
1656 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

Know Means No: Incorporating Knowledge into
Discrete-Event Control Systems

S. Laurie Ricker, Member, IEEE and Karen Rudie, Member, IEEE

Abstract-Modal logic is introduced into the modeling of
discrete-event systems. Analysis within this framework includes
formal reasoning about what supervisors know or do not know
about a given system. This model can be used to develop control
strategies that solve decentralized discrete-event control prob­
lems. When a problem cannot be solved using fully decentralized
supervisors, reasoning about knowledge may provide guidelines
for incorporating communication and pooled information into the
model.

Index Terms-Automata, discrete-event systems, modal logic.

I. INTRODUCTION

A DISCRETE-EVENT system (DES) is a set of sequences
of events that describes the behavior of a physical process.

A change in the system state of the process is precipitated by
the occurrence of an action or event and is not time-driven. A
discrete-event control problem arises when we want to restrict
the system to performing a specified subset of overall system
behavior. A solution to a discrete-event control problem exists
when we can construct an overseer (or supervisor) to achieve the
desirable (or legal) behavior by either preventing some events
from taking place (disahling an event) or allowing-but not
forcing-others to occur (enabling an event).

Decentralized discrete-event problems originate when more
than one supervisor is required to ensure that the system avoids
illegal behavior. In this class of problems, no one supervisor has
a complete view of the system behavior. The supervisors must
coordinate, without communication, the disabling and enabling
of events to realize the legal behavior. In other words, each su­
pervisor must know enough of what the system is doing to make
conect decisions to turn events off or on.

Decentralized control problems arise naturally in distributed
systems. For instance, in telecommunication problems a sender
and receiver are physically separated by a communication
channel, so that neither participant sees everything that occurs.
The framework for decentralized discrete-event control we
adopt for this work is taken from [1] and [2] and is based on the
theory of formal languages. A discrete-event system is viewed
as a generator of a formal language and establishing control

Manuscript received February 27, 1998; revised November24, 1998 and Oc­
tober 12, 1999. Recommended by Associate Editor, L. Dai. This work was sup­
ported in part by NSERC under Grant OGP0138887.

S. L. Rieker is with CWI, Amsterdam, l 090 GB, The Netherlands.
K. Rudie is with the Department of Electrical and Computer Engi­

neering. Queen's University, Kingston, ON K7L !N6, Canada (e-mail:
rudie@ee.queensu.ca).

Publisher Item ldentifier S 0018-9286(00)06321-2.

for the system amounts to determining which sequences in the
language should be recognized by each supervisor. Intrinsic to
the study of these processes is the informal argument that as
long as at least one supervisor knows the correct control action
to take in preventing illegal behavior of the system, an overall
control strategy may be synthesized.

In most formulations of decentralized discrete-event control
problems, decisions are based solely on what each supervisor
observes. A control solution cannot be constrncted if, after ob­
serving some sequence of events, there is no supervisor that
"knows enough" to disable a particular event. When such a stale­
mate is reached, it means that, in isolation, a supervisor lacks
appropriate information to make the correct control decision.
However, if supervisors could access their collective knowledge
about the situation, thereby eliminating some of the uncertainty
in making the correct control decision, it may be the case that a
control strategy can be formulated.

We are interested in recasting this discrete-event control
framework into knowledge theory [3] for two reasons: 1) to
explain, in more intuitive terms, the structure of the system
and the behavior of controllers that solve decentralized DES
problems and 2) to formally reason about what supervisors
need to know to solve control problems. As noted above,
informal reasoning about knowledge is already an integral part
of analyzing decentralized supervisory control problems. Thus
it seems natural to formally consider what it means for each
supervisor to "know enough."

Halpern and Moses [3] formulated a model of knowledge
(based on modal logic) to analyze distributed systems. This
model is based on the concept of possible worlds. The idea is
that an agent (equivalent to the notion of an overseer) has only
a partial view of the distributed system and may be unable to
distinguish different system states from the true state of the
system. An agent's knowledge of the system depends only on
its local view of the system behavior. As an agent acquires
more knowledge, there are fewer worlds or system states the
agent considers as possible. When an agent has insufficient
knowledge, the model allows us to consider the knowledge of
groups of agents. We consider this aspect of the knowledge
model to determine if combining the knowledge of two DES
supervisors will produce "enough" information to reach a
control solution.

The knowledge ascribed to supervisors is, by itself, insuf­
ficient to adequately capture overall system behavior since a
supervisor only uses knowledge to take a particular action.
The interaction between knowledge and action is expressed
in a knowledge-based protocol [4]. In situations where a
DES supervisor has insufficient knowledge to make a control

0018-9286/00$10.00 © 2000 IEEE

RICKER AND RUDIE: KNOW MEANS NO

decision, we envision actions being taken on the basis of the
knowledge acquired through communication.

Reasoning about knowledge has been part of the analysis of
a variety of applications in the areas of economics [5], [6], com­
puter security [7], distributed database systems [8], robotics [9],
and communication problems [10). Temporal logic has been ap­
plied to the study of supervisory control problems [11], [12] and
modal logic has been used as the basis for a computer language
that simulates discrete-event processes [13]; however, a formal
model of knowledge has yet to be incorporated into the study of
discrete-event control problems.

In this paper we establish that standard decentralized DES
concepts can be equivalently expressed in knowledge theory.
In the DES framework of Ramadge and Wonham [1], super­
visors determine whether any given sequence is a member
of the legal language. In the knowledge theory setting, the
basic variables correspond to answers to questions such as
"is fact p true?" or "does an agent know that fact p is true?"
When we apply knowledge theory to decentralized DES,
supervisors determine whether they have the knowledge
to disable an event. A fact p in the knowledge model for
DES corresponds to whether event a is legal at a given
state of the system. We restrict our attention in this paper
to reasoning about whether an agent knows to disable event
a (based on what an agent directly observes). However, the
knowledge formalism gives us a means of expressing more
complex statements that could guide decision-making in
reaching a control solution. For instance, we can say "agent
1 knows that agent 2 does not know to disable event a." By
characterizing the nature of knowledge in a discrete-event
control system in this manner, we can investigate what
additional information a supervisor needs when it does
not know whether to take a disable action. Our long-term
research goal is to understand how and when the dissem­
ination of knowledge among supervisors leads to control
solutions for a class of control problems that decentralized
supervisory control theory does not presently address. For
those problems, communication between supervisors could
be a means of improving the knowledge each supervisor
possesses. In addition to presenting the decentralized DES
framework recast in knowledge theory, we also suggest some
of the features of knowledge logic that we hope to exploit
in establishing what information needs to be communicated
to provide DES supervisors with enough knowledge to solve
control problems.

Recently, there has been some work on incorporating commu­
nication into decentralized control: an algebraic approach [14]
and models that use information structures from stochastic con­
trol [15], [16]. In addition there has been some work on the role
communication plays in a distributed diagnoser [17] and an al­
gorithm for minimal communication in distributed systems [18].

We begin by providing a brief background of DES theory and
of knowledge logic. Section III introduces the knowledge model
we apply to DES. Section IV contains the knowledge-based pro­
tocol that we propose for guiding the actions of decentralized
agents. We then present several examples that illustrate how
to introduce knowledge into the analysis of decentralized DES
problems.

1657

II. BACKGROUND AND NOTATION

One of the difficulties in bringing together the notation from
two established fields is addressing the overlap of symbols used
to represent distinctly different concepts. We have tried to ac­
commodate the more serious notational discrepancies, but also
include references that can be consulted for further clarification.

A. Discrete-Event Systems

This work adopts the framework for discrete-event systems as
developed by Ramadge and Wonham [1]. A brief review of es­
sential notation is provided in this section. More comprehensive
introductions to discrete-event control theory include [19], [l],
[20], [21]. References for decentralized control include [22]­
[25], [2], [26], [27].

The discrete-event control theory of Ramadge and Wonham
entails the system requiring control (the plant) to be described
as a generator of a formal language (i.e., a state machine). The
behavior of the plant is represented by sequences constructed
from a non-empty set of symbols called an alphabet. The al­
phabet represents the set of all possible events that can occur
within the system. Transitions from one system state to another
do not depend on the passage of time, but rather, on the occur­
rence of an event. Also specified is a second generator: one that
describes the desirable or legal behavior of the plant and there­
fore generates the legal language. The goal is to develop a con­
trol strategy for a supervisor that will constrain the behavior of
the plant to that of the legal language. The supervisor averts un­
desirable behavior of the plant by disabling those events whose
occurrence would lead to an illegal sequence.

