View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by CW!I's Institutional Repository

Adaptive Indexing in Modern Database Kernels

Stratos Idreos
CWI Amsterdam
idreos@cwi.nl

ABSTRACT

Physical design represents one of the hardest problems for
database management systems. Without proper tuning, sys-
tems cannot achieve good performance. Offline indexing cre-
ates indexes a priori assuming good workload knowledge and
idle time. More recently, online indexing monitors the work-
load trends and creates or drops indexes online. Adaptive
indexing takes another step towards completely automating
the tuning process of a database system, by enabling incre-
mental and partial online indexing. The main idea is that
physical design changes continuously, adaptively, partially,
incrementally and on demand while processing queries as
part of the execution operators. As such it brings a plethora
of opportunities for rethinking and improving every single
corner of database system design.

We will analyze the indexing space between offline, online
and adaptive indexing through several state of the art index-
ing techniques, e.g., what-if analysis and soft indexes. We
will discuss in detail adaptive indexing techniques such as
database cracking, adaptive merging, sideways cracking and
various hybrids that try to balance the online tuning over-
head with the convergence speed to optimal performance.
In addition, we will discuss how various aspects of modern
techniques for database architectures, such as vectorization,
bulk processing, column-store execution and storage affect
adaptive indexing. Finally, we will discuss several open re-
search topics towards fully automomous database kernels.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT 2012, March 26-30, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...10.00

Stefan Manegold
CWI Amsterdam
manegold@cwi.nl

566

Goetz Graefe
HP Labs, Palo Alto
goetz.graefe@hp.com

1. INTRODUCTION

Physical Design. Physical design is a mandatory step in
order to extract good performance from a database system.
Over the years, this tuning step became harder and harder.
As the workloads became more complex and the database
systems got more knobs and became more sensitive to their
set-up, the tuning phase has outgrown the capabilities of
database administrators. Now, we rely on auto-tuning tools
to assist database administrators and to make good tun-
ing possible. Contemporary index selection tools rely on
monitoring database requests and their execution plans, oc-
casionally invoking creation or removal of indexes on tables
and views.

Dynamic Workloads. The combination of auto-tuning
tools and administrators works well for rather stable envi-
ronments with accurate workload knowledge and plenty of
a priori slack time to invest in physical design. However, in
the context of dynamic workloads, such tools tend to suf-
fer from the following three weaknesses. First, the interval
between monitoring and index creation can exceed the du-
ration of a specific request pattern, in which case there is
no benefit to those tools. Second, even if that is not the
case, there is no index support during this interval. Data
access during the monitoring interval neither benefits from
nor aids index creation efforts, and eventual index creation
imposes an additional load that interferes with query exe-
cution. Last, but not least, traditional indexes on tables
cover all rows equally, even if some rows are needed often
and some never.

Dynamic Indexing. Dynamic and unpredictable work-
loads require non static approaches to indexing. Online
indexing is a new approach that tries to take all indexing
decisions on-line, i.e., as the workload evolves and as we un-
derstand better its shape and the requirements. The system
continuously adapts, i.e., continuously monitors the perfor-
mance, drops and creates indexes when this is considered
beneficial.

Creating indexes on-the-fly though, may penalize individual
queries as well as it may take time until we understand a
new pattern is emerging. Adaptive indexing removes these
issues by enabling efficient incremental and partial online
indexing while instantly reacting to workload changes. The
main innovation is the ability to build indices incrementally
as part of query execution; as queries arrive, the actual query
operators physically reorganize data to match the workload.


https://core.ac.uk/display/301651107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One of the main “rules” of adaptive indexing is the following.

Every query is treated as an advice of how data should be
stored.

In this way, the actual storage continuously adapts and ac-
cess patterns improve as the workload changes. No human
intervention is required and everything happens in a trans-
parent way to the user.

Tutorial Plan. In this tutorial, we will first present the
research space between adaptive indexing and the more tra-
ditional offline indexing as well as the latest efforts on on-
line indexing. We will distinguish the application scenario
for each case and the challenges involved. We will moti-
vate the new research path of adaptive indexing as well as
the need to combine all three areas towards a new holistic
tuning method.

We will discuss in detail several state of the art offline, on-
line and adaptive indexing techniques. We will see the basic
approaches to what-if analysis for offline indexing as well
as modern techniques for online indexing, such as soft in-
dexes. Database cracking, sideways cracking, partial crack-
ing, adaptive merging as well as various hybrid adaptive in-
dexing methods will be covered in detail. We will discuss the
first adaptive kernel over the open source column-store Mon-
etDB and how this compares with database architectures
that support offline and online analysis. In addition, we will
discuss several optimization issues such as maintenance of
adaptive indexing structures, improving convergence speed,
etc. Furthermore, updates, concurrency control, and adap-
tive indexing for several database operators such as joins,
selects and tuple reconstruction will be discussed.

