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'1'1 = Yt(fl), to be estimated by means of a given sample path of {N1,0.;;;t.;;;1 }. Treating this problem in its 
asymptotic setting, we consider our experiment (2.1) as n-th in a sequence of experiments, and let At meet 
Condition I of asymptotic stability. Under this iind certain additional conditions introduced on demand, we 
study asymptotic properties of the estimator fJ for fJ defined by (1.4), which is in fact the Cox estiniator 
extended to our situation. In particular, we characterize the consistency and asymptotic normality of fJ by 
estimating the probability of large deviations, and then showing the convergence in all moments of the dis­
tribution of p to a normal law. Finally, it is shown that P is the best within a class of (regular) estimatprs in 
the sense that neither of them can have an asymptotic distribution that is less spread out than that of {J. 
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1. INTRODUCTION 

1. Statistical inference on counting processes attracts considerable attention in the literature of recent 

years; see Bibliography where a number of related references is enclosed which may serve as a source for 

many further references. Typically, the approach taken in these works is inspired by the developments of the 

theory of stochastic processes related to the notion of martingales, see, e.g. Shiryayev (1981), as well as by the 

developments of the asymptotic theory of statistical decisions, see, e.g. Le Cam (1969) or 

Ibragimov/Has'minskii (1981); also Greenwood/Shiryayev (1985). 

Within the framework of the theory of stochastic processes, these processes are defined on a complete pro­

bability space (0,CW,P) equipped with a nondecreasing family {'ifr,t;;a.O} of right-continuous sub-a-algebras of§" 

augmented by sets from §"of zero probability. For the sake of simplicity, we discuss only the case in which t E 

[0,1]. 

Let N = (N1,'ifr,P) be r-variate counting process which by definition consists of components Ni,i = l, ... ,r 

having stepwise sample paths: Nb = 0 , N~ - N~ _ = !::.N~ = 0 or l, !::.N~!::.N{ = 0 if i=f=.j (no two component 

processes jumping at the same time), and N\ < oo P - a.s. With N one may associate an r-variate predictable 

increasing process A = {A1,'ifr,P} such that N-A =Ml = {M11,'ifr, P} is an r-variate local square integrable 

martingale with the quadratic characteristic <Ml>, = diagA1 -(A]1 (see Lemma 3.1). 

If, in addition, the filtration is of special form 'ifr=a{w:N80s~t} then the probability measure P is com­

pletely defined by the compensator A (in the sense of Liptser/Shiryayev (1978), Section 18.3). Hence in this 

case the statistical model for the observed phenomena may be completely specified in terms of the compensa­

tor A, or, for convenience, in terms of the so-called (P, '!fr)- predictable characteristics (A1, i't) of Nt> associated 

with At by the following relations i't = dAifdAt and A, = o;A, (here Dr= co/(1, ... ,1), and T indicates the 

transposition). Obviously, the first of these characteristics is the compensator of N1 =N} + ... + N~, while the r­
variate nonnegative predictable process '1'= {'1'1, 'ifr,P} consists of components '1'~,i = l, ... ,r, '1'~ being, roughly 

speaking, the probability of having a jump of N~ at time t, given '!fr_ and given that N1 jumps at time t ; 

Bremaud (1981 ), pp. 34 and 236. 

2. In applications the latter characteristic is usually parametrized: it is restricted to a certain parametric 

family i'E{i'(p),pE~} of nonnegative '!fr-predictable processes for each admisible value of the parameter 

PE~. 

In such a case P is "the parameter of interest" - inference about P is required by means of a given sample 

path of {N,,O~t~ 1} drawn according to the pair (A1, '1'1(p)) of the characteristics of N for an unknown P 
and, typically, for the characteristic At specified only up to the restrictions of a general nature (to be intro­

duced below). Actually, A, itself may depend on the parameter of interest p, as well as on certain nuisance 

quantities, as it is illustnited by the following 

Example 1.1. Let { P a,p, a Elf., PE~} be a family of the probability measures, where ~ is a set of deterministic 

nonnegative and nondecreasing functions a= a1, O~t~l, and~ an open set of R 1• For each a:E~and PE~ 

let N = (N1, 'ifr,P a,p) be an r-variate counting process of the Poisson type (Liptser/Shiryayev (1978), p. 249) 

defined on the stochastic basis (0,'J,{'ifr, O~t~l },P a,p), with the compensator of form 

I 

A 1 = A 1(a,p) = /'Ps(p)da8 , O~t~l 
0 

(1.1) 

where 'P(p) is an r-variate nonnegative '!fr-predictable process for each PE~. Obviously, the pair of the 

(P a,p, '!fr)- predictable characteristics of the process N is given by the following relations 

I 

'1',{P) = 'P,{P) / 'P,{P) with ~,{P) = o; 'P,{P), and A,(a,p) = f~s<P)das 
0 

(1.2) 
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The most popular special case of the Cox regression model for censored survival data specifies these charac­

teristics as follows: 

