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On the bounded solutions of a nonlinear convolution equation* 

by 

** 0. Diekmann & H.G. Kaper 

ABSTRACT 

This investigation is concerned with the nonlinear convolution equation 

u(x) - (gou)*k(x) = 0 on the real line JR. The kernel k is nonnegative and 

integrable on JR, with j JR k(x)dx = I; the function g is real-valued and con­

tinuous on 1~, g(O) = O, and there exists a p > 0 such that g(x) > x for 

x E (O,p) and g(p) = p. Sufficient conditions are given for the non-exis­

tence of bounded nontrivial solutions. Implications for the solution of 

the inhomogeneous equation u(x) - (g 0 u)*k(x) = f(x), x E JR, are discussed. 

Finally, uniqueness (modulo translation) is shown to hold. The results are 

applied to a problem of mathematical epidemiology. 
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l. INTRODUCTION 

Certain deterministic models for the spatial spread of an epidemic or 

an advantageous gene among a population along a line can be analyzed in 

terms of the nonlinear convolution equation 

(1. 1) u(x) = (g 0 u)*k(x) X E :JR, 

where gou is the composite of g and u, g 0 u(x) = g(u(x)), and* denotes con­

volution, <P~nµ(x) = J]R<P(x-y)l/J (y) dy. In the epidemic model, g typically has 
-x the form g(x) = a(l-e ) , a some constant (a>]), cf. DIEKMANN [6], while 

in the genetic model g is given by g(x) = [ax2+Sx(l-x) ]/[ax2+2!3x(l-x)+ 
2 +y(l-x) ], oi, 13, and y positive constants, cf. WEINBERGER [16]. In both 

cases, k is a nonnegative function, normalized such that J]Rk(x)dx = 1. 

We consider eq. (I.I) under the following hypotheses: 

(HI) g: JR -+ ]R is continuous; g(O) = O; there exists a p > 0 such that 
g 

g(x) > x for O < x < p and g(p) = p. 

(~) k: ]R -+ JR is nonnegative; k E Ll (:JR) with f]Rk(x)dx = 1 ; J]Rlxlk(x)dx < 

Further hypotheses on g and k will be introduced as needed. 

Equation (1. I) has at least two constant solutions, viz., u0 : x t+ 0 

and u : x 4 p. These we call trivial solutions. By a nontrivial solution of 
p 

00 

(1.1) we mean a Lebesgue measurable function u: JR -+ :JR which satisfies ( 1 ! 1) 

and the inequalities O ::s: u(x) ::S: p for almost all x E :JR and which is not a 

trivial solution. We are interested in nontrivial solutions of (I.I) and 

in the solution of the corresponding inhomogeneous equation 

( l • 2) u(x) = (g 0 u) * k(x) + f(x) X E :JR , 

where f is a given nonnegative function. 

In section 2 we establish various general properties of the solutions 

of equation (1 .I). In Sections 3 and 4 we prove some non-existence results, 

i.e., we establish conditions on g and k under which one can prove that 

the equation (I .1) does not have a nontrivial solution. These results are 
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complementary to some earlier results of WEINBERGER [16] and of one of the 

authors [6] concerning the existence of nontrivial solutions of (1.1). As 

we will show, the existence or non-existence of such solutions hinges upon 

the distribution of the mass of the kernel k. Formally, this is determined 

by the existence or non-existence of real zeros of the function 

A 1+ 1 - g' (O)K(A) (AElR), where K is the two-sided Laplace transform of k. 

The problem has some Tauberian aspects and part of our arguments are based 

on Pitt's form of Wiener's general Tauberian theorem. This approach is re­

lated to the use of Tauberian methods in the study of linear convolution 

equations by KARLIN [9] and ESSEN [7], cf. [14, Chapter 9]. 

In Section 5 we study the inhomogeneous equation (1.2). In Section 6 

we turn our attention to the case when a nontrivial solution of (1.1) exists 

and investigate the question of its uniqueness (modulo translation, as eq. 

(I.I) is translation invariant). Here, our method of proof forces us to im­

P?Se further conditions on g and k. 

In the final Section 7 we apply our results to a problem in mathema­

tical epidemiology, viz., the traveling wave problem for the Kermack­

McKendrick-Kendall model for the spatial spread of an epidemic, cf. [1], 

[2], [3], [4], [6] [JO], [JI], [12]. 

NOTATION. ]N+ denotes the set of all positive integers; ]R+ = {x E ]R: x ;?: 0} 

and :JR_= {x E ]R : x ~ 0}. The letter C is used to denote a generic positive 

constant. 

2. PRELIMINARIES 

. f f f • { n* } • Starting rom k we orm a sequence o functions k : n E ]N+ • We in-
1* . (n+l)* n* terpret k as k, and define for n E ]N+ , k := k * k. Thus, 

kn* E L1 (:JR) and J]Rkn* (x)dx == 1 for all n. Following FELLER [8, Sections 

V.2, V.4], we call x a point of increase of kif !Ik(y)dy > 0 for every 

open interval I containing x, and we define l := u:=l ln' where ln denotes 

the set formed by the points of increase of kn*. We say that k is concen­

trated on a set I if flR\I k(x)dx = O. The following result will be used 

several times. 
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LEMMA 2.1. If k is concentrated on lR+ (lR~), then there exists an a ::?: 0 

such that l contains the interval [a, 00 ) ((-00 ,-a]). If k is not concentrated 

on either lR + or lR _ , then l = lR. • 

PROOF. For an arbitrary real number b > 0 we define l(x) := min{k(x),b}. 

Then l E L00 ( lR ) n L 1 ( lR ) and, furthermore, 

X 

k2*(x)::?: t 2*(x)::?: f l(x-y)l(y)dy =: L(x). 

0 

We claim that L(x) is uniformly continuous. Indeed, IL(x1)-L(x2)1 ~b2 lx1-x21 
+ b flR.ll(y)-l (y)ldy, where l (y) := l(y-x), and the translation map 

. x1-x2 x 
x 1+ lx from lR into L1 (lR) is uniformly continuous, see [13, Section 1.1.5]. 

Suppose JlR+ k(x)dx > 0. Then L cannot be identically zero on lR+ and, 

hence, there exist x 1 ::?: 0 and 8 > 0 such that k2*(x)::?: L(x) > 0 for 
. 4* 2* 2* x E (x1,x1+o). From this we deduce that k (x) = (k *k )(x) > 0 for 

x· E (2x 1 ,2x1+28) and, by induction, k2n*(x) > 0 for x E (nx1 ,nx1+n8), n E lN+. 

