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Abstract—In computed tomography, algebraic reconstruction
methods tend to produce reconstructions with higher quality than
analytical methods when presented with limited and noisy pro-
jection data. The high computational requirements of algebraic
methods, however, limit their usefulness in practice. In this paper,
we propose a method to approximate the algebraic SIRT method
by the computationally efficient filtered backprojection method.
The method is based on an efficient way of computing a special
angle-dependent convolution filter for filtered backprojection.
Using this method, a reconstruction quality that is similar to
SIRT can be achieved by existing efficient implementations of
the filtered backprojection method. Results for a phantom image
show that the method is indeed able to produce reconstructions
with a quality similar to algebraic methods when presented with
limited and noisy projection data.

I. INTRODUCTION

In computed tomography, two common approaches to re-
construct objects from their projections are analytical methods
and algebraic methods. Analytical reconstruction is based on
inverting a continuous model of the problem, and discretizing
the result. The popular filtered backprojection method for
parallel-beam projections is a result of this approach [1], as
well as the FDK method for cone-beam projection data [2].
Analytical methods assume that projection data is available
for all angles, and that the data is free of noise. In many
practical applications, it is either impossible or undesirable
to acquire a sufficient number of noise-free projections to
accurately reconstruct the scanned object with an analytical
method. In such cases, algebraic methods are often able to
yield more accurate reconstructions.

Algebraic methods are based on a discretized model of
the problem, resulting in a linear system of equations. A
reconstruction is then computed by solving this linear system
using an iterative method. Since algebraic methods are based
on a model of the data that is available instead of assuming
perfect data, algebraic reconstructions are often of higher
quality than analytical reconstructions when presented with
a limited number of projections. Furthermore, the effect of
noise on the reconstruction can be minimized by using certain
forms of regularization in the iterative method.

Despite the advantages of algebraic methods for imperfect
data, analytical methods remain very popular in practice. In
[3], several reasons for the popularity of analytical methods
are discussed, one of which is the gap that exists between a

mathematical definition of an algebraic method and its appli-
cation in actual real-world problems. When implementing an
algebraic method in real-world applications, many difficulties
can arise, for example with computational requirements, which
are typically much higher compared to analytical methods. In
this paper, we aim to bridge the gap by introducing a method
that approximates the algebraic SIRT method by computing a
special filter for the filtered backprojection (FBP) method. The
resulting method can achieve a reconstruction quality similar
to algebraic methods using existing, computationally efficient,
FBP implementations.

Recently, a number of reconstruction methods have been
proposed that aim to improve FBP by changing its convolution
filter. In [4], a window function for the standard ramp filter
is derived that approximates an algebraic method. During
the derivation, however, it is assumed that projection data is
available for enough angles such that a certain approximation
can be made, which may not be the case in practice. A different
approach is taken in [5], where a data-dependent filter is
computed that minimizes the projection error of the resulting
FBP reconstruction. Since a different filter has to be computed
for each scanned object, the computational requirements of
this method are higher than for standard FBP. Finally, in [6],
a way of computing angle-dependent filters that approximate
algebraic methods is proposed. The method for computing
the filters is very computationally demanding, however, which
severely limits its applicability in practice. In this paper, we
propose a method to compute filters that are similar to those
in [6], but can be computed much faster, using an approach
that is, in part, similar to [4].

II. METHOD

In this section, we propose a method for computing filters
for the parallel-beam FBP method that approximate the alge-
braic SIRT method [1], which is a method from the class of
Landweber iteration methods [7]. We assume that projection
data is acquired for Nθ angles, with Nd detector elements per
projection. In this case, we can write the acquired projection
data as a vector p ∈ RNθNd . Similarly, we can write the
reconstructed image, which is defined on a N ×N pixel grid,
as a vector x ∈ RN2

. An element wij of the projection matrix
W gives the contribution of pixel j to detector element i.
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Using these definitions, we can write the FBP method as:

FBP(p,h) = W TChp (1)

Here, Ch is a convolution of each detector with filter h,
which can be angle-dependent. Note that in parallel-beam
tomography, an FBP reconstruction can also be calculated by
first backprojecting the projections, and filtering the result:

FBP(p,h) = Hh′W Tp (2)

Here, Hh′ is a two-dimensional convolution of an image with
filter h′, and h = Wh′.

