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Residual smoothing is a simple technique to accelerate the rate of convergence of iterative methods for 
elliptic difference equations. In this paper, we combine residual smoothing with the ADI iteration method, 
which can be done in several ways. When applied in the proper way, residual smoothing can considerably 
reduce the number of iterations and thus the computing time of the ADI scheme. The parameter values of 
the smoothed ADI scheme are chosen such that the high- and low frequency components in the iteration 
error are damped very well. Due to the residual smoothing, the other components in the error are also 
properly damped. Numerical examples demonstrate the performance results of the ADI scheme and the 
smoothed ADI scheme. 
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l. INTRODUCTION 
We consider the first boundary-value problem for the two-dimensional elliptic partial differential 
equation (PDE) 

(p(x,y)ux)x + (q(x,y)uy)y-w(x,y) = f (x,y), (x,y)EO = [O, l]X[O.l], (l.l) 

where p(x,y)>O, q(x,y)>O and w(x,y);;a.O. As a special case of (1.1) we employ the Poisson equation 

Uxx + Uyy = J (x,y) (1.2) 

as a model problem. 
For space discretization, we cover 0 with a uniform space grid with gridsize h, where h = l/(M +I) 

and Mis the number of internal gridpoints in x-and y-direction. Space discretization of (1.1), using 
standard central differences, yields a difference system 

DxxU + DyyU =B. (1.3) 

In (1.3) U is a vector, with components U;1, and Bis a vector originating from the right hand side f 
and the boundary conditions for u. The component UiJ is the finite difference approximation to 
u(ih,jh). The matrices Dxx and Dyy in (1.3) are the finite difference replacements of respectively 
o o 1 o a 1 
ox (p(x,y) ox) - 2w(x,y) and oy (q(x,y) oy) - 2w(x,y) and are defined by 

l I (DxxU)iJ := hf(p;-+,JUi-l,J - (p;-+,J + p;++.1)UiJ + p;++,1U;+1,J)- 2wiJUiJ, (l.4a) 

l I (DyyU)iJ: = hf(q;,J-+ U;,1-1 - (q;,1-+ + q;,J+t)UiJ + q;,1++ U;,1+i) - 2wiJU;J, (l.4b) 

with p;±+,J = p((i+ ~ )h,jh) (analogous definitions for q;,J±+ and w;j). The matrices Dxx and Dyy are 
tridiagonal, symmetric and negative definite. 
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For the iterative solution of (1.3) we examine the ADI scheme of Peaceman and Rachford [3,5]. 
For the model problem, the ADI scheme is known to be a fast scheme if one chooses its parameter 
values in the right way. However, the scheme is very sensitive to the parameter values used, i.e., the 
iteration count grows rapidly when the computation is carried out away from the optimal parameter 
values. Therefore, the ADI scheme is in general not a fast iteration technique. It is the purpose of this 
paper to apply residual smoothing for improving the rate of convergence of the ADI scheme and, 
most importantly, to make the scheme less sensitive to the choice of the parameter values. This paper 
is inspired by [2], where residual smoothing is applied to Jacobi iteration. 

The contents of the paper is the following. In Section 2 a short outline of the theory of residual 
smoothing is given. The ADI scheme and the smoothed ADI scheme are discussed in Section 3 and 
parameter values for both schemes are given in Section 4. Section 5 is devoted to a numerical com­
parison between the ADI scheme and the smoothed ADI scheme. This comparison also involves a 
nonlinear example. In Section 6, an alternative smoothed ADI scheme is briefly discussed. Some 
conclusions are formulated in Section 7. 

2. RESIDUAL SMOOTHING 
In this section we give a short outline of the theory of residual smoothing as a means of accelerating 
the convergence of iterative methods for elliptic difference equations. For a more extensive treatment 
of the special type of explicit residual smoothing used here, the reader is referred to [2]. 

Consider the linear system 

AU=B, (2.1) 
obtained by discretizing a linear elliptic boundary value problem. We assume that A has negative 
eigenvalues. Iterative methods for solving (2.1) are based upon the splitting A =P -Q, where Pisa 
non-singular and easily invertible matrix [1,5]. The iteration scheme thus takes the form 

pun+I = QUn+B, 

or equivalently, in residual form, 

pun+I =PUn-(AUn-B). 

