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A road which narrows at a bottleneck from an oo-lane road to a one-lane road is studied with the aid of two 

independent stochastic processes. Special attention is given to headways. At the bottleneck an equilibrium 

headway can be viewed as the maximum of a shifted exponential random variable and a minimum head

way. After the bottleneck the situation becomes far more complicated. However, at a sufficiently large dis

tance from the bottleneck an equilibrium headway may be approximated by the maximum of a shifted 

expo~ential random variable and a minimum headway, with the parameters of the shifted exponential ran

dom variable depending on the desired speed of the car. The distance from the bottleneck only affects the 

location, not the scale. Results are checked by Monte Carlo experiments. 
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1. INTRODUCTION 

1 

Stochastic models for traffic flow can be divided into three categories according to the possibility of 

overtaking they allow: unrestricted, restricted or no overtaking at all. 
Up to now the work on unrestricted overtaking has proven to be the most successful. Some impor

tant results are given in section 2. The basic assumption is that each car drives at its desired ·speed, 

which remains constant over time. However, unrestricted overtaking is only possible in low volume 

traffic, and consequently the results are not applicable to more dense traffic. 
Restricted overtaking is the collective term for all kinds of overtaking between unrestricted and no 

overtaking. Despite their diversity all the models which allow restricted overtaking (Renyi (1964), 

Miller (1962), Newell (1966), Morse & Yaffe (1971), Brill (1971)) have in common that strong 

simplifications cannot prevent complex results. Hence Breiman (1969) concludes that working "along 

these lines is, at present, virtually useless". At present the situation does not seem much better. 

More promising are the models which do not allow overtaking. The basic assumption is that each 

car drives at its desired speed, unless its headway (the time distance between a car and its predeces

sor, measured at a fixed point along the road) threatens to become less than the minimum headway, 

the minimal value the car driver is willing to accept. Then, in order to prevent this the speed is 

adjusted accordingly. The practical value of these models is not restricted to the one-lane road only: 

in dense traffic the possibility of changing lanes is nearly absent, and hence in that case a n-lane road 

can be expected to behave approximately as n one-lane roads. 
The early work of Miller (1965) and Hodgson (1968) on no overtaking is not very realistic, with the 

assumption of zero minimum headways (leading to an infinite road capacity) and Poisson or deter

ministic arrivals at the beginning of the no overtaking zone. Cowan (1971), (1975) is more realistic, 

assuming stochastic minimum headways and an arrival process which was founded on empirical 

observations. However, considering the impact of the assumed arrival process on the results, it seems 

better to use an arrival process which is derived in a formal way. 
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2 On roads with no overtaking 

Consider a road with no entrances or exits which leads from - oo to + oo along the real axis. On 
the negative part there are enough lanes to ensure unrestricted overtaking. On the nonnegative part, 
however, the road consists of one lane only. The origin is a bottleneck. 

Let us enumerate the cars on the road by the order in which they pass the origin. Whenever this 
enumeration is in some way essential, we shall denote a process as a sequence of random variables, 
otherwise as a set of random variables. For example, we shall call a sequence of random variables a 
Poisson point process if all the increments are independent and have an identical exponential distri
bution, and we shall call a set of random variables a Poisson point process if the number of 
occurrences in disjoint finite intervals are independent and Poisson distributed. Assign to car n two 
random variables: Sn, the minimum headway car n is willing to accept, and Yn, the desired speed of 
car n. (Sn):'=l and (Yn):'=l are assumed to be two sequences of i.i.d. random variables. We shall 
denote the cumulative distribution function of Sn by G, and of Yn by K. 

Although on the negative part of the real axis overtaking is unrestricted, we may expect that close 
to the origin the observed speed distribution will differ from the desired speed distribution, because 
drivers are anticipating the situation at the bottleneck. We shall refer to this zone as the merging 
zone. It seems reasonable to assume that the merging zone is a finite interval. The stretch of road 
before the merging zone can be treated as a road with unrestricted overtaking. 

On the nonnegative part of the real axis we shall make use of the desired arrival time D~> and the 
real arrival time A.~> of car n at point r. For each n and each r the following inequality holds: 

,A~> ;;;;.: D~> 

In this respect the desired arrival process (D~>):=l and the real arrival process (A.~>):'= 1 bear, for a 
fixed point r, resemblance to the arrival and departure processes in queueing theory. Of course, 
before the merging zone, the processes (A.~>):'= 1 and (D~)):'= 1 coincide. In the merging zone these 
processes start to differ. 

On the nonnegative part of the real axis the cars are travelling in the order by which they passed 
the origin, while each car maintains at least a minimum time headway. Thus we can write 

A.~> = max (D~>, A.~!..1 + Sn) (1.1) 

Given the sequences (D~>):'=l and (Sn):'=l , the knowledge of only one real arrival time is sufficient 
to completely determine the sequence (A.~>):'=l· We only need to construct the process (D~>):'=l in 
order to obtain the real arrival process. 