More formally, the plant is modeled by an automaton G =
(Q0 , E, 8°, qg), where Q0 is a set of states; Eis the alphabet;
8° is the transition function, a partial function 8°: E x Q0 -+

Q0 ; and q~ E Q0 is the initial state. The set E* contains all
possible finite strings (i.e., sequences) over E plus the null string
c. The language generated by the plant G, denoted L(G), is a
subset of E* and is defined as follows: L(G) := { tJt E E* and
8°(t, q<;f) is defined}.

For any strings t and u E E*, we say that u is a prefix of
t if :J v E E* such that t = uv. Thus every string t E E*
(where t -:f. c) has at least two prefixes: c: and t. If L ~ E*, the
prefix-closure of L is a language, denoted by L, consisting of
all prefixes of strings of L:L := { u E E*: u is a prefix oft}.
Because every string is a prefix of itself, L ~ L. A language
is said to be prefix-closed if L = L. By definition, L(G) is
prefix-closed.

We also describe the legal behavior of the plant as an au­
tomaton E = (QE, E, 5E, qf) and the legal language is de­
noted L(E). We assume that Eis a subautomaton of Gas de­
scribed in the context of supervisory control in [28] and [29].
That is, QE ~ QG, qf ::= q~ and oE(t, q~) = 8°(t, q~) for
all t E L(E).

A plant is represented by a finite-state machine or a directed
graph, as shown in Fig. 1, where the nodes of the graph are the
states in Q, the arcs of the graph are the transitions defined by
the function 8°, labels for the arcs are the events in E, and the
initial state is identified by a small entry arrow. Thus for any
event a E E and state q E Q0 , o0 (a, q) is defined (written

1658 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 45, NO. 9, SEPTEMBER 2000

Fig. I. A plant G and its legal automaton E. Illegal transitions are indicated
with a dashed line.

8° (O', q) !) if there is an arc labeled by O' from q to some other
state. The definition for 8° can be extended to a partial function
for E* x Q0 , so that 8°(t, q) = q', fort E L(G), means
that state q' can be reached from state q via the sequence t. In
Fig. 1, we can say both 8°('y, 4) = 6 and 8°(a/3'y, O) = 6
because event "! is defined as a transition from state 4 to state 6
and because there is some path from the initial state 0 to state 6
for sequence a(J"'(.

Formally, a supervisor Sis a pair (T, 'If;) in which T is an au­
tomaton T = (X, E, e, Xo). where x is a set of states for the
supervisor; Eis the alphabet used by G; e is the transition junc­
tion, a partial function e: E x X -+ X; x 0 is the initial state
for the supervisor; and 'l.j;, called a feedback map, is given by
'I./;: E x X -+ {disable, enable} satisfying 'If;(O', x) = enable
if O' E Euc, x E X, and 'l/J(O', x) E {disable, enable} if
a E Ee, x E X. That is, 'If; is interpreted as a rule for dis­
ablement and ensures that uncontrollable events are never dis­
abled. The automaton T monitors the behavior of G and changes
state according to the events generated by G. The control rule
'l/J(O', x) indicates whether a should be enabled or disabled at
the corresponding state in G. The behavior of G when it is con­
strained by S is described by the automaton S / G, called a su­
pervised discrete-event system:

s /G = (E, Q x x, (8 x e).P' (qo, Xo)).

The behavior of S / G is described by L(S / G). The modified
transition function (8 x e)"' is defined as a mapping E x Q x
X-+ Q x X:

(8 x ff"(O', (q, x))

:= { (8(a, q), e(a, x)),

undefined,

if 8(0', q)!
/\e(O', x) !
/\'lj;(a, x) =

enable;
otherwise.

There are some systems of which not all events can be seen
by the supervisor. In this case, a supervisor has only a partial
view of the system. When the application requires more than
one such supervisor to achieve the desirable behavior, this leads
to a decentralized discrete-event problem.

Now that a supervisor may no longer see every event in a
sequence t, we need a formal way to represent the events that

it does see. Suppose a supervisor i can only observe events in
some set Ei, o ~ E. For decentralized control problems with n
supervisors, a projection operator Pi is defined for each super­
visor and is a mapping from E* to Ei 0 , for i = 1, · .. , n. This
operator effectively "erases" those eiements a from a string t
that are not found in the set of observable events Ei, 0

Pi(e:) = c

Pi(O')=c, O'EE\Ei,o

Pi (O') = cr, cr E Ei, o

Pi(ta) =Pi(t)Pi(cr), t EE*, a E 'E. (1)

Thus if the plant generates sequence t, then P; (t) indicates the
sequence of events observed by supervisor i.

Informally, a supervisor is an agent that has the ability to con­
trol some events based on a partial view of the plant's behavior.
To establish such supervision on G, we partition the set of events
E into the disjoint sets Ee. controllable events, and Euc• un­
controllable events. Controllable events are those events whose
occurrence is preventable (i.e., may be disabled). For decentral­
ized control problems, the set of events each supervisor controls
is denoted by Ei, c where we assume :Ei, c ~ Ee. Uncontrol­
lable events are those events which cannot be prevented and are
deemed permanently enabled.

Consider two local supervisors acting on G to be

where T1 = (X, E, e, xo) and T2 = (Y, E, 71, Yo). The con­
junction of S1 and S2 is the supervisor

where

T1 x T2 := (X x Y, E, ex 71, (xo, Yo))

and(}' E :E, x E x. y E y =>

(e x ri)(a, x, y)

:= { (e(a, x), 71(a, y)),

undefined,

(</> * '1/J)(a, x, y)

if e(a, x)!
/\ry(a, y)!
otherwise

:= { disable,

enable,

if if>(a, x) = disable
V'lj;(O', y) =disable
otherwise.

That is, the composite supervisor S 1 /\ S2 disables an event if
either S1 or S2 issues a disablement command. when a super­
visor S is the result of a conjunction of two supervisors S 1 and
S2, we write S = (S1, S2).

It is often convenient in the case of partial observability, to de­
fine a supervisor Si only in terms of events i~ :Ei, e and Ei, 0 • In
this case Si can be extended to a supervisor Si. The local super­
visor Si acts only on events in Ei, e ~ E and observes events in
E;, o ~ E while S; takes the same control action as Si on Ei, c.

enables all events in :E \ Ei, e. makes the same transitions as Si
on :Ei, o fil!d stays at the same state for events in E \ Ei, 0 • A su­
pervisor Si that acts on all of E and mirrors the control actions

RICKER AND RUDIE: KNOW MEANS NO

of a supervisor S; that observes and controls only a subset of E
is called the global extension of S;.

The decentralized problem we consider is described in [2]:
Given a plant Gover an alphabet E (with controllable events

E1, c' 2::2, c s.;; E and observable events E1, 0 , l::2, 0 s.;; I:),
and an automaton E, where L(E) represents legal sequences,
L(E) ~ L(G) and L(E) -f. (/),find local supervisors S1 and S2

such that S1 !\ S2 is a supervisor for G and such that

(2)

Here, for ·i = 1, 2, local supervisor S; can observe only events
in L:;, 0 and can control only events in L:;, c and S; is the global
extension of S;. The set of uncontrollable events, L:uc, is under­
stood to be I:\ (E1,c LJ E2,c).

To describe a solution to the above problem, it is convenient
to use the notion of controllability [l]. Given Gover an alphabet
L:, for a language K ~ L(G), K is controllable with respect to
G if

KL:uc n L(G) ~ K (3)

where KE"c ·- {tcrit E K and er E I:uc}- If we think of
K as a set of "legal" sequences, then we want to know when it
will be impossible to stop an illegal sequence from happening.
It must be that the introduction of an uncontrollable event into
a legal sequence results in another legal sequence. Therefore, to
solve (2), it is necessary that L(E) be controllable. If L(E) is
not controllable, a supremal controllable sublanguage of L(E),
possibly 0, denoted sup Q(L(E), G), can always be found [l].
The standard solution to the centralized control problem with
full observation produces a supervisor that acts on G to gen­
erate sup C(L(E), G).The important point to note is that such
a solution is said to be "minimally restrictive," in that the su­
pervisor disables events in G only when absolutely necessary to
prevent an illegal sequence from occurring. That is, the largest
possible subset of legal sequences is generated.