'1'~(.8) = Pie13Z, / ± Pie13Z,, Ar(<x,/J) = f ± Pse13Z, das (1.3) 
i=l 0 i=l 

with certain <?fr-predictable processes Pi and Z~, free from {3; see, e.g., Andersen/Gill (1982) (or, for a bit more 
general model, Prentice/Self (1983)~. These authors and later Begun et.al. (1983) have shown that under wide 

conditions the partier lar estimator f3 for {3, defined by the relation 

(1.4) 

possesses the desired asymptotic properties (to be specified in the next section) 

Obviously, if 'Ys(/3) is a sufficiently smooth function of {3, then the estimator f3 of f3 is well defined by con­

dition (1.4) also for the general set up discussed at the beginning of this subsection (and not only for the spe­
cial Cox model; see (1.3)). Naturapy, one can expect that under circumstances similar to those of the papers 

mentioned above, the estimator f3 preserves its desired properties. In the present paper this conjecture is 

confirmed, furthermore, a refined characterization of these properties is given (cp. Efron (1977)). 

Note that unlike Andersen/Gill (1982) here only the case of the real valued parameter f3 is duscussed, and 

the abstract parameter a in (1.3) (or (1.2)) is considered as the nuisance quantity. 

2. ASYMTOTIC INFERENCE 

1. Following the usual device of the asymtotic theory (Le Cam (1969), Ibragimov/Has'minskii (1981)), we 

suppose that observed is an outcome of the experiment 

&n = (Un,~,{<!J7,0o;;;;to;;;;l},{Pn}) (2.1) 

(with a certain family of probability measures { pn} ), which is actually n-th in the sequence of experiments 
&i.&i,.... Fix pn at the right-hand side of (2.1), and define on that stochastic basis an rn-variate counting pro­

cess l\ln = {N7,'!J7,Pn} where rn,n = 1,2, ... is a nondecreasing sequence of integers. As above, with the com­

pensator A.n = {A.7,~,Pn} of l\ln relate the pair (A;,'1!7) of the (Pn,<!J7)-predictable characteristics, and let 

'1'7 depend on /3EIIB. 

The class of all admissible pairs (A;, '1!7(.8)) of the (Pn, '!J7)-predictable characteristics of l\ln determines the 
family of the probability measures {Pn} in (2.1). The following basical condition restricts this class up to an 

asymptotic stability requirement on the sequence F/ ="A;/ kn = D'!'.A.7 !kn with an unboundedly increasing 

sequence of numbers kn, n = 1,2, .... 

Condition I. For each admissible pair (A;, '1!7(.8)) of the (Pn, '!J7)-predictable characteristics there exists a con­

tinuous deterministic function of bounded variation F1 such that F'!~Fi in pn probability as n~oo, each 
t,Oo;;;;to;;;;I. 

Remark 2.1. In fact, by lemma 1 of McLeish (1978), p. 146 the continuity of F, implies sup0..;;1..;; 1 IF'/-F1 l~O 
in pn probabi!ity as n~oo 

A 

Define now the estim~tor Pn for f3 by condition (1.4) with 1\1 = l\ln and '!! = 'J!n. On deriving asymptotic 

(as n~oo) properties of f3n, we require some regularity conditions on 'J!n({3); see Conditions II-IV in Section 

4. 

Condition II requires differentiability (in a certain sense) of y'J!n(.8) = col{ ~,i = l, ... ,rn} and 
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existance of a positive number v - the limit of JA l('Mo{3)yi!n(/J) 12dP in pn probability. Condition III (of the 
Lindeberg type ), together with Condition II, le!1ds to the conclusion of Corollary 4.1 needed for deriving 
asymptotic normality N (0, 114v) of the estimator f3n· 

As for Condition IV, it permits us (via Lemma 4.1) to apply a generalized version of Theorem 5.1 
(Ibragimov/Has'minskii (1981), Section 1.5: Inequalities for Probabilities of Large Deviati~ms) due to Sieders 
(1985), the conclusion of which can be informally described as follows: Let an estimator Pn for {3 be defined 
by maximizing with respect to {3 a certain functional of observations (e.g., the likelihood function). If this 
functional satisfies certain conditions, similar to t~e conditions imposed on the likelihood function in the 
above mentioned Theorem 5.1, then the estimator Pn is not only consistent (in pn probability), but also the 
following holds: for sufficiently large values of n the pn_probability that 2-y'k,:V<ftn -p) exceeds in absolute 
value a (sufficiently large) number His less then C0exp-c0H 2

, with some positive constants c0 and Co. 
A 

Hence, this way we get the first main result of Section 4 - the refinement of consistency of the estimator Pn 
(Proposition 4.1 ). 

A 

The second main result concerns the refinement of asymptotic normality of Pn based on a generalization of 
Theorem 10.1 (Ibragimov/Has'minskii (1981), p. 103): if the generalized version of Theorem 5.1 holds (Sieders 
(1985)), as well as Corollary 4.1 and Lemma 4.2, then all moments of 2-y'k,:V<ftn-{3) converge to the 
corresponding moments of the standard normal distribution (Propostion 4.2). 

2. On discussing optimality properties of the estimator Pn in Section 5, we restrict our considerations to the 
processes of the Poisson type; see Example 1.1 in which all the introduced quantities are indexed now by n, 
except the parameters a and {3, of course. 

