the regression-based stochastic grid bundling method (SGBM) presented in Feng
and Oosterlee (2014) or the Monte Carlo–COS method (Shen et al 2013), is that the
FDMC method is directly applicable to non-affine models (eg, the stochastic alpha
beta rho (SABR) or Heston Hull–White models with nonzero correlation between St

and Rd
t ). To compute exposures driven by non-affine models by the COS method or

SGBM, an affine approximation is solved (see Feng and Oosterlee 2014; Guo et al
2013). This is not necessary when the FDMC method is used.

3.2 The finite difference method

The risk-neutral value U at t0 6 T of a European option with maturity T and payoff
function 
 can be expressed using the conditional expectation under the risk-neutral
measure Q, as follows:

U.St0 ; Vt0 ; Rd
t0

; t0/ D EŒe� R T
t0

Rd
u du


.ST /	; (3.1)

where 
.�/ is the payoff function of the option. The finite difference procedure com-
putes the price backward in time, starting at maturity t D T and continuing to
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t D t0. Thus, the pricing function u is defined as a function of � D T � t , such that
u.S� ; V� ; Rd

� ; �/ D U.ST �t ; VT �t ; Rd
T �t ; T � t /. The Feynman–Kac theorem links

the expectation (3.1) to the solution of a PDE by no-arbitrage arguments. This results
in the following PDE:

@u

@�
D Au; (3.2)

where, in the case of an FX option driven by the Heston Hull–White dynamics, the
spatial differential operator A is given by

Au D 1
2
vs2 @2u

@s2
C 1

2
�2v

@2u

@v2
C 1

2
�2 @2u

@.rd/2

C .rd � rf /s
@u

@s
C .�Œ� � v	/

@u

@v
C .�Œ�.T � t / � rd	/

@u

@rd

C �1;2�vs
@2u

@s@v
C �1;3�s

p
v

@2u

@s@rd
C �2;3��

p
v

@2u

@v@rd
� rdu: (3.3)

Note that by setting � and � equal to 0, we end up with the Heston PDE, where rd

is fixed. For a given state .S�0
; V�0

; Rd
�0

/ at expiry, the payoff is known; in the finite
difference method, this is used as an initial condition.

Barrier options

For a down-and-out barrier call or put option on an underlying S�0
, with strike K and

barrier level B , the payoff function is equal to


.S�0
/ D max.p.S�0

� K/; 0/1fS�0
>Bg;

with

p D
(

1 for a call;

�1 for a put:
(3.4)

The payoff function for European options can be obtained from this by setting B D 0.

One-touch options

In the case of OT options, the holder receives a predetermined payout H whenever
the underlying reaches K, any time before maturity T . Thus, the payoff at expiry is
given as


.S�0
/ D H1fS�0

>Kg: (3.5)
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3.2.1 Space discretization

In the finite difference method, this PDE is solved on a finite set of points by dis-
cretizing in the s-, v- and rd-directions. The domain to be discretized is chosen as
Œ0; Smax	 � Œ0; Vmax	 � Œ�Rmax; Rmax	, where Smax, Vmax and Rmax are chosen to be
sufficiently large to minimize the effect of the imposed boundary conditions, and such
that all simulated market scenarios can be interpolated on the grid.

Let s0 < s1 < � � � < sm1
, v0 < v1 < � � � < vm2

and r0 < r1 < � � � < rm3
be the

discretization in the s-, v- and rd-directions, respectively, similarly to in Haentjens
and In’t Hout (2012). In all dimensions, the grid is chosen to be nonuniform. The s

dimension consists of a predefined interval ŒSleft; Sright	, in which points are uniformly
spaced. Sleft and Sright are chosen to contain the region of interest, ie, the region around
the expected mean of the underlying. Following Haentjens and In’t Hout (2012), for
options without barriers we choose

ŒSleft; Sright	 D Œ0:5K; K	:

Outside ŒSleft; Sright	, the points are distributed with the help of a hyperbolic sine
function. In the barrier case, the nonuniform grid is chosen such that the dense region
contains more than 95% of the non-exercised paths; generally, choosing

ŒSleft; Sright	 D
(

Œ0:5K; B	 for a up-and-out call or put;

ŒB; 1:5K	 for a down-and-out call or put

is found to be sufficient. For a portfolio of options, however, we define Sleft and Sright

such that all possible strikes and barriers are included. In Figure 1, the two different
nonuniform grids are shown.

In the v-direction, the grid is chosen similarly to in In’t Hout and Foulon (2010).
The grid is dense around v D 0. We do this because, for realistic test parameters, the
expected mean of the variance process is close to 0. In addition, because the Heston
PDE in the v-direction is convection-dominated close to 0 and the initial condition
is non-smooth, numerical stability requires a high density of points in this region
(Haentjens and In’t Hout 2012).

Also, for the rd-direction, we follow Haentjens and In’t Hout (2012). The grid is
dense around 0 and stretched symmetrically toward the boundaries �Rmax and Rmax

by using a sinus hyperbolic function.
The derivatives are approximated using central, forward and backward three-point

stencils.All stencils are second-order accurate. For more details, we refer to Haentjens
and In’t Hout (2012).
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FIGURE 1 Nonuniform grids in the s-direction.
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(a) A down-and-out put (DOP) option (where we choose Sleft D B D 120 and Sright D 140). (b) A portfolio of options
(with discontinuous points within Sleft D 100 and Sright D 150).