A necessary and sufficient condition for the solution to
the above decentralized problem can be found using the
notion of co-observability. Given G over an alphabet E, sets
E1,c, E2.c, E1,o, E2,o s.;; E, projections P1: L:* ----> Ei, 0 ,

P2: E* ----> E2, 0 , a prefix-closed language K ~ L(G) is
co-observable with respect to G, P 1 , P 2 if

Vt, t', t" EE*, P1(t) = P1(t1), P2(t) = P2(t11)::::}

(Vcr E E1,c n E2,c)t EK!\ ser E L(G) !\ t'er, t"er EK

::::} tcr E K conjunct 1

!\ (Vcr E E1,c \ E2,c)t EK/\ ter E L(G) !\ t'er EK

::::} tcr E K conjunct 2

/\ (Vcr E E2,c \ E1,c)t EK/\ ter E L(G) !\ t"a EK

=:?to-EK conjunct 3.

We would like a decentralized supervisor's view of a string to
be enough for it to take the correct control action. If both super­
visors can control the event in question (i.e., conjunct 1), then
we just need one of the supervisors to be able to have an unam­
biguous view of the strings t, t', t" to make the correct control
decision regarding er. However, when an event is controlled by

1659

only one supervisor (i.e., conjuncts 2 and 3), then that super­
visor's view oft, t', t" must be sufficient to decide on the con­
trol action for a.

It is now possible to discuss the existence of a solution to the
decentralized problem. The following theorem (along with its
proof) appears as Theorem 4.1 in [2]:

Theorem 1: There exist supervisors S1 and S2 that solve the
above decentralized supervisory control problem if and only if
L(E) is controllable with respect to G and co-observable with
respect to G, P1, P2.

Thus we can find decentralized controllers that synthesize
L(E) provided that the legal language satisfies the properties
of controllability and co-observability. While it is possible to
find the supremal controllable sublanguage of L(E), if L(E)
is not co-observable there is no unique supremal co-observable
sublanguage of L(E).

B. A Model for Knowledge

The framework for the modeling knowledge used is based
on a knowledge logic for distributed systems [3], where mul­
tiple agents reason about their knowledge of the world. An agent
could be a human, a machine (e.g., a robot) or even a compo­
nent of a machine (e.g., an electrical circuit). Unless otherwise
indicated, the definitions and results in this section are adopted
from [30]. The model assumes that if an agent does not have
complete knowledge of the true state of the world, it assumes a
number of worlds are possible. The world is described in terms
of a non-empty set <I> of facts or primitive propositions. More
complicated formulas are constructed using expressions from
propositional calculus: ..., for negation and /\ for conjunction In
addition, tp V '~J represents ..., ('lfJ !\ -,'lj;).

The system model is conceptually divided into two compo­
nents: the agents and the environment. The latter captures the
relevant aspects of the system that are not part of the descrip­
tion of agent behavior. We assume that there is a set of agents
G = { 1, · · · , n} to which we ascribe knowledge about the
system.

The system behavior is captured by a global state. A
global state is an (n + 1)-tuple, denoted w, that records
the state of the environment and the local state-an agent's
set of possible worlds-for each of the n agents. Formally
w = (we, w1, · · ·, wn)· We can further refer to individual
components of w: w,, and Wi represent the local state of the
environment and agent i (for i E { 1, · · · , n}), respectively.

We will reason about what an agent knows about the truth
of facts in the system at global states. Knowledge of a fact
is expressed using modal operators (one for each agent)
K 1, · · · , Kn. Thus K 1p, where p E <.P, is interpreted as "agent
1 knows p."

The semantics of the possible-worlds model is formal­
ized using Kripke structures. A Kripke structure M is an
(n + 2)-tuple containing a set of worlds (e.g., global states), an
interpretation function 7r that assigns truth values at each world
w to the primitive propositions in <.P (e.g., 7r(w)(p) = false),
and possibility relations, one for each agent, that define binary
relations on the set of worlds. That is, the relation defines the
set of worlds that look alike to an agent at any given world
in the system. The possibility relation is typically not defined

1660 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

1,2

B

1,2
A

Fig. 2. A simple Kripke structure.

p

2

b1.2
c

for the environment since we are not interested in ascribing
knowledge to the environment.

A Kripke structure is also expressible as a labeled graph. In
particular, nodes are worlds and edge labels (sets of agents) cap­
ture the possibility relation. For instance, worlds that look alike
to agent i are joined by an edge with a label "i." Each world is
also labeled with the truth values of all primitive propositions
p E ~, where we use the notation "-,p" to indicate that the truth
value of p is false and "p" corresponds to a value of true.

The following example illustrates a simple Kripke structure
and is adapted from [30]. The graphical representation of this
system is shown in Fig. 2. Suppose ~ = {p} and n = 2. Let
the set of worlds be {A, B, C} and the interpretation function be
defined such that proposition p is true at worlds B and C but false
at state A (i.e., 7r(A)(p) =false, rr(B)(p) = 7r(C)(p) =true).
The possibility relations for the agents are defined as follows:
agent 1 cannot tell the difference between A and B while worlds
B and C look alike to Agent 2. These relations are captured in
Fig. 2 by the edge label of "l" joining worlds A and Band the
edge label "2" joining worlds Band C. The self-loops at all three
worlds with edge label "1,2" indicate that an agent cannot distin­
guish a given state from itself. For example, in addition to state
B looking like A to agent 1, state A also looks like state A. For
purposes of this discussion, the possibility relation is always an
equivalence relation and therefore, it is always the case that re­
flexivity and symmetry hold. Therefore, from now on, self-loops
and arrows will be omitted from diagrams of Kripke structures.

We now have all the components we need to reason about
knowledge: a set of worlds describing the behavior of the system
and an interpretation rr to analyze truth values of the proposi­
tions at each world in the system. Together the set of worlds
and 7r define an interpreted system, denoted by I.

To discuss knowledge in an interpreted system, we assume
that the possibility relation is defined as follows. Let w, w' be
two worlds in I. We say w and w' are indistinguishable to agent
i ifthe local state according to agent i is the same at both worlds:

w "'i w'ifw.; = w~. (4)

To discuss what it means for a fact p to be true at a particular
world in I, we use the notation (I, w) I= p, which can be
read as "p is true at (I, w)" or "p holds at (I, w)". A fact p
holds at a state w if the truth value as defined by rr is true at w.
For example, at world B in Fig. 2, we can say p is true because
7r(B)(p) = true. More formally:

(I,w)l=P (for p E ~) iff rr(w)(p) =true.

The clause for negation indicates that -ip is true at world w
exactly if p is not true:

(I, w) I= -ip iff (I, w) ~ p.

In Fig. 2, we can say at world A, -ip holds because p is not true
at A.

We can consider more than one fact holding at a world:

Thus, the conjunction of two propositions holds at w if it is the
case that each proposition is true at w.

What does it mean for an agent to know facts in its world? An
agent knows a fact p at w if p holds at all worlds that the agent
cannot distinguish from w:

(I, w) I= Kip iff (I, w') I= p,

\:/ w' such that w "'i w'. (5)

Referring to Fig. 2 again, we can now describe the knowledge
of agents at any world in the system: e.g., at world B, the for­
mula -iK1p /\ K 2p holds. That is, at world B agent 1 does not
know whether p is true, while at world B agent 2 knows that p
is true. At world B, agent 1 considers the existence of two pos­
sible worlds: A and B. It considers both p and -ip to be possible
because p is false at world A while p is true at world B. Agent
2 also considers the existence of two possible worlds: B and C.
However, since p holds at both those worlds, at B agent 2 knows
that p is true.

It follows that if at w an agent knows p, it also knows p at all
other worlds it considers possible at w:

(I, w) I= Kip iff (I, w') I= Kip (6)

for all w' such that w "'i w'. For instance, agent 2 considers
that worlds B and C "look alike." Since p is true at both these
worlds, we can say that at world B, agent 2 knows p. Similarly,
we can say that at world C agent 2 also knows p.

Finally, we note a property, called the Knowledge Axiom, that
states if an agent knows a fact, then the fact is true:

(I, w) I= Kip'* (I, w) I= p. (7)

Note that since Kip holds at some world w, we know by (6) that
Kip holds at all worlds that agent i cannot distinguish from w.
Since p is true in all worlds that agent i considers possible, in
particular, p is true at w.

III. A KNOWLEDGE MODEL FOR DES

In this section we describe how to recast decentralized super­
visory control problems as interpreted systems. We do not claim
that the reformulation of this problem provides a more efficient
solution but, rather, suggest that knowledge theory provides a
more natural way of thinking about discrete-event control prob­
lems.

A. The Interpreted System yDES

We denote our "sequence-based" interpreted system for de­
scribing decentralized discrete-event systems as z0 E8 (G, E).

