
Malleability of the blockchain’s entropy

Cécile Pierrot1 and Benjamin Wesolowski2

1 Sorbonne Universités, UPMC Univ Paris 06, LIP6, 4 place Jussieu, 75005 Paris, France
2 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. Trustworthy generation of public random numbers is necessary for the
security of a number of cryptographic applications. It was suggested to use the
inherent unpredictability of blockchains as a source of public randomness. Entropy
from the Bitcoin blockchain in particular has been used in lotteries and has been
suggested for a number of other applications ranging from smart contracts to
election auditing. In this Arcticle, we analyse this idea and show how an adversary
could manipulate these random numbers, even with limited computational power
and financial budget.

Keywords: Random number generation, Blockchain, Random Beacon, Bitcoin, Dyck language.

1 Introduction

Randomness is a key concept in cryptography. Even though random numbers are often meant
to be kept secret in cryptographic protocols, a number of applications require a form of publicly
available randomness which cannot be predicted or manipulated. Some straightforward exam-
ples include draws of national lotteries, sampling of assemblies or citizen juries, or tie-breaking
in sports or elections. This concept also appears in more technical settings, where a secure public
source of randomness can be used to provide trust between communicating parties while imple-
menting contract signing, confidential disclosures, or certified mail in an electronic mail system.
These examples were first proposed by Rabin in [Rab83], where he defines the source of random-
ness as a random beacon: an online service that broadcasts allegedly unpredictable numbers at
regular intervals.

In these situations the randomness should be generated in such a way that no one can will-
ingly bias the outcome to anyone’s advantage or disadvantage. Simple methods hardly provide
any strong guarantee, like a skilled prestidigitator can fool entire crowds while tossing a coin.
The existing online services that make available fresh random numbers at regular intervals such
as [NIS11,RAN98] can at best be considered as trusted third parties: despite extensive docu-
mentation and audits, they do not provide users with any mechanism that allows to verify the
freshness and correct generation of the published numbers.

A line of research aims at developing and analysing methods to provide trustworthy public
randomness. Clark and Hengartner proposed in [CH10] a beacon based on stock market prices,
whose security relies on a presumed unmalleability of published financial data – hardly sufficient
to convince the most skeptical users. In [LW15], Lenstra and Wesolowski constructed and proved
the security of a verifiable beacon that anyone can influence, but no one can bias or predict, by
feeding some public input data to a slow hash function.

In another attempt to build a decentralised beacon with no trusted parties, it has been sug-
gested to exploit the inherent unpredictability of blockchains, in particular that of the Bitcoin pro-
tocol [Nak09]. In addition to the applications mentioned above, a source of randomness internal
to Bitcoin – or any other blockchain based currency – allows that randomness to be used by the
currency’s scripting language. This extends the range of implementable smart contracts consider-
ably. There is currently no possibility in the Bitcoin scripting language to allow any form of ran-
dom execution. It is still not the case in cryptocurrencies with more powerful scripting languages

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301650696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

such as Ethereum [Woo14]. A few Bitcoin protocols [BCG15,BNM+14,GGMR14,MGGR13] are
however already relying on the blockchain as a source of randomness.

This idea becoming widespread together with the lack of a security model for the blockchain’s
unpredictibility motivated Bonneau, Clark and Goldfeder [BCG15] to propose an analysis of the
method. They consider a model where the attacker controls all the miners, and suffers a monetary
penalty whenever a miner finds a valid block that the attacker does not want to see included in the
blockchain (see Paragraph 2.1 for a presentation of the notions of miners and valid blocks). This
penalty is meant to compensate for the loss of the reward going to a miner finding a valid block.
This reward currently consists of RM = 12.5 B (12.5 bitcoins3) per block plus some transaction
fees in the case of the Bitcoin protocol. The amount of this reward decays over time: it started
at 50 B, and is divided by two every 210 000 blocks. In [BCG15], the authors derive that if the
next block is used to define a single random bit – presumably unbiased –, an attacker can force
the bit to 1 by having the miners drop the valid blocks that give a 0, and this attacker would
suffer an expected cost of 50 B at the moment the paper was published.

We aim in the present paper at overcoming the limitations of this model. First, we measure
the adversary in terms of computational resources rather than monetary. An associated cost
in bitcoins as in [BCG15] can then be derived, but is not the primary focus. It makes sense
indeed to investigate computational limitations when not only money is at stake in the random
number generation. Also, it allows us to analyse adversaries that do not have control over the
entire pool of miners: it seems unrealistic to assume that the adversary can bribe any miner,
who would systematically and silently cooperate (this is discussed and nuanced in [Bon16] with
models considering the possibility of renting mining power for a limited amount of time via
bribery). We also account for adversaries with limited resources: whereas in the original analysis
the adversary keeps spending money in bribes as long as its goal is not achieved (e.g., obtaining a
bit 1 in the example above), our analysis can measure the extent to which the adversary can bias
the outcome if they have a limited budget. It also accounts for more general strategies, where the
adversary can take advantage of non canonical phenomenons on the blockchain such as forking.

Whereas the authors of [BCG15] concluded from their analysis that the method is secure
enough to be used in practice, we show that an attacker, even when not controlling the entire pool
of miners and when limited by a budget, can still significantly bias the probability distribution
of the outcome. For instance, again when the blockchain is applied to generate a single unbiased
bit, we show that an adversary controlling only a quarter of the total mining power can increase
the probability of having a 1 from 0.5 to 0.6 approximately, for an expected cost of around 12.5 B,
i.e. US$ 53 000. With the same parameters we also propose a cheaper strategy that permits to
increase the probability from 0.5 to about 0.57, with an expected cost of 1.8 B ≈ US$ 7 600. We
also show how this probability can be further improved by preparing the attack in advance: a
head start of a day increases the probability to 0.74.