TABLE 1 Boundary conditions and payoff functions under the Black–Scholes dynamics.

Option type s ! Smax s ! Smin

European call
@u

@s
D 1 u D 0

European put u D 0 u D e� R �
�0

rd
u du

KP

Up-and-out barrier call u D 0 u D 0

Up-and-out barrier put u D 0 u D e� R �
�0

rd
u du

KP

Down-and-out barrier call
@u

@s
D 1 u D 0

Down-and-out barrier put u D 0 u D 0
One-touch u D H u D 0

3.2.2 Boundary conditions

The options considered in this research are of the following type: European call and
put options with strike KC and KP, respectively; barrier options with strike KB and
barrier level B , which can be down-and-out or up-and-out calls or puts; and OT
options with strike KO and payout H . The boundary conditions for the s dimension
used in this research are stated in Table 1. Note that in the case of non-barrier options,
Smin and Smax converge to 0 or 1, respectively.

The boundary conditions in the volatility direction are imposed independently of
the option type. In Ekström and Tysk (2011), it is shown that for a CIR process,
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such as the variance process in the Heston model, the solution of the PDE at v D 0

satisfies the boundary condition that is obtained by inserting v D 0 into (3.3); this is
also referred to as a degenerated boundary condition:

@u

@�
D ��

@u

@v
C .rd � r f/s

@u

@s
� rdu: (3.6)

In traditional literature (see, for example, Tavella and Randall 2000), the maximum
variance boundary for call options is imposed as u.s; Vmax; rd; �/ D s, but experiments
show that this introduces a boundary layer. In combination with the PDE becoming
convection-dominated around v � 0, this can result in oscillations if no upwinding
is applied. To prevent this problem but still use central schemes, the option value at
the maximum variance boundary is assumed to satisfy

@2u.s; Vmax; rd; �/

@v2
D 0: (3.7)

For the interest rate dimension, which is needed in the Heston Hull–White model,
the boundary conditions are taken as

@u.s; v; ˙Rd
max; �/

@rd
D 0: (3.8)

Using the discretizations, boundary and initial condition, the following initial value
problem for stiff ordinary differential equations (ODEs) is derived:

u0.�/ D Au.�/ C g.�/;

u.�0/ D 
.s.T //;

)
(3.9)

where u.�/ denotes the vector of discrete solutions ui;j;k.�/ WD u.si ; vj ; rd
k
; �/

ordered lexicographically, g.�/ is a vector determined by the boundary conditions
and s.T / denotes the grid in the s-direction at maturity.

3.2.3 Time discretization

As the Heston model is a two-dimensional problem in space, the ODEs also have
two space dimensions. To solve problems with dimensions higher than one, splitting
techniques are relevant.

The splitting scheme used in this research is the Hundsdorfer–Verwer scheme. For
more details, we refer to Hundsdorfer and Verwer (2003) for the derivation of the
scheme, and to In’t Hout and Welfert (2009) for a more detailed explanation of the
alternating direction implicit (ADI) schemes in this context.

Journal of Computational Finance www.risk.net/journal
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3.3 Computing CVA and its sensitivities

To estimate CVA, we need EE.t/ at any time t 2 Œt0; T 	 during the life of the derivative.
Next to that, we need the probability of default at any time. Following Gregory (2010),
we define ql D q.tl�1; tl/ as the probability that the counterparty will default in the
interval Œtl � dt; tl 	. Using the so-called hazard rate �haz, the survival probability
Psurv.t/ is defined as

Psurv.t/ WD e��hazt : (3.10)

Using this definition, we can derive the probability to default in interval .t � dt; t /

conditioned on no prior default, as follows:

q.t � dt; t / D Psurv.t/ � Psurv.t � dt /: (3.11)

For any counterparty for which a credit default swap (CDS) is available for protection,
this entity can be calculated from the CDS spread. As shown in Whetten et al (2004),
the annual premium payment c of a CDS can be calculated as

c D .1 � ı/
PN

lD1 P.t0; tl/.ql�1 � ql/PN
lD1 P.t0; tl/ql dt C PN

lD1 P.t0; tl/.ql�1 � ql/.dt=2/
; (3.12)

where dt denotes the payment interval. In this research, we assume annual premiums
of 400 basis points (bps), which correspond to a hazard rate of 6:6 � 10�2. Now, in a
discrete setting, CVA can be calculated as

CVA D .1 � ı/

NX
lD1

q.tl�1; tl/ EE�.tl/: (3.13)

By using this expression, the first and second derivative of the CVA with respect to
�0 (where �0 can be S0, V0 and Rd

0) can be derived as follows:

@CVA

@�0

D @

@�0

.1 � ı/

NX
lD1

q.tl�1; tl/ EE�.tl/;

D .1 � ı/

NX
lD1

q.tl�1; tl/
@ EE�.tl/

@�0

; (3.14)

where, in the second equality, we assume independence between the default proba-
bility and �0 as well as between the recovery rate ı and �0. Note that the assumption
of independence between the default probability and �0 can be relaxed by modeling
the default probability as a stochastic process that depends on �0, as is done in Hull
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12 C. S. L. de Graaf et al

and White (2012).2 Similarly, for the second derivative, we have

@2CVA

@�2
0

D .1 � ı/

NX
lD1

q.tl�1; tl/
@2 EE�.tl/

@�2
0

: (3.15)