Finally, we will discuss several open topics in the context of
adaptive and dynamic indexing and how these can affect da-
tabase research and the database community at large. For
example, we will discuss how adaptive indexing can be in-
corporated in traditional systems, in the form of row-store
and pipelined processing, b-trees, etc.

2. TUTORIAL MATERIAL

Physical Design. The tutorial will start by describing
the physical design problem; the importance of creating the
proper indexes as well as the ingredients for successful phys-
ical design.

Offline Analysis. We will discuss in detail the concept of
offline analysis as it exists in every major database prod-
uct, i.e., we will discuss the what-if analysis paradigm and
how modern auto-tuning tools work and interact with the
database system, e.g., [4, 6, 7, 11, 1, 5, 20, 21]. Such of-
fline approaches to runtime index tuning are non-adaptive,
meaning that index tuning and query processing operations
are distinct from each other. These approaches first analyze
a given sample workload and then decide which indexes to
create or drop based on the observations. Both index tun-
ing and index creation costs may impact the actual database
workload. Once a decision is made, it affects all key ranges
in an index. We will describe in detail the benefits as well

567

as the bottlenecks such an approach can have for dynamic
environments.

Online Analysis. Online analysis attacks the problem of
dynamic workloads where any offline decisions might soon
become invalid and new indexes are required. A number of
recent efforts propose variations of online indexing, e.g., [3,
18, 2, 16]. The general idea is that the basic concepts of
offline analysis are transferred online, i.e., while processing
queries the system monitors the workload and the perfor-
mance, it questions the need for different indexes and once
certain thresholds are passed it triggers the creation of new
indexes and possibly it drops old ones. We will discuss in
detail this approach and the benefits it brings as well as the
bottlenecks it creates by penalizing certain queries with high
overhead.

Adaptive Indexing. Once the concepts of offline and on-
line analysis for physical design are clear, we are ready to
move onto the adaptive indexing discussion. The bottle-
necks of offline and online analysis for dynamic workloads
motivate adaptive indexing. We will discuss in detail the
scenarios where each approach is applicable and the bene-
fits of adaptive indexing as shown in [12, 13, 14, 15, 9, 10,
8]. Adaptive indexing aims to enable incremental, efficient
adaptive indexing, i.e., index creation and optimization as
side effects of query execution, with the implicit benefit that
only tables, columns, and key ranges truly queried are opti-
mized. The more often a key range is queried, the more its
representation is optimized. Columns that are not queried
are not indexed, and key ranges that are not queried are not
optimized. Overhead for incremental index creation is mini-
mal, and disappears when a range has been fully-optimized.

Database Cracking. We will start with a discussion on da-
tabase cracking [12, 13, 14]. Database cracking introduces
the notion of incrementally building indexes as a byprod-
uct of operator calls during query processing. It relies on
an extremely lazy approach in order to introduce minimal
overhead to individual queries. The main idea is that data is
continuously physically reorganized to match the workload.

Selection Cracking. We will first discuss selection crack-
ing [12], where only the select operator is responsible for
adaptive indexing steps. Here, the idea is that in order to
perform a simple selection, the respective column needs to
be reorganized to collect all qualifying values in a contigu-
ous area. This results in a continuous injection of more and
more structure knowledge that future queries can exploit.
We will discuss in detail the first complete prototype and its
performance when exploiting these techniques.

Column-Stores. The database cracking work exploits and
in fact relies on several column-store properties, such as stor-
age on fixed width dense arrays, bulk processing and late tu-
ple reconstruction. We will take a few minutes in describing
the basic concepts of modern column-store processing and
why these features assist database cracking.

Cracking Updates. Then, we will discuss about updates
[13] which are performed in the same adaptive philosophy.
Updates are applied on demand, adaptively and incremen-
tally during query processing and while cracking the data-



base arrays. We will show which are the main techniques
and tradeoffs for updates as well as we will discuss open
issues in this context.

Sideways Cracking. After that, a discussion on partial
and sideways cracking [14] will show how to answer com-
plex queries, e.g., TPC-H, with adaptive indexing while also
taking into account storage bounds. We will discuss tech-
niques that transfer cracking across multiple columns in a
table as well as techniques that allow for partial and incre-
mental materialization of the auxiliary cracking structures.
In addition, we will discuss several optimization options in
this context, such as adaptive alignment, new query plans
and operators necessary, etc.

Adaptive Merging. Furthermore, we will discuss about
adaptive merging [9, 10]. Adaptive merging, inspired by DB
cracking, follows the same principles of continuous adapta-
tion but introduces a crucial new idea, i.e., that of creating
more active reactions to the workload. This is very useful,
especially in disk based environments and it improves the
convergence to the optimal performance of a full index.