RICKER AND RUDIE: KNOW MEANS NO

Like local supervisors in the decentralized DES formulation of
[22], [2]. the agents in this interpreted system make control de­
cisions based on their partial view of the sequences generated
by the DES plant G. The environment of our interpreted system
is the language generated by the plant and the agents play a role
equivalent to that of decentralized DES supervisors.

A global state for n agents in IDES (G, E) captures a "snap­
shot" of the sequence generated by the plant language L(G).
The set of states for the environment is the set of sequences in
L(G), while the set of local states for the agents is the set of
sequences each agent observes according to the projection op­
eration of (1). More formally, a global state is defined as w =
(we, W1, · · ·, Wn) = (t, P1(t), · · ·, Pn(t)) fort E L(G). In
this paper, we will assume that n = 2 so that the group of agents
is G = { 1. 2}.

The interpretation 71"DES associated with our interpreted
system captures the notion of whether or not an event in :B
is permissible as sequences evolve in the plant. To form <Ii,
the set of primitive propositions for IDES(G, E), we want
to associate with each a E 2::: two distinct propositions: ac
to represent the fact that at a particular state in the plant the
event is defined (i.e., is possible), and a E to represent the fact
that at the corresponding state in the legal automaton the event
is defined. The propositions are defined in terms of events
because we want to reason about the knowledge an agent
has of the occurrence of an event, instead of, for instance, a
certain sequence. If E is finite (i.e., I :BJ = N); it can be written
as E = {a1, a2, · · ·, aN }. Define the set of propositions
<Pc = { af Ii = 1, · · · , N} and the set of propositions
<Ii E = { af Ii = 1, · · ·, N} where <Pc and <1> E contain N
symbols. Let <1> = <1>c U <1>E. Because we will frequently want
to associate af with its counterpart af, we define the relation
RE such that RE<;;; <1>c x <1>E and RE := {(ac, aE)J:l a; E :B
where ac = af', aE = af}. For convenience, we will use
the notation O" c (respectively, O" E) without explicit reference
to RE when we mean O"f (respectively, af). The proposition
ac is "event a can occur" and O" E is "event a is legal." For
convenience, we will refer to <Pm· when we need to identify
those propositions in <P which represent events in Euc (as
defined in Section II-A).

The interpretation for the propositions in <1> is defined for all
a EE

DES {true,
71" '(w)(O"c):=

false,

DES {true,
7r (w)(O'E) :=

false,

if b0 ('U!ea, q~)!

otherwise.

if bE(wea, qt)!

otherwise.
(8)

In other words, a proposition ac is true at a global state w if
the event O" happens at the actual plant state reached by we. A
proposition ac is false (denoted-iac) at world w ifthe event O"
is not defined directly following the event sequence we. Simi­
larly, a proposition a E is true at world w if the event (J' happens
directly following the event sequence We and wea is part of the
legal behavior of the plant. A proposition (J'E is false (denoted
'O"E) at a global state w if either (J'c is false or if the sequence
Wea is part of the illegal behavior of the plant.

1661

1
(E,E,E) (cx,a:,f) (~.E,f3)

2
aG. Y(; PG -icx. Y. p a.nP

G G G cx:'y.0
G G G

<cx;iy,p E E E ~:·Y,°:10.:
F F. E

2 I
2 2

2 2

(cxy,cxy,E) (y,y,E) (f3y,y,f3)
'a';ly;i~ 2 'a';ly';l~

G G C G G G 'ac!yd~c
-ia·;iy-;if) <cx/yl~ 1

E E E E E E '~:IY1l~E

Fig. 3. A portion of the Kripke structure for G in Fig. 1.

Because the set of worlds in IDES (G, E) and the truth values
assigned by rrDES to the primitive propositions in <1> are derived
from the legal automaton E and the plant G, we can consider
that IDES has implicit parameters G and E. Thus, for conve­
nience, we drop these arguments for the rest of the paper.

We illustrate the knowledge model by constructing a Kripke
structure for the plant and legal automaton in Fig. 1. In this ex­
ample, suppose that agent l sees and controls events c~ and I
while agent 2 sees event /3 and controls events /3 and 'Y·

The complete Kripke structure contains ten states, cor­
responding to the ten sequences in L(G). We show a
representative portion of the structure in Fig. 3. The set of
propositions is <P = { cr.c, aE, /3c, /h, le, 1 E} and the truth
assignments for rrDES are made according to (8). For example,
at global state (a, o:, c), proposition le is assigned a value of
true because there is a transition of 'Y from sequence o: in the
plant; however, / E has a truth assignment of false because in
Fig. 1, the sequence cq is not defined in the legal automaton.
The possibility relations describe how agents view the world.
In IDES, the possibility relation for each agent is defined
using the indistinguishability relation "'i of (4). That is, two
global states look alike to an agent i if the global states have
the same local state according to agent ·i. For instance, the
possibility relation for agent 1 would contain the pair of states
((I, /, f), (!h, 1, /3)) because these states have the same
local state according to agent 1, namely T

The top half of a node in Fig. 3 contains one of the global
states in the system and the bottom half of the node shows the
truth values for the primitive propositions at that global state.
The diagram exactly describes the states of the plant where we
want to impose control (as constrained by the legal language)
and what each agent believes are the possible worlds of this
system. By following the edges connecting the nodes, we can
also determine what each agent believes are its possible worlds.
For instance, the node labeled (/3, f, (3) looks the same to agent
2 as the node labeled (!Jr, 7, (3) because the local state of agent
2 is f3 in both the global states. This is indicated by an edge
labeled "2" joining these nodes.

We can describe the knowledge of each agent at a particular
state in the interpreted system. For example, at w = (c, E, c)

(IDES, w) I= K1(CK0 /\ aE /\re)/\ K2''YE·

At w the set of worlds that agent 1 considers possible is
{(c, is, c), ((3, is, /3)}. At both these states the truth values

1662 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

of aa, Ci.E and 1G are true. Therefore we say that "Agent 1
knows a can happen and is legal at (c:, c, c:) and that 1 can
happen at (c:, c, c:)." Similarly, we say that "Agent 2 knows
that it is not the case that 'Y is legal at (c:, c:. c)" because at
all states indistinguishable from (c, c:, c:) to agent 2-namely
(c:, c, c:), (a, a, c:), (0.1, et/, c) and (a, a, c:)-the formula
..,/E is true. We can also make note of the lack of knowledge
an agent has: at w agent 1 does not know whether 'Y is legal be­
cause at (c, c:, c:) the formula ...,1 E is true while at (,8, c:, /3) the
formula/Eis true. This is denoted as (IDES, r, m) I= -iKnE

and is read "Agent 1 does not know whether / is legal at
(c, c:, c)."

IV. KNOWLEDGE-BASED PROTOCOLS

The interpreted system IDES describes the knowledge that
each agent has concerning the validity of a particular sequence.
We need to associate actions with an agent's knowledge. For
instance, if an agent knows that a particular proposition is pos­
sible but not legal for a set of possible worlds, then we want
it to disable the corresponding event. A knowledge-based pro­
tocol [4] is a strategy that links actions and knowledge for agents
and the environment. We believe that it is natural to think of
a supervisor basing its control actions on what the supervisor
"knows" about the present state of the system. Even though we
depart from some of the specifics of the formalism for knowl­
edge-based protocols in [4], we incorporate the idea that there
ought to be a connection between action and knowledge.

We examine knowledge-based protocols where actions to dis­
able or enable an event are based only on local state information
and where an uncontrollable event cannot be disabled. We de­
scribe protocols for agents but not for the environment, which
we view as incapable of taking control actions. For the decen­
tralized DES we consider, when we say that a supervisor S =
(S1, S2) solves a problem, we mean that when G is under the
control of S (i.e., when S disables or enables events of G), the
resultant language generated, namely L((S1 /\ S2)/G), equals
the legal language: L((S1/\S2)/G) = L(E). Solving the decen­
tralized problem with a knowledge-based protocol amounts to
constructing a protocol that will ensure that all legal sequences
and only legal sequences are generated.

A. A Knowledge-Based Protocol For Decentralized Control

A local supervisor in a decentralized DES system disables
controllable event er if the supervisor is able to determine that
the occurrence of er will lead to illegal behavior; otherwise event
er is enabled. An event er is disabled if at least one local agent
takes a "disable er" action.