For sufficiently large n(n>o- 1x 1), successive intervals become overlapping 

and, consequently, l contains an interval [a, 00 ) for some a::?: O. A similar 

argument shows that if JJR:_k(x)dx > O, then l contains an interval (-00 ,-a] 

for some a ::?: O. 

Suppose now that both JlR k(x)dx > 0 and JlR k(x)dx > 0. Let x0 E lR be 
+ -

arbitrary. For sufficiently large y we know that there exist positive in-
n* tegers m and n such that k (x) > 0 for x in a neighborhood of ½x0 + y and 

m* (n+m)* k (x) > 0 for x in a neighborhood of ½x0 - y. Consequently, k (x) > 0 

for x in a neighborhood of x0 and x0 EL· □ 

The next lennna contains some basic information concerning nontrivial 

solutions of (1.1). 

LEMMA 2.2. Any nontrivial solution u of (1.1) is uniformly continuous, 

strictly positive, and such that inf{u(x): x E lR} = 0. 

PROOF. Let u be a nontrivial solution of (1.1). The uniform continuity of 

u follows from the continuity of translation in L1(lR) (cf. the proof of 

Lennna 2 • 1 ) • 
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Next, we observe that g0 u(x) ~ u(x) for all x E JR, so u(x) ~ u*k(x) 

and, upon iteration, u(x) ~ u*kn* (x) for n E lN+ • Hence, if u(x0) = 0 for 
n* some x0 E JR, then u*k (x0) = 0 for n E lN+ , which implies u(x) = 0 for 

all x such that x0 - x El• On account of Lennna 2.1 this implies that 

u(x) = 0 for all x E JR if k is not concentrated on either JR+ or JR_. If, 

on the other hand, k is concentrated on a half-axis, JR+ say, then Lennna 

2.1 implies that u(x) = 0 for all x E (-00 ,x0-a] for some a E JR+ and, con­

sequently, u(x) = 0 for all x E JR , since the equation ( 1. I) has to be 

satisfied. In all cases we thus arrive at the conclusion that u(x) = 0 for 

all x E JR , contrary to the assumption that u is nontrivial. 

Let a:= inf{u(x): x E JR} and suppose a> 0. Then g 0 u(x) ~ min{g(y): 

a~ y ~ p}. Since g is continuous, there exists a BE [a,p] such that 

g(B) = min{g(y): a~ y ~ p}. So u(x) = (g 0 u)*k(x) ~ g(B) =a+ (g(B)-a) 

~a+ (g(B)-B) =a+ E, where E := g(B) - S > O. Hence, inf{u(x):x E JR} 

. ~a+ E, which is in contradiction with the definition of a. We conclude 

that a = O. D 

3. THE FIRST NON-EXISTENCE RESULT 

In this section we give a non-existence result which can be proved by 

elementary arguments. Let L be defined by 

(3. 1) L := lim sup g(x) 
x+O x 

Note that L ~ 1; L may be infinite. If g is differentiable at the origin 

with derivative value g'(O), then L = g'(O). 

-1 LEMMA 3.1. Suppose g is monotone nondecreasing on [0,p]. If JlR+k(x)dx > L , 

then any nontrivial solution u of (I.I) is such that lim inf -+ u(x) > o. x+_oo 

PROOF. We prove the lennna only for the upper sign. Let u be a nontrivial 

solution of (1.1) and suppose that lim inf u(x) = 0. Choose a monoton-x++oo 
ically decreasing sequence {y: n E ]N+} such that yn + 0 and g(y )/y + L 

n n n 
as n + 00 • Define xn for n = n0 , n0+I, ••• , where n0 is such that u(O) > yno' 

by x := sup{x E JR+ : u(y) ~ y for all y E [O,x]}. Then u(x ) = y and n n n n 



x ➔ oo as n + 00 • Furthermore, as g is monotone nondecreasing, 
n 

X X 

u(xn) ~ fn g 0 u(xn-y)k(y)dy ~ gou(xn) In k(y)dy, 

0 0 
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Xn 
so (g(yn)/y11)J0 k(y)dy ~ l for all n. Letting n + 00 we obtain the inequal-

ity L J]R k(y)dy ~ 1, a contradiction. We conclude that 
+ 

lim inf u(x) > 0. D 
x+oo 

The following theorem is an immediate consequence of Lemmas 2.2 and 

3. L 

THEOREM 3.2. Suppose g is monotone nondecreasing on [0,p]. If J]R_ k(x)dx 

> L-l and ~~k(x)dx > L-l, then there is no nontrivial solution ;f (I.I). 

PROOF. Let u be a nontrivial solution of (I.I). Then either lim inf u(x) 
x++oo 

= 0 or lim inf u(x) = O, by Lemma 2.2. However, from Lemma 3.1 we infer 
x+-oo 

that lim inf u(x) > 0 and lim inf u(x) > O, and we arrive at a 
x++oo x+-oo 

contradiction. We conclude that there is no nontrivial solution of (I.I). 

REMARK 3.3. Up to this point we have not made use of the hypothesis that 

J]R_ lxlk(x)dx < 00 , so all foregoing results remain valid if this hypothesis 

is actually violated. 

4. ANOTHER NON-EXISTENCE RESULT 

In the present section we establish a non-existence result whose proof 

is rather involved. It is based on various reformulations of (I.I) as an 

inhomogeneous linear convolution equation. First we rewrite (I.I) in the 

form 

(4 .1) u(x) - u*k(x) = ¢(x) X E ]R_ , 

where 

(4.2) cp(x) := (gou-u)*k(x). 
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The function~ is nonnegative on JR and we will exploit this fact in the 

investigation of solutions of (4.1), cf. ESSEN [7]. 

Let m denote the first moment of the kernel k, 

(4.3) m = f xk(x)dx. 

JR 

The first theorem requires barely more than a reference to the literature. 

THEOREM 4.1. If m = 0 then there is no nontriviaZ soZution of (1.1). 

PROOF. It is known that the condition m IO is necessary and sufficient for 

the existence of a bounded continuous function u such that u(x) - u*k(x) ~ O, 

with strict inequality in some point, cf. [7, Theorem 3.1]. D 

Having established this non-existence result form= 0, we may hence­

forth assume m # O. 

Let 
00 

f k(y)dy X ~ 0, 

(4 .4) n(x) 
X 

:= 
X 

-f k(y)dy X < 0. 