For example, starting from the assumption that the desired arrival process at the bottleneck 
(D~>):'= 1 is a Poisson point process, which is made plausible in section 2, we derive in section 3 the 
real arrival process at the bottleneck (A.~0»:=l· The last process is used to obtain an interpretation of 
an equilibrium headway at the bottleneck as the maximum of a minimum headway and a shifted 
exponential random variable, which gives rise to an approximation of (A.~0»:=l by a certain renewal 
process. 

This approximation is used in section 4 to construct an approximate desired arrival process for an 
internal point of the no overtaking zone, which in tum is used to derive an approximate real arrival 
process for such a point. Furthermore, we derive for a point at a sufficiently large distance from the 
bottleneck an approximation of an equilibrium headway as the maximum of a minimum headway and 
a shifted exponential random variable with the parameters of the distribution of the shifted exponen
tial random variable depending on the desired speed of the car. 

Sections 3 and 4 provide the main body of this report. Section 3.1 is straightforward queueing 
theory, and section 4.1 is comparable to the work of Cowan (1971),(1975). The other results are by 
the author, as is the explicit use of desired and real arrival processes. 
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2. BEFORE THE MERGING ZoNE 

The stretch of road before the merging zone can be treated as a road with unrestricted overtaking: 

each car drives at his desired speed, which remains constant over time. A major result for such a road 

was obtained by Breiman (1963), extended by Thedeen (1964), and later put in a more general con

text by Kallenberg (1978). They considered the following situation: 

Let {Xn: n =1,2, ... } be a point process on (-oo,xo), and (Yn):i=i a sequence of i.i.d. random vari

ables, independent of {Xn : n =1,2, ... }, with common distribution K. Define: 

x<1> = Xn + t Yn (2.1) 

and let N,(l) be the number of x<1> in a finite interval I. Assume 

. No( [x,xo] ) 
(a) 1im = a 

x-+-oo Xo - x 
w.p. 1 

(b) There is a bounded function M such that EN o(I) .;;;;; M ( I I I ) for every finite interval I, where 

I I I is the length of I. 
v 

(c) K(v) = J k(u) du where k(u) is almost everywhere continuous with respect to a Lebesgue meas

o 
ure, and bounded on every finite interval. 

THEOREM 2.1 (BREIMAN (1963)) Under (a), (b), and (c) above, for fixed I, j 

1im P(N,(l) = j) = ~ e-'A (2.2) 
t->OO j ! 

where A = a I I I · 

THEOREM 2.2 (THEDEEN (1964)) Let Ii, I 2•···· In be n disjoint but otherwise arbitrary intervals on the 

real line. Under (a), (b), and (c) above 

• - . - - n ')+/• -A, 
1im P(N,(J,,) - ],,, P - 1,2, ... ,n) - II -.-

1 
e 

t-+00 11=1 )11• 
(2.3) 

where A,,=all,, I· 

Interpret X,:> as the position along the road of car n at time t. Under the mild conditions of 

Theorem 2.2 the process {x<1> : n =1,2, ... } tends to a Poisson point process, independent of the "ini

tial state" { Xn : n = 1, 2, ... } . Thus, it seems reasonable to assume that the spatial distribution of traffic 

with unrestricted overtaking constitutes a Poisson point process. Relevant properties of a Poisson 

point process are given in Theorem 2.3 and Theorem 2.4. 

THEOREM 2.3 (RYLL-NARDZEWSKI (1954)) Let {Qn : n = 1,2, ... } be a Poisson point process on (-00,00) 

with intensity A, and (Rn):i=i a sequence of exchangeable random variables, independent of 

{Qn: n =1,2, ... }, then {Qn+Rn : n =1,2, ... } is also a Poisson point process on (-00,00) with the same 

intensity A. 

COROLLARY (TIME INVARIANCE) If {x<1>: n =1,2, ... } is a Poisson point process on (-00,00) for a 

certain t, then { x<1> : n = 1,2, ... } is a Poisson point process on (- oo, oo) for all t. 

Theorem 2.3 is derived for ( - oo, oo ), but we are interested in the stretch of road before the merging 

zone, which is of the form (- oo,x0) or (- oo,x0]. For convenience take it as (- oo,x0). 

COROLLARY (TIME INVARIANCE) If {Xn: n =1,2, ... } is a Poisson process on (-oo,x0), and (Yn):i=1 
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an independent sequence of i.i.d. positive random variables, then { ~) : ~> <xo} is a Poisson pro
cess on (- oo,x0) for all 1;;;.o. 

The process{~): n =1,2, ... } gives the positions of the cars along the road at a certain time t. How
ever, the process {A~) : n = 1,2, ... } is of more interest. Before the merging zone A~) equals D~), and 
by using (2.1) we get that D~> can be computed from: 

(2.4) 

for r~O. 