Also, the security properties that we define and analyse might be relevant beyond the prob-
lem of generating public random numbers, as a more general measure of the security of the
blockchain construction. Namely, we study the malleability of the blockchain, a formalisation of
the capacity of a party to influence the probability distribution of some bits in the chain. Even
though unmalleability is not the primary goal of a secure public ledger, it comes as a desirable
property of an ideal instantiation of the blockchain.

The details of the model, together with a brief introduction to blockchain protocols, are
presented in Section 2. In Section 3, we study the simple case where the adversary simply wants
to influence the next published block with immediate effect, as an example and a warm-up.
The more complex setting is analysed in Section 4. Adversaries limited by a financial budget

3 Note that 1 B roughly equals US$ 4 260 at the time of writing this article, keeping in mind
that the Bitcoin exchange rate still fluctuates a lot.

2

are analysed in Section 5 whereas adversaries preparing themselves in advance are studied in
Section 6.

2 A model for the network and the miners

2.1 Blockchains

A blockchain is a form of distributed database, introduced in [Nak09] as the backbone of the
Bitcoin protocol. The protocol involves a set of active participants, called miners, distributed
over a network, whose job consists in maintaining the blockchain: a global ledger of the history
of the system. In the case of Bitcoin, this history is the set of all transactions that happened. At
regular time intervals, a new block is added to the chain, testifying for the latest transactions
or events. In other words, a block consists of the concatenation of various pieces of information,
including a reference to the hash of the previous block, a list of transactions the miner is willing
to account for, and finally a nonce, chosen by the miner.

A block is called valid if its hash is smaller than a target number. This constraint is controlled
by a difficulty parameter d measuring approximately the number of leading zeros of the hash.
The difficulty parameter is continuously adjusted so that it takes an expected time of 10 minutes
for the worldwide mining effort to find a valid block. For instance, at the time of writing this
article, the value of d for Bitcoin was approximately 68. Only valid blocks can be added to the
blockchain. The process of finding a valid block is called mining, and it simply consists in hashing
a block a tremendous amount of times with slight modifications (for instance, by varying the
nonce) until a valid version is found.

In addition to the list of new transactions, a block also contains the hash of the previous
valid block. The set of all broadcast blocks thus forms a tree, whose longest chain is the valid
blockchain on which there is a consensus. In the case of Bitcoin, each block on that longest chain
comes with a reward (some bitcoins) to the miner who mined it. This mechanism encourages
the miners to always work on increasing the longest chain they are aware of, in order to keep a
mostly linear tree: a tree that consists in the longest chain itself and a few small branches, that
quickly stop growing. When such a branching occurs at the tail of the blockchain, it is called a
fork. Miners might work on a different branch of the fork at a given moment, but if they keep
agreeing to work on the longest one, only the branch with a majority of miners will survive, and
consensus is quickly reached again.

It is justified in [BCG15, Paragraph 3.1] that assuming the underlying hash function is
secure, each valid block found via the mining process contains at least d bits of computational
min-entropy, and therefore bd/2c near-uniform bits can securely be extracted by a cryptographic
extractor [DGH+04]. An extractor is a function that transforms a random variable with sufficient
entropy into an almost uniformly distributed variable in a smaller domain, which we call the
extract. In this paper we consider an extractor Ext that maps valid blocks to elements of E , the
set of binary strings of length bd/2c. Assuming the hash function used for mining is secure, we can
consider the extract Ext(B) of a freshly generated valid block B to be uniformly distributed in E .

2.2 Game model

We consider a single instance of a blockchain protocol executed in isolation. The quite detailed
abstraction proposed in [GKL15, Section 2] fits our needs, yet we will not detail it here. Indeed,
such a precise network diffusion model is not necessary as we will not be dealing with network
adversaries: they will not be able to tamper with messages on transit in the network, or with
the network’s structure itself. This weaker adversary receives and broadcasts messages over the
network, and its power will only be measured in terms of its computational resources.

3

As in Garay et al.’s formal analysis of the Bitcoin backbone protocol [GKL15], the problem
is made tractable by assuming that communications over the network are instantaneous. Honest
miners are always working with the longest blockchain that they know of, and the broadcast
messages are always received by all the miners. Therefore forks can appear when a valid block is
found simultaneously by two miners, but the fork will disappear as soon as one of the branches
will be lengthened before the other. This matches the real world situation, where the notion
of simultaneity is loosened to take into account communication and processing delays: a fork
only survives as long as new blocks are added simultaneously to both branches, which cannot
happen for very long. We argue that accidental forks among the honest miners can only help
the adversary, and therefore we assume for the rest of the paper that such forks do not occur.
Even without accidental forks, malicious forks are still possible: an adversary can secretly work
on a branch longer than the public one, and once this branch is revealed, it will completely
replace the old one as the new longest chain. Other models such as [SSZ16] propose to look at
adversaries that are highly connected to the rest of the network, giving them a timing advantage
when sending or receiving new blocks. Again, this would only make the adversary stronger, so
we do not consider this possibility.

The game involves a set of honest miners and an adversary A. Honest miners simply aim at
growing the blockchain, by broadcasting valid blocks to get the associated reward. Meanwhile,
the goal of the adversary is to bias the probability distribution of the extract of an upcoming
block in the chain, which we call the decisive block. For illustration, say that the extract x of
that decisive block is a lottery draw: the adversary wins whenever x falls in a given subset of E ,
the “winning tickets”. Let χ : E → {0, 1} be the characteristic function of that subset of the set
of possible extract values. The adversary A wins if, at the end of the game, χ(x) = 1 where x is
the extract of the decisive block, which we call pleasant in this case. Note that it does not matter
whether that decisive block was broadcast by the adversary or by a honest miner. We denote
by PA the probability that A wins.