-oo 

X Note that n(x) = H(x) - f k(y)dy and, consequently, n' = o - kin the sense 
-oo 

of distributions (here H denotes the Heaviside step function and o the Dirac 

distribution). The condition !JR lxlk(x)dx < 00 implies that n E L1 (JR) with 

Un11 1 = !JR lxlk(x)dx, cf. [8, Section V.6.]. The Fourier transform fi of n, 

which is a continuous function, is related to the Fourier transform R of k 
,... 

via the identity fi(A) = (1-k(A))/(iA) for A# O, while fi(O) = m. If m # O, 

then fi(A) I O for all A E JR • 

LEMMA 4.2. Suppose m > 0. If u is any nontriviaZ soZution of (1.1), then 

lim u(x) and lim u(x) exist and u(-00) = O, u(00 ) = p. 
x-+-00 x-+oo 

PROOF. Let u be a nontrivial solution of (1.1). Then u satisfies (4.1) with 

~ given by (4.2). We integrate both members of (4.1) from a to x, 



X X co 

J u(s)ds - ff 
a a -co 

X 

u(s-n)k(n)dnds = f ~(s)ds. 

a 
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Interchanging the order of the integrals in the second term and integrating 

by parts we obtain the identity 

xco X co co 

f f u(s-n)k(n)dnds = f u(s)ds - f n(x-Ou(s)ds + f n(a-Ou(Ods, 

a -co a -co 

where n is defined by (4.4). Hence, u satisfies 

(4.5) 

X 

U*n(x) - U*n(a) = I ~(s)ds 

a 

X E :R. 

-co 

Since u is bounded and n E 1 1(:R), u*n is bounded. Also, ~(x) is nonnegative 

for all x E :R, so the integral Jx Hs)ds, besides being bounded, depends 
a 

monotonically on x. It follows that lim Jx ~(s)ds exists and hence, from 
x--+= a 

(4.5), that lim u*n(x) exists. In fact, 

co 

U*n(co) = u*n(a) + I ~(s)ds. 

a 

Now, n belongs to the Wiener class W (i.e., n E 1 1(:R) and{>. E :R: fl(>.)= O} 

= 0), and u is bounded and uniformly continuous. It follows from Pitt's 

form of Wiener's fundamental"Tauberian theorem, cf. [14, Section 9.7] or 

[17, Section V.10], that lim u(x) exists and is given by x-+oo 
co 

u(co) = m- 1(u*n(a) + I ~(x)dx). 

a 

Similarly, one shows that lim u(x) exists and is given by x+-co 
a 

u(-co) = m- 1(u*n(a) - I ~(x)dx). 

-co 

A simple argument shows that both u(00 ) and u(-00) satisfy the scalar equa-
oo 

tion y = g(y), so {u(00),u(-00)} c {O,p}. Since u(oo)-u(-co) = J ~(x)dx > O, -co 
we conclude that u(-00 ) = 0 and u(ro) = p. D 
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REMARK 4.3. The case m < 0 can be reduced to the case m > 0 by a change of 

variable T: x 1+ -x. 

The next step towards a non-existence result form IO consists of an 

analysis of the rate of convergence of a nontrivial solution towards its 

limiting value Oas x ➔ - 00 • The following lemma is needed in the proof of 

Lemma 4.5. 

LEMMA 4.4. Let f: lR ➔ lR be nonnegative, f E L1 (lR). Define f(O) (x) := f(x) 

and, recUPsively, f(k) (x) := f_: f(k-I) (y)dy for those values of k E E+ 

for which lk-l) E L1 (lR_). Then, for any r E lR , 

r r 

f (r-x)kf(x)dx = k! f f(k)(x)dx, 

-oo -oo 

in the sense that if one side converges so does the other. 

PROOF. The identity given in the lemma follows upon induction from the 

identity 

r r 

f (r-x)kf(x)dx = k f 
-oo -oo 

k-1 (I) 
(r-x) f (x)dx. 

We omit the proof of the latter. identity, as it is similar to the proof of 

Lemma I in [8, Section V.6]. D 

(4.6) 

Let l be defined by 

l := lim inf g(x) 
X 

Note that I~ l ~ L, cf. (3.1); l may be infinite. If g is differentiable 

at the origin with derivative value g'(O), then l = L = g'(O). 

LEMMA 4.5. Let u be a nontrivial solution of (I.I) such that lim u(x) = 
x➔-oo. 

= 0. If l > I, then there exists a o > 0 such that the integral 
oo ->..x 

f_ 00 e u(x)dx converges for>.. E S0 , where S0 :={>..EC: 0 <Re>..< o}. 



r ->..x 
PROOF. It suffices to prove the convergence of the integral J e u(x)dx 

-oo 

for some r < 00 and>.. real, 0 < >.. < o. 
C Take a E (1,l) and let c be such that J. k(x)dx = (a+l)/(2a). Define 
-c 
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a new function k on JR by putting k (x) := k(x) if !xi $ c, k (x) := 0 if 
C C C 

!xi > c. If u is a nontrivial solution of (I.I), then u(x) = (g 0 u)*k (x) + 
C 

+ 1); 1 (x) for all x E JR, with 1); 1 (x) := (g 0 u)*(k-kc) (x) ~ O. We rewrite the 

latter identity in the form 

(4.7) 

. where ijJ (x) 

u(x) 2a 
- --u a+l 

n (x) := 
C 

a-1 
* kc(x) = a+l u(x) + lj;(x) 

00 

X ~ O, 

X < 0. 

-oo 

X E JR, 

Then supp(n) c [-c,c]. We integrate both members of (4.7) from x to some 
C 

r < oo. Thus, 

r r oo 

f u(E;)dE; - a2t1 f .f u(E;-n)k (n)dndE; 
C 

X X -oo 

Interchanging the order of the integrals 1.n the 

by parts we obtain the identity 

(4.8) 

r 

a-1 f U*n (r) - U*n (x) = --
c c a+l 

X 

r 

u(E;)dE; + f 
X 

r r 

= ::! f u(E;)dE; + f ijJ(E;)dE;. 