THEOREM 2.4 (RENYI (1964)) Let {Qn : n = 1,2, ... } be a Poisson point process on (O,oo) with intensity A, 
and (Rn)::1=l a sequence of i.i.d positive random variables with E[Rnr 1 <oo. Then {QnRn : n = 1,2, ... } 
is also a Poisson point process on (0, oo) but with intensity A E[Rn)- 1

• 

COROLLARY. If {~): n=l,2, ... } is a Poisson point process on (-oo,r), and E[Yn]<oo, then 
{ D~) : n = 1, 2, ... } is a Poisson point process on (t, oo ). 

COROLLARY. If {D~) : n = 1,2, ... } is a Poisson point process on (t, oo), and E[YnJ- 1 <oo, then 
{~) : n =1,2, ... } is a Poisson point process on (-oo,r). 

Unrestricted overtaking is not a necessary condition for a Poisson tendency to occur, e.g., Unkelbach 
(1979) also established such a tendency for the model of Newell (1966). 

3. THE BOTILENECK 

3.1. Delays. 
Let Wn = .A~0> - D~0> be the delay imposed on car n by the bottleneck. From equation (1.1) it fol
lows that: 

Wn = max (0, AWL l - DW> + Sn) 

= max(O, Wn-1 - (D~0> - D~0Li) +Sn) (3.1) 

The random variable Wn resembles the waiting time in an M/G/1 queue. 

THEOREM 3.l (LINDLEY (1952)) Let (Un)::1=1 be a sequence of i.i.d. random variables, and (Wn)::1=1 a 
sequence given by Wn = max (0, Wn -1 - Un -1 ). A necessary and sufficient condition for the distribu
tion of Wn to tend to a non-degenerate limit as n-">OO, is that 0 < E[UnJ < oo or Un = 0 certainly. 
The limiting distribution does not dependent on the distribution of W 1• If E[ Un J ~ 0 and 
P(Un =I= 0) > 0, then lim P(Wn < w) = Ofor any w. 

n-+OO 

From section 2 we learned that it is reasonable to assume that {D~0>: n =1,2, ... } is a Poisson point 
process. Let us make the further assumption that the behaviour of the car drivers in the merging zone 
is such that the real arrivals at the bottleneck are in the same order as the desired arrivals, then 
(D~>);:o = 1 is also a Poisson point process, and consequently the increments Tn = DW> - D~0L 1 are 
exponentially distributed with parameter A > 0. Thus, if we apply Lindley's theorem with 
Un _ 1 = Sn - Tn we get that an equilibrium distribution H for the delays imposed by the bottleneck 
exists if and only if the value of p defined by: 

00 

p =A f x dG(x) (3.2) 
0 

is less than 1, where G is, as previously defined, the distribution of minimum headways. If H exists, it 
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is continuous on (0, oo ), and defined to be right-continuous at 0. Assume p < I , and let Wn - I be a 

random variable with distribution H, independent of Tn and Sn. Then max (0, Wn-l - Tn + Sn) 

must also have distribution H, so the following equation of Wiener-Hopf type (cf. Spitzer (1959)) 

must hold: 
00 

H(w) = f f G(w-y +t) ;\e-At dt dH(y) 
[0,oo)O 

For w > 0 we can rewrite H(w) as: 
00 

H(w) = e>-w J J G(t -y) ;\e-At dt dH(y) 
[0,oo)w 

Then differentiating gives: 
00 

h(w) ="A H(w) - "A f G(w-y) dH(y) 
0 

(3.3) 

This formula is identical to the integrodifferential equation of Takacs for queues in equilibrium 

(Cooper (1981),p. 227). Now let H* and G* be the Laplace-transforms of the distributions of Wn 

and Sn respectively. 
Equation (3.3) implies: 

00 

H*(s) = J e-sw dH(w) + J e-sw h(w) dw 
{O} 0 

00 00 

= H(O) +A J e-sw H(w) dw - A J J e-sw G(w -y) dH(y) dw 
0 O[O,oo) 

= H(O) +"A H"(s) _"A G*(s)H"(s) 
s s 

which has as solution: 

H*(s) = sH(O) 
s-"A+"AG*(s) 

From H* (0) = I we get: 

H(O) = lim [I - "A l -G*(s)] 
s!O S 

= lim [I - A j l-e-sx dG(x)] 
s!O O S 

00 

= I - "A f x dG(x) 
0 

=I-p (3.4) 

Note that H (0) equals the fraction of undelayed cars. Hence p can be interpreted as the fraction of 

delayed cars. 
The formula for H* (s) now becomes: 

00 

s(l -"A J x dG(x))' 
H* (s) = __ _,o..._ __ _ 

s+"AG"(s)-"A 
(3.5) 
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This formula is identical to the well known Pollaczek-Khinchin formula from queueing theory. 