In the first place we show the LAN property of the family {P:,p,a:E~ {3E6Ji} of the probability measures 
defined on {On,qr}; see Definition 4.1. Along with pn = P:,p, let the probability measure pn = P~·.J! be 
defined on (On, qr), where pn = {3 + b I y'k,, E6Ji~ b ER 1 and ~ ·EEf is defined by the relation yd'!..~ Ida, = 
1 + a1/ y;z;, a1 EL2(dF) With F1 =F1(a,{3) of Condition Vl.2. Then ~n<<Pn, and d~n ldPn is given by (5.1). 
The above mentioned LAN property is stated in Proposition 5.1 which tells us that under the Conditions V­
VII the logarithm of dPn I dPn is in fact asymptotically quadratic with the asymptotically normal linear term 
s:.,e(a,b), and the quackatic term - ~ga,p(a,b) where ga,p(a,b) is the limit in pn probability of the quadratic 

characteristic of s:.,e(a,b ). 

Condition V.I requires continuous differentiability of y'P"(/J) (in certain sense), and Condition V.2, 
together with Condition VI, determines the form of ga,p(a,b). Condition VII (of the Lindeberg type) ensures 
the asymptotic normality of the linear term s:.,e(a,b). 

Having the LAN, one can take advantage of its fairly general implications due to Le Cam and Hajek (see, 
e.g., lbragimov/Has'minskii (1981), Ch. II and Ill,: or Millar (1983)). Specifically, our conclusions about 
asymptotic optimality properties of the estimator Pn are based on the application of Hajek's convolution 
theorem to the situation under consideration (see Theorem 5.1). 

For these purposes, define first the class of regular estimators {/3'k} for {3. Under the conditions ensuring 
the LAN property of the family {P:.,e,a:E~/3E6ii}, at "point" a:E~/3E"ii (Proposition 5.1), the estimator f3'k is 
called regular (at the point aE~/3E"ii) if for some nondegenerate distribution function G9t the following weak 
convergence takes place: 

(2.2) 

unifonrJy for each lbl<c whatever c>O, and each bounded aEL2(dF)(~, pn and pn being defined as 
above). ,, 

Now, Hajek's convolution theorem (Begun et al. (1983)) tells us that G9t at the right-hand side of (2.2) can 
be represented as the convolution of a certain normal law with another distribution law, G]i say. By Proposi­
tion 5.2, in our special case G9t = N (0, 1 / 4v )*Gk where N (0, 1 / 4v) coincides with the asymptotic distribu­
tion of "\fk:<fln -{3); see the previous subsection. 
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Since convolution "spreads out mass", no regular estimator /3R. A can have an asymptotic distribution that is 
less spread out then N (0, II 4v ). Thus, in this sense the estimator /3n (which is regular under the conditions of 
the previous subsection; see Theorem 5.1) is best within the class {/3'R.}. 

The proof of the results just mentioned uses the fact that the neighborhood about a that shrinks at rate 
I 

k; 2 in the directions {a}, defined above, is "sufficiently fat" to include the function (olo/3)y<Mlff / y<MJff 
where cf>t(/3) is the bounded limit in P~,p probability of (); (/3)/ kn (Condition VI ). Simply, the variety {a} 
includes (olo/3)y<Mlff / y<Mlff; see Proposition 5.2. 

3. This inclusion typically fails in situations in which {a} is a low dimentional subspace of L 2(dF), 
namely, in the frequently encountered situations in which "the cumulative hazard function" a1 is also 
parametrized up to a certain number of nuisance parameters, and hence {a} is taken as a linear subspace, 
A=A(a) say, spanned by the logarithmic derivatives of the density of a1 with respect to the nuisance parame­
ters; see, e.g., Efron (1977), Jarupskin (1983), Borgan (1984), Hjort (1984). According to these works the fol­
lowing conclusions can be drawn about the maximum likelihood estimator f3'ML for /3, defined by maximizing 
the likelihood function (see (5.1)) simultaneously with respect to the parameter of interest /3 and the nuisance 
parameters. 

Under certain regularity conditions £{ yik:(f3'ML -pn)l!:_n }~N (O,§;,J) with §a,p defined as in (5.3), and 
this means that no R 1 X A-regular estimator f3'1u can have an asymptotic distribution less spread then that of 
f3'ML· In fact, the estimator f3'1u is called R 1 X A-regular if for some nondegenerate distribution function G°RA 
£{ yik:(/3'Ju -pn)l!:_n }~G9u for each b ER 1 ,a EA, whereas Proposition 5.2 tells us th!lt G</u may be 
represented as Tue convolution (5.3). In particular, f3'ML is less dispersed then the estimator /3n, for comparing 
their variances we have g- 1 .;;;;(4v)- 1 with equality iff (olo/3)y<Mlff / y<MJff EA (see Remark 5.3). 