X X 

second term and integrating 

ijJ(E;)dE;, 

cf. (4.5). Because lim u(x) = O, there exists x E JR such that 
x➔-00 a 

g 0 u(x) ~ au(x) for all x E (-00 ,xa] and, hence, iµ 2 (x) ~ 0 for all 

x E (-00 ,Xa,-cJ. The same 1.s then true of ijJ(x) and we conclude, as 1.n the 

proof of Lennna 4.2, that lim Jr u(E;)dE; and lim JrijJ(E;)dE; exist. 
x➔-00 X x➔-00 X 

Letting x tend to - 00 we obtain the identity 

r r 

f u(x)dx a+l [ = -- U*n (r) -a-1 C f ijJ(x) dx] . 
-oo -oo 
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If r is chosen such that r ~ x - cit follows that 
a. 

r 

f u(x)dx ~ ~~! max{u(x): x E [r-c,r+c]} f lnc(x)!dx. 
-co ]R 

Next, we put u(O)(x) := u(x) and define u(k)(x) := fx u(k-l) (s)ds, -co X E JR, 

for those values of k E JN+ for which the integral exists. The functions 

w(k) are defined similarly. Integration of (4.7) from -co to x yields an 

equation for u(l) similar to (4.7), with w replaced by w(l), from which one 

deduces the relation 

r r 

u(l)*nc(r) - u(l)*nc(x) = ~:! f u(l)(s)ds + f W(l)(s)ds, 

X X 

cf. (4.8). The integrability of u on (-co,r) and the continuity of u imply 

the boundedness of u(l) on (-co,r+c]. As before, it follows that 

lim fr u(l)(s)ds and lim W(l)(s)ds exist, x+-co X x+-co 
r 

f 
-co -co 

and, therefore, 

r 

f u(l)(x)dx ~ a.~
1
1 max{u(l)(x): x E [r-c,r+c]} f In (x)ldx. 

a. . C 

-co ]R 

Continuing in this manner we obtain the sequence of inequalities, 

r 

f u(k)(x)dx ~ ~~! max{u(k)(x): x E [r-c,r+c]} f lnc(x)ldx, 

~ ]R 

fork€ JN+. Now, for each k E ]N+, u(k) is a monotonically increasing 

function, so 

max{u(k)(x): x E [r-c,r+c]} = u(k)(r+c) 

r 

~ f u(k-l)(x)dx + cu(k-l)(r+c) 

-oo 
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where o := [(a+l)(a-1)-l !JR lnc(x)idx+c]-l. Hence, by induction, 

max{u(k)(x): x E [r-c,r+c]} ~ -k -k o max{u(x): x E [r-c,r+c]} ~ po • 

Thus, there exists a positive constant C such that 

r 

I (k) -k 
u (x)dx ~ Co 

-oo 

Next, we apply Lennna 4.4 to the function u and conclude that each of the 

integrals Jr (r-x)ku(x)dx converges. Moreover, 
--oo 

k -k (r-x) u(x)dx ~ Co . 

-oo 

This result, in turn, implies 

'
00 (k!)-lAk Jr (r-x)ku(x)dx 

the convergence of the infinite sum 
. r A(r-x) and therefore of the integral J e u(x)dx, lk=O -oo -oo 

at least for A< o. 0 

LEMMA 4.6. Let u be a nontrivial solution of (1.1). If the integral 
00 -Ax 

!_00 e u(x)dx converges in the strip S0 (cf. Lennna 4.5) then so does the 

integral ! 00 e-A~(x)dx. 
-oo 

PROOF. It suffices to prove the convergence of the integral / 00 e-A~(x)dx 
' -oo 

for A real, 0 <A< o. 

Since u is a nontrivial solution of (I.I) we have u*k(x) ~ u(x) for 

all 
00 -Ax 00 -Ax 

x E JR, so J e u*k(x)dx ~ J e u(x)dx < 00 for any A E (O,o). On 
-oooo -Ax -oo oo -Ax 00 -Ax 

other hand, J e u*k(x)dx = (J e k(x)dx)(J e u(x)dx), in the 
-oo -oo -oo 

the 

sense that if the integral on the left hand side exists then so do the in­

tegrals on the right hand side. Hence, / 00 e-Axk(x)dx exists for A E (O,o) 
-oo 

and satisfies the inequality ! 00 e-Axk(x)dx ~ I there. D 
-oo 

We remark that Lennnas 4.5 and 4.6 together imply that, if l > I then 

a necessary condition for the existence of nontrivial solutions of (I.I) 
oo -Ax. 

is that !_00 e k(x)dx converges in S0 for some o > O. 

The above results lead us to define a real number Ak' 
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(4.9) Ak := sup{;\ E JR : f e -;\~(x)dx < ""} 

JR 

and to associate with each nontrivial solution u of (I.I) a number A thus, 
u 

(4.10) Au := sup{;\ E JR: f e-11.xu(x)dx < ""} 

JR 

It follows from Lemma 4.6 that Au~ Ak. Furthermore, let 

K(11.) := k(-iA) = f -11.x e k(x)dx, 

JR 

U(11.) := u(-iA) = J -11.x e u(x)dx, 

JR 

whenever the defining integrals converge. It is a standard result from 

Laplace transform theory that if A > 0 then U is analytic in the strip 
u 

S :={;\EC: 0 <Re;\< A}, cf. u u 
[17, Section VI.4]. The following result 

is a consequence of the positivity of u(x). 

LEMMA 4.7. If u is a nontrivial solution of (I.I) and O < A < 00 , then 
u 

U(11.) is singular at 11. =A. 
u 

PROOF. Cf. [17, Section II.SJ. 0 

At this point we make two further hypotheses concerning the functions 

g and k: 

(H2) the function g is differentiable at O with derivative value g'(O) and 
g l+e 

g(x) = g'(O)x + O(x ) as x + 0 for some e > O; 

the kernel k is exponentially small at - 00 , i.e., there exists a o > 0 
-11.x such that e k(x) is bounded for 11. E (O,o). 

Under these additional hypotheses we can prove the following result. 

LEMMA 4.8. Let u be a nontrivial solution of (I.I) with lim u(x) = 0. x+-ro 
If O < A < Ak, then 1 - g'(O)K(A) = O. 

u u 

PROOF. We rewrite (I.I) as a linear inhomogeneous integral equation, 
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u(x) - g'(O)u*k(x) = r(x) X E lR, 

where r(x) := (g 0 u-g'(O)u)*k(x). A two-sided Laplace transform yields the 

equation 

(4.11) (1-g'(O)K(A))U(A) = R(A), 

which is valid for all A E SA. In fact, the right abscissa of convergence 
u 

of R lies to the right of A • This can be shown in the following manner. 
u2 -Ax -Ax -A 

Because of the hypothesis (~), u(x) e = (g 0 u) *k(x) e :SC JlRg 0 u(y) e y dy. 