(2.2) 

(2.2') 
The idea of residual smoothing is now to multiply the residual in (2.2') by a matrix S such that the 

condition number of SA is much smaller that the condition number of A. The iteration scheme then 
reads 

(2.3) 
Thus, instead of solving (2.1 ), we solve the preconditioned system SAU= SB with the original itera­
tion method. 

Following [2], Sis taken of the form S=Pk(D), where Pk(z) is a polynomial of degree k satisfying 
Pk(O)= I and Dis a scaled difference matrix with eigenvalues in the interval [-1,0]. In order to analyse 
the residual smoothing technique we choose 

D = .!_A (2.4) p ' 

where p=p(A) is the spectral radius of A. In [2], for this choice, an optimal smoothing matrix 
S=Pk(D) is derived, in the sense that SA has negative eigenvalues and the smallest possible condition 
number. The condition number y(A) of a matrix A is defined as y(A) = p(A )! 8(A ), where 8(A) is the 
in absolute value smallest eigenvalue of A. The polynomial Pk(z) is given by 

p (z)- Tk+ 1(1+2z)-l (25) 
k - 2(k + 1)2z ' · 

where Tk(z) is the kth degree Chebyshev polynomial of the first kind. Because of the factorization 
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properties of the Chebyshev polynomials, the smoothing matrix S can be computed very efficiently if 
k = 2q - l for some positive integer q. 

We emphasize, however, that in actual computations we do not use the difference matrix D defined 
by (2.4), because it is much too expensive in the general case. Instead, for one-dimensional problems, 
the matrix D is given by 

0 
-2 l 

-2 

I 
D = 4 (2.6) 

-2 l 

0 

For two-dimensional computations we do not use the two-dimensional analogue of (2.6) because the 
computation of S =Pk(D) is then not attractive [2]. Therefore, we consider an alternative which only 
uses one-dimensional smoothing matrices. The residual r =Aun - B in (2.2') can in the two­
dimensional case be written as r =Dxx un + Dyy un - B (Cf(l.3)). The residual is then smoothed by 
applying the one-dimensional smoothing matrix to Dxx and/ or Dyr In other words, let the residual r 
be arranged in a two-dimensional array in the natural way, then r is smoothed by applying the one­
dimensional smoothing matrix to all rows and/ or columns of r. 

3. ADI- AND SMOOTHED ADI ITERATION 

Consider equation (l.3) 

AU=B, A =Dxx +Dyy· 

The ADI scheme for (3.l) can be written in residual form as [5] 

(Dxx-v1I)U* =(Dxx-P1/)Un -(AUn-B) 

(Dyy - P2/)Un +I = (Dyy -v2l)U* - (Au· - B), 

where vi.v2 >0 and are supposed to be independent of n. 

(3.1) 

(3.2a) 

(3.2b) 

The first stage (3.2a) of the ADI scheme is 4!iplicit in x-direction and explicit in y-direction. This 
suggests to apply in (3.2a) a smoothing matrix Sy for the preconditioning of Dyr In other words, we 
multiply each column of the residual in (3.2a) by a (one-dimensional) smoothing matrix Sy, where Sy 
is such that§yDyy has the smallest possible condition number. In the same way, we apply a smooth­
ing matrix Sx at the second stage (3.2b) for the preconditioning of Dxx· Each row of the residual in 
(3.2b) is then multiplied by a (one-dimensional) smoothing matrix Sx. The smoothed ADI (SADI) 
scheme then reads 

(Dxx - v1l)U* = (Dxx - v,I)Un - Sy(AUn - B) 

n+I - • - • (Dyy - P2l)U - (Dyy - P2l)U - Sx(AU - B). 