The actions that drive the global state changes of the system
are performed according to a selection rule or protocol. A
knowledge-based protocol is a protocol where actions are taken
on the basis of the local knowledge of an agent. We define
a knowledge-based protocol as a mapping that characterizes
which events are disabled !(Pi: Li x :E -+ {enable, disable},
where Ci is the set of local states for agent i. Since the
knowledge-based protocol is defined on the local view of an
agent, the actions of agent i at w are applied at all w' that are
indistinguishable to agent i at w. Just as a local decentralized

DES supervisor makes control decisions based on its partial
view of a sequence, we want an agent to use knowledge and its
local states to determine if a given event should be disabled.
A joint knowledge-based protocol is the collection of the
knowledge-based protocols for all agents in G.

We identify the group of agents that can control a given event
as GO' := { i: Cl E Ei, c}. i.e., for all Cl E :E1, c n E2, C• GO' =
{1, 2}; for all er E E1, c \ E2, c. GO' = {1 }; for all a E E2, c \

E1, C• GO' = {2}, and for all (J' E Euc, Ga = 0.
A joint knowledge-based protocol KP = (KP1, KP2)

solves the decentralized problem if for all w E IDES and all
(ao, C!E) E R:E:

i) (IDES' w) F (JG /\ """1(JE :::}

(:Ji E Ga)lCPi(w;, a)= disable

ii) (IDES, w) f= aa /\(TE:::}

(Jli E G)KPi(wi, a)= disable.

That is, solving the problem amounts to allowing only legal se­
quences and all legal sequences to occur. Note that since we
assume that Eis a subautomaton of G, it will never be the case
that(IDES,w) f= -iaa/\aE.

To solve the decentralized control problem using knowledge­
based protocols we must formalize what it means for agents
to "know enough." We describe several conditions that IDES

must satisfy before a solution can be achieved. In particular, we
present a necessary and sufficient condition so that our joint
knowledge-based protocol admits only (and all) the legal se­
quences in L(E).

We define a property analogous to co-observability [2] and
controllability [1] that characterizes the nature of knowledge an
interpreted system requires to yield a decentralized solution to
the DES control problem.

Definition I: An interpreted system IDES is Kripke-observ­
able if:

'iw EIDEs, \::/((Ja, r:rE) E R:E,

(IDES, w) f= -iaa V (TE

V (3i E Ga) such that (IDES, w) f= Ki..,O"E·

(9)

That is, if an illegal event q is about to occur, at least one agent
that can control (T knows that it should be disabled. We note here
that co-observability is a condition on set membership and set
containment for sets of sequences while Kripke-observability
involves logic tests on propositions.

The condition we were initially trying to capture in the defi­
nition of Kripke-observability was that for every event that can
occur, at least one agent knows whether or not that event is legal.
Our intuition led us to the following logic formulation:

'i w E IDES,

(:l i E Gu)

'i(r:ra, O'E) ERE,

such that (IDES, w) f= KiaE V Ki-,CTE·

(10)

However, this is actually too strong a condition as the following
example will illustrate.

RICKER AND RUDIE: KNOW MEANS NO

The plant and legal automaton in Fig. 4 represent a

co-observable language (with supervisors S1 and S 2) if

2~1." = {n} =)_:t,,,. 2=2.0 = {/1}, and 1::2,,, = {cl!,/:J}. Thus a
control strategy for this decentralized problem is as follows: S 1

disables o after seeing o and S2 disables n after seeing /1/1. If
we were to use the condition in (!OJ, then the condition would

fail at 11• = (E. E. At this state. the possible worlds of agent

I are { . E. c), (f1, E. 11), and C-:1/'3, e, /3fJ). Both disjuncts of

(10) fail for event n at w since (JDES, ·111) f= l.1!E, whereas

at w' and w",_~hen 1111 = (/i, c, /'i) and w" = (/1/1, e, /:J/1),
we have (IDl•.s. w') ~"" -.1,E and (IDEs. r", rn.") f= -inE.

The possible worlds for agent 2 at w = (e, e. c:) are states

11'1 :::= (n. n.), 11' 11 = (1m. nn, t:) and ·w itself. As it did for

agent I, both disjuncts foil on event n at all states indistinguish­

able from1~1 since (11JES_ 1u) f= nr; while (IDES, w') f: 'i<F

and (Jll l"s. 1u 11) F -io I':. In fact, the failure to meet the

condition of (10) was because we required an agent to know

when an event should be enabled.

This observation led to a revised definition:

Vil' <::IDES V(rrc;. rTE) E Ri~.
(I .. nr-:s. t . . w)prr"·

V (]i E G") suchthat(IDl·:s.11,) f= l<;·vrr·:·

(] I)

Now that the condition in (11) does not insist on knowledge

if th1.• event is legal, this updated condition is satisfied for event

n at all states in Fig. 4. However, Fig. 5 shows another co-ob­

servable system where (I I) also fails. Let)~ i," ""' {a},)>~ 1,,. =-:

{n .. J}, '" {11},>::1.1 '"' {11}.Thereisaproblemwith

event /I, even though this event never needs to be disabled. At

stat.e 11 1 (o, n,) . agent 2 neither knows that /1. should be

disabled nor that it should not be disabled since (InEs, w) F
1/1 /., while at 11'1 {(, ,) , anti therefore IU rv'.l W 1, it is the

case that (1'1>E\ w') I=" 111·:. Therefore, at 111 neither disjunct of
condition (11) is satisfied, Since 11 cannot actually happen after

o <){.'.curs, it is too strong to require than an agent possess any

knowledge about 11 at w.

If Wt~ use thi: definition of (9), the system of Fig. 5 is Kripke-

ohservabk. In pmticular, at state 111 (it. it. c.·), the first dis-

jum:t for event ,, is now satisfied: cr1 Jl·:s, w) [:: -"jl(;.

Note that eve:n though the definitions in (I 0) anJ (11) fail on

this example system, there is still a solution to the problem. This
is bec<1usc the default adion is to enable an event when no agent
know:-. whether or not to tlisablc that event. The requirement in

the first dh;junct of (l 0) to know that the event should be en­

abled is too strong. Similarly (11) fails as we neglected to notice

that we can omit knowledge tests on "do not care" states, that

is, global states where events are not even defined in the corre­

sponding DES plant states. Hence this knowledge condition can

be relaxed so that a test for knowledge is only performed when

an event a is possible but is not legal (i.e., when the disjunct

··rrc; V rr ;.: does not hold).
71ietmm1 2: Given G. 1-;, there exists a joint knowl-

edgt: .. bascd protocol ;...:p (!\.:P1, J(P~) th<tt solves the

dceentrnli7,ed problem iff 1rms (G, !'.:) is Kripke-observable.

1663

a
~ Ol

r------..,.; 3 - - - - - - ---©

0

2i-------'""{5 - - - - - - ----cv
B a

Fig. 4. A plant G and legal automaton E. (Illegal transitions are marked with
a dashed line.)

Fig. 5. A plant G and legal automaton E. (Illegal transitions are marked with
a dashed linc.J

Pro<if: ({::;) Suppose zDES is Kripke-observable. Define the

following knowledge-based protocol:

(VP E L;)(Vrr E 1:)

{

dis ah/I:.

(Vi E Grr)K:'P,(P. (J) =

en11 hli:,

(V j ~ G,,)l('Pi(P. rr) == enable.

if 3111 such
that P = w; /\

(IDES, 'W) F
K;-i(JE,

otherwise.

If an agent knows than an event is illegal, it will disable the

event. Therefore, unless an agent knows that an event is illegal,

the event will be enabled. That is, if an agent knows that an

event is illegal, it will disable the event-hence the motto "know

means no." Note that for an event controllable by agent i, the

definition of J(P; in (J 2) is robust to the choice of w in (12)

(i.e .. if a different w' were chosen such that P ;:;.:• w'., then by (6),

(11H:s. w) F' K,··•rrf; iff(IIJES, w') F /(,-.rrE).

We want to show that A.:'P :.:: (KP1• K'P2) solves the decen­

tralized problem.

i) Suppose (IDl:s. w) (rru /\ -ir;1·:·), We want to show

that this irnplies i E: G,,) ;:.,:p, (w,. (J) == dis(f,hl<:.