3.2. Headways. 
For the headway of car n at the origin nr0> = A.~0> - A.~0L 1 we obtain from equation (1.1): 

nr0> = max (D~0> - A.WLi. Sn) 

= max ((D~0> - »WL1) - Wn-i. Sn) 

= max (Tn - Wn-1• Sn) (3.6) 

The random variable Wn - l is independent of Tn, because it depends only on the sequences 
(D~>-D~Li)k<n and (Sk)k<n· Thus, fort> 0 the density of Tn - Wn-I is equal to A.e-AI H*(A.), 
and hence the equilibrium distribution F of nr0> is given by: 

F(y) = (1 - H*(A.) e-Ay) G(y) (3.7) 

where, by (3.5): 

H0

(A) = [ l•-"'dG(xf [1 - lx dG(x)] (3.8) 

One could interpret an equilibrium headway at the bottleneck as a maximum of a shifted exponen
tial time and a minimum headway. Such a maximum would have as distribution: 

Fo(y) = (1 - e-A(y-8)) G(y) (3.9) 

and as expectation: 
00 00 00 

f [l - (1 - e-A(y-8)) G(y)] dy = j [l - G(y)] dy + eM j e-Ay G(y) dy 
0 0 0 

Note that for 

fJ = ..!_ In H* (A.) 
A. 

oo M oo 

= J x dG(x) + \ J e-"AxdG(x) 
0 0 

= ~ HI -l x dG(x)] - In [l ,-"'dG(x)]} 

(3.10) 

(3.11) 

the expectation of the headway equals ~ , which means that the flow of the real arrival process equals 

the flow of the desired arrival process. Furthermore, because H* (A.) is a Laplace-transform of a proba
bility distribution, evaluated at a certain point A. > 0, H* (A.) must lie between 0 and 1. Therefore the 
value of fJ must be negative. 

Let us now distinguish between headways which are minimum headways (following headways) and 
headways which are not ( nonfollowing or leading headways). By (3.9) the distribution of leading 
headways in the equilibrium situation is equal to the distribution of (Tn -() I Tn -() > Sn) : 

[

00 i-ly 
FL(y) = [ e-"AxdG(x) [ A.e-At G(t) dt (3.12) 

and the distribution of following headways is in that case equal to the distribution of 
(Sn I Sn> Tn-fJ): 

• F,(y) = ! {G(y) - (1-p) [ l•-"'dG(x) r j ,-"' dG(t)} (3.13) 
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Note that, though all following headways are minimum headways, Fp(y) is in general not equal to 

G(y). Large minimum headways have an increased chance to be following headways. · 

Formula (3. 7) can now be rewritten as 

(3.14) 

with 

00 

p ='A j x dG(x) (3.15) 
0 

as fraction following headways. 
When the variables Sn take a value T > 0 with probability 1, our model becomes: 

{
0 ify < T 

F.,.(y) = 1 - (1-p) e-;>.(y-.,.) if y ~ T 
(3.16) 

with 

p =AT (3.17) 

which is identical to a model proposed by Tanner (1961). 
Some traffic theorists have proposed general traffic models which can be viewed as generalizations 

of the Tanner model, obtained by simply plugging in a distribution for T, and lifting the restriction on 

p. The way the distribution for T is plugged in depends on the probabilistic interpretation of the term 

e-;>.(y-.,.) in the Tanner model. If one interprets this term as P(Tn > y I Tn > T), then one obtains 

the Semi Poisson model (Buckley (1968)), given by: 

[

00 i-ly 
Fsp(y) = p G(y) + (1-p) l e-A.xdG(x) l he-M G(t) dt (3.18) 

An interpretation of e-A<r-.,.> as P(Tn + T > y) leads to the Generalized Queueing model given 

independently by Cowan (1975) and Branston (1976): 

y 

F0 Q(y) = p G(y) + (1-p) f G(y-t) he-M dt (3.19) 
0 

By now it must be clear that, despite what Cowan (1975) claims for the Generalized Queueing 

model, both this model and the Semi Poisson model can in general not be valid for a bottleneck as 

considered in this section. In the next section we shall see that the desired velocity distribution enters 

the headway distribution at an interior point of the no overtaking zone. Thus the Semi Poisson model 

and the Generalized Queueing model will in general also not be valid for an interior point of a no 

overtaking zone. Presumably, the same will hold for a restricted overtaking zone. 

4. AN INTERNAL POINT OF THE No OVERTAKING ZONE 

4.1. Approximate distribution of the actual journey times. 
Let us now consider a point at distance r downstream of the bottleneck. In order to derive an arrival 

process (A~>)~=t for such a point we have to define a desired arrival process (D~>):i=I· Making use 

of the desired speeds it seems reasonable to assume: 

D(r) = A.(O) + rj V. n n n (4.1) 

Substituting into (1.1) gives 

A~> = max (A~0> + r / Vm A~L 1 + Sn) (4.2) 

Thus for the actual journey time z<,,r> = A~> - .A.~0> follows: 
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z~> = max (r I Ym z<:L I - (A~O) - A~0L I) + Sn) 

= max (r I Yn, z~L1 - 11,0> +Sn) 

On roads with no overtaking 

(4.3) 

In this formula both 11,0> and Z~L 1 appear. Unfortunately, both variables are dependent on 11,0L 1 
and therefore will in general not be independent. In order to obtain at least approximate solutions for 
the distributions of z~> and :r<;>, we will substitute max (Tn - 8, Sn) for 11,0> with () as given in 
(3.11). We may expect close approximations when (J1,0>):i=i is a sequence of nearly independent 
variables, which occurs when p is either close to 0 or close to but not exceeding 1. Furthermore, if r is 
large the traffic behavior will be dominated by the cars with low desired speed, and thus the speed 
distribution will be the most important parameter. 