(3.3a) 

(3.3b) 

In the analysis, the operators Sx and Sy are defined by Sx = Pk(-
1
-Dxx) and Sy= Pk(-

1
-Dyy) where 

PI P2 
p1 = p(Dxx) and P2 = p(Dyy). We emphasize once more, that in practice the matrices -

1
-Dxx and 

PI 
- 1

-Dyy are replaced by difference matrices like the one defined in (2.6). The degree k of the 
P2 ,. 
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polynomial Pk(z) will be specified lafer. 
If Dxx - ~ (P1 - P2)/ and Dyy + 2(P1 - P2)/ are negative definite then the ADI scheme is conver-

gent [5]. Likewise, the SADI scheme is convergent if Dxx - Dyy + SxA - (P1 - P2 )/ and 
- Dxx + Dyy + SyA + (P1 - P2)/ are negative definite. The proof is along the same lines as the proof 
for ADI. 

In order to get an indication about the performance of both the ADI scheme and the SADI 
scheme, we consider the eigenvalues of the iteration matrix of both schemes. These eigenvalues are 
called the damping factors of the iteration scheme. In the remainder of the paper we consider the fol­
lowing two cases: 

easel: p(Dxx) = p(Dyy) = p, 8(Dxx) = 8(Dyy) = 8, 

case 2: PI = p(Dxx)=l=P2 = p(Dyy), 81 = 8(Dxx)=l=82 = 8(Dyy)· 
For simplicity, we take P1 = P2 = P, unless stated otherwise, and assume that Dxx and Dyy commute. 

First, we restrict ourselves to case I. The damping factor of the ADI scheme is given by 
_ . _ <Ax+P)(Ay+P) 

~ - «Ax,.\_r,P) - (Ax -p)(Ay-p) , (3.4) 

where Ax and A_y are the eigenvalues of Dxx and Dyy respectively (Ax,Ay <0). It is convenient to write 
~ as a function of the scaled eigenvalues µx : = Ax Ip and /Ly : = Ay Ip, so that 

_ _ (µx +w)(/Ly +w) 
~ - ~(µx,11y,w) - (µx-w)(11y-w) ' (3.5) 

where w:=µIP. The parameter w should be chosen in the range O<w,.;;I [5]. In Fig. I. «µx,11y;w) is 
plotted for µx=/Ly and for w=I,10- 1,10-2 ,10-3

• For 11y=aµx(a=/=l) the graph of l~x•/Ly;w)I 
displays a similar behaviour. 

From (3.3) one can easily see that the damping factor of the SADI scheme is given by 
_ A. _ .\_y-p-Pk(AxlP)(Ax+Ay). Ax-p-Pk(Ayf P)(Ax+Ay) (

3
_
6

a) ~-~(Ax, y,P)- , , 
~-p ~-p 

or equivalently as a function of µx and /Ly 

I:._ tl . ) _ 11y-w-Pk(µx)(µx + 1;,). µx -w-Pk(Py)(µx +11y) 
.s-~~,L,W - . r;y µx -w 11y-w (3.6b) 
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----- ADI, - SADI. 

Note that «flx.17;w)= 1 in all points where Pk(µx) = Pk(µ,,)=O. This implies that we should not 
iterate with a fixed value of k and w. Therefore, we consider cyclic methods where k =kq and w=wq, 
kq and wq being periodic functions of q:kq = kq+N• wq = Wq+N with N fixed. In our experiments we 
choose kq = 2q- l(q =O(l)N -1) since then the smoothing matrices can be computed very efficiently 
[2]. The integer N will be specified later. In stead of~= ~q(µx,µ,.;wq) we thus consider the average 
damping factor 

a = a{p,,17 ;"'<>, .••.. •"N - i): = [: ~; J~(p,,17 ;"q )r N (3.1) 

[
w0 -1] 2 

Since fu(-1, - l;wo) = wo + 
1 

and ~q(-1, - l;wq) = 1 for q>O, we choose w0 =1 in order to 

damp the eigenvector components in the iteration error which correspond to values of µx,µ,. close to 
-1. These components are the high frequency components. Likewise, the low frequency components 
correspond to values of µx,µ,. close to 0. The other wq values are chosen equal: wq =w for q>O. The 
average damping factor a= a(µx,µ,.;w): = a(µx,[ly; l,w ..... w) of the SADI scheme is also plotted in Fig. 
I. for µx =µ,.,N=6 and w = 1,10- 1,10-2,10- 3 • Also in this case, the graph of a(µx,aµx;w) (a=t=l) is 
very similar to the graph of a(µx,µ,.;w). 