Performance Metrics and Benchmark. As proposed
in [8], two measures are crucial to characterize how quickly
and efficiently a technique adapts index structures to a dy-
namic workload. These are: (1) the initialization cost in-
curred by the first query and (2) the number of queries that
must be processed before a random query benefits from the
index structure without incurring any overhead. We will dis-
cuss the first benchmark proposed for adaptive indexing [§]
and how conclusions and performance in such a benchmark
may affect the choice of indexing strategies.

Hybrid Adaptive Indexing Algorithms. Then, we will
discuss the broad space of adaptive indexing as it is defined
in [15] where multiple techniques are discussed on how to
balance between initialization and convergence and how var-
ious design choices affect these parameters. We will begin
with a comparison of the basic reorganization techniques of
adaptive merging and database cracking in the context of
column-stores and then we will proceed to discuss various
alternative reorganization strategies towards the ideal adap-
tive indexing strategy.

Auto-tuning Kernels. Another important part of the dis-
cussion will be the requirements in order to apply adaptive
indexing in a database kernel. We will discuss what it took
to create the first adaptive indexing system as an exten-
sion of MonetDB and how other modern database kernels
can adopt similar strategies. We will discuss in detail about
changes necessary at all levels, e.g., operators, query plans,
optimizer rules and various optimization and system depen-
dent choices.

Prior Approaches. With the main part of adaptive index-
ing covered, we will take a step back and revisit the topic
of why adaptive indexing brings something radically new to
database research but also how it was inspired by past ef-
forts that made the first steps towards partial and online
indexing.

In the past, the recognition that some data items are more

568

heavily queried than others has already led to the concept
of partial indexes [17, 19]. A generalization is the concept
of materialized views. Adaptive indexing though proposes
a way to incrementally and adaptively create those indexes
as part of query processing.

In addition, soft indexes is another recent interesting ap-
proach in the path of adaptive indexing [16]. Like monitor-
and-tune approaches, soft indexes continually collects statis-
tic for recommended indexes and then periodically and au-
tomatically solve the index selection problem. Like adaptive
indexing, recommended indexes are generated (or dropped)
during query processing. Unlike adaptive indexing, how-
ever, neither index recommendation nor creation is incre-
mental; explicit statistics are kept and each recommended
index is created and optimized to completion, although the
command might be deferred. In addition, soft indexes sim-
ply exploit the scan of the relevant data, e.g., from a select
operator and send this data to the index creation routine at
the same time. On the contrary, database cracking overloads
database operators with new algorithms that both answer
the relevant operator and introduce small physical reorgani-
zation actions which makes lightweight adaptation possible.

In general, adaptive indexing and approaches that monitor
queries then build indexes are mutually compatible. Poli-
cies established by the observe-and-tune techniques could
provide information about the benefit and importance of
different indexes, and adaptive indexing mechanisms could
then create and refine the recommended index structures
while minimizing additional workload.

Open Topics. The final part of the tutorial will present
multiple open research topics for adaptive indexing. These
range from concurrency control, disk based processing, long
term maintenance of structures, as well as a future system
that learns from all adaptive indexing, offline indexing and
online indexing to create a database system that continu-
ously and efficiently adapts to its environment. There are a
plethora of open topics on almost all database design points
which we believe will appeal to a broad audience. For several
of this topics, we will discuss in detail their importance in
the course of adaptive indexing, and possible paths towards
solutions.

Duration. To cover all material discussed in this section, a
3 hours slot will be required. Alternatively, we can remove
part of the background discussions and part of the detailed
discussions to fit in a 1.5 hour slot.

3. TARGETED AUDIENCE

This tutorial targets database researchers from multiple fields.

In particular, it will appeal to core database architecture
designers as adaptive indexing proposes a new way to de-
sign modern database kernels. It brings a new requirements
and opportunities for database architecture design which in-
volves new operators, algorithms, structures, query plans,
etc.

Naturally, database researchers in the field of physical de-
sign, both offline and online, will be a perfect match for this
tutorial as adaptive indexing complements these research



lines and brings a viable way of how to combine them.
In addition, researchers working on query optimization in
general will fit in this tutorial as adaptive indexing brings

numerous new opportunities for query optimization.

Finally, we believe the tutorial would be interesting for any-

one working on adaptive techniques for any kind of query/data

problem. The core ideas of adaptive indexing extend beyond
the strict limits of database architectures, e.g., to how we
can have adaptive data structures.