For (z<;>):i= 1 follows: 

z~> = max (r I Yn, z<:L I + min (0, Sn - Tn + 8)) (4.4) 

To prove that there exists an equilibrium distribution O(r) for z<;> we need an extension of theorem 
3.1. 

THEOREM 4.1 (HELLAND & NILSEN (1976)) Let (Un):i=1 and (Rn):i=1 be two independent sequences of 
i.i.d random variables, and (Zn):i=1 a sequence given by Zn = max (Rn, Zn -I - Un)· Assume 
E I Rn I < oo. A sufficient condition for the distribution of Zn to tend to a non-degenerate limit is that 
0 < E[Un] < oo. The limiting distribution does not depend on the distribution of Z 1 • .lf,E[Un].;;;;; 0 
and P(Un=l=O) > 0 then 1im P(Zn<z) = Ofor any z. 

n-+oo 

Assume E[Vnr 1<oo, ~d p<l, then o<r> exists by Theorem 4.1. Now let Z~L 1 be a random vari
able with distribution function o<r>, and independent of r / Ym Sm and Tn. Then z<;>, given by (4.4), 
must also have distribution function u<r)' from which we have: 

o<r>(u) = P(z<;> .;;;;; u and z<:L1 .;;;;; u) + P(z<;> .;;;;; u and z<;L1 > u) 

= 4>''l(u) { IJ<'l(u) + l P (S, - T, "' u - z -11) dli<'l(z)} 

= cp<r>(u) {n<r>(u) + j j G(t -()-z +u) >..e-AI dt dO(r)(z)} 
u D+z-u 

= 4>">(u) {n<'>(u) + ,-,,, 7 G(t) 11e-'" dt l ,-"<•-•>aW>(z)} 

= 4>'''(u) { ll'''(u) + [I - A 7 x dG (x)] le_,,,-•> aW>(z)} 

where <P<r>(u) = 1 - K(r / u) is the distribution function of r / Yn. Rearranging this equation gives: 

(p(r)( ) oo 
n<r>(u) = (1-p)u f e-">.<z-u>du<r>(z) (4.5) 

1-<P<r>(u) u 

Differentiating with respect to u leads to a differential equation with the following solution under the 
boundary condition F( oo) = I : 
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g<r>(u) = exp -;\ J dt (1-p)<P(r)(u) { 
00 

1-cp(r)(t) } 

1-pcp(r)(u) u 1-pcp(r)(t) 
(4.6) 

which can also be written as: 

lfrl(u) = 'l"'l(u) exp{-A ! (I - 'l"'l(t))dt} (4.7) 

with 

¥'>(u) = (1-p)<P<'>(u) (4.8) 
1-pcp(r)(u) 

Equations (4.7) and (4.8) imply that u<r>(u) < '{t<r>(u) < cp(r)(u) if cp(r)(u) < 1, and 

n<r>(u) = ¥'>(u) = 1 if cp(r)(u) = 1. Thus, if cp(r) is non-degenerate then z~> is stochasticany larger 

than r / Vn. 
The bottleneck model derived in section 3 is not the only model leading to equation (4.6). For 

example, Cowan (1975) obtained this equation by assuming the Generalized Queueing model at the 
bottleneck. In general, every bottleneck model which implies that (11,0> - Sn I 11,0> > Sn) has an 
exponential distribution will lead to (4.6). All the models mentioned in section 3 have this property. 

Let us now compute P(Z~L 1 -Tn ...;; u) in order to gain some probabilistic insight into equation 
(4.7): 

00 

P(Z~L1 -Tn ..,;;; u) = f u<r>(t +u) Ae-N dt 
0 

oo t+u 

= U(r)(u) + f f dU(r)(z) Ae->.t dt 
0 u 

00 00 

= UC'>(u) + J J Ae ->.t dt dU(r)(z) 
u z-u 
00 

= u<r>(u} + J e-;\(z-u>dn<'>(z) 
u 

The last term appears at the right-hand side of formula ( 4.5). Substitution gives: 

1-<{>(r)(u) n<r)(u) P(z<,[L1 -Tn ...;; u) = n<r>(u) + ___ ..__~--~Ii' 
(l-p)<P(r)(u) 

and thus 

= 1-pcp<r>(u) n<r>(u) 
(1-p)<P(r)(u) 

=exp -;\ J - dt 
{ 

oo 1 cp<'>(t) } 

u I - p<P<'>(t) 

which yields an interpretation of ¥'>(u) as a conditional probability. 