Comparing both damping factors, we see that for small w-values (I0-3:s;;;w:s;;;I0-2) the SADI 
scheme has substantial better damping properties than the ADI scheme. In particular, with the excep­
tion of the lowest ones (µ~O), SADI damps all error components with a factor of a least 0.6. 
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4. CHOICE OF THE PARAMETER VALUES 

In this section we derive parameter values for the SADI scheme. The derivation of parameter values 
for the ADI scheme (3.2) is extensively described in [5], therefore we only present the results. 

The damping factor «Ax,Ay;v) of the ADI scheme in case 1 is given by (3.4). We choose the v­
parameter to minimize the function 

1" = o/(.v;p,8): = max l«Ax).y;v)l. (4.1) -p.;;;;>.,,>., . .;;;;-/l 

Asymptotically, the eigenvector corresponding to the maximum damping factor dominates the error. 
Therefore, in order to minimize the number of iterations, we have to minimize o/(.v;p,8). We 
emphasize, however, that this only applies if we compute the solution sufficiently accurate. For 
moderate accurate computations, the v-value thus obtained can be far from optimal, i.e., the 
corresponding number of iter~tions is far from minimal. A simple analysis gives that the optimal 
parameter is given by v* =(8p)T [5]. 

EXAMPLE I. Consider the Poisson equation. The eigenvalues Ax and Ay of Dxx and Dyy are given by 

Ax,i = Ay,i == - h~ sin2(; ih),i = l(l)M, with h = Il(M + 1). In this case p(Dxx) = p(Dxx) = p~ h~ 
and 8(Dxx) = 8(Dyy) = 8~w2, so that v· ~ 2;. 

In case 2, the function 1" to be minimized is defined by 

(4.1') 

Assume that PI8I :s;;;Pi.82. Then one can prove 
1
the following result for the ADI scheme [5]: if 8I ;;.:82 

or 8I :;;;;82 and 8I P2 ;;;;:82PI then v* = (8I pi) 2 
, and if PI ;;;;: P2 or PI :;;;;p2 and 8I P2 :s;;;82PI then I 

v* = (82P2)T. 
Consider the SADI scheme. In case 1, the damping factor «Ax,;>;.;v) is given by (3.6a). Since 

~(Ax,Ay;v)= 1 for all Ax,Ay for which Pk(Axlp)=Pk(Aylp)=O, we have to iterate with varying k =kq 
and v=vq (see Section 3). Therefore, instead of~= ~(Ax,A_r;vq) we consider the average damping fac­
tor a defined by (Cf. (3.7)) 

[

N-I l I/N 
a= a(Ax,A_r;vo, ..... ,PN-d: = q1}

0
l«Ax,A_r;vq)I (4.2) 

In order to damp the high frequency components, we require fu( -p,Ay ;v0) = fu(Ax, - p;v0)=0, which 
giv~s ~~p .. ~or ~he ~~er Pq-values we choose vq=v:q>O. This v-value is chosen to minimize 
a( 8, 8,v). - a( 8, 8,p,v, ..... ,v) because of the followmg reasons 
(i) the lowest frequency eigenvector corresponding to Ax =Ay = -8 has often a large weight in the 

error 
(ii) the eigenvalue Ax =Ay = -8 is either known or can be approximated. 
In this way we construct a SADI scheme which damps the high- and low frequency components in 
the iteration error very well. It turns out that a SADI scheme constructed this way also damps the 
remaining error components very well, as illustrated before in Fig. I. 