4. SHORT BIOGRAPHY

Stratos Idreos holds a tenure track senior researcher po-
sition with CWI, the Dutch National Research Center for
Mathematics and Computer Science. The main focus of
his research is on adaptive query processing and database
architectures, mainly in the context of column-stores. He
also works on stream processing, distributed query process-
ing and scientific databases. Idreos obtained his PhD from
CWTI and University of Amsterdam. In the past he has also
been with the Technical University of Crete, Greece, and
held research internship positions with Microsoft Research,
Redmond, with EPFL, Switzerland and with IBM Almaden.
Idreos won the 2011 ACM SIGMOD Jim Gray Doctoral Dis-
sertation award for his thesis on database cracking while in
2010 he was named a “Distinguished Scientist Excelling in
Research abroad” by the Hellenic Ministry of National De-
fense.

Personal web page: http://homepages.cwi.nl/~idreos/

Stefan Manegold is the group leader of the database archi-
tecture research group at CWI in Amsterdam, The Nether-
lands. He received his PhD from the University of Amster-
dam, The Netherlands, in 2002 and his Master (Diplom) in
computer science from the Technical University of Clausthal,
Germany, in 1994. Manegold’s research work comprises da-
tabase architectures, query processing algorithms and data

management on modern hardware, as well as leveraging column-

store database technology for efficient and scalable XML /
XQuery processing, with a particular focus on optimiza-
tion, performance, benchmarking and testing. Manegold
co-authored more than 40 scientific publications, and re-
cently received the VLDB 2009 10-year Best Paper Award
together with his co-authors Peter Boncz and Martin Ker-
sten. Stefan Manegold is a core member of the developers
team of the open-source column-oriented database system
MonetDB, co-founder of the DaMoN workshop series (co-
located with SIGMOD since 2005), and co-chair of the Re-
peatability and Workability Evaluation for SIGMOD 2009
and 2010.

Personal web page: http://homepages.cwi.nl/ manegold/

Goetz Graefe is a HP Fellow researching database issues,
primarily transactional indexing and robust query process-
ing. Various database products employ techniques from
his Exodus, Volcano, Cascades research projects. His best
known works are in-depth surveys on query execution, sort-
ing, and B-tree indexing.

S. REFERENCES
[1] S. Agrawal et al. Database Tuning Advisor for

Microsoft SQL Server. VLDB 2004.

569

[2] N. Bruno and S. Chaudhuri. To Tune or not to Tune?
A Lightweight Physical Design Alerter. VLDB 2006.
N. Bruno and S. Chaudhuri. An online approach to
physical design tuning. In ICDE, 2007.

N. Bruno and S. Chaudhuri. Physical design
refinement: the ‘merge-reduce’ approach. ACM
TODS, 32(4):28:1-28:41, 2007.

S. Chaudhuri and V. Narasayya. An efficient
cost-driven index selection tool for Microsoft SQL
Server. VLDB. 1997.

S. Chaudhuri and V. R. Narasayya. Self-tuning
database systems: A decade of progress. VLDB, pages
3-14, 2007.

S. J. Finkelstein, M. Schkolnick, and P. Tiberio.
Physical database design for relational databases.
ACM TODS, 13(1):91-128, 1988.

G. Graefe, S. Idreos, H. Kuno, and S. Manegold.
Benchmarking adaptive indexing. TPCTC, pages
169-184, 2010.

G. Graefe and H. Kuno. Adaptive indexing for
relational keys. SMDB, pages 69—74, 2010.

G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. EDBT, pages
371-381, 2010.

T. Hérder. Selecting an optimal set of secondary
indices. Lecture Notes in Computer Science,
44:146-160, 1976.

S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. CIDR, pages 68-78, 2007.

S. Idreos, M. L. Kersten, and S. Manegold. Updating
a cracked database. SIGMOD, pages 413-424, 2007.
S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing tuple reconstruction in column stores.
SIGMOD, pages 297-308, 2009.

S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
Adaptive indexing in main-memory column-stores.
PVLDB, 2011.

M. Liihring, K.-U. Sattler, K. Schmidt, and

E. Schallehn. Autonomous management of soft
indexes. SMDB, pages 450-458, 2007.

A. N. S. Praveen Seshadri. Generalized partial
indexes. ICDE, pages 420-427, 1995.

K. Schnaitter et al. COLT: Continuous On-Line
Database Tuning. SIGMOD 2006.

M. Stonebraker. The case for partial indexes.
SIGMOD Record, 18(4):4-11, 1989.

G. Valentin et al. DB2 Advisor: An Optimizer Smart
Enough to Recommend Its Own Indexes. ICDE. 2000.
D. C. Zilio et al. DB2 Design Advisor: Integrated
Automatic Physical Database Design. VLDB 2004.

3]

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]
(18]
(19]
20]

21]