Since (rrn:s. 'If' j F'" rr (; /1 .,rr le, we have

(rrw:s. II') !I= ">(J(; v (J E. Thus, since Kripke-ob­

scrvability holds, it must be the case that 3 i E G"'
such that (:[DES, w) p f{, -1(J Fe'- Therefore either

A.:'P1 (·w,. rr) ::: di1i11.bl1 or JCP2(wi. r;) :::::: disahl1:.
ii) Suppose (JDEs. w) f= a<;/\ rrE, We want to show that

this implies (J3 i E G) K:P; (u:,, rr) = 1lisablc.
The requirement for K:P, (w,, (J) == 11i.rnbfr f()f some i E G,,

is that (11 >l':S, 111) F' J{, -,(J F .. However, since (IDES. u1) I=
rr e, we cannot have f:c](,··:a E-,' for any i [by (7)].

Therefore A.:'Pi(w,. 11) 11111/ilr for al! i tf. G,,. By (l 3), for all
i ff G11 , A:P,(1J11 • 11) 1 no blc.

1664
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

TABLE I
CHECKING KRIPKE-0BSERVAB!LITY

w Disjunct of Kripke-observability satisfied

(i:,c:,i:)
(/3, c' /3)
(!, ')",c)
(a,a,c:)
({3"(, /, /3)
(a"f, a1, c:)
(a/3, a, (3)
(/30., a, (3)
(a/3/, a/, /3)
(i]cq, a1' (3)

(IDE5,w) F= Kr/E
(IoEs,w) F 'YE
(IDE5 ,w) f= Kr-1/E
(IDE5 ,w) f= K2--.'YE
(IDES' w) F --,/G

(IDE5 ,w) f= K2--./E
(IDES, w) F 'YE
(IDES,w) FIE
(IDES,w) F --,/G

(IDES,w) F ...,/G

(:::}) We need to show that if IDES is not K.ripke-observable
then there is no joint knowledge-based protocol KP that solves
the decentralized problem.

Suppose that some KP solves the decentralized proble~.
Since IDES is not K.ripke-observable, there must exist
w E IDES such that 3(aa,aE) E RE where (Vi E Ga)
(IDES, w) ~ --.a0 VaE v K;•aE. That is

(12);

and for all i E Ga

(13)

The expression in (14) implies that (ID ES, w) f= (a a f\ -.a E).
Since KP solves the decentralized problem, and since
(IDES, w) f= (aa /\ •aE), it must be the case that:l j such that
KPj (Wj, O") = disable. Note that (15) holds foragentj and im­
plies that 3 w' such that (IDES, w') f= O"E and w ,.._,j w'. Since
KP solves the decentralized problem, KPj(wj, a) =j:. disable.
However, since KPj(Wj, a) = disable, this means that
KPj(wj, O") = disable (since w ,.._,j w' means that Wj = wj),
which leads to a contradiction. •

We want to ensure that the actions taken by agents as a result
of executing the joint knowledge protocol exactly permit the
legal language of the DES plant. Therefore, we make precise the
set of sequences that are generated by the supervised interpreted
system.

Definition 2: The language that contains all sequences deter­
mined by the actions of the joint knowledge-based protocol is
K.C(KP, G), defined as follows:

c: E K.C,

WeO" E K.C if 'We E K.C f\ Wea E L(G)

/\KP;(w;, a)= enable, (i = 1,2).

Thus a sequence is in K.C if its prefix is already in K.C, the se­
quence is actually generated by the plant and the control action
at the corresponding global state is to allow u to happen. If a
"disable a" action is taken at global state w, it is because at
least one agent knows that wea is not part of the legal language
and is therefore, by the above definition, not included in K.C.

(IDES, w) F O:E
(IDES, w) F O:E

(IDES, w) F= •aa
(IDES,w) F •aa
(IDES,w) f=--iaa
(IDES,w) F •ac
(IDES,w) F --.aa
(IDES,w) F --iaa
(IDES, w) F •aa
(IDES,w) f=--iaa

(IDES,w) F f3E
czDES,w) F --i/Ja
(IDES' w) F= •f3a
(IDES,w) F=/3e

(IDES' w) F -./Ja
(IDES,w) F= •/Ja
(IDES,w) F= •/Ja
(IDES' w) F= -.(Ja
(IDES' w) F= --i/3a
(IDES, w) F •f3a

B. Example: A Kripke-Observable System

We return to the plant and legal automaton of Fig. 1 where
agent 1 sees and controls events a and / while agent 2 sees /3
but controls both f3 and I. Part of the K.ripke structure associated
with the plant is shown in Fig. 3.

We want to show that IDES is Kripke-observable. Let w -
(c:, c:, c:). We want to ascertain that at this state either agent 1 or .
agent 2 knows to disable T ·

(14)

Therefore, for Kripke-observability, we must find an agent i
such that (IDES,w) f= K;--i/E·

We first check to see if agent 1 has the appropriate knowledge
about event I· At w = (e:, i:, c:), agent 1 considers one other
world to be possible: ({3, i:, (3).

Recall that knowledge of a fact at w requires that the fact hold
at all states indistinguishable from w. Thus if agent 1 has knowl­
edge that event 1 is not legal at this part of the plant, it must be
the case that -,'YE holds in the two worlds noted above. Agent
1 fails to have the required knowledge at state w' = ({3, c:, /3),
since (IDES, w') f= 'YE· Thus, (IDES, w) f= --iK1 ''YE and we
must check to see if Kripke-observability is satisfied by agent
2's knowledge at this state.

There are three other possible worlds agent 2 cannot distin­
guish from (e:, c:, c:): (a, a, e:), (I,/, c:) and (a1, a/, e:). As
was the case for agent 1, we need to determine that agent 2
knows --i/E holds at w. This means that ''YE must hold in all
worlds that look like (c, c:, c:) to agent 2. Note that because •"f E

holds at all four possible worlds, (IDES, w) f= K 2--i/E· •

A similar check can be performed at every other state in I 0 ES ·
to show that this system is Kripke-observable (summarized in·
Table I).

The joint knowledge-based protocol for events o. and /3 in
this system is straightforward: both events are enabled by both
agents at every state in IDES. To realize the legal language,
however, the control decisions for I must ensure that "f is dis­
abled before either agent sees any event occur and that / is
disabled after a is generated by the plant. At w = (c:, c:, e)
agent 2 does know to disable "f and thus KP2 (c:, "f) = disable . .
This action occurs at all global states where w2 = c:, namely '
(a, a, e:)-which makes certain that a.1 will not occur-and

RICKER AND RUDIE: KNOW MEANS NO

TABLE II
A JOINT KNOWLEDGE-BASED PROTOCOL FOR G AND E AND EVENT ·1 lN FIG. 1

w KP1(w1,1) K'P2(w2, 1)
(c,c,e) enable disable
(/3, e;' /3) enable enable
(r,/,c) enable disable
(a,a,e:) enable disable
(!31, 'Y' /3) enable enable
(a-y, a1, c) enable disable
(a/3, a, /3) enable enable
(/3a, a, /3) enable enable
(a/31, a1,/3) enable enable
(/3a1, a-y, /3) enable enable

at (r, i::, i::) and (a1, a, i::). The "disable 1" action at the latter
two states is irrelevant since the previous disablement actions
will guarantee that we never reach these states. The complete set
of control actions for event I is summarized in Table II. Note
that as long as agent i takes a "disable" action for some event at
wi, this action takes precedence over any other agent's "enable"
action for the same event at any global states w' "'i w, thereby
ensuring that the event is disabled in all possible worlds of agent
·i at w.

V. DISTRIBUTED OBSERVABILITY

Previously we considered what it means for an agent to know
a fact; however, what does it mean for a group of agents to know
a fact? To find a joint knowledge-based protocol that solves
the decentralized control problem, we require that the inter­
preted system be Kripke-observable. But even if the system
is not Kripke-observable, it may be the case that the group of
agents has the combined knowledge to generate the correct con­
trol strategy. We call this notion of successfully pooling infor­
mation to generate a control decision distributed observability.

Distributed observability is based on the concept of dis­
tributed knowledge (taken from [30]). Distributed knowledge is
the weakest form of group knowledge: in essence, a group has
distributed knowledge of p if after combining all the knowledge
of the group, p holds. This amounts to taking the intersection
of all sets of worlds each agent in the group considers possible
at a given state in the system.

Definition 3: A group G of agents has distributed knowledge
of p E <I? at state w, denoted (I, w) f= DGp, iff (I, w') f= p
for all w' where, for all agents i in a group G, Wi = w£.

The modal operator DG means "it is distributed knowledge
among the agents in G" [3]. It could be the case that no individual
agent knows p, but after combining their possible worlds (i.e.,
take the intersection of the possible worlds for the agents) the
group of agents knows p--0nly if p holds in all the remaining
possible worlds of the "intersection."