The standard definition of the SIRT method is the following
iterative equation:

xk+1 = xk + αW T
(
p−Wxk

)
(3)

Here, xk is the reconstructed image at iteration k, and α is
a parameter that influences the stability and convergence of
the method, for which the standard value of α = (NθNd)

−1

is used throughout this paper. By regrouping terms, we can
write this equation in a matrix form:

xk+1 =
(
I − αW TW

)
xk + αW Tp (4)

Note that this is a recurrence relation of the form xk+1 =
Axk + b, which has as solution for the reconstruction at
iteration n:

xn = Anx0 + α

[
n−1∑
i=0

Ai

]
W Tp (5)

Here, A = (I − αW TW ). In many cases, a zero image is
used as the initial image x0, in which case eq. (5) becomes:

xn = α

[
n−1∑
i=0

Ai

]
W Tp (6)

The similarities between eq. (6) and eq. (2) suggest that we
can approximate the SIRT equation (eq. (6)) by approximating∑n−1
i=0 Ai by a two-dimensional convolution operation with

filter qn:
xn ≈ αHqnW

Tp (7)

To find a good approximating filter, we can take the impulse
response of

∑n−1
i=0 Ai:

qn =

n−1∑
i=0

Ai[0, . . . , 0, 1, 0, . . . , 0]T (8)

In other words, we start with an image with the central pixel
set to one and the other pixels set to zero, and iteratively apply
A to the image n times, summing all images along the way. In
parallel-beam tomography, we can write eq. (7) in the standard
FBP form by forward projecting qn:

xn ≈W TCunp = FBP(p,un) (9)
un = αWqn (10)

We conclude that we can approximate the algebraic SIRT
method by the FBP method with filter un. The filter is

computed by first computing qn by applying A to a certain
image n times, summing the results. The resulting image is
forward projected to obtain un. Note that a single computed
filter can be used to reconstruct many different objects, as long
as they are scanned with the same projection geometry. For
computing the filter, 2n+1 projection operations are needed,
which is similar in computation time to a single run of the
SIRT method. To compare, O(NθNd) runs of an algebraic
method are needed to compute a similar filter in [6].

By approximating A by a convolution operation, we assume
that the W TW operation is approximately shift-invariant.
Whether this assumption is correct can depend on the actual
implementation of the projection operator W . If a ray is
defined as a strip with the same width as a detector pixel,
and the weight of wij is given by the area of the intersection
of the pixel j and the ray i, W TW can be well approximated
by a shift-invariant operation. If a ray is defined as a line of
zero thickness, the approximation is not as accurate. In this
case, however, the approximation can be improved by using
supersampling, where multiple lines of zero thickness are cast
through the volume per detector pixel. Note that supersampling
is only needed during computation of the filter, and not during
reconstruction using eq. (9). In the rest of this paper, we cast
eight lines per detector pixel during computation of the filters.

III. EXPERIMENTS

We implemented the proposed filter calculation method in
Python 3.3.2 using the ASTRA toolbox [8], which includes
projection operations that use graphic processing units (GPUs)
to improve performance. All reconstructions presented in this
paper are calculated by the ASTRA toolbox as well. To
investigate the reconstruction quality of the proposed method
compared to other reconstruction methods, we use reconstruc-
tions of the Shepp-Logan head phantom. For each experiment
the phantom is generated on a 4096 × 4096 pixel grid, for
which projections are simulated with 4096 detector elements
per projection. The resulting projection data is rebinned to
1024 detector elements per projection, which are used to
reconstruct on a 1024 × 1024 pixel grid. The reconstructions
are compared to the phantom, rebinned to 1024×1024 pixels.
We give the mean squared error (MSE) and the structural
similarity index (SSIM) [9] of each reconstruction compared to
the rebinned phantom. For the error measures, we use all pixels
that are within a disc with a radius of 512 pixels, centered in
the pixel grid. For all experiments, we compute a filter that
approximates 200 iterations of the SIRT method, unless stated
otherwise. Each SIRT reconstruction is computed using 200
iterations as well.