The game starts at the round where a fixed initial block indexed by 0 is received and ends
when the blockchain reaches a length of n + ∆, for some predefined integers n and ∆. The
n-th block is the decisive block, whose extract determines whether or not the adversary wins.
Since that block determines the outcome of the game, it might first seem surprising to continue
for ∆ additional blocks. But the value of any specific block can be changed via forking: in
blockchain protocols, consensus does not go to the version of a block that arrived first, but to the
version of the block that belongs to the longest chain. An adversary could try to take advantage
of that by attempting to create a fork to modify an unpleasant decisive block. The positive
parameter ∆ takes into account the possibility that the decisive block can still be modified until
the blockchain has been lengthened by ∆ blocks.

Finally we denote by µ the probability for a uniformly distributed extract value x ∈ E to
satisfy χ(x) = 1. We clearly have µ = |{χ(x) = 1 |x ∈ E}|/|E|.

2.3 Adversary model

We consider a weak adversary that cannot change the content of the messages traveling around
the network nor prevent them from being delivered. The adversary can mine on the blockchain
and, unlike honest miners, they are not assumed to always work on extending the longest chain,
nor to broadcast all the valid blocks they find. Thus, in this context, the critical property of the
adversary is their computing power, or more precisely, their relative power with respect to the
total power of the miners. Concretely, this power is measured as a number sA (respectively s) of
hashes per second that the adversary (respectively the total set of miners, including A), is able
to compute. Let

α =
sA
s

4

measure the relative power of A. Such hash computations can be modelled as calls to a random
oracle. The number of random oracle calls to be done before finding a valid block follows a
Poisson distribution, and at any point in time, α can be interpreted as the probability that the
next oracle request giving a valid block has been done by the adversary.

Remark 1. The adversary could be a single entity as well as a set of colluding, corrupted miners.
It therefore extends the model of [BCG15], where all the miners are ready to accept bribes to
collaborate: this corresponds to α = 1 in our setting. We can still account for the money it takes
to corrupt the miners, via the notion of virtual cost (see Paragraph 3.4), yet it is not the only
metric available anymore.

3 A warm-up: manipulating the next published block

3.1 Delay-free games

As a first example, let us look at the simple case where n = 1 and ∆ = 0. The adversary aims at
manipulating the next broadcast block, without bothering whether it will survive potential future
forks. This case occurs whenever the extracted randomness is meant to be used immediately, such
as a random beacon that broadcasts the random numbers as soon as they are available, or a simple
national lottery. Indeed, a random beacon is meant to be unpredictable, and its output cannot
be changed in the future – unlike a blockchain where forks can “change the past”. The beacon
must broadcast a number as soon as it is available, which does not permit to wait for a safety
delay ∆ > 0 before outputting the numbers.

3.2 Strategy

The adversary’s strategy here is straightforward: they will focus all their computational power on
mining the next block. Whenever they find an unpleasant valid block B such that χ(Ext(B)) = 0,
they throw it away and continue to mine. The game ends whenever a honest miner finds a valid
block or the adversary finds one that satisfies χ(Ext(B)) = 1, which they immediately broadcast.
In this context, it is clearly an optimal strategy as valid blocks can only be found by mining
(which is a classical assumption for blockchains, and can be enforced by the random oracle
model), and an adversary who would themselves publish a block such that χ(Ext(B)) = 0 would
only decrease their winning probability, as well as an adversary who would not publish instantly
a valid block such that χ(Ext(B)) = 1. Note that this strategy has a certain cost, as a dropped
block is a lost reward. A rational adversary with a financial incentive will want to compare the
cost of dropping a block with the expected reward of winning the game. We analyse this cost in
Section 3.4.

3.3 The winning probability PA

Let us compute the probability PA that the adversary wins that game. The event that they win
the game is denoted w. The possible outcomes can be split into the infinite family of disjoint
events ea, for any a ≥ 0, that the adversary found and threw away exactly a valid blocks. The
event ea∧w further requires that the final block B, i.e. the (a+1)-th block that is found, satisfies
χ(hB) = 1 (and it does not matter who found that last one). The winning probability can now
be expressed as:

PA =
∑
a≥0

Pr(ea ∧w) =
∑
a≥0

(α(1− µ))aµ =
µ

1− α(1− µ)
.

5

Since α ≥ 0 and µ ≤ 1 this is clearly better than µ. For instance, when µ = 1/2, and α = 1/4,
the probability that A wins is increased from 0.5 to 4/7 ≈ 0.57. Note that α = 1/4 is a realistic
assumption: for instance, the relative computational power α of the four actual most influent
mining pools Antpool, F2Pool, BitFury, and BTCChinaPool vary between 13% and 27% each,
depending on sources and dates.

3.4 Virtual cost expectation for the adversary

The virtual cost refers to the number of blocks the adversary has to drop, thereby giving up
the associated reward. We emphasise that this virtual cost does not take into account potential
profits related to the outcome of the game. It is only a measure of the amount of mining power
they sacrificed to play the game: namely, the difference between the expected reward they would
have had by behaving as a honest miner, and the reward resulting from playing the described
strategy. For each event ea, exactly a blocks are dropped, therefore the expected virtual cost E is:

E =
∑
a≥0

aPr(ea) =
∑
a≥0

a(α(1− µ))a(1− α(1− µ)) =
α(1− µ)

1− α(1− µ)
.