So Consider a( -8, -8;v), which can be written as 

[ 
8 N-I ll/N 

a(-8, -8;v)= ( p~8 )2 ql}I ~(-8, -8;v) , (4.3a) 

with 

(4.3b) 

If ~q(-8,-8;v)=O for some q>O then a(-8,-8;v)=O, and thus a(-8,-8;v) is minimal. From 
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(4.3b) one can easily see that ~q(-8, -8;P)=O if P=vk =8(2Pk(-!)-I), provided Pk(-!)>~. A 
p p 

Taylor series expansion yields 

8 8 I 
Pk(--)~I-ak-, ak:=3k(k+2), (4.4) 

p p 

if bk : = J
5 

( ! )2(k + 1)4 «1. For k sufficiently small, this condition is fulfilled and Pk is approximately 

given by vk=ck8, ck:= I -2ak!· In our numerical experiments we take v· =v1 ~8 (see Table 1). 
p 

ExAMPLE 2. Consider again the Poisson equation for which p~ h~ and 8~.,?. In this case 

8 .,? k+I 2 _'1T
4 k+l 4 .,? k+l 2 

Pk(--)~I-U( M + 1) , bk- 360 ( M + 1 ) and ck~l-6( M + 
1

) . These values for 
P . . h I k =2q-I(q = 1(1)5) and for M =39 are given m Table 1. Note that t e va ue c31 does not make sense 

since P 31(-!)< ~. For the general elliptic case one finds similar results since the ratio !=e(h2) 
p p 

just as for the Poisson equation. 

Table 1. 

k Pk(-8/p) bk ck 
1 0.9979 1.69*10 ·t> 0.9959 
3 0.9918 2.71*10- 5 0.9836 
7 0.9671 4.33*10-4 0.9342 
15 0.8684 6.93*10-3 0.7368 
31 0.4736 l.11*10- 1 -0.0528 

Pk(-!)-, bk- and ck-values for the Poisson equation fork =2q - I(q = 1(1)5) 
p 

and M=39. 

In case 2, the damping factor of the SADI scheme can be written as (Cf. (3.6a)) 

_ . _ A_y-vz-Pk(Axlpi)(Ax+Ay). Ax-vi-Pk(A_rlpz)(Ax+Ay) 
~ - ~Ax,Av,Pi,Pz) - A , 

/ x-~ ~-~ 
(4.5) 

Note that in (4.5) we assume that P1 ~v2 . The corresponding average damping factor is given by (4.2) 
with ~ = 4(Ax,A ;P1q,Pzq) defined by (4.5). For the damping of the high frequencey components we 
require fu( - Pi.~ ;P10,P20) = ~o(Ax, -p2 ;v10,P20) =O, which implies that we indeed should iterate with 
two different P-values (Cf. (3.3)). This gives v10 = p2 and 1120 = p1. For q >0 we choose 111q = P1 and 
P2q =v2. These two values are chosen to minimize a(-8i. -82;11i,v2), which can be written as 

[ 

i' i' l l/N PI -u1 pz-u2 N-1 
a(-8i. -82;11i,112) = +

8 
· +

8 
II l~q(-8i. -82;Pi,P2)i , 

P2 I PI 2 q=I 
(4.6a) 

with 

(4.6b) 

Also in this case, if 4(-8i. -82;vi,112)=0 for some q >0 then a(-8i. -82;Pi,P2) is minimal as a 
function of 111 and Pz. From (4.6b) one can readily see that this condition is fulfilled if P1 =111,k = 
Pk(-82/pz)(81 +82)-81 or 112 =P2,k = Pk(-81IP1)(81 +82)-82 provided that 
Pk(-82! pz)>81 /(81 +82) or Pk(-81 I p1)>821(81 +82). Substitution of the approximation 
Pk(-8;1p;)=1-ak8;1p;(i=1,2) (see (4.4)) then yields the following expression for 111,k 
and 112,k: P1,k =82-ak(82IP2>(81 +82) and P2,k =81-ak(81/pi)(81 +82). 
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As in case 1, we choose the following approximation: v; = VJ, 1 ~o2 and v; = v2, 1 ~OJ. 
For the computation of the parameter values for both schemes the values of o(Dxx),o(Dyy).P(Dxx) 

and p(Dyy) are required. As we have seen, for the Poisson equation p(Dxx)= p(Dyy)~4 and 
h 

o(Dxx)= o(Dyy)~-n2. For the general elliptic equation (1.3) these values can only be approximated as 
follows. Consider the general matrix Dxx defined by (l.4a). Let p:= max v(x,y), 