The integral is bounded for ReA sufficiently small, since g(x) < Cx for x 

near zero (x>Q). Hence, using the hypothesis (H2) we obtain for A E (O,A) g u 
and v sufficiently small (v>O), 

00 

lloo e-(A+v)x(g 0 u-g'(O)u}•k(x)dxl 

00 

= K(A+v) f e-(A+v)xj(gou-g'(O)u)(x)jdx 

-co 

00 

:SC K(A+v) f e-Axu(x)(e-(v/£)xu(x))£dx 

-bo 

:SC K(A+v)U(A)(sup{e-(v/E)xu(x): X E 

This result shows that the abscissa of convergence of R lies to the right 

of A. Consequently, R(A) is analytic in the neighborhood of 
u 

A= A. Since 
u 

U(A) is singular at A= A (Lemma 4.7) we conclude from (4.11) 
u 

that 

1 - g'(O)K(A) = 0 at A= A. 0 
u 

The preceding lemmas lead to the following non-existence theorem. 

THEOREM 4.9. Suppose m > O, g'(O) > 1 and I - g'(O)K(A) / 0 for all 

A E [0,Ak). If there exists a A< Ak such that .(_~e-A~(x)dx > (g'(O))-l, 

then there is no nontrivial solution of (1.1). 
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PROOF. Suppose (I.I) has a nontrivial solution u. Then lim u(x) = 0 by 
x+-oo 

Lemma 4.2, and A > 0 by Lemma 4.5 and the definition (4.10) of A. For 
u u 

any a E (1,g'(O)) there exists an xa such that gou(x) ~ au(x) for all 
00 

x ~ x. Take any c > O. 
a 

Then u(x)· ~ a f u(x-y)k(y)dy whenever- x ~ x - c 
-c a 

and, consequently, 

00 

-Ax J -A(x-y) -Ay u(x)e ~ a e u(x-y)e k(y)dy 

-c 

for real A. Now, lim inf 
x+-oo 

-Ax u(x)e = 0 for any A E [O,A ), so if we take 
u 

a monotonically decreasing sequence {y: 
n 

.and define xn for n = n0 ,n0+t, ••• , where 
-Ay x := inf{x E JR : u(y)e ~ y for all 

n E Jil+} such that yn + 0 as n + 00 , 

n0 is such that u(O) > y , by no 
y E [x,O]}, then 

n -Ax - n 
u(x )e n = y and x + - 00 as n + 00 • Now [-c,O] c [x ,OJ for n sufficiently 

n n A(n ) n 
large, so u(x -y)e- xn-Y ~ y for ally E [-c,O] and 

n n 

00 

-A(X -y) -Ay e n u(x -y)e k(y)dy 
n 

-c 

-A(X -y) -Ay e n u(x -y)e k(y)dy 
n 

-c 
0 

~ ayn J 
-c 

Thus, we obtain the inequality 

(4.12) -Ay 
e k(y)dy ~ I, 

-c 

-Ay e k(y)dy. 

which is valid for any A E [O,A ). If A were strictly less than Ak, then 
u u 

the function A}·+ 1 - g'(O)K(A) would have a zero at A by Lemma 4.8, i.e., 
u 

inside the interval [O,Ak), contrary to the hypothesis of the theorem. 

Hence, Au= Ak and the inequality (4.12) holds for all A E [O,Ak). Since 

a and c were chosen arbitrarily subject to the constraints I <a< g'(O) and 

c >Owe conclude that the assumption of the existence of a nontrivial solu­

tion of (I.I) leads to the validity of the inequality g'(O)JO e-Ayk(y)dy -~ I 
-co 

for all A E [O,Ak). This proves the theorem. 0 



If Ak = 00 , or if K(A) + 00 for At Ak, then there certainly exists a 
0 -Ax 1 A < Ak such that !_00 e k(x)dx > (g' (0))- • If, on the other hand, K(A) 

approaches a finite limit as At Ak, then Theorem 4.9 is not necessarily 

applicable. In that case, one can conclude from a Tauberian theorem for 

Laplace transforms, cf. [17, Section V.4], that the function 
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-Ax 
uA: x I+ u(x)e belongs to L1(JR) for A= Ak. This implies that, under the 

-Ax 
hypothesis that kA: x ~ k(x)e is bounded for A= Ak, uA is bounded for 

A= Ak. Then one can repeat the analysis of the present section, starting 

from the identiy uA(x) = f]R. e-Ay(g 0 u)(y)kA(x-y)dy for A= Ak, to obtain 

a non-existence result. We do not elaborate this idea any further. 

REMARK 4.10. The condition that k has a finite first absolute moment 

(J]Rlxlk(x)dx < 00) has been used only once, in Lennna 4.2, to prove that any 

nontrivial solution of (1.1) has limits as x + ± 00 • The proofs of Lennnas 

4.5 through 4.8 and Theorem 4.9 proceeded without an explicit reference to 

this condition. It remains an open question whether, if k does not have a 

finite first absolute moment, there exist nontrivial solutions of (1.1) 

which do not have limits as x + ± 00 • 

5. THE INHOMOGENEOUS EQUATION 

As the greater part of·the proofs in the foregoing section were based 

on inequalities, rather than equalities, the same or similar arguments can 

be used in the analysis of the inhomogeneous equation 

(5. 1) u(x) = (g 0 u)*k(x)+f(x) X E JR, 

In fact, let f satisfy the following hypothesis: 

(Hf) f: JR + JR is uniformly continuous, nonnegative and not equal to the 

zero function. 

We then have the following result. 

THEOREM 5.1. Suppose g(x) ~ p for x ~ p. The same hypotheses on g and k 

which lead to the non-existence results of Theorem 4.1 and Theorem 4.9 

guarantee that any bounded nonnegative solution u of (5.1) necessarily 
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satisfies the inequality u(x) ~ p for aZZ x E :JR. 

PROOF. Let u satisfy (5.1). We introduce the function w by the definition 

w(x) := min{ u(x) ,p}, x E :JR. Then g 0 u(x) ~ w(x) for all x E :JR, so u(x) ~ 

(gou)*k(x) ~ w*k(x). But w(x) ~ p for all x E :JR, so W*k(x) ~ p J]R. k(x)dx = p. 