In fig. 1, cropped reconstructions of the Shepp-Logan phan-
tom are shown for FBP with the standard Ram-Lak filter, SIRT,
and FBP with the proposed filter, computed using data of 64
projections with a moderate amount of applied Poisson noise.
The results for FBP (fig. 1b) show that the noise present in the
FBP reconstruction can be prohibitive for further analysis. The
reconstructions of SIRT (fig. 1c) and FBP with the proposed
filter (fig. 1d) are, at least visually, very similar.
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Fig. 1: Cropped reconstructions of the Shepp-Logan head phantom (a) obtained by different reconstruction methods: FBP
with the standard Ram-Lak filter (b), SIRT (c), and FBP with the proposed filter (d). The reconstructions are computed using
simulated projection data of 64 angles, with 1024 samples per projection (rebinned from 4096 samples) and Poisson noise
applied. A line profile of the central line of each cropped reconstruction is shown under each image, with the phantom shown
by a dashed line.
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Fig. 2: MSE (solid) and SSIM (dashed) of reconstructions of
the Shepp-Logan head phantom computed by various methods,
as a function of the number projections Nθ.

To further investigate the reconstruction quality of the
proposed method, we generated projection data for different
numbers of projections Nθ, and compared the MSE and SSIM
of reconstructions of FBP with different standard filters, SIRT,
and the proposed filter method. The results are shown in fig. 2.
We also generated data of 64 projections with various amounts
of applied Poisson noise, for which the results are given
in fig. 3. Here, I0 indicates the amount of applied Poisson
noise, with higher values corresponding to lower amounts of
applied noise. In both fig. 2 and fig. 3, reconstructions using
the proposed method have a significantly lower MSE and
higher SSIM compared to FBP reconstructions with standard
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Fig. 3: MSE (solid) and SSIM (dashed) of reconstructions of
64 projections of the Shepp-Logan head phantom computed
by various methods, as a function of the amount of applied
Poisson noise (I0). Higher values of I0 correspond to lower
amounts of applied noise.

filters. Compared to SIRT, the proposed method has a similar
MSE and SSIM. Note, however, that for 64 projections a
SIRT reconstruction took 1.40 seconds to compute, while a
reconstruction of the proposed method was computed in 9.67
milliseconds, which is roughly 144× faster.

Computed filters, averaged over all angles, are shown in
Fourier space in fig. 4, along with the standard Ram-Lak filter.
The figure shows that the computed filters are identical to the
Ram-Lak filter up to a certain frequency, which depends on
the number of projections and iterations. Taking more angles
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Fig. 4: Comparison of the standard Ram-Lak filter and the
computed filters for Nd = 1024 and various numbers of
projections Nθ and numbers of iterations, averaged over all
angles, shown in Fourier space.

and/or iterations results in a filter that is closer to the Ram-
Lak filter. The figure also shows that by taking more iterations,
the higher frequencies of the filters are amplified. A similar
effect can also be observed in the SIRT method, where taking
more iterations results in stronger high frequencies in the
reconstructed image.

IV. CONCLUSION

In this paper, we presented a novel method to compute filters
for the filtered backprojection method that approximate the
algebraic SIRT method. The method is based on rewriting
SIRT into a matrix form, and approximating the combined
backprojection and forward projection operation (W TW ) by
a 2D convolution operation. An approximating filter can be
found by applying the combined projection operation repeat-
edly to a specific image. The result is an angle-dependent filter
that can be used in the FBP method to produce reconstructions
that are similar to those produced by SIRT. Computation of
the filter is significantly faster than in similar approaches of

previous work [6], enabling its use in large-scale real-world
tomographic problems.

Several experiments on a phantom image show that the
proposed method produces reconstructions of similar quality
to the SIRT method, both in the case of a low number
of projections and with noise present in the data. Com-
pared to FBP with standard filters, the proposed method
produces reconstructions with significantly lower MSE and
higher SSIM. The computation time of reconstructing with
the proposed method is identical to the FBP method, which
is significantly lower than SIRT. These results show that
by computing geometry-dependent convolution filters, it is
possible to accurately approximate the SIRT method by filtered
backprojection.
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