Again, to illustrate this virtual cost we look at the example where µ = 1/2 and α = 1/4. It
gives 1/7 expected lost blocks. In terms of money, the actual mining reward at the time of
writing is RM = 12.5 B. Thus this strategy can be approximately evaluated to have an expected
cost of US$ 7 600. The case where α = 1 ensures the victory as long as µ > 0, for an expected
cost of (1− µ)/µ. This is the situation in [BCG15] where all the miners are assumed to collude
with the adversary, and they indeed found the same expected cost.

3.5 Financial game

In some situations, the goal of the adversary can be modelled as a monetary rewardRW associated
to winning the game. In this situation, whenever they find a unpleasant block, a rational adversary
will be comparing their expected earnings if they stick to the strategy (i.e., the expected reward
minus the virtual cost, PA ·RW −E ·RM) with the mining reward they would get by publishing
the block (i.e., RM). The adversary can take the decision of following the strategy or not once
and for all at the beginning of the game since these quantities do not evolve until the decisive
block finally gets published.

4 Reaching consensus

4.1 Games with delay

We now deal with the case where n = 1 and ∆ > 0. Delaying the end of the game later than
the broadcast of the decisive block is necessary to measure the security of protocols involving
several parties that would base an agreement on the extract value of this decisive block. Smart
contracts are a good example for such worries. Indeed, unlike in our first naive delay-free games
model, forking can interfere and change the initial execution of the contract, thereby modifying
the outcome of the contract itself after its execution. Here, the random value is only considered
valid when it is deep enough in the chain. More precisely, choosing a sufficiently large ∆ helps to
reach consensus, when it is considered impossible to create a fork of length strictly larger than ∆.
Then the parties involved in the contract gain confidence that the outcome is definitive.

6

4.2 Relevant values for ∆

Relevant values for the delay ∆ can be deduced from the analysis performed in [GKL15] where
the authors evaluate the probability to have a fork of two branches of a given length. From a
practical point of view, a look back to the history of broadcast Bitcoin blocks permits to find
all the accidental forks that have ever been observed. For instance, from [Blo16] we see that 540
forks were noticed since the block number4 142 257: two branches of length 4, four of length 3,
fourteen of length 2, and what remains are orphan blocks. Thus, keeping a safety margin, ∆ = 6
seems sufficient to make sure that no fork will alter the decisive block after the end of the game.
This value of ∆ is already suggested in [Nak09].

4.3 Strategy

The adversary’s strategy begins as previously: they first focus all their computational power on
mining the first block (that is also the decisive block since n = 1) and throw away all valid
blocks B they find as long as χ(Ext(B)) = 0. At the first broadcast of the decisive block Bd two
cases can occur. If it satisfies χ(Ext(Bd)) = 1 then A starts to act as a honest miner. Namely,
they continue to mine on this chain and the game ends when the (1 +∆)-th valid block is found,
leading to the success of A. Otherwise, if one honest miner broadcasts a decisive block satisfying
χ(Ext(Bd)) = 0, A continues to secretly mine on the previous block as if they received nothing.
Again, they throw away all valid decisive blocks that would lead to their failure. If they find one
such that χ(Ext(Bd)) = 1 they keep it secret5, create a fork and continue to mine on their new
chain, hoping to develop a branch longer than the current public one containing the unpleasant
decisive block. If they manage to do so, they broadcast their fork, and all miners switch to that
new longest chain and proceed to mine on that one, thereby including the cheated pleasant
decisive block in the new consensus chain. The game ends when a miner finds a valid final block,
whether it is on the original chain, or on the branch later appeared.

4.4 Computing the probability PA

To compute the probability that A wins we consider a partition of our universe as follows. Let
w1, f0, f01 and w01 (w implicitly stands for A wins and f for A fails) be the events defined as:

– w1: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 1.
– f0: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0 and A fails to find any

decisive block B′d such that χ(Ext(B′d)) = 1.
– f01: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0, A manages to find a

decisive block B′d such that χ(Ext(B′d)) = 1 but not to compute a branch sufficiently long
to replace the main one.

– w01: the first broadcast decisive block Bd is such that χ(Ext(Bd)) = 0 but the adversary
manages to find one B′d verifying χ(Ext(B′d)) = 1, and to have it replace the original one.

So the event that A wins, denoted w, is the union of w1 and w01. Note that the probability
of w1 has already been computed in Section 3, as:

Pr(w1) =
µ

1− α(1− µ)
. (1)

For convenience we also define e0 as e0 = f0 ∨ f01 ∨w01.

4 At the time of writing the last blocks are around number 400 000.
5 Note that keeping it secret is not critical in the strategy: the adversary could be completely

public about this special fork, in the hope that some honest miners get confused and start
unknowingly helping them (due to bad timing and propagation delays for instance).

7

Probability of f0. Since f0 is a sub-event of e0, its probability can be expressed as:

Pr(f0) = Pre0(f0)× Pr(e0) = Pre0(f0)× (1− Pr(w1)),

where we denote by PrB(A) the conditional probability of event A given that event B occurred.

0 0 0 0 0 0 0 0 0 0 0 0 0

Decisive
block

Final
block

Fig. 1. Secret and public blocks mined during the event f0. White blocks represent the blockchain
integrally mined by honest miners whereas black ones correspond to the k valid decisive blocks
(secretly) found by A, all such that χ(Ext(B)) = 0. A bit inside a block indicates the value
of χ for its extract. It is only indicated on blocks that are meant to be decisive: here, the first
broadcast block, and the adversary’s failed attempts at finding a pleasant one. In this example,
a = 12 and ∆ = 6.