_ o.;;;x,y.;;;r 
p:= min p(x,y) and analogous definitions for q,q,w and w. Let the matrices Dxx and Dxx be _ O.;;;x,y.;;;J _ - -
defined by replacing Pi±+,J and wiJ in (l.4a) by p and w respectively p and w. In other words, 
Dxx = poxx - ~ wl and Dx~ = poxx - ~ wl, with oxx denoting the standard central difference approxi-a2 - - - - -
mation to ox2 • Then one can easily show that p(Dxx):s;;p(Dxx):s;;p(Dxx) and o(Dxx):s;;o(Dxx):s;;(Dxx). 

l -The values p(Dxx) and o(Dxx) can then be approximated by p(Dxx)~2(p(Dxx)+p(Dxx))= 

h
2
2 (jJ +~)+ ! (w+~) and o(Dxx)~ ~ (o(Dxx)+o(Dxx))= ~ (jJ +~)+ ! (w +~). In the same way one 

finds p(Dyy)~ ~2 @+~)+ !<w+~) and o(Dyy)~ ~ @+~)+ !<w+~)-

5. NUMERICAL EXAMPLES 

In this section we present a few numerical examples, in order to compare the ADI scheme and the 
SADI scheme. We restrict ourselves to Dirichlet problems. The solution is computed for 
h = 2~ , ~ , 8~ with the parameter values derived in Section 4. In addition, we compute the solution 

for h = ~ for several v-values, in order to check whether the v-values derived in Section 4 are good 
enough. Further, to demonstrate the power of residual smoothing, we apply the SADI scheme to a 
nonlinear problem. 

For the degree k of the smoothing matrices we choose k =kq =2q-1, q=O(l)N -1, such that kN-J 
is the largest kq smaller than M = h - J - 1. The reason for this is, that for kq > M for some q, the com-
putation of the smoothing matrices becomes cumbersome. Thus for h = 2~ , ~ , 8~ we choose, 
respectively, N=5,6,7. We emphasize once more that the choice kq=2q-1 admits an efficient com­
putation of the smoothing matrices [2], which is a prerequisite for accelerating the ADI scheme. In all 
computations, the initial approximation is defined by forming linear interpolations of the boundary 
values on x =O, x = 1 and on y =O, y =I, respectively, and by taking the average value of these func­
tions. The iteration is stopped if the scaled residual 

· llAUn-BllJ 
r(n): = llAUo-Blli (5.1) 

has dropped below a certain tolerance TOL. 
The examples we consider are the following. 

Example 1 [4, p. 427] 

Uxx + Uyy = f(x,y) 

u(x,y) = 3ex+y(x -x2)(y-y2),f(x.y) = 6xyex+Y(xy+x +y-3) 

4 
p = p(Dxx) = p(Dyy) = hf • o = o(Dxx) = o(Dyy) = w2. 
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Example 2 

(exux)x +(eYuy)y = f(x,y) 

u(x,y) = (.xy)3 , f(x,y) = 3xy ({2+ x).y2ex + x 2(2+y)eY) 

2 ~ p = p(Dxx) = p(Dyy) = J;i(e + 1), 8 = 8(Dxx) = 8(Dyy) = T(e + 1) 

Example 3 

(e-xYux)x +(exYUy)y - (x +y)u = f(x,y) 

u(x,y) = (xy)3, f (x,y) = 3xy3(2-xy)e-xy +3x3y(2+xy)exY-(x +y)(xyf. 

1 2 I l~ I 2 I PI= p(Dxx)=-;·};i(e + 1)+2, 81=8(Dxx)=-;2<e+1)+2, P2=p(Dyy)=J;i(e+1)+2, 

~ I 
82 = 8(Dyy) = T(e + 1)+2. 

Example 4 

(e"ux)x +(e"Uy)y -w(x,y,u) = 0 

u(x,y) = (xy)2, w(x,y,u) = 2(x2 +y2)(1 +2x2y 2)e". 

Note that the matrices Dxx and Dyy commute for the first two examples but not for the third one. 
Note that Example 4 is a nonlinear problem. Like the ADI scheme, the SADI scheme can be applied 
to nonlinear problems in a straightforward manner. We have included this example, in order to show 
the power of the residual smoothing technique. 