(4.9) 

(4.10) 
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4.2. Headways at a large distance from the bottleneck 
From formula (4.2) we have for.¥<;> =A.~> - A.~L 1 

.¥<;> = max ( (A.~O) - A.~0L 1) - (A.~L 1 - A.~0L 1) + r / Ym Sn) 

= max ( 11,0> - z<:L1 + r / Ym Sn) 

Again substituting max ( Tn - 0, Sn) for 11,0> we arrive at: 

J1:'> = max (max (Tn - 0, Sn) - z<;L 1 + r / Yn, Sn) 

= max (Tn - 0 - z<:L1 + r / Ym Sn - z<:L1 + r / Yn, Sn) 

(4.11) 

(4.12) 

The distribution of J1:'>, being a maximum of three dependent variables, can be quite complicated. 
It might be useful to have an easier to handle approximation to .¥<;>, such as e.g. 

r:> = max (Tn - O - z<:L1 + r I Yn, Sn) (4.13) 

which is the maximum of two independent variables. To evaluate the quality of r:> as ap approxima
tion to y<;> let us compute the probability that r:> differs from .¥<;>. First note that r:> =I= y<;> if 
and only if the following two independent events: 

{Tn - O <Sn} and {r / Yn > z<;Li} 
occur simultaneously. The probability of the first event is simply equal top, the probability of being 
a follower at the bottleneck. The probability of the second event is: 

00 

P(r / Yn - z<:L1 > 0) = J g<r>(u) dtp<r>(u) 
0 

= l .p(•>(u) exp{-1. ! [1-'P'''(t)] dtrotW>(u) 

Combining the two probabilities, and expressing both tp(r) and v<r> in K, the desired speed distribu
tion function, we finally have: 

f.r> r.r> _ _ Joo .l - K(v) {- Jv _l K(s) } 
P( n =I= n ) - p(l p) 

0 
(1-p)+pK(v) exp Ar 

0 
s 2 (1-p)+pK(s) ds dK(v) 

Now take an a such that K(a)>O. Then 

p(if';' *Ji;').; K(a)+ exp{-Ar j s~ (1-p~t~K(s) dr} 
and by letting r tend to infinity: 

lim P(r:> =I= .¥<;>) .;;;; K(£) 
T-+00 

Assume K is continuous. Then, by letting a tend to the left end-point of the support of K: 

lim P(r:> =/= .¥<;>) = 0 (4.14) 
T-+00 

Furthermore, it is obvious that 

P(Y,.
0
> =I= 11,0>) = 0 

so r:> may be considered a good approximation if r is either large or snajl. 
We will now determine the asymptotic behavior of the distribution of r:>, and hence also of .¥<;>, 

as r tends to infinity. From (4.13) we obtain: 
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::.J.r) 
P(r~ :so;; y) = P(Tn - 0 - Z~L 1 + r / Yn :so;; y) G(y) 

[I - l P(zf.'L 1 - T • .; u -8-y) d~l(u) l G(y) 

By (4.9) we can write: 

J P(z<,,'"L1 - Tn :so;; u -0-y) d<P(r>(u) = J exp -}\ J ~ (r/) dt d<P(r>(u) oo oo { oo l q,(r){ } 

0 O u-8-y 1 p<P (t) 

oo 1-v(y+(})/r l K(
8

) 

1 
v } 

[ exp -"Ar [ "".;2 (l-p)+pK(8) ds dK(v) 

v 

Now assume K(v) = J k(u) du with k bounded. Using the Taylor expansion: 
0 

_v_ 
1-vz v J _l K(8) ds = J _1 K(8) ds + K{v) z + o(z) 

0 
82 (l-p)+pK(8) 0 

82 (l-p)+pK(8) (1-p)+pK(v) 

for z---'»0, we get for fixed v: 

v 

_1 K(8) ds = J-1 K(8) ds + 
82 (l-p)+pK(8) 0 82 (l-p)+pK(8) 

1-v(y +8)/ r 

I 
0 

K(v) !..±!!._ 
+ (l -p)+pK(v) r + o{l I r) 

/ 

for r---'»oo. Dominated convergence shows that P(r;> :so;; y), and hence P(r,,r> :so;; y), is asymptotically 

equivalent to 
00 J (1 - e-y(v) (y - 1(v))) G(y) dK(v) (4.15) 

0 

with 

_ K(v) 
y(v) - A (1-p)+pK(v) 

(4.16) 

and 

T(v) = _ [o + r(l-p)+pK(v) J-1 K(8) dsl 
K{v) 

0 
8 2 {l-p)+pK(8) 

(4.17) 

This result is quite intriguing, and seems to suggest that for large r a headway is approximately the 

maximum of a shifted exponential random variable and a minimum headway. Both the location and 

the scale of the shifted exponential random variable depend on the desired speed. We note that the 

scale parameter y(v) does not depend on r, and that the location parameter T(v) tends to -oo, as r 

tends to oo. 
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5. MONTE CARLO ExPERIMENTS 
The results of section 3 are known to be exact. However, the results of section 4 are only valid 
approximately. In order to check the validity of these results, Monte Carlo experiments were per
formed, using a FORTRAN 77 program which generates minimum headways and desired speeds 
according to two Beta distributions: 