Stronger assertions about group knowledge include "ev­
eryone in the group knows p" and common knowledge, where
"everyone in the group knows p, everyone in the group knows
that everyone in the group knows p" etc. We do not consider
these states of knowledge here, but merely note that there

~o-!--o
~---0 a Y

1665

Fig. 6. A plant G and legal automaton E. (Illegal transitions are marked with
a dashed line.)

exists a hierarchy of states of group knowledge for distributed
systems.

Distributed knowledge is the key to a concept we introduce,
called distributed observability:

Definition 4: An interpreted system IDES has distributed ob­
servability with respect to a group of agents G if

\:/w E IDES, \:/(ua, UE) E RL;

(IDES, w) f= •aa V <lE V Da•<lE·

That is, at all states in the interpreted system where an event
would need to be disabled, there is distributed knowledge about
whether to disable that event. Note that if IDES is Kripke-ob­
servable then by definition IDES has distributed observability
since at every state, for each event in Ee, at least one agent (even
before pooling knowledge) will know the correct control deci­
sion to make.

Intuitively, to solve a decentralized problem, even with com­
munication, it would have to be the case that what one agent
lacks in knowledge or information, the other can supply. Con­
sider the case of sequences t and t' which look alike to both
agents where t is legal and t' is illegal. If agent l were to com­
municate to agent 2 that it (agent 1) knows that one oft or t' has
occurred, or if agent 2 were to communicate similar informa­
tion to agent 1, communication will not help the agents make a
control decision.

Using the knowledge framework we can exploit the possible­
worlds model to identify system states that are indistinguishable
to both agents (and where, therefore, information pooling would
be of no help). Further, we can identify states where an agent's
ability to make control decisions would be improved by com­
munication.

We present two examples where the two agents have par­
tial observation of a system: one where the pooling of possible
worlds is not enough to achieve control and one where we be­
lieve that combined knowledge can achieve control.

A. Example: When Pooling Knowledge Is Not Enough

In Fig. 6 the language generated by the legal automaton is
not Kripke-observable 1 if E1, 0 = {a}, E1, c = {a, 'Y }, E2,o =
{,B}, and E2, c = {,8}. When agent 1 sees a (equivalently, agent
2 sees /3), it does not know whether or not a/3 or f3a has oc­
curred. Thus a control decision about 'Y cannot be reached. The
Kripke structure in Fig. 7 shows that IDES is not Kripke-observ­
able. To see this, suppose the system were Kripke-observable.
Then when w = (j3a, a, /3), it must be that agent 1 knows ''YE

1This example arose from discussions K. Rudie had with S. Lafortune, F. Lin,
A. Overkamp and D. Teneketzis.

1666 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

(E,E,E)

a;iy,()
G G G

a;iy,()

(a,a,c:)
E E E

(f),E,f3)

l(X ;iy, 13
G G G

a-;iy-;i()
G G G

'a ;y, (3
E E E

a;y;()
E E E

1 2

(af3,a,~) {1,2} (f)a,a,~)

•a,y-;T() •cx,y-;i()
G G G G G G

•cx-;iy-;1(3 'a,y:1() E E E E E E

(af)y,a,[3)
{1,2}

•cx-;iy-;i()
G G G

•cx;y;()
E E E

{1,2} {1,2}
2 1

(f)ay,a,f))

•cx-;iy-;i()
G G G

•cx;y;()
E E E

Fig. 7. The Kripke structure for the plant in Fig. 6.

in its set of possible worlds at w-since (IDES, w) F ''YG V
"(E. In fact, this is not the case because (IDES, (a(3, a, /J)) F
'YE·

If both agents were to pool their knowledge at a state
where agent 1 sees a and agent 2 sees (3, so that the resulting
possible worlds are (a(3, a, /J), ((3a, a, (3), and (a/J7, a, /3),
the Kripke structure indicates that still there is no distributed
knowledge about 'YE for the same reasons that the system is not
Kripke-observable: the conflicting truth value of 'YE at states
(a/3, a, /3) and (/fo, a, (3). That is, distributed observability
is not satisfied.

When distributed observability is not satisfied this tells us
that at some place, pooling information does not help. In this
example, by the time agent 1 sees a and agent 2 sees (3, the
relative ordering of a and /J has been lost, i.e., even if at that
point agent 2 were to tell agent 1 that it has seen (3, that would
not convey to agent 1 whether a/3 or /3a had occurred. This
would suggest that the agents must communicate prior to agent
1 seeing a and agent 2 seeing /J.

One possible communication protocol could assume that an
agent sends a query as soon as it is uncertain about whether to

disable an event. Unfortunately, such a strategy is highly sen­
sitive to small communication delays. In this example, because
agent 2 sees and controls only /3, there is never a situation when
agent 2 is confused about its control decisions. So it never sends
a query to agent 1. Agent 1 would need to submit a query when
it sees a. If only a has happened and agent 1 sends a query
to agent 2, then it would appear that a decision about 1 can be
made since the pooled information would indicate that the only
possible world is (a, a, c). However, if /3 had taken place be­
fore agent 2 receives the query, agent 1 would not know whether
or not to disable 1 since it would not know if f'J had occurred
just before a or just after a happened. That is, the usefulness of
pooled information depends on whether /3 can occur after a has
occurred but before agent 2 receives the query. In other words,
even if a query results in a response, the solution is sensitive to
the precise moment the query is received.

B. Example: When Pooling Knowledge Is Enough

The legal language corresponding to the legal automaton il­
lustrated in Fig. 8 is not Kripke-observable. Let 2:1 , 0 = {a},

RICKER AND RUDIE: KNOW MEANS NO

µ
0----~

y

Fig. 8. A plant G and legal automaton E. (Illegal transitions are marked with
a dashed line.)

I:i. c = { o:, 'Y }, 2::2, o = {f1, p.}, and 2::2, c = {/3, µ,~I}. Upon
observing a, agent 1 (which sees only n) does not know if a(J
or nfJ fl has occurred and hence does not know whether or not to
disable 'Y- Similarly by observing(!µ, agent 2 would not know
whether o:(3p or /J')'p. had occurred and could make no decision
about disabling 'Y- However, we can check the Kripke structure
and see that distributed observability is satisfied. That is, when
an agent is unable to make a control decision, pooling informa­
tion will help. In fact, an agent has more flexibility: to submit
a query every time it is stuck is possibly unnecessary. If each
agent has available to it a record of the history of its queries
then it may be possible to deduce further information based on
queries it has not received from the other agent. We illustrate this
below. In addition, there remains the issue of when information
should be pooled. There may be several states where pooling is
beneficial and it may be possible to ascertain whether communi­
cation should be delayed to the last possible moment or should
occur as early as possible.

In this example, as soon as agent 1 sees c~ it does not know
whether or not to disable 'Y. At what state should it communicate
or query agent 2 so that they can pool their knowledge? We can
assume here that communication between agents occurs instan­
taneously so that as soon as one agent cannot continue, the other
agent receives a query to pool knowledge. In this case, agent 2
can continue making control decisions until it sees /3fl at which
point it must submit a query to pool knowledge. On the other
hand, if agent 2 sees /1/.l but has already received a query from
agent I (after agent 1 sees o:), then agent 2 no longer needs to
query as it knows that previously agent l did not know what to
do about 'Y. Therefore agent 2 can deduce that n must have oc­
curred.

VI. DISCUSSION

An interesting point to consider is how robust the structure of
a problem is with respect to communication and hence a control
strategy. For instance, in the example of Section V-A, the timing
of the communication is critical for a solution: agent l must as­
sume that if it sends a query to agent 2 immediately upon seeing
o: and the resulting possible worlds indicate that agent 2 has seen
(3 then {j has occurred before a. In contrast with the example
~f Secti~n V-B, once agent 1 has seen a, communication after
o: occurs or after (J occurs or after µ occurs would all yield a so­
lution to the problem. In this case, there may be characteristics
of the problem structure (e.g., graph-theoretic properties) that
make the timincr of communication less critical for generating a b

solution.

1667

Earlier we discussed what it meant for a joint knowledge­
based protocol to solve a decentralized problem where IDES

was Kripke-observable. If yoEs is not Kripke-observable but
has distributed observability, then the joint knowledge-based
protocol K-P is inadequate for solving the problem since com­
munication or querying of other agents now must factor into
a solution. Previously, control actions were based strictly on
the knowledge acquired by observing traces of the plant. A re­
vised definition of a knowledge-based protocol that exploits dis­
tributed observability must allow an agent to base its control de­
cisions not only on its views of traces but also on the results of
queries to other agents. A more "intelligent" protocol could be
constructed by having each agent record all queries it receives.
This information tells the queried agent what the other agent
does not know, which, in tum, could allow the agent to draw
logical inferences.