Figure 1 represents the situation for a fixed number a of valid blocks mined by A. The
probability that A fails precisely a times knowing e0 is given by the product:(

a+∆− 1

a

)
(α(1− µ))a(1− α)∆−1(1− α).

Thus the formula for Pre0(f0) is:

(1− α)∆
∑
a∈N

(
k +∆− 1

a

)
(α(1− µ))a.

The summation over a can be simplified using the fact that for any positive integer h, and
any x 6= 1: ∑

a∈N

(
a+ h

a

)
xa =

1

(1− x)h+1
. (2)

From Equation (2) we get the final value of the probability of f0 knowing e0:

Pre0(f0) =

(
1− α

1− α(1− µ)

)∆
. (3)

Probability of f01. Again we compute Pre0(f01) the probability of f01 knowing e0 in order
to find the probability of f01 that satisfies:

Pr(f01) = Pre0(f01)× (1− Pr(w1)).

Figure 2 represents the situation and gives an indication of the various parameters we need to
express this probability. We define:

– a2 as the number of valid decisive blocks mined by A after the first decisive block is broadcast
by a honest miner and before A finds a valid decisive block verifying χ(Ext(Bd)) = 1.

8

– h2 as the number of valid blocks mined by all honest miners in the blockchain in the mean-
time, namely after the first decisive block is broadcast by a honest miner, and before the
adversary manages to find a decisive block verifying χ(Ext(Bd)) = 1.

– a3 as the number of valid blocks mined by A on its chain after A finds a valid decisive block
verifying χ(Ext(Bd)) = 1 and before the last block is mined.

With this in hands, we see that the number of valid blocks mined by all honest miners, after
A finds a pleasant valid decisive block, and before the last block is mined, is given by ∆−1−h2.
Besides, some parameters are upper bounded: we have h2 < ∆ and a3 < ∆.

0 0 0 0 0 1

Decisive
block

Adversary’s cheated
decisive
block

Final
block

Fig. 2. Secret and public blocks mined during the event f0. White blocks represent the blockchain
integrally mined by honest miners whereas black ones correspond to the a2 + 1 + a3 valid blocks
(secretly) found by A. Again a number inside a block corresponds to the value of χ for its extract,
when the block is meant to be a decisive one. In this example ∆ = 6, a2 = 4, h2 = 1 and a3 = 5.

The probability, knowing e0, that A finds a pleasant valid decisive block exactly after a2
trials that failed, and to get h2 blocks mined by the honest miners before this new decisive
block is: (

a2 + h2

a2

)
αa2+1(1− α)h2(1− µ)a2µ.

To complete the computation of Pre0(f01) we need to count the number of possible cases in which
A mines a3 valid blocks but fails to ever create a chain longer that the main one. This number
in hand, it will only remain to sum over the possible values of the three variables a2, a3 and h2.
Fixing these parameters, an outcome where the adversary fails to replace the main blockchain
with its own corresponds to a sequence where at every point in time, the adversary’s chain is
shorter that the main one. The insightful reader might have observed that this situation shares
similarities with Dyck words. A word in two letters H and A is a Dyck word if no initial segment
contains more A’s than H’s. Here the situation is slightly different as the honest main chain
(whose blocks correspond to the letter H) starts growing as soon as a honest miner finds a first
valid block, while the adversary’s chain (the A’s) starts growing only when the adversary finds a
first valid block such that χ(Ext(B)) = 1. Therefore we define generalised Dyck words as follows.

Definition 1. Let ∆, a and h be three non-negative integers such that a < ∆ and h < ∆. We
call generalised Dyck words (for the parameters ∆, a, and h) words with a + h letters formed
with exactly a letters A and h letters H that verify the following property: for any prefix of the
word, we have #A ≤ #H+∆−h−1 where #H (respectively #A) represents the number of H’s
(respectively A’s) in that prefix.

9

Lemma 1. Let ∆, a and h be three non-negative integers, and suppose a < ∆ and h < ∆.
Defining D(∆, a, h) as the number of generalised Dyck words, we exactly have:

D(∆, a, h) =

(
a+ h

a

)
−

(
a+ h

∆

)
.

Proof. The proof follows a classical idea developed to count Dyck words. We first look at words
with exactly a letters A and h letters H that are not generalised Dyck words. For each such
word, there exists a first A that breaks the property. Changing each A into an H and each H
into an A strictly after this special A leads to write a word6 with exactly a −∆ + h letters H
and ∆ letters A. Thus for a fixed ∆ this process describes an injection:

f : E −→ F

that sends E (the set of all the words with a letters A, h letters H that are not generalised
Dyck words) into F (the set of words with a − ∆ + h letters H, ∆ letters A). Besides, the
map f is surjective. Indeed, let us consider a word w in F . From a < ∆ we see that ∆ >
(a−∆+h) +∆−h− 1, which means that w breaks the condition #A ≤ #H+∆−h− 1. Hence
considering the first letter A in w that breaks the condition, and changing each A into an H and
each H into an A strictly after this special A, we obtain a word in E such that the image of this
word is exactly w. The bijection f yields #E =

(
a+h
∆

)
, and at the end:

D(∆, a, h) =

(
a+ h

a

)
−

(
a+ h

∆

)
.