To compute @ EE�.t/=@�0 in (3.14), first, the derivative is rewritten as follows:

@ EE�.t/

@�0

D @ EE�.t/

@St

@St

@�0

C @ EE�.t/

@Vt

@Vt

@�0

C @ EE�.t/

@Rd
t

@Rd
t

@�0

: (3.16)

At every intermediate time point tl , the finite difference method stores the prices
for the entire grid in the vector ul D EE�.tl/. On this grid, we can approximate
@ EE�.tl/=@�t and @2 EE�.tl/=@�2

t by multiplying with the difference matrixes
A�t

.t/ and A�2
t
.t/. These are defined as follows:3

@ EE�.tl/

@�t

� A�t
.tl/u

l D @u.tl/

@�t

C O.
�2
t /; (3.17)

@2 EE�.tl/

@�2
t

� A�2
t
.tl/u

l D @2u.tl/

@�2
t

C O.
�2
t /: (3.18)

So, the partial derivatives of the exposure in (3.16) are obtained from the finite dif-
ference grid. The partial derivatives of the state variables with respect to the initial
conditions are analyzed in the following subsections for all the possible choices of �.

3.3.1 Sensitivity with respect to initial FX rate

To compute the sensitivity with respect to the initial underlying FX rate (�0 D S0),
we first note that the future variance and future short rate are independent of S0, such
that @Vt=@S0 D @Rd

t =@S0 D 0. However, @St=@S0 is clearly nonzero, and this can
be computed by the pathwise Monte Carlo method. Because S0 follows a geometric
Brownian motion (GBM) in the Heston Hull–White model, we can assume

St D S0e.Rd
t �rf �.Vt =2//tCp

Vt

p
tZ ; (3.19)

where Z is a standard normal random variable. Consequently, following Broadie and
Glasserman (1996), for the first and second derivative, we have

@St

@S0

D e.Rd
t �rf �Vt =2/tCp

Vt

p
tZ D St

S0

; (3.20)

@2St

@S2
0

D 0: (3.21)

2 In this specific case, (3.14) will have an extra term, but the sensitivities can still be computed. We
leave this application for future work.
3 Note that for �t D rd

t , Ar .t/ is a time-dependent matrix; as in the case of the stochastic interest
rate, the drift can be time dependent because of the yield curve (see, for example, the Hull–White
model).
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Now, at any time point tl , both partial derivatives from (3.16) can be computed for
every path, such that @ EE�.t/=@S0 is obtained by averaging.

To compute @2CVA=@S2
0 , we need @2 EE�.t/=@S2

0 ; this yields

@2 EE�.t/

@S2
0

D @

@S0

�
@ EE�.t/

@St

@St

@S0

�

D
�

@

@S0

@ EE�.t/

@St

�
@St

@S0

C @ EE�.t/

@St

�
@

@S0

@St

@S0

�

D
�

@2 EE�.t/

@S2
t

@St

@S0

�
@St

@S0

C @ EE�.t/

@St

@2St

@S2
0

D @2 EE�.t/

@S2
t

�
St

S0

�2

; (3.22)

where the second derivative of EE with respect to St can be obtained from (3.18),
and .St=S0/2 can be obtained from the scenario generation.

3.3.2 Sensitivity with respect to initial variance

In the case of sensitivity with respect to initial variance (�0 D V0), the future short
rate is independent of V0, such that (3.16) can be simplified to

@ EE�.t/

@V0

D @ EE�

@St

@St

@V0

C @ EE�

@Vt

@Vt

@V0

: (3.23)

The partial derivatives of the exposures can be extracted from the finite difference
grid by (3.17), such that only @St=@V0 and @Vt=@V0 are unknown. In the Heston
model, the variance is modeled by a square root process, which has its difficulties. In
this model, the variance process can and will reach zero, such that a straightforward
derivative of (3.19) with respect to V0 is not defined for every path at every time. This
also holds for @Vt=@V0, because when the discretized SDE of the variance process
is differentiated with respect to V0, the square root will appear in the denominator,
which makes the derivative intractable. Further, in Chan and Joshi (2010) it is noted
that the sensitivities of the variance process with respect to initial inputs can grow very
quickly and potentially blow up. We therefore approximate these partial derivatives
by a local bump-and-revalue approach, as follows:

@St

@V0

�
QSm � Sm

�v

; (3.24)

@Vt

@V0

�
QVm � Vm

�v

; (3.25)

where QS and QV are modeled with V0 C �v as the initial variance. Note that when an
analytic expression for these partial derivatives is available, the method will gain in
efficiency.
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3.3.3 Sensitivity with respect to initial domestic interest rate

To measure the sensitivity with respect to the initial domestic short rate Rd
0, (3.16) is

simplified to
@ EE�.t/

@rd
0

D @ EE�

@St

@St

@Rd
0

C @ EE�

@Rd
t

@Rd
t

@Rd
0

; (3.26)

where @Vt=@Rd
0 is 0 because the future variance is independent of the initial short

rate. Similar to the previous cases, the partial derivatives of EE with respect to St and
Rd

t can be derived from the finite difference grid by (3.17).
The partial derivatives of the state variables with respect to Rd

0 can be computed
along the path in the Monte Carlo simulation. For any discrete time point tl (0 < l <