Consider the first three examples. First we present results for h = 2~ , ~ , 8~ obtained with the v­

values derived in Section 4. The results are collected in Table 2, which contains the following values: 
the total number of iterations n0, the average reduction factor r defined by r: =r(n0)

11
n° (Cf. (5.1)) 

and the computing time (CT) in seconds needed for the iteration process. For the tolerance we take 
TOL= 10-8; similar results are obtained for larger values of TOL. From Table 2 we see that, espe­
cially on the finer grids, the SADI scheme needs much less iterations than the ADI scheme, which 
results in a considerable reduction of CT. 
· Next we present results obtained on a 40*40 grid for several v-values, with the purpose of testing 

the v-parameter values derived in Section 4. Case 1 (p = p(Dxx) = p(Dyy), 8 = 8(Dxx) = 8(Dyy)) 
applies to the first two examples. Instead of v~ considef for these two examples the scaled parameter 
w=vlp. One can readily see that w· =!_ = (.!)T =0.039269908 for the ADI scheme and 

8 p p 
w· =- =0.001542126 for the SADI scheme. Case 2 (p1 = p(Dxx)=FP2 = p(Dyy), p 
81 = 8(Dxx}=l=82 = 8(Dyy)) applies to Example 3. Let in this case w: =v/ Pi. then one can easily see 

8 I 

that for the ADI scheme w· = (-1 
)T =0.040696. Since P2~ep1 and 82 ~e8i. it is obvious to choose 

PI 

v1 =ev and v2 =v for the SADI scheme. Thew* -value is then given by w· =~ =0.001656164. The 
PI 

number of iterations, for TOL= 10-s, are presented in Table 3. We may conclude that the parameter 
values derived in Section 4 are fairly good since the corresponding number of iterations is nearly 
minimal. Furthermore, we see that in the range 10- 3 ~w~10-2 , the SADI scheme is less 
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ADI 
example 1 example 2 example 3 

h-1 no r CT no r CT no r CT 
20 58 0.73 0.702 67 0.76 1.263 76 0.78 1.397 
40 116 0.85 5.301 138 0.87 11.069 155 0.89 11.042 
80 231 0.92 41.196 279 0.94 76.486 312 0.94 86.092 

SADI 
example 1 example 2 example 3 

h-1 no r CT no r CT no r CT 
20 18 0.33 0.369 21 0.42 0.512 26 0.49 0.747 
40 21 0.40 1.781 27 0.49 3.306 34 0.58 4.080 
80 25 0.45 9.219 31 0.55 15.490 43 0.64 17.712 

Table 2. The n0 -,r- and CT-values for the first three examples. 

example 1 example 2 example 3 
w ADI SADI ADI SADI ADI SADI 

5* 10-l 147 200 143 188 166 159 
10-2 100 41 267 39 220 34 

5* 10-3 199 21 >500 26 440 31 
10-3 >500 22 >500 27 >500 37 
• 116 21 138 27 155 34 w 

Table 3. The n0-values for h = 4~ and various values of w, for the first three examples. 

ADI SADI 
h-1 no r CT no r CT 
20 27 0.71 13.013 12 0.45 5.961 
40 95 0.91 194.378 14 0.51 30.030 

Table 4. The n0 - ,r- and CT-values for Example 4. 

sensitive to the choice of the parameter values than the ADI scheme. Thus, a w-value which differs a 
little from the w· -value can lead to considerably extra computing time for the ADI scheme, but not so 
for the SADI scheme. 

Consider Example 4. Application of the ADI scheme or the SADI scheme to this nonlinear prob­
lem requires at each iteration the solution of a set of nonlinear tridiagonal systems, for which we use 

Newton iteration. Results for h = 2~, ~ and for TOL= 10-4 are presented in Table 4. The best w­

values are experimentally found to be w*=10- 1 for the ADI scheme and w*=10-2 for the SADI 
scheme. From this table we see that residual smoothing leads to a considerable saving of the number 
of iterations and hence also of the computing time. Note that in this case the gain in computing time 
is even more than for the first three examples, since one ADI iteration is now very expensive com­
pared to the computation of the smoothing matrices. 
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6. AN ALTERNATIVE SMOOTHED ADI SCHEME 