It is important, however, that the~e is a subclass of estimators for /3 whithin which no estimator has a less 
spread asymptotic distribution then /3n defined by ( 1.4). This is the subclass {/3'R.} c {/3'1u } of regular estima­
tors defined as in the previous subsection by the condition: whatever the (bounded) direction aEL2(dF) of 
approach to a there is some nondegenerate distribution function Gi such that (2.2) takes place. Of cour~e, 
f3'ML is not regular in this sense, as for a l:lA a bias appears in its limiting distribution. While the estimator /3n 
is regular, and it is the best among {/3'R} since by Proposition 5.3 Gi may be always represented as the convo­
lution~ =N(O, 1!4v)*Gh (Theorem 5.1). 

3. THE LIKELIHOOD RA TIO 

1. Let ({2, §;,P) be a complete probability space with a filtration {§;,O.;;;;t.;;;; I} satisfying the usual condi­
tions. Let N = {N1 ,~,P; O.;;;;t.;;;;l} be a multivariate (r-variate) counting process: N = col{N1 

, ••• ,Nr}. Con­
sider its Doob-Meyer decomposition N = M + A where M = {M1, §;,P; O.;;;;t.;;;;; I} is a local square integr­
able martingale, and A = {A,, §;,P; O.;;;;t.;;;;; I} a predictable compensator. 

Lemma 3.1. The quadratic variation and quadratic characteristic of M are given by the following relations: 

1) [M] = diagN - [A]-[M,A]-[A,M] 

2) <M> = diagA - [A] 

Proof. By definition [N] = diagN, and this gives I). To get 2) take the compensator of both sides of I). 

Remark.3.1. DenoteN = N 1+ ... +NrJif = M+A. From2)follows 

t 

<M>, =A, - [A], = fO-aA)dA, fl<M> = (1-/lA)/lA, 
0 
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hence O.;;;;AA.;;;;; 1. For simplicity assume AA< 1 (in fact one can easily dispence with this restriction; see e.g. 
Kabanov et al. (1975) or (1980)). 

Remark 3.2. Consider Vi= Ir-AAi®Dr and V;- 1 = Ir + (l-Mi)-1AAi®Dr with Dr= co/{1, ... ,1} and 
i i 

Ir = diagDr Then <Ml>i = jVdiagdA and diagAi = Jv- 1d<M>. 
0 0 

i i i 
Lemma 3.2. Let&, = Jv- 1dA = j(I-M)- 1dA and~ = Jv- 1dM = Mi + [~M]i· Then 

0 0 0 
i 

1) ['JIL]i = diagNi + j(l-tW)d[(tj, 
0 

2) <'JIL> = diagA + [~A]. 

Poof. As AN®2 = diagAN, (l-tW)2 = (1-tW) and AN(l-tW) = 0, 1) follows from 

A'JIL = AM + !l©lM = AN - A@(l -tW). 

To get 2) take the compensators of both sides of 1). 

(3.1) 

2. Suppose that a probability measure !_ in addition to the probability measure P is given on a measurable 
space (~,1]) with a filtration of special form '!J; = o{Ns:s.;;;;1},0.;;;;1.;;;;l. Along with N = (Ni,<!J;,P), consider 

the counting process N = (Ni, <!J;,!_) with compensator A = (Ai, <!J;,!_). 

Theorem 3.1. (Kabanov et al. (1980)). 1) For absolute continuity of!_ with respect to P(!_<<P) the following 

conditions are necessary and sufficient: !_ -a.s. 

I AA = 1 implies AA = 1. 

t 

II. The components Ai and Ai, i=l, ... ,r of A and A are related as A~= p,id.Ai where 
0 

col{A.1, ••• ,N} = A = {Ai,'!J';} is a nonnegative predictable process such that the associate Hellinger 
i r , 

process is bounded: Xi = f i ~ tv¥! - ...jdA')2 + s~i ( yI -Lq: - yl -Ms )2 < oo. 
0 0<£\As<l 

2) Assume !_<<P, and denote Zi a right-continuous modification of the martingale E(d!_ldPl'!J;) 0.;;;;1.;;;;I. 
i 

Thenzi = exp{m1 + ~<I>1(Ams)} wherem1 = j(A-Drld<J1Land<l>1(x) = ln(I+x)-x. 
s<.i 

0 

Remark 3.3. By (3.1) and (A-Drlll<t = 1- l-M, <I>1(Am) = <I>f(A-Dr)AN + (1-tW)<l>1( I-Ad I). 
I-M 1-U 

i -c -c - I-Ms 
Hence Zi = exp{jlnT AdN-Ai +Ai + ~ (1-ANs)ln :_ } (cp. Liptser/Shiryayev (1978), p. 3I2). 

0 - s<.i I-AAs 

Remark 3.4. Pr~ss z = (z1,<!J;,P), being a nonnegative supermartingale with E(zlP) = I as well as a local 
i 

martingale, is a solution of the Doleans-Dade equation Zi = I + J z8 _dms,0.;;;;1.;;;;1 (Liptser/Shiryayev (1978), 
0 

p. 288). 