N ), we can create a recursive formula for @Stl =@Rd
0:

@Stl

@Rd
0

D @Stl

@Stl�1

@Stl�1

@Rd
0

C @Stl

@Rtl�1

@Rd
tl�1

@Rd
0

; (3.27)

where (when St is driven by a GBM) we have

@Stl

@Stl�1

D Stl

Stl�1

; (3.28)

@Stl

@Rd
tl�1

D Stl 
t: (3.29)

Here, 
t D tl � tl�1 is the uniform time increment in one time step. The interest
rate is modeled by the Hull–White model (Hull and White 1993), such that a Euler
scheme as a discretization yields

Rd
tlC1

D Rd
tl

C �Œ�.tl/ � Rd
tl

	
t C �
p


tZtl ; (3.30)

where Z � N.0; 1/. From this, we can recursively derive

@Rtl�1

@Rd
0

D .1 � �
t/.l�1/: (3.31)

The first time step gives us the initial condition

@St1

@Rd
0

D S0
t: (3.32)

Using this recursive formula, together with the finite difference approximations, we
can estimate the sensitivity with respect to Rd

0 at any time point, without the need of
an extra Monte Carlo simulation.

Similar to the case for EE, the computation of the first and second derivatives with
respect to initial underlying states can be summarized as follows:
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� generating scenarios/paths by Monte Carlo simulation;

� at each time point tl , for the entire grid, calculate option sensitivities
@ EE�.tl/=@� and @2 EE�.tl/=@�2; for barrier options, check if the option
is not exercised (St� < B for all t� 6 tl );

� set the first and second derivatives at each path as the calculated sensitivities if
the option is not exercised; otherwise, set them equal to 0;

� compute the empirical distribution of the sensitivities at each exercise time;

� calculate @ EE�.tl/=@� and @2 EE�.tl/=@�2 by averaging.

3.4 Pricing a portfolio

In this research, the finite difference grid is used to price multiple options with different
strikes and maturities in one sweep on one grid. The portfolios considered here are
constructed of European options and a first-order exotic barrier option. The value ˘

of a portfolio of N options can be seen as the sum of the option prices

˘.t/ D
NX

iD1

Ui .St ; Ki ; Ti /; (3.33)

where Ki is the strike, Ti is the maturity and Ui is the price of option i . In this paper,
option i can thus be a European call or put option, or a barrier option. We assume that
all options in the portfolio can be netted.

Together with the Monte Carlo scenario generation, this gives us the exposure
profile of the sum of the option values at any future time point. The duration of the
portfolio is equal to the longest maturity in the portfolio:

QT D max
i2Œ1;N �

Ti : (3.34)

Again, at this maximum maturity, all the option prices on the grid are known; therefore,
the time is reversed such that the payoff formula (3.35) can be used as an initial
condition that equals the sum of all individual payoff functions belonging to options
with maturity equal to the maximum maturity QT :


P .St / D
NX

iD1


i .St ; Ki ; Ti /1fTi D QT g: (3.35)

Important in the context of this research is that the option-specific characteristics are
only introduced by the initial condition and the boundary conditions. Because the
portfolio consists of a sum of options, the boundary conditions for the portfolio will
also be just a sum of these limiting conditions, such that our time-stepping routine in
the finite difference procedure can be updated as follows.
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� From ul , calculate Qul�1 by the ADI splitting scheme.

� Update the portfolio value with possible other option values:

ul�1 D Qul�1 C
NX

iD1


i .s; Ki ; Ti /1fTi Dtl�1g;

where s is a vector of the same size as u, consisting of all s grid points.

� Update all boundary conditions.

� If l > 0, repeat the procedure.

By applying this time-stepping procedure, u0 will be the value of the portfolio at
time t D t0. For the computation of exposure of a portfolio over time, options that
are not path-dependent can be included on one grid. By using only one grid, there
will be no extra computational time for these extra options.

In the case of a portfolio of a call, put and barrier considered in this research, the
EEs of the call and put options are computed using only one grid, whereas the EE of
the barrier option is computed using the algorithm from Section 3.1. In general, for
the computation of path-dependent options, first a separate finite difference procedure
needs to be done. Next, while computing this individual options exposure, it needs
to be checked, for any scenario, if the simulated scenario should be exercised or
not. At every time step, the portfolio exposure is then computed as the sum of the
individual barrier exposure and the call and put option exposure. To summarize, the
computational time of computing exposure for a portfolio is determined by

� one Monte Carlo simulation to compute all the scenarios,

� one finite difference procedure to compute the price grid for all non-path-
dependent options,

� a separate finite difference procedure per path-dependent option.

Note that the same holds for path-dependent American options.

4 NUMERICAL RESULTS

The numerical results are divided into two parts. First, we present our numerical study
on the accuracy and convergence under the two-dimensional Heston model. In this
case, all results are validated by the semi-analytical COS method.

Second, we further assess the accuracy of the interpolation schemes by looking into
the numerically challenging Heston Hull–White model, where the number of grid
points per dimension is smaller, which can cause a larger interpolation error. We do
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TABLE 2 Model parameters for various test cases.