Summing over the possible values of the three variables a2, a3 and h2, we obtain:

Pre0(f01) = αµ(1− α)∆
∑
0≤a2

0≤a3,h2<∆

(α(1− µ))a2

(
a2 + h2

a2

)
αa3D(∆, a3,∆− 1− h2),

where D is the function in 3 variables defined in Lemma 1 that counts the number of possible
cases in which the chain mined by A never overtakes the honest one. The probability Pre0(f01)
can be rewritten as:

Pre0(f01) = αµ(1− α)∆
∑

0≤a3,h2<∆

αa3D(∆, a3,∆− 1− h2)
∑
0≤a2

(
a2 + h2

a2

)
(α(1− µ))a2 .

We can simplify the inner sum using Formula (2) and get:

Pre0(f01) =
αµ(1− α)∆

1− α(1− µ)

∑
0≤a3,h2<∆

αa3

(1− α(1− µ))h2
D(∆, a3,∆− 1− h2). (4)

To conclude, we can put everything together using PA = 1− Pr(f0)− Pr(f01), with the formula

PA = 1− (1− Pr(w1)) · (Pre0(f0) + Pre0(f01)), (5)

where Pr(w1), Pre0(f0) and Pre0(f01) are functions in α, µ and ∆ respectively given in Equa-
tions (1), (3) and (4). To compare again with µ we plot several of these probabilities. Figure 3
gives the probability that A wins as a function of their relative computational power α, for a
fixed value of µ = 1/2 on the left or µ = 1/16 on the right. For instance, if µ = 1/2, α = 1/4 and
∆ = 6 – which are three arguably realistic parameters – then the probability that the adversary
wins is increased from 50% to approximately 60%. Figure 4 takes the other point of view and
considers how the probability PA varies with µ when α is fixed to 1/4.

6 For instance, if h = 3, a = 5 and ∆ = 6 the word HAAAAHHA becomes HAAAAAAH that
has 6 letters A and 5− 6 + 3 = 2 letters H.

10

Fig. 3. Probabilities PA as functions of α when µ = 1/2 (first graph) and µ = 1/16 (second
graph). The corresponding values for ∆, ranging from 0 to 12, are indicated on the curves. For
information purposes, the red curves correspond to Pr(f01) and the purple ones to Pr(f0), both
with ∆ = 12.

Fig. 4. Probabilities PA as functions of µ when α = 1/4. Values for ∆ are indicated on the curves.
Again the red curve corresponds to Pr(f01) and the purple one to Pr(f0) both with ∆ = 12. The
black line indicates the probability that a honest player wins.

11

4.5 Virtual cost expectation for the adversary

Again, the virtual cost refers to the number of blocks the adversary has to drop, thereby giving
up the associated reward. To compute the expected virtual cost E we consider three cases. In
the event w1, such blocks only appear before the first decisive block is mined. Thus the expected
number of dropped blocks that correspond to this case is:

E1 =
∑
a≥0

aPr(ea ∧w) =
∑
a≥0

a(α(1− µ))aµ =
µα(1− µ)

(1− α(1− µ))2
. (6)

Besides, considering the union of f0 and f01, we see that in both cases the chain making the
consensus at the end has entirely been mined by honest miners and consists in ∆+1 valid blocks.
Since the relative computing power of A is α, it yields that A dropped in average (∆+1)α/(1−α)
valid blocks. So the expected number of lost blocks related to those two events is:

E2 = (1− PA) · (∆+ 1)α

1− α . (7)

where PA is given in Equation (5). Last but not least, we can see the event w01 as the union of
all ea for a ∈ N where ea is the event: A finds precisely a valid blocks with an unpleasant extract,
then mines a pleasant decisive block and manages to mine a chain longer than the current honest
one. The expected number of dropped blocks related to this last case is:

E3 =
∑
a≥0

aPr(ea).

To compute Pr(ea) we denote by h2 the number of honest valid blocks broadcast (strictly)
between the two decisive blocks and by h3 the number of honest valid blocks broadcast after the
pleasant decisive one is mined by A. We get:

Pr(ea) = αa(1− µ))a+1µ
∑

0≤h2<∆

(
a+ h2

h2

)
(1−α)h2+1

∑
0≤h3≤∆

D̄(h2 + h3 + 1,∆, h3)α∆(1−α)h3

where D̄(h2 + h3 + 1,∆, h3) is the number of words with ∆ letters A and h3 letters H that are
not generalised Dyck words (with the correspontding parameters). Since we have the equality
D̄(h2 + h3 + 1,∆, h3) =

(
h2+h3+1
∆+h3

)
we can write:

E3 = α∆(1− α)(1− µ)µ

×
∑
a≥0

a(α(1− µ))a
∑

0≤h2<∆

(
a+ h2

h2

)
(1− α)h2

∑
0≤h3≤∆

(
h2 + h3 + 1

∆+ h3

)
(1− α)h3 (8)

Therefore the expected virtual cost E is given by:

E = E1 + E2 + E3,

where E1, E2 and E3 are respectively given in Equations (6), (7) and (8). To illustrate this virtual
cost we plot in Figure 5 the expected number of blocks that are dropped by the adversary as a
function of their relative computational power α, in the case where µ = 1/2. For instance, when
α = 1/4 and considering ∆ = 6 it gives roughly 1.017 expected lost blocks. Thus this strategy
can be approximately evaluated to have an expected cost of US$ 53 000.

12

Fig. 5. Expected number of dropped blocks as functions of the relative computational power α,
when µ = 1/2. The black curve corresponds to the basic case with no delay, i.e. ∆ = 0. The
other curves correspond to values of ∆ that vary from 1 to 7.

13

4.6 Financial game

Consider again the situation where a monetary reward RW is associated to winning the game.
The above strategy is still valid, yet a rational adversary would adapt it a bit in order to maximize
his earnings. We give here the basic ideas of this particular strategy, but do not provide a full
analysis as the previous one already shows that the game is not resistant to malicious behaviors.