3. Let {~n,<?f,(~,0.;;;;1.;;;;I),Pn}, n =I,2, ... be a sequence of stochastic basises of the same type as above. 
Let Nn = (N~, ~, pn) be an rn-variate counting process with the Doob-Meyer decomposition 
Nn = Mn + An, where rn, n = 1,2, ... is a nondecreasing sequence of integers. 

t 

Define also ~ = j(Vn)- 1dMn where vn = Ir. -AAn®or.· Assume that the compensator An satisfies 
0 
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Condition I of Section 2. 

Lemma 3.3. Under Condition I for each t,Oos;;tos;;I k; 1 <GJi>,°""'Fr in pn probability as n°""'oo. 

Proof. By 2) of Lemma 3.2 k; 1 «!)I(>, = Pi + k; 1 ~ (l-M;)- 1(M;)2, where the second term satisfies 
s,,;;,t 

the inequality 

_1_ ~ (1-aA°;)-1(aA°;)2 + _1 ~ (1-M;)-1(M;)2 
kn s,,;;,t kn s,,;;,t 

O<l1A:c:+ +<i1A1<1 

and therefore tends to 0 in pn probability, as k; 1[AnJ,.;;;k; 1.A;d """'O and the number of jumps of .A;, sos;;t, 

exceeding ; is finite. 

The last argument is used also in (3.2) and (3.4) below. 

Theorem 3.2. Let W 1 = (Wl, §;) be a continuous Gaussian martingale with the quadratic variation 
I 

<W1 >, = F,. Then, under Condition/, k;T '!J1(-4JV'as n"""'oo in D[O, 1]. 

Proof follows from Liptser/Shiryayev (1980), Corollary 2. In fact, the condition (12) of this corollary is met 
I I t 

(Lemma 3.3). As for the Lindeberg condition (L2) of the corollary, for k;T ~ = k;T j(l-M;)- 1d'M; it is 

satisfied as for each t:, O<t:<; 
0 

t t 

k; 1 j /(M;>l-t:)(l-M;)-2d<M>s = k; 1 j J(M;>l-t:)(l-M;)- 1JA; os;;k; 1 ~ (1-M;)- 1"""'0(3.2) 
0 0 s~ 

1-c<M:<I 

in pn probability as n°""'oo. 

Lemma 3.4. Let IHln = {IHl7,~,Pn} , n =1,2, ... be a sequence of rn-vector valued predictable processes such 
t 

that there is a function a'f satisfying J a2dF>O for which (each t, Oos;;t.;;; 1) 
0 

t t 

jlHlnT diagdAn· ·IHln °""' J a2dF 
0 0 

t t 

in pn probability as n°""'oo. Then < jlHlnT d'!)R,n >°""' J a2dF in pn probability as n°""'oo. 
0 0 

Proof. In view of the continuity of F 

t 

jlHlnT diagdAndlHln = ~IHlnT diagaAnlHln°""'o 
O s,,;;,t 

in pn probability as n°""'oo, and this implies 

(3.3) 

(3.4) 
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t 

in pn probability as n~oo, by@!/ = j(l-aAn)_ 1dAn and the Schwartz inequality. Now, the desired result 
0 

follows from (3.3), (3.4) and 2) of Lemma 3.2. 

Theorem 3.3. Along with (3.3) let the following Lindeberg condition be satisfied: for each t, O~t~l and t:>O 
(here !Hin= col{Hin,i=l, ... ,rn}) 

t r. J ~ I(IH;nl>t:)(Hin)2dA in~o 
oi=I 

(3.5) 

in pn probability as n~oo. Let W = (Wi, <?fi) be a continuous Gaussian martingale with the quadratic yaria-
' t 

tion <W>1 = ja2dF. Then jlHlnTdGJTl.,n~ asn~oo inD([O,l]). 
0 0 

Proof is immediate consequence of Liptser/Shiryayev (1980), Corollary 2, for its conditions (12) and (L2) 
are varified by Lemma 3.4 and, respectively, (3.4) and (3.5). 

4. Suppose that a probability measure !:._n in addition to pn is given on a measurable space {O", "!'} in the 
sequence of stochastic basises of the preceding subsection. Suppose in addition that the filtration { 6J'/, 0 ~ t ~ 1 } 
is minimal: 6J'/ = o{N;:s~t} where Nn = (N7,6J'/,Pn) is an rn-variate counting process with the compensator 
An = (A7,6J'/,Pn). Let Nn = (N7,6J'/,!:.._n) be another counting process with the compensator 
An = (A7,6J'/,Pn). 

For each, n assume !:._n <<Pn and, in accordance with II of Theorem 3.1, define the Hellinger process 

t 

'.JG' = junT diagdAnQJn + ~ ( y1-&r; - y'1-XA; )2 
O s~t 

0~:<1 

t I 

Theorem 3.4. Let there be a function of satisfying ja2dF>O such that for each t,O~t~l 
0 

'.JG'~ j a2 dF in pn 
0 

probability as n~oo. Let un ,n = 1,2, ... satisfy the Lindeberg condition (3.5). Then lnz? = m? + ~ W1 (.:1m;) 

t 

(with m7 = J (An -0,.)T dGJTl.,n) is asymptotically normal: 
0 

I I 

e{lnz7 IPn }==>N ( - 2 f a2 dF, 4 f a2 dF). 
0 0 

.... 1 

(3.6) 

Proof of this theorem follows the same line as that of Gill (1979) Proposition 5.3.1, and therefore it will be 
shortly sketched in the following two remarks. 