Case A Case B

Spot (S0) 1.364 138.1
Foreign short rate (rf ) 0.01 0.10
Initial variance (V0) 0.029 0.029
Mean reversion speed of variance (�) 4.42 1.50
Mean reversion variance level (�) 0.0240 0.0707
Volatility of volatility (� ) 0.46 0.63
Initial domestic short rate (Rd

0) 0.01 0.03
Mean reversion speed of interest rate (�) 0.5 0.5
Mean reversion interest rate (� ) 0.05 0.05
Volatility of short rate (� ) 0.02 0.02
s; v-correlation (�1;2) �0.45 �0.76
s; rd-correlation (�1;3) 0.501 �0.011
v; rd-correlation (�2;3) �0.96 �0.96
Maturity (T ) 0.5 1.0
Strike (K) 1.360 138.1
Barrier (B) 1.20 120

this in combination with the EE computation of OT options, which are discontinuous
during the entire lifetime of the option.4 Next to that, we show the sensitivities with
respect to V0 and Rd

0.
The parameters are chosen according to Table 2. In case A, the foreign interest

rate is equal to the initial domestic rate; next to that, the option is out-of-the-money
(OTM) at inception. The level of the initial FX rate is set to 1.3639, which is a real
market-quoted EUR/USD FX rate from June 2014, whereas the other parameters sat-
isfy characteristics observed in literature, such as negative correlation, low volatility
and interest rates and small maturities (see, for example, Schoutens et al 2004 and
Albrecher et al 2007). In this test, the well-known Feller condition is satisfied. In
case B, the initial FX rate is set to 138.1, a real EUR/JPY FX rate from June 2014;
the option is at-the-money (ATM) at inception, while the initial domestic interest rate
is higher than the foreign interest rate. In this case, the other model parameters are
chosen such that the Feller condition is violated.5

4 We would like to thank an anonymous reviewer for this suggestion.
5 When the Feller condition is not satisfied, the variance process can become zero, and numerical
methods can become unstable.
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4.1 Heston model

In the case of the Heston model, the domestic interest rate Rd
t is assumed to be constant

over time, such that

D.0; t/ D e� R t
t0

Rd
�

d� D e�rdt :

Further, in the pricing PDE (3.3), � and � are assumed to be 0.

4.1.1 Single barrier options: numerical setup

Computing the exposure of barrier options is more challenging than computing the
exposure of European options. Barrier options are path-dependent and have a dis-
continuous initial condition. It is this discontinuous nature of the payoff function
in particular that may complicate the accurate estimation of sensitivities, especially
for higher-order ones. Because we have a benchmark solution for down-and-out put
(DOP) options, we do an extensive error analysis for this option type, but the method
can also be applied to down-and-out call (DOC), up-and-out put (UOP) and up-and-out
call (UOC) options, and all the other “in” (instead of “out”) variants.

The computed EE, PFE2:5% and PFE97:5% are shown in Figures 2(a) and 2(b). The
starting level of the EE equals the option price at t D t0 and shows a small increase
toward maturity. The PFE, however, shows more interesting behavior. Starting at
the option price, the PFE is increasing over time and shows a steep growth close to
maturity. Intuitively, the increase of the higher quantile makes sense; when moving
t� 2 Œt0; T 	 closer to maturity, the hitting probability conditioned on no prior barrier
hit will become smaller, such that for in-the-money paths the price will resemble a
straightforward European option value more and more. The mean (EE) is not heavily
affected, because the probability of the barrier being hit up to time t� is increased,
which will lower the option value.

4.1.2 Accuracy and convergence

As a benchmark, the COS method can be applied to evaluate barrier options accurately
and efficiently. For details on the pricing procedure using this Fourier cosine method,
we refer to Fang and Oosterlee (2011). Here, we use this efficient pricing technique
by computing prices for an entire grid of possible market scenarios. Similar to the grid
used for the finite difference procedure, this grid is chosen so that it is large enough to
contain all future market scenarios generated by the Monte Carlo scenario generation.
We choose 500 points in the s-direction and 300 points in the v-direction, and both
are densely distributed around the expected means. Prices for all the scenarios are
obtained by a spline interpolation on the COS grid.

For the sensitivities with respect to S0, we run this procedure two (in the case of
Delta) or three (in the case of Gamma) times, with an initial condition bumped by
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FIGURE 2 Exposures (EE, PFE2.5% and PFE97.5%) and the first and second derivative
profiles over time under the Heston dynamics for tests A and B.
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The dashed black line is computed using the FDMC method, whereas the dashed red line is computed using the
COS method. In the case of the sensitivities, the results corresponding to the COS method are obtained using
a bump-and-revalue (B&R) procedure, whereas for the FDMC method the derivative is splitted, as explained in
Section 3.3. (a) Exposure profiles for test A. (b) Exposure profiles for test B. (c) Delta profile for test A. (d) Delta
profile for test B. (e) Gamma profile for test A. (f) Gamma profile for test B.
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TABLE 3 Relative L2 and L1 errors compared with the COS method using the linear or
spline interpolation.