In this section we briefly consider an alternative to the SADI scheme (3.3). For this purpose, we 
rewrite the ADI scheme (3.2) in the one-stage form 

(Dxx-v1l)(Dyy-v2I)Un +1 = (Dxx-v1l)(Dyy-v2I)Un +(v1 +v2)(AUn -B). (6.1) 
- -

The idea is now to multiply the residual in (6.1) by the smoothing matrices Sx and Sy (see Section 3): 

(Dxx-v1l)(Dyy-v2I)Un +1 = (Dxx-v1l)(Dyy-v2/)Un +(v1 +v2)SySx(AUn - B). (6.2) 

For brevity, we restrict ourselves to case l and assume that v1 =v2 =v. The damping factor of 
scheme (6.2), as a function of JLx and Py can then be written as 

_ . _ 2w(µx+Py) . 
~ - ~ILx•/ly,W) - 1 + (µx -w)(P;y-w) Pk(µx)Pk(Py), (6.3) 

where w=v/p. The corresponding average damping factor a is then given by (3.7) with 
~ = ~q(µx,P;y;wq) defined in (6.3). In order to damp the high frequency error components, we choose 
w0 =1 and wq =w for q = l(l)N -1 (see Section 3). The average damping factor a= a(µx,P;y;w) is 
plotted in Fig. 2. for JLx=Py,N=6 and w=l,10- 1,10-2,10-3 • Comparing Fig. 1. and Fig. 2. it is 
apparent that the SADI scheme gives a much better "overall" damping of the iteration error than the 
alternative scheme. 

As an illustration, we apply the alternative scheme (6.2) to Example 1 for h = lo and for various 

values of the parameter w. For the tolorance TOL we take TOL= 10-s. The results are presented in 
Table 5. From Table 3 and Table 5 one can readily see that scheme (6.2) is slightly faster than the 
ADI scheme, however, much slower than the SADI scheme. Thus, the SADI scheme is clearly to be 
preferred to the alternative scheme (6.2). 

U) 5* 10- 5* 10-

no 219 79 105 

Table 5: n0-values for h = lo and various w-values for Example 1. 



w=l 

1.0 

0.8 

0.6 

0.4 

0.2 

0.04--~~---,~~~~---~~~----. 

-1.0 -0.8 -0.6 -0.4 -0.2 o.o 

w= 10-2 

I i.o 
l 

0.8 

.0.6 

0.4 

0.2 

0.0-1-~--.~~-r-~~.----~-.-~--, 

-1.0 -0.0 -o.6 -0.4 -0.2 o.o 

1.0 

0.8 

0.6 

0.4 

0.2 

O.O+-~---,.---~-.-~~..--~-,.-~----. 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 

w= 10-3 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0-1-~~---,~~~~---~~~~ 

-1.0 -0.0 -o.6 -0.4 -0.2 0.0 

Fig. 2. The average damping factor for scheme (6.2) for w= I, 10- 1, 10-2, 10-3• 
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7. CONCLUDING REMARKS 
In this paper we considered residual smoothing as a means to accelerate the rate of convergence of 
the ADI scheme for elliptic difference equations. Conserning this technique we note the following. 
(i) Residual smoothing can be easily applied to general elliptic problems, even to nonlinear prob­

lems, to speed up iterative methods such as the ADI method. 
(ii) For a proper choice of the degree of smoothing k(k =2q- l for some integer q~O), residual 

smoothing can be implemented very efficiently. 
(iii) Residual smoothing can be combined with the ADI scheme in several ways. When it is applied 

in the right way, as is done for the SADI scheme (3.3), residual smoothing can lead to a consid­
erable reduction of the number of iterations and the computing time for the ADI scheme. 

(iv) The parameters for the SADI scheme are chosen such that the high- and low frequency com­
ponents in the iteration error are rapidly damped. Due to the residual smoothing, the other com­
ponents in the error are also properly damped. 

(v) For a certain range of the parameter values, the SADI scheme is much less sensitive to the choice 
of these values that the ADI scheme. 
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