Combining these two results we see that w satisf_ies the inequality 

W*k(x) ~ min{u(x),p} = w(x) for all x E :JR. Under the hypotheses of Theorem 

4.1, this inequality leads to the conclusion that w is constant, w(x) = c 

say. The case O ~ c <pis excluded, because then u(x) = c and (5.1) cannot 

be satisfied. Hence, w(x) = p and u(x) ~ p for all x E :JR. Under the hypoth-

eses of Theorem 4.9 it follows that w(-00) := lim w(x) and w(00 ) := 
x-+-oo 

lim w(x) exist and are such that w(00)-w(-00 ) ~ 0 and {w(-00),w(00)} 
x+oo 

c {O,p}, cf. Lennna 4.2. One shows as in Lermna 2.2 that w(x) > 0 for all 

x E :JR, and that either w(x) = p for all x E :JR or inf{w(x): x E ]R.} = O. 

It follows that either w(x) = p for all x E :JR or w(-00 ) = 0. In the latter 

case, the chain of arguments leading from Lermna 4.4 to Theorem 4.9 can be 

repeated mutatis mutandis. Under the conditions of Theorem 4.9 the assump-

tion that there exists a nontrivial w such that lim w(x) = 0 leads to 
x-+-oo 

a contradiction, so necessarily w(x) = p, i.e., u(x) ~ p, for all x E :JR. D 

REMARK 5.2. A close examination of the proof of Theorem 5.1 shows that the 

condition (Hf) can be weakened ·somewhat if there exists a monotonically 

nondecreasing function g0 on [O,p] such that g(x) ~ g0-(x) ~ x for all 

x E [0,p]. In fact, let f: :JR -+ :JR be such that ~(x) ~ f 0 (x) for all x E :JR, 

where f 0 : :JR -+ :JR satisfies (Hf). Suppose u is a solution of (5. 1). Consider 

the equation 

(5.2) X E :JR. 

The minimal solution of (5.2) can be constructed via the method of succes­

sive iterations, v(O)(x) := f 0 (x), v(n)(x) := (g0ov(n-l))*k(x) + f 0 (~) 

(nE:JN+). Any of these iterates is majorized by the solution u of (5.1). The 

monotonicity of g0 implies that the sequence {v(n)(x): n E JN'+} is monoton­

ically nondecreasing for each x E :JR, so the sequence converges to a limit 

function, v say, which satisfies the equation (5.2) and the inequality 
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v(x) ~ u(x) for all x E JR. Suppose now that the function g0 is such that 

any bounded nonnegative solution v of (5.2) necessarily satisfies the in­

equality v(x) ~ p for all x, according to the theorem, then the solution u 

of (5. 1) must also satisfy the inequality u(x) ~ p for all x E JR • 

6. ASYMPTOTIC BEHAVIOR AND UNIQUENESS CRITERIA 

The key assumption leading to the non-existence result of Theorem 4.9 

is that the function A f+ 1 - g'(O)K(A) does not vanish in the interval 

[O,Ak). In the present section we will drop this assumption, i.e., we assume 

that the function A 1-+ 1 - g'(O)K(A) has a real positive zero. The non­

negativity of k implies that K is a convex function on [0,Ak), so 

A 1-+ 1 - g'(O)K(A) has at most two real positive zeros. Let a denote the 

smallest positive zero; we assume that it is simple. 

In Section 4 we established various conditions which guarantee that 

any nontrivial solution of (1.1) has the property that lim u(x) = O. x-+-oo 
We also analyzed the rate of convergence of u(x) to its limiting value 0 

in terms of the Laplace transform of u. Our first objective in the present 

section is to establish conditions which guarantee that any nontrivial 
ax solution of (1.1) has the much stronger property that u(x) ~ e as x-+ - 00 

We will then use this knowledge of the asymptotic behavior to establish a 

uniqueness result for the nontrivial solutions of (1.1). 

The following lenmJ.a is a modified version of Ikehara's Theorem and 

will be needed in the proof of Theorem 6.2. 

LEMMA 6.1. If the real-valued fmction ¢ is nonnegative and nonincreasing 

on JR+, and there exists a T > 0 such that the integral f(A) = 1;e-Ax¢(x)dx 

converges for ReA > -T, and if, furthermore, for some constant A and some 

function g : JR -+ JR , 

lim [f(x+iy) - A(T+x+iy)-l] = g(y), 
x+-T 

uniformly on compact suhsets of JR , then 

lim ¢(x)eTx = A. 
x➔oo 
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PROOF. Analogous to the proof of Ikehara's Theorem, see e.g. [17, Section 

V.17]. 0 

THEOREM 6.2. Suppose m > O, g'(O) > I and g(x) s g'(O)x for x E [O,p]. If 

u is a monotone nondecreasing nontriviaZ soZution of (I.I), then there 

exists a positive constant A such that limx+-m u(x)e-crx = A. 

PROOF. Let u be a monotone nondecreasing nontrivial solution of (I.I). It 

follows from Lemma 4.5 and the definition (4.10) of A that U(A) is defined 
u 

for A E [O,A) for some A > O. Moreover, [l - g'(O)K(A)]U(A) = R(A), cf. 
u u 

(4.11). The continuity of g, together with the properties g(O) = O, g'(O)? 1, 

and g(O) = p, imply that the inequality sin the condition g(x) s g'(O)x for 

x E [O,p] in the statement of the theorem, is a strict inequality, 

g(x) < g'(O)x, at least on some subinterval of [O,p]. Hence, g 0 u(x) < 

g'(O)u(x) on a set of positive measure on JR and, consequently, the func­

tion R: A~ J]R. e-Ax(g 0 u-g'(O)u)*k(x)dx does not vanish at A= a. Thus, 

R(A) 
U(A) = 1-g'(O)K(A) 

R(cr) -1 
'(O)K'(cr) (cr-A) as At cr. 

The function R is regular in a neighborhood of the line ReA = cr. The zeros 

of the function A I+ 1 - g'(O)K(A), which lie in a vertical strip left­

adjacent to the line ReA = cr lie, in fact, in a rectangle according to the 

Lemma of Riemann-Lebesgue [15, Section 1.8]. The analyticity of K then 

implies that there are only finitely many inside this rectangle. Hence, if 

we choose the width of the strip sufficiently small, then there are no 

other zeros of A I+ 1 - g'(O)K(A) in this strip, besides the real zero A= a, 

and we can apply Lemma 6.1 (with the obvious modifications) to obtain the 

statement of the theorem. D 

The use of an Ikehara-type lemma makes the proof of the asymptotic 

behavior rather simple, but has the disadvantage that the conclusion holds 

only for monotone solutions. Our next objective is to give an alternate 

proof of the asymptotic behavior, under slightly different assumptions on 

k, without presupposing that the solution be monotone. 
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THEOREM 6.3. Suppose m > O, g'(O) > 1, and g(x) ~ g'(O)x for x E [O,p]. 
l+E.: 2 Let E.: > 0 be such that g(x) = g' (O)x + O(x ) , cf. (H ) • Suppose that 

g 
K(-o) < 00 for some o > O, and that there exists a SE (cr,cr(I+E.:)) such that 

(i) g'(O)K(S) < I, and 
(ii) k(x)e-(S/(l+E.:))x is bounded. 