I I 
Remark 3.5. Since un satisfies the conditions of Theorem 3.3, m1 = 2 junT dGJTl.,n + junr diagdGJTl.,nQJn is 

0 0 
I 

asymptotically normal with zero mean and variance 4 J a2dF, that is the limit in pn probability of 
0 

Remark 3.6. As 

I -n I 
~ ~ W1(.:1m;) = j wf(QJn)dNn + ~(l-W)W2{l-y l-~) - junr diag dAnQJn 

..... 0 .... 1 1- 0 
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I 

where the first two terms tend to zero, while the third term tends to - j<?dF in pn probability, the desired 
0 

limiting value is obtained for the mean in (3.6). Here <I>2(x) for x =col(x 1 
, ••• ,x7

) denotes 

co/{ln(l+x;)-xi + ;xi2 , i=l, ... ,r}. 

In the sequel we deal with a situation in which the following condition is satisfied: There is a sequence of 

bounded rn-variate predictable processes §n = {§7,'?fi',Pn},n = 1,2, ... such that 

I I I 

J (Un -k;2 §nl diag dAn(un -k;2 §n)~O 
0 

in pn probability as n~oo. 

I I 

Corollary 3.1. If k;2 §n ,n = 1,2,... satisfies (3.3), (3.5) and (3.7) (with IHln = k; 2 §n), 

2 
I I 

z7 = exp{ • ~ J §nT d~n - 2 jifdF + 1Jn} where 1Jn~o in pn probability as n~oo 
V ·~n 0 0 

1 I I 

e{k;2 j §nT d~n}~N(O, j ifdF). 
0 0 

4. CONSISTENCY AND ASYMPTOTIC NORMALITY 

(3.7) 

then 

and 

1. Consider the situation described in Subsection 2.1, and suppose that the rn-vector valued p~ocess 

y'f'n(/3) is continuously differentiable (in /3) in the following sense: 

Condition D. There is a sequence of continuous in /3 rn-vector valued predictable processes 

0...11(/J)(=a~ y'f'n(/3)) = {D...7(/3),'?fi',Pn} n=l,2, ... 

such that if (.J;, '1'7(/3)) is the pair of the (P 11
, '?fi')-predictable characteristics, then 

II I. For each real valued b such that(! = f3 + bi yfk,; E~, eventually, 

in pn probability as n~oo. 
t 

II 2. For some deterministic function a;(/3) such that v,(/3) = J if (f3)dF>O, O~t ~ 1 
0 

t 

CV'j(/3) = J jD...n(f3)fdFn~v,(/3) 
0 

in pn probability as n~oo. 
A 

We shall show that the estimator /3m defined by (1.4) with'¥ = 'Yn and N = Nn is consistant and asymp-

totically normal N (0, 1/ 4v ), v = v 1 (/3). For this we need some additional conditions stipulated in the next 

subsection. 
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Obviously, 

(4.1) 

Hence, 

(4.2) 

and 

ff{ aaplni'n(/1)f diag dA11
{ aaplni'n(/1)} = 4fl1L"(/1)j2dr-4v1(/1) 

11 0 0 

(4.3) 

in pn probability as n-'>oo (see II.2 )). 

Now we apply Theorem 3.3. to derive asymptotic normality of the intergral in ( 4.2), taking account of ( 4.1) 
and (4.3). 

Corollary 4.1. Along with Conditions II, let the following Lindeberg condition hold 
(ll... 11 = col {Li" ,i = l, . ..r11 }): 

Condition m. If (A;'· '1'7(/1)) is the pair of the (P" ,<Tt;')-predictable characteristics, then for each t:>O 

in P" probability as n-'>oo Then 

I f.(-l- j { aap ln¥(/1)f dN11 jP11 )~N(0,4v) 
n 0 

Condition IV. If (A;, '1'7(/1)) is the pair of the (P 11
, ~)-predictable characteristics, then 

I 

j I y'l'n(/1~)- yi'n(/J!) 12dAn, 
0 

where 

/J~ = /J + b;l2-y'k:V. b;EB11 = GiJ-fJ/2-y'k:V, i=l,2, 

obeys the following bounds: there are constants C 1 >0 and C 2 >C 1 (independent of n) such that for 
sufficiently large values of n and each b; EB11 , i = 1,2 

I 

P" a.s. C 1(b2 -bi )2
..:, JI yi'11 (/1~) - yi'11(/J!) j2dA11 

,,.;;,C2(b2-bd 
0 

I 

Lemma 4.1. Let Condition IV hold. Define yn(b) = expj{lni'11(/J11 )-lni'11(/J)f dN". bEB11 • Then there are 
0 

constants c 1 >0 and c2>0 such that for each bEB11 and b;EB11 , i = 1,2 

(i) £{-.JY"(b}jP 11 },.;;;;e-'"1h', 

(ii) £{I yY 11(b2) -- yY"(b 1) l2IP" },.;;;;c2lh2 -bil2 

Proof. 