(5.1) 
Smia 

v 

P(Vn .;;;;;; v) = (vmax -vmin)-1 J (vmax-tt'-
1
(t -vminf-l dt (5.2) 

Vmia 

Given a value of p, desired arrivals at the bottleneck are generated according to a Poisson process 
with intensity · 

A= P 
Smax -smin 

(5.3) 

The parameters smax, smin (measured in seconds), vmax, vmin (measured in m/sec), a8 , /38 , av, and fJv 
are assigned values, which seem to correspond to real traffic data. 

Minimum headways, desired speeds, and desired arrivals at the bottleneck are used to compute the 
real arrivals at the bottleneck and at five points further down the road (500m, lOOOm, 1500m, 2000m, 
2500m), in iaccordance with formulas (1.1) and (4.2). To reach equilibrium conditions 500 cars are 
generated, but not saved. Then, the data of 1000 cars are filed. The essential part of the program and 
some of its output are given in respectively Appendix 1 and Appendix 2. 

The validity of the distribution of actual journey times given by (4.6) was checked by Q-Q plots, as 
was recommended by Wilk & Gnanadesikan (1968). These plots are reproduced in Appendix 3. 

The computation of quantiles of the distribution given by (4.15) was considered to be too time
consuming. Therefore, we had to confine ourselves to less formal ways to check the validity of (4.15) 
instead of using ordinary Q-Q plots. In Appendix 4 headways are plotted versus desired speeds. In 
Appendix 5, for each of 8 desired speed classes of 125 cars, and for each of the five points along the 
road, the quantiles of the observed headways are plotted versus the quantiles of a standard exponen
tial distribution. We saw that we can view a headway as the maximum of a minimum headway and a 
shifted exponential random variable with parameters depending on the desired speed. If the desired 
speed classes are fine enough, we can consider these parameters fixed within such a class. As the 
minimum headways are bounded, the distribution of headways within a desired speed class should be 
approximately exponential in the tail, and hence there should be a linear piece in each Q-Q plot of 
Appendix 5. Furthermore, the scale and the location of the shifted exponential random variable are 
respectively given by the slope and the intersection with the X-axis of the extension of this linear 
piece. 

Except for large values of p, the Q-Q plots of actual journey times show the desired straight lines. 
For the largest values of p the Q-Q plots tend to deviate from straight lines. This is, however, not in 
as much due to inadequacy of the theoretical distributions, as to the strong dependence between two 
consecutive' actual journey times, which affects the speed of convergence of the empirical distribution 
towards the theoretical distribution. 

The plots of headways versus desired speeds clearly show the dependence between headways and 
desired speeds. The following vehicles are displayed as a dark horizontal cloud. The fraction of non
following vehicles is decreasing as the distance from the bottleneck tends to oo. 

The Q-Q plots of headways show that for p increasing from 0 to 1, the headway distributions for 
the highest desired speed classes depart from exponentiality first. Furthermore, the X-coordinates of 
the intersections described above increase. For a fixed value of p, these coordinates decrease as the 
distance from the bottleneck tends to oo or as the desired speed tends to its minimum value. In the 
plots there is also some evidence for the convergence of the slopes of the linear pieces towards a fixed 
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value as r tends to oo. 
Resuming, the results of the Monte Carlo experiments seem to be in accordance with the theory 

developed in section 4. 

6. FUTURE RESEARCH 
Fundamental in the treatment of the no overtaking zone is equation (4.4), which can be rewritten as: 

Zn = max (Rm Zn-1 -Un) (6.1) 

(cf. Theorem 4.1). It can be thought of as a generalization of the much studied equation: 

Wn = max(O, Wn-1-Un-1) (6.2) 

(cf. Theorem 3.1) which arises in the study of the single server queue with independent interarrival 
and service times. Equation (6.1) deserves the same amount of attention: it not only arises here, but 
also in the random exchange model (Helland & Nilsen (1976)), and in the study of the single server 
queue with weakly dependent inputs (Kingman (1965)). 

1 

The type of road studied in this report is of little practical value. One could· enhance the practical 
value e.g. by considering an oo-lane road which narrows at a bottleneck to an n-lane road, with no 
lane changing after the bottleneck. However, in making this small step towards a true general model 
one can expect to encounter the same problems as involved in the step from the M/G/1 queue to the 
M/G/n queue. Up to now no exact general solutions are known for the M/G/n queue (cf. Cohen 
(1982)), only approximate general solutions (Kollerstrom (1974)). Hence, it would be better to focus 
future research on obtaining an approximate general model in a direct manner. Promising in this 
respect are the so-called kinematic models, adopted from statistical mechanics (Prigogine & Herman 
(1971), Phillips (1979), Michalopoulos, Beskos & Yamauchi (1984), Kilhne (1984)). 