If u is a nontrivial solution of (I.I), then there exists a positive con-

stant A such that lim u(x)e-crx = A. 
x+-oo 

PROOF. In this proof we use for any given function ¢: :JR + :JR the symbol ¢"­

to denote the mapping x ~ cfi(x)e-11.x, x E ]R. Let u be a nontrivial solution 

of ( 1. I~. ~e know tha~ u_/3/ (1 +€:) E LI (:JR_) and kS/ ( 1 +€:) E L00 (:JR). Hence, 

uS/(l+E.:)(x) ~ g'(O)uS/(l+E.:)*ks/(l+E.:)(x) ~ C, or, in other words, 

u(x) ~ Ce-(S/(l+E.:))x for all x E :JR. We rewrite (I.I) as an inhomogeneous 

linear cony~lutiop. __ equation, 

( 6. 1) u(x) = g'(O)u*k(x) + r(x) X E ]R , 

where r(x) := (gou-g'(O)u)*k(x). There exists a positive constant C such 
]+E.: -ex 

that O ~ r(x) ~ - Cu *k(x) ~ - Ce for all x E :JR. Multiplying both 

sides of (6.1) with e-Sx we obtain 

(6.2) XE:JR. 

The function rs is nonpositive and bounded. Consider the iterative scheme 

v(O)(x) := r 6(x), v(n)(x) := g'(O)v(n-l)*ks(x) + rS(x), n E :IN+. For each 

x, the sequence {v(n)(x): n E ]N+} is monotone nonincreasing. Moreover, 

v(n)(x) ~ inf{r6(x): x E :JR} (l+a+a2+ ••• +an), where a= g'(O)K(S) < I. So 
\n) the sequence {v : n E ]N+} being bounded and monotone, converges to a 

limit function, v say, which satisfies the equation v(x) = g'(O)v*k6(x) 

+ rS(x) for all x E ]R. The same equation is satisfied by the function u6 , 

cf. (6.2). Since vis nonpositive and us is positive, the difference us - v 

is not the zero function. Let the function w be defined by 

w6(x) := u6(x) - v(x). Then w satisfies the homogeneous linear convolution 

equation 
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(6.3) w(x) = g'(O)w*k(x) X E JR, 

and the estimates O $ w(x) $ C(l+eBx) for all x E JR. We claim that this 

implies that w(x) = Ae0 x for some A> 0. 

In order to support this claim we first collect some information con­

cerning the roots of the characteristic equation g'(O)K(A) = I in the strip 

SB= {A E ~: 0 $ ReA $ B}. In this strip, a is the only real root; all other 

roots occur in complex conjugate pairs. The nonnegativity of k implies that 

the real part of any root other than a is strictly less than a. As in the 

proof of Theorem 6.2 it follows that there are only finitely many roots in 

The function w, being a solution of (6.3) which satisfies the estimates 
Bx 0 $ w(x) $ C(l+e ), is a linear combination of exponential functions, pos-

sibly multiplied by polynomial functions, where the exponents are found as 

the roots of the characteristic equation in SB, cf. [15, Section 11.2]. 

(It is in this step that the assumption K(-8) < 00 is used.) Next, observe 

that any contribution from a pair of complex conjugate roots (with real 

parts less than a) leads to an oscillatory behavior of w which is asymp-
crx totically dominant over e as x ➔ - 00 • Hence, if there were a contributipn 

tow from any complex conjugate pair of roots of the characteristic equation 

in the strip s8 , w(x) would cer.tainly become negative for some x sufficient­

ly large negative, which is impossible because w(x) is_nonnegative, as we 

have seen. The conclusion is, therefore, that the only nonzero coefficient 

in the finite expansion for w is the one correspdnding to a. In other words, 
rrx 

w(x) = Ae· for some A> O, as claimed. 

Finally, u(x) = w(x) + v(x)eBx and 
-crx 

lim w(x)e = A. D 
x➔-oo 

-crx 
so lim u(x)e = x-+-oo 

Our final results concern the uniqueness of nontrivial solutions of 

(I.I). We observe that the homogeneous equation (I.I) is invariant under 

translation, so uniqueness is to be understood in the sense of uniqueness 

modulo translation. 

THEOREM 6.4. Suppose that the conditions of Theorem 6.3 are satisfied and 

that, in addition, g is such that lg(x)-g(y)I $ g'(O)lx-yl for all pairs 
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x,y E [O,p]. Then there is at most one nontrivial solution (modulo transla­

tion) of (1 • 1) • 

PROOF. Let u7 and u2 be two nontrivial solutions of (1.1). There exist 
. . * . *<) -ax * positive constants C and C such that lim u 1 x e = C and 

x+-"" 
lim u2(x)e-ax = C, according to Theorem 6.3. Define u 1 by putting . x+-oo 

* -1 . * u 1 (x) := u1 (x--r) for all x E JR, where T = a ln(C /C). Then u1 is also a 

nontrivial solution of (1.1) and lim u 1(x)e-ax = C. Thus, if we consider x+-oo 
-ax the function v defined by v(x) := (u1-u2)(x)e for all x E JR, then vis 

continuous on JR, lim + v(x) =: v(±"") exist, and v(-"") = v("") = O. Also, x+_oo 
if z := sup{ lv(x) I: x E JR}, then z = v(x0) for some x0 E JR. Now, 

-ax -ax · v(x) = (u1-u2)(x)e = (g 0 u1-g 0 u2)*k(x)e , so since the Lipschitz con-

stant of g on [O,p] is at most equal to g'(O) we have the inequality 

lv(x)I ~ g'(O) lvl*k (x), where k (x) := k(x)e-ax, which is valid for all 
a a 

x E JR. From this point on, the arguments parallel some of the arguments 

used in the proof of Lennna 2.2, cf. also FELLER [8, Section XI.2]. Upon 

induction we obtain the estimate 

(6.4) X E JR, 

for any n E JN+. Now, the expression in the right member of this inequality 
n n* is at most equal to z(g'(O))· JlR ka (x)dx which, in turn, is equal to 

z(g'(O) !JR ka(x)dx)n = z(g'(O)K(a))n = z. Hence, at·x = x0 , the inequality 

(6.4) must be an equality, lv(x0) I = (g'(O))nlvl*k:*(x0) for all n E JN+. 