Linear interpolation Spline interpolation‚ …„ ƒ ‚ …„ ƒ
Error Quantity Test A Test B Test A Test B

k � k1 EE 2.1728 � 10�3 3.7094 � 10�3 2.1690 � 10�3 3.7006 � 10�3

PFE97.5% 4.9120 � 10�3 5.3274 � 10�3 4.9213 � 10�3 5.2280 � 10�3

@EE
@S0

4.7905 � 10�3 6.6173 � 10�3 4.8058 � 10�3 6.6243 � 10�3

@2EE

@S2
0

3.5990 � 10�2 3.7086 � 10�2 3.5982 � 10�2 3.7107 � 10�2

k � k2 EE 1.8225 � 10�3 3.1294 � 10�3 1.8197 � 10�3 3.1216 � 10�3

PFE97.5% 3.0751 � 10�3 5.2244 � 10�3 3.0832 � 10�3 5.2280 � 10�3

@EE
@S0

3.8470 � 10�3 5.3315 � 10�3 3.8508 � 10�3 5.2280 � 10�3

@2EE

@S2
0

2.5988 � 10�2 2.2843 � 10�2 2.5921 � 10�2 2.2881 � 10�2

�s . From the resulting EEs, the sensitivities are computed using the following finite
difference formulas:

@ EE.t/

@S0

� EES0C�s
.t/ � EES0��s

.t/

2�s

; (4.1)

@2 EE.t/

@S2
0

� EES0C�s
.t/ � 2EES0

.t/ C EES0��s
.t/

�2
s

: (4.2)

Figures 2(a) to 2(f) show that the exposure profiles and sensitivities over time
computed with the FDMC method resemble the results computed by the Monte
Carlo–COS method.

For an EE computed over NT evaluation dates, the relative L2 and L1 errors are
computed as

k � k1 WD maxiD1;:::;NT
jEECOS

i � EEFDMC
i j

maxiD1;:::;NT
jEECOS

i j ; (4.3)

k � k2 WD .
PNT

iD1.EECOS
i � EEFDMC

i /2/1=2

.
PNT

iD1.EECOS
i /2/1=2

: (4.4)

In Table 3, the errors between the FDMC method with 700 grid points in the s-
direction and 350 in the v-direction are compared with the COS method. We can see
that the relative error is below 1% in both EE and the first derivative. The second
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FIGURE 3 Error convergence of EE and first- and second-order sensitivities for tests
A and B by increasing the number of grid points (2m � m) used in the finite difference
computation.
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We use m in the v-direction and 2m in the s-direction. For every exposure computation, � 105 paths are used,
simulated with a fixed seed to avoid noise. Here, a spline interpolation is used, but similar analysis performed using
a linear interpolation is shown in Table 3. (a) Test A. (b) Test B.

derivative, however, is accurate up to 5% in both the L1 and L2 norms. This is due

to the fact that this absolute value of Gamma is already in the range of 10�4, such

that the errors from the finite difference discretization have a larger impact. Further,

we can see that the difference between a spline and linear interpolation is negligible.

The convergence with respect to the number of finite difference grid points is shown

in Figures 3(a) and 3(b) for the EE and the first and second derivative with respect to

S0. In this case, the benchmark is the converged finite difference solution obtained

with 700 and 350 points in the s- and v-directions, respectively. The convergence is

shown to be first-order in the number of grid points.

In Figures 4(a) and 4(b), we show the decline of the relative standard error (SE) in

percentage of the mean by increasing the number of paths for tests A and B. Here, we

computed the standard error using ten Monte Carlo simulations with different seeds.

Typically, the Monte Carlo convergence is expected to be 1=
p

Np , where Np is the

number of Monte Carlo paths. We see that, for both tests, all quantities converge as

expected.

Note that the computation time of the FDMC method heavily depends on the
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FIGURE 4 Convergence of the relative standard error (SE), Delta and Gamma of CVA
for tests A and B for an increasing number of paths.
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Here, the number of finite difference grid points is set equal to 350 in the v-direction and 700 in the s-direction, and
the standard error is computed relative to the mean. (a) Test A. (b) Test B.

number of grid points. When we compare the computation time of the price grids
computed by COS or FDMC, we see that the FDMC method is significantly faster.6

4.1.3 Portfolio of options

For the evaluation of CVA, we assume a recovery rate of 40%. The hazard rate is
computed by assuming a five-year CDS with a spread of 400bps paid quarterly. The
euro discount factors are taken fromApril 2014, and the resulting survival probabilities
up to one year are obtained as explained in Section 3.3. Because we assume the absence
of wrong- and right-way risk, we can compute the CVA for any CDS spread. In this
case, CVA is a linear function of the CDS spread.

Different options in one portfolio can have different strikes and maturities. Due to
these different maturities, the finite difference procedure is faced with a discontinuity
in time. To assess the possible effect on the accuracy, we consider a portfolio of two
European options with different strike and maturity. We again compare the resulting
exposure profiles and CVA values with the Monte Carlo COS method. For the bench-
mark, we compute separate exposure profiles for every option with the Monte Carlo
COS method and compute the EE of the portfolios as the sum. This is similar for

6 In our implementation, the COS grid was obtained by subsequently pricing every grid point, which
probably can be optimized.
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TABLE 4 Tested portfolios.

Type Maturity Strike Barrier

Portfolio I Option 1 Call T1 D 1 K1 D 133 —
Option 2 Put T2 D 0:4 K2 D 138 —
Option 3 Barrier T3 D 0:8 K3 D 135 B3 D 120

Portfolio II Option 1 Call T1 D 1 K1 D 133 —
Option 2 Put T2 D 0:4 K2 D 138 —

the sensitivities that are obtained by a bump-and-revalue procedure per option. In the
FDMC method, the call and put options are computed simultaneously on one grid.
The barrier option is computed on a separate grid, because for every path termination
needs to be checked. The resulting option prices per path are added to the portfolio
values, and from this the mean and quantiles can be calculated.