(i). In accordance with the remarks 3.3 and 3.4 



Thus 

!;;.exp~ C1b
2E{ yr(b)exp- ~ ~I y'l'~(Pn) - ~l2M~JPn};;;;.E{ yr(b) JPn}exp c 1b2• 

s.;;l 

(ii) As 

and 

we have 

I 

E{r(b)JPn) = E{expj(ln'l'n(Pn)-lni'n(p)ldNnJPn) = 1, 
0 

I 

E{ yr(b1)r(b2)exp (~JI yirn(p~) -y1'1rn(p!)J2dAnc + 
0 

-n 

1~2exp ~ C2(b2-b1)2E{ yr(b1)r(b2)exp ~ ~ M:__n I y'1'n(p~)- yi'n{P!)J2JPn) 
s.;;J 1-Ms 

I -n 
~2exp2C2(b2-bdE{ yr(b1)r(b2)exp( ~ I yir~(P~)- yi'~{P!)J2Ms 

s.;;I 
O<aA1<+ 

-n 

+ ~ ~ M:__n I yir~(p~)-yi'~{P!)J2)JPn}~E{ yr(b1)r(b2)JPn}e +c,(b,-b,)' 
s.;;J I-Ms 

t<AA°:<I 

(cp. the proof of Lemma 3.3), and 

I b 2 

E {I yr(b2) - yr(bi) J21Pn}~2(1-E{ yr(b2)r(b1) 1Pn}):o;;;;2(1-e -Tc,( ,-b,) )~c2(b2 -b1)2. 

11 

(4.4) 

Lemma 4.1 and the equation ( 4.4) allow us to apply the result of Sieders (1985) mentioned in Subsection 
2.1. 

Proposition 4.1. l!_nder the condit~ons stipulated above there are certain positive constants Co and c0 such 
that the estimator Pn is consistent: Pn~P in pn probability, and for sufficiently large values of n and H 

pn{J2yrz;;v(/3n-p)l>H):o;;;;Coe -coH' 

Repeating the arguments leading to Corollary 3.5, and taking into account Corollary 4.1 we arrive at the 
assertion of the following lemma. 

Lemma 4.2. Under the conditions stipulated above finite dimentional distributions of r(b) tend to finite 

dimentional diskibutions of /f-+b' ,e(t) = N(O, 1). 

In view of the assertions of the Lemmas 4.1 and 4.2, we can make use of Theorem I.10.1 and III.1.2 of 
lbragimov/Has'minskii (1981). The result can be formulated as 

Proposition 4.2. Under the conditions stipulated above, for each 8>0 as n~oo 
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I 

pn{12yF,;Vwn-m-
2
p [{a~ 1n'!'n<P>f dNnl>8}~o 

£{2yfk,:VWn -P}IPn}~N(O, 1) 

and 

5. ASYMPTOTIC OPTIMALITY 

I. As in Subsection 2.2, suppose that the process Nn is of the Poisson type with the compensator (1.1) 
where «I> = «I>n satisfies the conditions stipulated below. 

Condition V. There is a sequence of rn-vector valued ~-predictable processes, continuously dependent on {3, 
say (a1ap)\}~(,8), n = 1,2, ... , such that for each aE~ and /JE'IB the following holds: 

V.1. For each b such that pn =/J+bl VJ(,: E'IB eventually, 

I b a 
/IV~~)-V~(,8)- VF,: ap V~<P>l2da~o 

in P:.13 probability as n~oo; 

I 

V.2. For some deterministic function p;(,8) such that w1(a,{3)= J p;(,B)da9 >0, and for each t, Oo;;;;;t.;;;;I, aEl!P, 
0 

in P:,13 probability as n~oo. 

Condition VI. There is a positive bounded deterministic function cp1(/J) (uniformly in t and f3 m <cp1(,B)<M 
where O<m<M<oo) having continuous bounded derivative in {3, such that for each aEl!P, /JE'IB and o.;;;;1.;;;;1 

I I 

VI. 1. F/(a,{3) = Jf-~;(,B)das~F,(a,{3) in P:,/3 probability as n~oo where F, = F,(a,{3) = f4's<P)das>O 
0 n 0 

( cp. Condition I). 

in P:.13 probability as n~oo. ,, 

Remark 5.1. By the Conditions 11.2, V.2, VI.I, VI.2 and (4.3) 

' a ' a 
C\ft(a,{3) = 61lf,(a,{3)- [' ap F.l2das~w,(a,p)- [' ap ·0>~"°12das = v,(a,{3) 
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in P~,p probability as ~oo. 

2. Let the probability measures pn and !_n be defined on (gn, <§") as in Subsection 2.2. Then (see Remark 

3.3) 

We shall now a:'ply Corollary 3.1 to show the LAN of the {P~,p,aECP; /JE~} in the sense of 

Definition 5.1. This family is called Locally Asymptotically Normal (LAN) at the "point" aECP; /JE~ if for 

each b ER 1 and each bounded a EL 2(dF) such that '!;_n ECP;ptt E~ eventually, there is a sequence of asymptoti­

cally normal variables 8~.p(a,b), n = 1,2,. .. : 

£{8~,p(a,b)JP~.{1 }~N(O,ga,p(a,b)) 

as n~oo with ga,p(a,b)>O for which d!:_nldPn= exp{S~.p(a,b)- ;ga,p(a,b) + 11~,p(a,b)} where 11~,p(a,b)~O 

in P~.p probability as n ~ oo. 