The model of Prigogine & Herman (1971) can be viewed as a convex combination of the unres
tricted overtaking model and a no overtaking model. Surprisingly, this model fails for high traffic 
volumes, which raises doubt about the accuracy of the no overtaking model they used. By deriving the 
speed distribution at a given point in the no overtaking zone from (4.4), it must be possible to formu
late a more accurate kinematic no overtaking model. Then, data should decide whether or not the 
convex combination of this model and the no overtaking model is a satisfactory general model. 
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Appendix 1 

Computer Simulation 

15 

The lines on the next page constitute the essential part of the FORTRAN 77 program used to simu

late the situation at the bottleneck and at NR points further along the road at a distance DR of each 

other. The real functions G05DBF and G05DLF are random number generators from the NAG

library. The variable S contains the minimum headway, W the delay imposed by the bottleneck, YO 

the headway at the bottleneck, and VO the desired velocity. The arrays Z, Y, and V contain respec

tively the actual journey times, the headways, and the actual speeds for each of the NR points along 

the road. The variable W and the elements of the array Z are assumed to be set to some initial value 

(presumably 0). First, ND iterations are used to reach equilibrium, then the program outputs the data 

of N cars. 

To illustrate the program a little more, its output for parameter values ND=500, N = 10, NR= 1, 

DR=500, p=0.50, Vmin=l5.0, Vmax=30.0, av=3.0, Pv=3.0, smin=O.O, Smax=3.0, as=3.0, and 

Ps = 1.5 is also reproduced. 
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DO 10 I=1-ND,N 
YO=G05DBFC ET> 
S=SMIN+SB*G05DLF(ALFAS,BETAS,IFAIL) 
VO=VMIN+VB*G05DLF(ALFAV,BETAV,IFAIL) 
IF(YO.GT.W+S)THEN 

YO=YO-W 
W=O. 

ELSE 
W=W+CX-YO) 
YO=S 

END IF 
DRVO=DR/VO 
DO 20 J=1,NR 

H=Z(J)-YO 
RVO=DRVO*J 
IFCRVO.GT.H+S)THEN 

Y(J)=RVO-H 
Z(J)=RVO 
V(J)=VO 

ELSE 
Y(J)=S 
Z(J)=H+S 

END IF 
20 CONTINUE 

IF(I.GT.O)THEN 
WRITE(6,30)S,W,YO,V0,(Z(J),Y(J),V(J),J=1,NR) 

30 FORMATC15F9.3) 
END IF 

10 CONTINUE 

s w YO VO ZC1> YC1) 
2.538 3.108 2.538 22.006 24.972 2.538 
2.696 0.434 2.696 26.450 24.972 2.696 
2.634 0.000 8.161 26.359 19.446 2.634 
2.289 0.000 4.803 20.248 24.694 10.051 
1.356 0.557 1.356 21.189 24.694 1.356 
2.716 1.329 2.716 25.502 24.694 2.716 
2.020 0.000 2.037 26.572 24.677 2.020 
1.736 0.509 1.736 23.820 24.677 1. 736 
1.709 0.000 7.247 20.831 24.003 6.573 
2.171 2.058 2.171 25.152 24.003 2.171 

V(1) 
20.022 
20.022 
20.022 
20.248 
20.248 
20.248 
20.248 
20.248 
20.831 
20.831 
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Appendix 2 

Q-Q Plots of Actual Journey Times 

On the next pages Q-Q plots are given of the ordered observed values of z<;> against the quantiles of 

the distribution given in ( 4.16). These plots are given for the following values of r: 

500m IOOOm 

1500m 2000m 

2500m 
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Appendix 3 

Plots of Headways versus Desired Speeds 

The plots are given for the following values of r: 

500m lOOOm 

1500m 2000m 

2500m 
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Appendix 4 

Q-Q Plots of Headways 

For each of the 8 desired speed classes of 125 cars, Q-Q plots are given for the points at respectively 

500m, lOOOm, 1500m, 2000m, and 2500m from the bottleneck. The first row of plots is concerned 

with the highest desired speed class, the last row with the lowest desired speed class. In section 5 the 

Q-Q plots are explained. 
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Appendix 5 

List of the Most Important Symbols 

Symbol Meaning 

p Fraction followers at the bottleneck 

X Traffic intensity before the bottleneck 

A~> Real arrival time of car n at point r 

»~> Desired arrival time of car n at point r 

Sn Minimum headway of car n 
Tn Random variable distributed exp(A) 

Yn Desired speed of car n 
Wn Delay imposed on car n by the bottleneck 

Xn Position along the real axis of car n at time 0 

X,:> Position along the real axis of car n at time t 

rt> Headway of car n at point r 
~fir) 
~ Approximation to¥<;> 
z<;> Actual journey time of car n at point r 

G Distribution of Sn 

H Distribution of Wn 
K Distribution of Yn 
c)(r) Distribution of r / Yn 
flJ..r) Distnbution of z<;> 
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