Again, we assume that the Heston dynamics drive the underlying risk factors. The
Heston parameters that drive the underlying are chosen as in case B of the previous
subsection. All the options in the portfolio are written on this single FX rate. We
consider two portfolios: portfolio I consists of a call, put and barrier option, while
portfolio II consists only of a call and put. Table 4 shows the option parameters for
the two portfolios.

The results presented in this paper also hold for portfolios consisting of an arbitrary
larger number of options, but for illustrative reasons we present results for only three
options.

In Table 5, we show the CVA values. Here, we computed the CVA as a percentage
of the portfolio value. The sensitivities are quoted relative to the sensitivities of the
initial portfolio. This way, we can quantify the change between the CVA-adjusted and
the non-CVA-adjusted portfolio:

CVA% WD 100
CVA

˘
; (4.5)


S0
WD 100

@CVA

@S0

. @˘

@S0

; (4.6)

�S0
WD 100

@2CVA

@S2
0

.@2˘

@S2
0

: (4.7)

By looking at Figures 5(a) and 5(b), we can see that the EE drops at t D 0:4, when
the put option expires. This discontinuity is captured nicely by the FDMC method,
where the put and call options are computed on one finite difference grid. By looking
at Table 5, we can conclude that the resulting value adjustments are accurate compared
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TABLE 5 CVA, Delta and Gamma for the portfolios I and II as a percentage of non-adjusted
values.

Linear interpolation Spline interpolation‚ …„ ƒ ‚ …„ ƒ
Portfolio Portfolio Portfolio Portfolio

I (%) II (%) I (%) II (%)

CVA FDMC 2.79 2.77 2.79 2.77
CVA COS 2.79 2.77 2.79 2.77

S0 splitting FDMC 23.49 18.78 23.29 18.72

S0 B&R COS 23.52 18.85 23.40 18.79
�S0 splitting FDMC 2.58 2.42 2.57 2.41
�S0 B&R COS 2.52 2.38 2.57 2.43

The percentages are computed by spline and linear interpolation for the FDMC method and the benchmark COS
method. The sensitivities in the COS method are obtained by a bump-and-revalue technique.

with the Monte Carlo COS method. Next to that, the difference between spline and
linear interpolation is small.

In portfolio I, the call and put options have a bigger effect on the EE than the barrier
option. Also, the higher PFE is heavily affected by the expiry of the put option. If
we compare Figures 5(a) and 5(b), we can see that the impact of the expiring barrier
option at T D 0:8 is not reflected in the PFE, and it is only minor in the EE profile.
This minor barrier effect is also visible when we compare the CVAs for portfolios I
and II. The difference between these portfolios is due to the barrier option, and we
can see a CVA difference of 1.5% in Table 5.

Next, if we look at the Delta profiles in Figures 5(c) and 5(d), we can see that
for portfolio I the impact of the barrier option is reflected by a steep decrease at the
expiry of the barrier option T D 0:8.As this barrier option is absent in portfolio II, this
decrease is absent in the Delta profile of portfolio II. This impact is also confirmed by
looking at the sensitivity of CVA with respect to S0 in Table 5, where the difference
between portfolios I and II is in the region of 25% for 
S0

.
In the case of Gamma, shown in Figures 5(e) and 5(f), the barrier option in portfolio I

shows a steep increase at the expiry of the barrier option. The relative impact for
Gamma, however, is smaller than for Delta. In Table 5, we see that the difference in
Gamma between portfolios I and II is in the range of 3%.

Further, we can see that the spline interpolation yields similar results to the linear
interpolation. These results indicate that the effect of barrier options in a portfolio can
be more severe in the sense of sensitivities than in CVA itself. Clearly, a small change
in the EE profile can have a bigger impact on the first- and second-order sensitivity.
Further, in the online appendix, we show that for barrier options the sensitivities are
also more sensitive to changes in moneyness levels.
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FIGURE 5 Exposure, Delta and Gamma profiles for portfolios I and II over time for case
B, computed with the FDMC or COS method.
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Again, the COS sensitivities are computed running two or three simulations from a bumped initial value. The results
compared with the COS method are accurate up to an order of � 10�3. (a) Exposure profiles for portfolio I. (b) Expo-
sure profiles for portfolio II. (c) Delta profile for portfolio I. (d) Delta profile for portfolio II. (e) Gamma profile for
portfolio I. (f) Gamma profile for portfolio II.
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FIGURE 6 Exposures and PFE for a one-year OT option with barrier level 1.2S0 and
payout 100.
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Here, we use 100 time points and the number of finite difference grid points is set equal to 100 in the s-direction and
50 in the v- and rd-directions. (a) Test A. (b) Test B.

4.2 Heston Hull–White model

As the parameters are not calibrated in this research, the mean-reverting level in the
short rate process �.t/ is assumed to be constant over time.7

4.2.1 One-touch options

The OT option only delivers a fixed payoff at maturity; therefore, it has a discontinuous
profile during the entire lifetime of the option. Next to that, the three-dimensional
dynamics of the Heston Hull–White model implies a coarser grid in every dimension.
Because of this discontinuity and the coarser grid, the interpolation scheme is more
important. In Figure 6, we show the exposures for tests A and B. We can see that the
97.5% PFE in test B reaches the maximum payout level earlier than in test A. The
lower mean-reversion speed in combination with the higher volatility of volatility and
long-term mean of the variance process in test B causes fatter tails, which imply a
higher hitting probability.