Note first that if 

IU7 = col{ yiP~n<J!) / tp~n(/Jhjd<:;_7 / da, -1, i = l, .. .,rn }, 

then (3.7) is satisfied by §7 = §~p(a,b) = ; b(o/o{3)lniP~(/J) + a1Dr.• for which 

in pn probability as n~oo, by the Conditions V and VI. Finally, let the following Lindeberg condition hold: 

Condition VU. For each aECP; {3E~ and t:>O 

in P~./1 as n~oo. 

Proposition 5.1. Under the Conditions V-VII the family {P~.p,aECP; /JE~} is LAN at the "point" aECP; /JE~ 
I 

for 8~.p(a,b) = _ ~ Jstp(a,bld(Nn-An(a,/J)) and ga,p(a,b) that equals to 4 times the right-hand side of 
V"n 0 

(5.2) evaluated at t = 1. 

3. Suppose that the underling model confines "the directions" a to a linear subspace AEL2(dF), and let 

{f3'1u } be a class of R 1 X A-regular estimators for /J, which includes a subclass of regular estimators 

{/Ji}c{{3'1u} (see Subsection 2.3). Then, by Hajek's convolution theorem (Begun et al. (1983), Theorem 3.1), 

we have 

Proposition 5.2. Let the Condition V-VII hold. Then 

(i) (5.3) 

I 

as n~oo with "some distribution law G}u, where ga,/1=4{w 1 (a,/J) - J 'TT'l;(a,fJ)dFs(a,/J)}, '!Ts(a,/J) being the pro­
o 

jection of (o/o/J)~/ ~into A, that is, it satisfies the equation 

!
1 

{ (a1am VfJJ!f 
_ J;;;77f\ 'TTs(a,fJ)}asdFs(a,/J) = 0 

0 y'i>s(,.,) 
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for each a5 EA 

(ii) (5.4) 

as n~oo with some distribution law G1 (see Remark 5.1), uniformly for each lbl<c whatever c>O, and each 
bounded a EL 2(dF) 

Remark 5.2. For the "least favorable" direction a1 = -b'IT1(/J) the quantity ga,p(a,b) coincides with b2 ga,fJ• ga,fJ 
being Fisher's information for P (Begun et al. (1983), Section 3). 

Remark 5.3. Evidently, ga,/J ;;;..4v 1 (a,/3) with equality iff ('d/o/3) y<fJPf I y<fJPf EA (see Remark 5.1). 

Having the limiting distribution of -JF,:<fin -/3) under pn (Proposition 4.2), one can api:ly the usual con­

tiguity arguments (allowed by Proposition (5.2)) to arrive at the formula (5.4) for P'R = /Jn with G1 that 

degenerates at 0. Th~e considerations can be summerized as the following statement on the optimality proper­

ties of the estimator Pn· 

Theorem 5.1. Under the conditions stipulated above, the estimator /Jn is regular and 

e{ -JF,:<fin-ptt)l~n}=>N(O,l/4v 1 (a,/3)) for each bER 1 and each bounded aEL2(dF) determining '!·pn and 
pn as in Subsection 2.2. -

A 

The estimator Pn is the best among {/J'R.} in the sense that no regular estimator can have the limiting distri-

bution less spread then Pn· Besides, iff (o/o/J) y<fJPf I y<fJPf EA, then it is the best among {/J'lu} :> {/3'µ} in 
the same sense. Finally, observe that Proposition 5.2 and Theorem 11.2 of Ibragimov/Has'minskii (1981), 

Chapter II, allow us to obtain the lower bounds for the risk of R 1 >5 A-regular and regular estimators and, con­

sequently, to give yet another characterization of the optimality of Pn· Namely, the following corollary holds: 

Corollary 5.1 Let the conditions stipulated above be satisfied. Let w(x);;;..O xER 1 be a continuous even loss 
function. Then for fixed aECl,/3Eiff3 

1 00 _...!..x' 
liminf E{w(r) I P:,/J };;;;.. yr:i J w(x)e 2 dx 
n~oo 'IT -oo 

where r = 2 y'k:V (JJ'R. - /3). The same inequality holds also for ~n = y'k,J(JJ'Ju - /3). In particular 

liminfknvar{/J'R I P:,p};;;..(4v)-l;;;,.g-I, liminfknvar{/J'Ju I P:,p};;;,.g-J 
n--+-oo n--+oo 

If, in addition, w allows a polynominal majorant, then by the last assertion of Proposition 4.2 

hence Pn attain~ the lower bound for the risks of regular estimators. Besides, iff (ol'd/3) y<fJPf / y<fJPf EA, 

then g=4v and Pn attains the lower bound also for the risks of R 1 XA-regular estimators. 
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