But this is only possible if v(x0-y) = v(x0) for ally EE. (We recall that 

l = u:=l ln' ln being the set consisting of the points of increase of kn*.) 

It follows that v(x) = v(x0) for all x E JR if k is not concentrated on 

either lR or JR , cf. Lennna 2.1. If k is concentrated on JR+, say, then it + -
follows that v(x) = v(x0) for all x E (-00 ,x0-aJ for some a E JR+, but as 

v satisfies the inequality (6.4) one may conclude again that v(x) = v(x0) 

for all x E JR. Hence, v is a constant function on JR. Since its limiting 

values at ±00 are zero, it follows that vis the zero function, i.e., 

u1 (x) = u2(x) for all x E JR. D 

The proof of the following uniqueness theorem is analogous to the 
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proof of Theorem 6.4. 

THEOREM 6.5. Buppose that the conditions of Theorem 6.2 are satisfied and 

that., in addition., g is such that lg(x)-g(y)l ~ g'(O)lx-yl for aU pairs 

x,y E [0,p]. Then there is at most one monotone nondecreasing nontrivial 

solution (modulo translation) of(l .1). 

REMARK 6.6. If g is monotone nondecreasing and sublinear (i.e., g(ax) ~ 

ag(x) for a E [0,1], x E [O,p]), then the Lipschitz constant of g on [0,p] 

is at most g'(O). The former properties were used by one of the authors in 

[5] to prove a uniqueness result. The fact that one can use the less re­

strictive condition involving the Lipschitz constant was observed by 

BARBOUR [3] for a function g which was explicitly given by an expression 
-x 

of the form g(x) = a(l-e ). 

REMARK 6.7. We observe that a combination of the existence result for 

monotone solutions (cf. [6], [16]) and the uniqueness result of Theorem 6.4 

leads, in a very indirect way, to the conclusion that monotone functions 

g lead to monotone nontrivial solutions of (1.1) only. It would be of in­

terest to have a direct proof of this fact. 

7. APPLICATION TO A DETERMINISTIC MODEL FROM MATHEMATICAL EPIDEMIOLOGY 

The spatio-temporal development of an epidemic among a closed popula­

tion, with habitat ]Rn , can be described by an integral equation of the 

form 

00 

u(t,x) = I H(T) f g 0 u(t-T,y)V(x-y)dydT 
0 ]Rn 

(7. l) 

- 00 < t < 00 , x E ]Rn, cf. [6]. Here u is a measure for the density of 

susceptible individuals. The equation is based on various assumptions, the 

most important: being 

(i) the members of the population can be categorized as either suscept­

ible to or infected by the disease; 

(ii) the infectivity of an infected individual as a function of time 
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elapsed since exposure and position relative to the individual's 

own position is given by H: lR+ + lR and V: ]Rn + lR , respectively; 

(iii) the disease induces permanent innnunity, so an individual can pass 

from the class of susceptibles to the class of infectives, but not 

vice versa. 

Both Hand V are nonnegative, and normalized to have integral one. The 

assumption that the habitat ]Rn is homogeneous and isotropic is reflected 

in the fact that Vis a radial function. The nonlinearity of the equation 
-x comes about through the function g which has the form g(x) = a(l-e ). The 

parameter a has a threshold value 1, cf. [1], [6]; here, we restrict our 

attention to the more interesting case a> 1. In the so-called traveling 

(plane) wave problem one looks for solutions of (7.1) of the form 

u(t,x) = w(x•v+ct), where vis a fixed unit vector. If one chooses a 
n basis in lR such that v = (1,0, ••• ,0), then the function w must satisfy 

the following convolution equation on the line, 

(7 .2) w(x) = (gow)*V (x) 
C 

X E JR, 

where V c (x) := f; H(T)V(x-cT)dT, x E lR, with V(x1) := 

flRn-1 V(x 1 ,x2 , ••• ,xn)dx2 ••• dxn, x 1 E lR • If c = 0 the function V c is 

synnnetric. One can then app·ly Theorem 4.1, from which it follows that (7 .1) 

does not admit any standing wave solution. Next, we consider the case c IO. 
Because of the synnnetry of V we can restrict our attention to the case 

C > 0. 

As c increases, the mass of V shifts to the right. This can be seen 
C 

by inspecting the qualitative behavior of the characteristic function L, 
C 

associated with the linearized equation, as a function of the wave velocity 

c. By definition, 

Lc(A) := g'(O) f e-AyVc(y)dy 

]R 

= g'(O) f e-AcTH(T)dT f e-AyV(y)dy. 

]R+ ]R 
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The nonnegativity of Hand V implies that, for c fixed, L is a convex func­
c 

tion of A (},.ElR) and, for A fixed (A>O), it is a monotonically decreasing 

function of c. Furthermore, L lo)= g'(O) =a> 1. Hence, the number 
C 

c0 := inf{c > 0: there exists A> 0 such that Lc(A) = 1} is well-defined if 

Hand V satisfy the appropriate hypotheses [6]. 

Various authors have given constructive pro,ofs for the existence of 

(monotone) nontrivial solution of (7.2) in the case c ~ c0 , cf. [2], [4], 

[6], [16]. From the results of our investigation it follows that there 

exists exactly one such solution (modulo translation) at each speed c > c0 , 
~ ~ -Ax at least if VA: x 1-:r V(x)e is bounded for the value of A specified in 

. Theorem 6.4. (If, for instance, V has compact support then this condition 

is certainly fulfilled.) A similar conclusion has been reached at by 

BARBOUR [3] who used probabilistic arguments. 

Furthermore, it follows from the results of our investigation that no 

traveling waves exist with speed c < c0 • The same result has been obtained 
. -µt 

for the special case H(t) = ae (a,µ nonnegative constants) by ATKINSON 

and REUTER [2] and by ARONSON [1], and for a discrete time model in popula­

tion genetics by WEINBERGER [16]. Both Aronson and Weinberger based their 

proofs on the construction of a subsolution. This approach made it actua~ly 

possible for them to conclude that c0 is the asymptotic speed of propagation 

of disturbances from a rest state of the associated initial value problem 

(see also MOLLISON [12]). 

In our opinion, the main advantage of the approach presented in this 

paper is that the same chain of purely analytical arguments leads to the 

nonexistence, as well as the uniqueness results. 
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