One of the disadvantages to the "sequence-based" version of
the Kripke structure is that it is possible to generate an infinite­
state Kripke structure. This difficulty can be circumvented in
two ways: use a "limited-lookahead" strategy or develop a state­
based knowledge model where a possible world is now a set of
plant states an agent considers the system could be in. Another
extension to the model would include systems with more than
two agents.

The notion of distributed observability for interpreted sys­
tems provides a starting point from which we begin our under­
standing of how agents might communicate to solve a particular
class of decentralized control problems. Introducing knowledge
into the analysis of discrete-event systems provides a natural
way to reason about what agents need to know to cooperatively
solve a problem. To that end, we believe that using knowledge
to determine when information should be pooled will lead to
the development of knowledge-based protocols with communi­
cation for decentralized control problems.

ACKNOWLEDGMENT

The authors gratefully acknowledge J. Halpern for discus­
sions that clarified aspects of fom1al reasoning about knowl­
edge, and in particular, for his observation that the original con­
dition for Kripke observability was too strong. They also ac­
knowledge interesting discussions with S. Lafortune that helped
to fine-tune some technical details. Finally, the authors would
like to thank the anonymous reviewers for their helpful sugges­
tions.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, "Supervisory control of a class of
discrete event processes," SIAM J. Contr. Optimiz., vol. 25, no. I, pp.
206-230, 1987.

[2] K. Rudie and W. M. Wonham, "Think globally, act locally: Decentral­
ized supervisory control," IEEE Trans. Automat. Contr., vol. 37, pp.
1692-1708, Nov. 1992. .

[3] J. Y. Halpern and Y. Moses, ··Knowledge and common knowledge in a
distributed environment," J. ACM, vol. 37, no. 3, pp. 549-587, 1990.

[4] J. Y. Halpern and R. Fagin, "Modelling knowledge and action in dis­
tributed systems," Distributed Computing, vol. 3, pp. 159-177, 1989.

[5] R. J, Aumann, "Agreeing to disagree," Annals Stat., vol. 4, no. 6, pp.
1236--1239, 1976.

[6] B. L. Lipman, "An axiomatic approach to the logical omniscience
problem," in Theoretical Aspects of Reasoning about Knowledge: Proc.
Fijih Con}:, R. Fagin, Ed., 1994, pp. 182-196.

1668
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

17] M. Burrows, 1\1. Abadi. and R. Needham, "A logic of authentication."
ACM Trans. Comp. Syst., vol. 8. no. l, pp.18-36, 1990.

[8] V. Hadz.ilacos. "A knowledge-theoretic analysis of atomic commitment
protocols." in Proc. 6th ACM Symp. on Principles of Database Syst.,
1987, pp. 129-134.

[9] R. I. Brafman and Y. Shoham. "Knowledge considerations in robotics
and distribution of robotic tasks," in Proc. 14th lnt. Joint Conf on Arti­
ficial Intelligence, 1995.

[10] J. Y. Halpern and L. D. Zuck, "A little knowledge goes a long way:
Knowledge-based derivations and correctness proofs for a family of pro­
tocols," J. ACM, vol. 39, no. 3, 1992.

[I l] J. S. Ostroff and W. M. Wonharn, "A temporal logic approach to real
time control," in Proc. 24th Conf Dec. and Contr., 1985, pp. 656-657.

[12] J. G. Thistle and W. M. Wonham, "Control problems in a temporal logic
framework," lnt. 1. Contr., vol. 44, pp. 943-976, 1986.

[13] A. Radiya and R. Sargent, "A logic-based foundation of discrete event
modeling and simulation." ACM Trans. Modeling Comp. Simul., vol. 4,
no. I, pp. 3-51, 1994.

[14] K. C. Wong and J. H. van Schuppen, "Decentralized supervisory control
of discrete-event systems with communication," in Proc. Int. Workshop
on Discrete Event Syst., l 996, pp. 284--289.

[15] G. Barrett and S. Lafortune, "On the synthesis of communicating con­
trollers with decentralized information structures for discrete-event sys­
tems," in Proc. IEEE Conf Dec. Contr., 1998, pp. 3281-3286.

[16] J. H. van Schuppen, "Decentralized supervisory control with informa­
tion structures," in Proc. of the Int. Workshop on Discrete Event S1·st.,
1998, pp. 36-41. -

[17] R. Sengupta, "Diagnosis and communication in distributed systems," in
Proc. of the Int. Workshop on Discrete Event Syst., 1998, pp. 144-151.

[18] K. Rudie, S. Lafortune, and F. Lin, "Minimal communication in a
distributed discrete-event control system," in Proc. Amer Contr Conf.,
1999, pp. 1965-1970.

[19] C. G. Cassandras, S. Lafortune, and G. J. Olsder, "Introduction to the
modelling, control and optim.ization of discrete-event systems," Trends
Ill Contr.: A European Perspec., pp. 217-291, 1995.

[20] P. J. Ramadge and W. M. Wonham, "The control of discrete-event sys­
tems," Proc. of the IEEE. vol. 77, no. 1, pp. 81-98, 1989.

[21] J. G. Thistle, "Supervisory control of discrete event systems," Math.
Comp. Modelling. vol. I l/12, no. 23, pp. 25-53, 1996.

122] R. Ciesl'.11', C. Desclaux, A. S. Fawaz, and P. Varaiya, "Supervisory con­
trol of discrete-event processes with partial observations," IEEE Trans.
Automat. Contr., vol. 33, no. 3, pp. 249-260, 1988.

[23] F. Lin a~d W. M. Wonham, "On observability of discrete-event systems,"
Info. Sc1., vol. 44, pp. 173-198, 1988.

[24] --, ''.Decen~alized control and coordination of discrete-event sys­
tems with partial observat10n," IEEE Trans. Automat. Contr., vol. 35,
pp. 1330--1337, Dec. 1990.

[25] K. Rudie and J.C. Willems, "The computational complexity of decen­
tralized discrete-event control problems," IEEE Trans. Automat. Contr.
vol. 40, pp. 1313-1319,July 1995. .,

[26] S. Takai and S. Kodama, "Decentralized state feedback control of dis­
crete event systems," Syst. Contr. Lett., vol. 22, no. 5, pp. 369-375, 1994.

[27] Y. Willner and M. Heymann, "Supervisory control of concurrent dis­
crete-event systems," lnt. J. Contr., vol. 54, no. 5, pp. 1143-1169, 1991.

[28] H. Cho and S. I. Marcus, ''Supremal and maximal sublanguages arising
in supervisor synthesis problems with partial observations," Math. Syst.
Theory, vol. 22, pp. 177-211, 1989.

[29] S. Lafortune and E. Chen, "The intimal closed controllable superlan­
guage and its application in supervisory control," IEEE Trans. Automat.
Contr., vol. 35, pp. 398--405, Apr. 1990.

[30] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About
Knowledge. Cambridge, MA: MIT Press, 1995.

software.

S. Laurie Ricker received the B.Sc. degree in math­
ematics from Mount Allison University, Sackville,
NB, Canada in 1987, the M.Sc. and Ph.D. degrees
in computing and information science from Queen's
University, Kingston, ON, Canada in 1993 and 2000
respectively. '

Since September 1999 she has been an ERCIM
fellow at INRIA-IRISA in Rennes, France, and
at CWI in Amsterdam, The Netherlands. Her
c~rrent research interests include fa.ilure diagnosis,
discrete-event systems and verification of concurrent

Karen Rudie received the B.Sc. degree in mathe­
m~tics and engineering from Queen's University,
Kingston, Ontario, Canada in 1985, and the M.A.Sc.
and Ph.D. degrees in electrical engineering from the
University of Toronto, Ontario, Canada in 1988 and
1992, respectively.

From 1992 to I 993, she was a postdoctoral
researcher at the Institute for Mathematics and its
Applications, Minnesota. Since 1993, she has been
with the Department of Electrical and Computer

. Engineering at Queen's University, where she is
curr,e~tly an A~soc1~te Professor. In 1999-2000, she was a visiting professor in
Electncal Eng~neenng and Computer Science at the University of Michigan.
Her research mterests mclude control of discrete-event systems and hybrid
systems.

From 1996-1999, she served as an Associate Editor of IEEE TRANSACTIONS
ON AUTOMATIC CONTROL.