The spline and linear exposures are very close. This is further shown in Table 6,
where we see that the L1 and L2 differences are in the range of 1%.

7 A study on real model impact on exposure, in which parameters are calibrated to real market data,
is a subject for future study.
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TABLE 6 Relative L2 and L1 differences between exposure metrics, computed using
linear and spline interpolation for one-year OT option, with barrier level 1.2S0 and payout
100.

Differences Quantity Test A Test B

k � k1 EE 5.889 � 10�3 5.819 � 10�3

PFE97.5% 1.123 � 10�2 6.310 � 10�3

PFE2.5% 4.327 � 10�4 1.066 � 10�3

k � k2 EE 2.411 � 10�3 3.002 � 10�3

PFE97.5% 6.454 � 10�3 1.410 � 10�3

PFE2.5% 7.700 � 10�4 1.504 � 10�3

4.2.2 Other sensitivities

Here, we look at Vega and Rho for OT options over time. Note that, in this case,
the bump-and-revalue method uses two Monte Carlo simulations and estimates the
derivative by

@ EE.t/

@�
� EE�C��

.t/ � EE�.t/

��

; (4.8)

which is only first-order accurate in �� , which we choose as 0:01�V0 and 0:01�Rd
0,

respectively. Figure 7 shows that the sensitivities computed by the splitting scheme and
the bump-and-revalue method agree over time. This is further confirmed by looking
at the relative differences that are again in the range of 1%, as presented in Table 7.

5 CONCLUSION

In this research, we proposed a new computational technique to compute exposure
profiles and their sensitivities. This paper extends the FDMC method described in
de Graaf et al (2014) and is based on combining the Monte Carlo scenario generation
with option valuation by solving a PDE on a grid. For every scenario at every time
point, the option prices are obtained by interpolating the scenarios on this option grid.
The EE needed for the computation of CVA is computed by averaging. For the Heston
model, we have shown that, compared with a benchmark Monte Carlo COS method,
the FDMC is a computationally efficient and accurate method; it can therefore serve
as an alternative to the widely used American-style Monte Carlo approach, which in
application to exotic options can suffer from regression bias.

The sensitivities with respect to S0 and Rd
0 are obtained efficiently by leveraging

from the finite difference grid. Compared with a “brute force” bump-and-revalue
technique, the sensitivity results are accurate, and no extra Monte Carlo simulations
are needed, which is a computational advantage. In the case of sensitivity with respect

www.risk.net/journal Journal of Computational Finance



28 C. S. L. de Graaf et al

FIGURE 7 Derivatives of EE over time for OT options.
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The derivatives are with respect to S0, V0 and rd
0 . The sensitivities are computed by the splitting method and the

bump-and-revalue method. We use 100 time points, and the number of finite difference grid points is set equal to
100 in the s-direction and 50 in the v- and rd directions. (a) Vega profile for test A. (b) Vega profile for test B. (c) Rho
profile for test A. (d) Rho profile for test B.

to V0, we show that when an analytic expression of the future variance with respect
to initial variance is available, the same technique can be applied.

Under the Heston dynamics, we analyzed the accuracy of the method by comparing
it with a benchmark solution, and we assess the convergence of the solutions by
(1) increasing the number of paths in the Monte Carlo simulation and (2) increasing
the number of grid points used in the finite difference procedure. As expected, the
standard error converges by 1=

p
N , where N is the number of paths. By increasing

the number of grid points, the relative error converges in first order.
Next, we showed that we can use the method to compute exposure profiles for a

portfolio of options with different maturities. In this portfolio, the EEs of all options

Journal of Computational Finance www.risk.net/journal



Efficient estimation of sensitivities for counterparty credit risk 29

TABLE 7 Relative L2 and L1 differences between future exposure sensitivities, computed
using a splitting scheme and a bump-and-revalue technique for one-year OT option, with
barrier level 1.2S0 and payout 100.

Difference Quantity Test A Test B

k � k1
@EE
@V0

1.141 � 10�2 4.325 � 10�3

@EE

@Rd
0

6.872 � 10�3 3.922 � 10�3

k � k2
@EE
@V0

6.582 � 10�3 2.478 � 10�3

@EE

@Rd
0

1.946 � 10�3 1.813 � 10�3

that are not path-dependent (European options) can be efficiently computed on a single
grid. The resulting discontinuity in time is captured, and no significant error propaga-
tion is observed. The EEs for path-dependent options have to be computed individually
and are added to the portfolio before computing the means. The sensitivities can again
be computed with small extra computational time. Results compared with the Monte
Carlo COS method are accurate for both linear and spline interpolation.

To further assess the impact of the interpolation, OT options that have a discon-
tinuity over time are considered. In combination with the computationally challeng-
ing Heston Hull–White model, where less grid points can be used, the interpolation
is essential. We found that even in this case a linear interpolation is sufficient, as
differences are smaller than 1.2% for both exposures and sensitivities.

In forthcoming research, we assess in detail the effect of skew and stochastic interest
rate on CVA and its sensitivities by using model parameters calibrated to real market
data and a wide range of option contract parameters.
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