Dealing with a financial game, A could compute at each step the expected cost of sticking
to the previous strategy and decide whether or not to pursue their attack. More precisely, each
time a block is found (either by A, or broadcast by a honest miner), A could reckon the two
following expected earnings, in term of bitcoins:

– G1, their expected earnings at the end of the game, assuming they keep mining in secret on
their chain, if they have any, or try to create a pleasant valid block

– G2, their expected earnings at the end of the game, assuming they withdraw from mining
their current chain (if they managed to have one), and start mining as a honest miner.

Then A keeps attacking the game as long as it is worth it, namely as long as:

G2 < G1.

Note that G1 and G2 are expressed in term of bitcoins, and not as dropped blocks anymore.
Another situation might occur and prevent A from carrying on their attack: if they have a
budget, a limited amount of money they are ready to loose before aborting the strategy. We
study this situation in more details in the next section.

5 Adversaries with a budget

A budget is the amount of money the adversary is ready to lose by not publishing valid blocks they
found. In situations where winning the game cannot be easily modelled by a monetary reward, or
the adversary’s goal is not to maximize some earnings, considering a budget is a meaningful way
to limit the power of an adversary. An adversary with a budget enforces a bound on the virtual
cost, and thereby on the number of abandoned blocks. The analysis is similar to the previous
case, but now, when the adversary runs out of budget, they must stop mining blocks that do not
directly contribute to the longest chain.

Let b be the maximal number of blocks the adversary can drop, i.e., its budget. Then, the
probability of w1 becomes:

Pr(w1) =

b∑
a=0

(α(1− µ))aµ =
µ(1− (α(1− µ))b+1)

1− α(1− µ)
.

This is the probability to win when ∆ = 0, generalising the results of [BCG15] to adversaries with
a budget. Let us compute the winning probability for ∆ > 0. Now, we cannot forget about what
happened before the publication of the first decisive block as we did previously by conditioning
over e0, as we need to keep track of how many blocks the adversary dropped during that period.

Let f be the event that A fails the game, b the event that A used its full budget during the
game, and o be the event that the blocks found by the adversary within their budget are all
unpleasant. The event f is partitioned into four disjoint events:

Pr(f) = Pr(f ∧ b ∧ o) + Pr(f ∧ ¬b ∧ o) + Pr(f ∧ ¬b ∧ ¬o) + Pr(f ∧ b ∧ ¬o).

Let us first focus on the event f ∧ b ∧ o. Look at the prefix of the sequence of found blocks up
to the point where the adversary went out of budget. If b = 0, that prefix is empty and the

14

probability of failure is 1−µ; otherwise, the last block of that prefix is the bth block found by A.
Let h denote the number of blocks honestly mined during that period. Then:

Pr(f ∧ b ∧ o) =

{
1− µ if b = 0,

(1− µ)(α(1− µ))b
∑∆
h=0

(
b+h−1
b−1

)
(1− α)h otherwise.

(9)

Now, let us compute the probability of f ∧ ¬b ∧ o. Look at the full sequence of found blocks,
∆ + 1 of which are honestly mined, and a < b are found by the adversary. The probability can
then be written as:

Pr(f ∧ ¬b ∧ o) = (1− µ)(1− α)∆+1
b−1∑
a=0

(
∆+ a

a

)
(α(1− µ))a. (10)

We now look at f∧¬b∧¬o. Split the sequence of found blocks into two parts: the initial segment
up to the pleasant block found by the adversary, and the rest of the sequence until the end.
Let a1 be the number of blocks found by A during the initial part, excluding the last one (i.e.,
only the unpleasant blocks), and h1 the number of blocks honestly mined in the meantime,
including the unpleasant broadcast decisive block. Let a2 be the number of blocks found by A
during the second phase. Since we suppose ¬b, we have a1 + 1 + a2 < b. The number of blocks
honestly mined in the second phase is ∆+ 1− h1, including the final block. Observe that since
A loses, the second part is a generalised Dyck word. Then, the probability can be computed as:

Pr(f∧¬b∧¬o) = (1−µ)αµ(1−α)∆+1
∑

0≤a1<b−1
1≤h1≤∆

0≤a2<b−a1

(
a1 + h1

a1

)
(α(1−µ))a1D(∆, a2,∆−h1)αa1 . (11)

The last event f∧ b∧¬o needs to be further split into two events: the case u where the pleasant
decisive block found by A is the last block in there budget, and the case v where A still has some
budget after that pleasant block was found. Then, Pr(f∧ b∧¬o) = Pr(u) + Pr(v). We first focus
on u. Look at the prefix of the sequence of blocks up to the pleasant decisive block. That prefix
contains exactly b blocks found by A (including the last one), and a number h ≤ ∆ of blocks
honestly mined (including the unpleasant decisive block). The probability is then:

Pr(u) = αbµ(1− µ)b
∆∑
h=1

(
b+ h− 1

h

)
(1− α)h. (12)

It only remains to compute Pr(v). Again, focus on the prefix of the sequence of found blocks
which stops when the adversary runs out of budget, i.e. when they mine their bth block. Split that
prefix into two parts: the initial part up to the pleasant decisive block found by the adversary,
and the second part, from that pleasant block to the end, i.e., the bth block of A. Let a1 be
the number of blocks found by the adversary during the first part, excluding the last one (i.e.,
only the unpleasant blocks), h1 the number of blocks honestly mined in the meantime, including
again the unpleasant decisive block, and h2 the number of blocks honestly mined in the second
part. The number of blocks found by A in that part is b− a1 − 1. The probability is then:

Pr(v) = (1− µ)αbµ
∑

0≤a1<b−1
1≤h1≤∆

0≤h2≤∆−h1

(
a1 + h1

a1

)
(1− µ)a1(1− α)h1+h2D(h1 + h2, b− a1 − 2, h2). (13)

Finally, the winning probability is computed by subtracting all the possible failure probabilities:

PA = 1− Pr(f ∧ b ∧ o)− Pr(f ∧ ¬b ∧ o)− Pr(f ∧ ¬b ∧ ¬o)− Pr(u)− Pr(v),

15

Fig. 6. Probabilities as functions of the budget (number of blocks that can be dropped), when
α = 1/4 and µ = 1/2. The two highest curves correspond to PA in the delay-free case (∆ = 0)
and when ∆ = 6. The lowest curves are the four components that permit to compute PA when
∆ = 6: the purple curve corresponds to Pr(f ∧ b ∧ o), the orange one to Pr(f ∧ ¬b ∧ o), the blue
one to Pr(f ∧ ¬b ∧ ¬o), and the yellow one to Pr(f ∧ b ∧ ¬o).

16

where Pr(f ∧ b ∧ o), Pr(f ∧ ¬b ∧ o), Pr(f ∧ ¬b ∧ ¬o), Pr(u) and Pr(v) are respectively given in
Equations (9), (10), (11), (12) and (13). Figure 6 details how PA varies as a function of the
number of blocks that can be dropped in the two cases ∆ = 0 (no delay) and ∆ = 6. Note
that these probabilities tend to 0.57 (resp. 0.6) which were the probabilities previously found in
Section 3.3 (resp. Section 4.4), when the budget was unlimited. Moreover, we can see that the
winning probability converges fast enough so that even a small budget is sufficient to significantly
cheat the game.

6 Provident adversaries

6.1 Games with early start and delay

Let us consider the more general case where not only there is a final delay ∆ ≥ 1 as previously,
but the game also starts early, i.e. the decisive block is not the next one, but the n-th one,
where n > 1. This corresponds to the real world situation where an attacker knows in advance
which future block will be decisive for the goal he tries to achieve. This case is relevant when a
far-sighted adversary may get ahead of the game to manipulate an upcoming decisive block. In
truth, nothing prevents adversaries that already cheat from preparing themselves several blocks
in advance, without waiting for the beginning of the game to start mining in secret.

The analysis of this situation is essential to applications where some parties commit on
an upcoming random number. In a lottery, the ticket seller should announce in advance which
(future) block will determine the winner, giving the adversary a head start to manipulate that
precise block. It is also crucial in electronic voting systems, where unpredictable, verifiable, public
randomness is required for the security of the random auditing after the election [CCC+08].

6.2 Strategy

For the adversary, the goal will be to obtain a chain of length n− 1 as soon as possible. If they
can obtain such a branch before the honest miners – and keeps it secret –, they can start mining
for a pleasant n-th block (the decisive one) while the honest miners are still working on building
the initial segment of the chain. The adversary tries to build a chain longer than the honest one
as follows: on one hand there is the public, honestly mined chain, and on the other hand there
is the secret branch of the adversary. The adversary only mined on their own secret branch. At
any point, if the honest chain becomes longer than the adversary’s branch, the latter is thrown
away and replaced by the longer honest chain. With this strategy, the adversary’s branch is never
shorter than the public one.

When an n − 1-th block has finally been found (either by A, or by the honest miners if A
has not been fast enough) the adversary starts following the same strategy as in the previous
game – see Section 4.3. Again, they focus all their computational power on mining the decisive
block and throw away all valid but unpleasant blocks. At the first broadcast of the decisive
block Bd two cases can occur. If it satisfies χ(Ext(Bd)) = 1 then A starts to act as a honest
miner. Otherwise, if one honest miner broadcasts a decisive block satisfying χ(Ext(Bd)) = 0, A
continues to secretly mine on the previous block as if they received nothing. Again, they throw
away all valid decisive blocks that would lead to their failure. If they find a pleasant one, they
keep it secret, create a fork and continue to mine on their new chain, hoping to develop a branch
longer than the current public one containing the unpleasant decisive block. If they manage to
do so, they broadcast their fork, and all miners switch to that new longest chain and proceed
to mine on that one, thereby including the cheated pleasant decisive block in the new consensus
chain. The game ends when a miner finds a valid final block, whether it is on the original chain,
or on the branch later appeared.

17

6.3 Computing the probability PA

To evaluate the probability that A wins, we consider again the event e0 that the first decisive
broadcast block is an unpleasant one. As in Equation (5), PA is given by:

PA = 1− Pr(e0) · (Pre0(f0) + Pre0(f01)), (14)

where Pre0(f0) and Pre0(f01) are functions given in Equations (3) and (4). Yet in this far-sighted
adversary case, the analysis differs when computing the probability of e0.

Let us consider the family of disjoint events ak that A finds an n − 1-th block with an
advantage of k blocks over the public branch, where k varies from 0 (meaning that the n− 1-th
block is mined by a honest miner) to n− 1 (when A has computed the entire chain from blocks
1 to n− 1 while the honest miners did not find a single valid block). This leads to:

Pr(e0) =

n−1∑
k=0

Prak (e0) · Pr(ak).

If a denotes the number of blocks dropped by A while the honest miners broadcast all the blocks
needed to complete their chain up to the unpleasant decisive block, Prak (e0) is given by the sum
(1− α)k+1(1− µ)

∑
a≥0

(
a+k
a

)
(α(1− µ))a. Using Equation (2) we find:

Prak (e0) = (1− µ) ·
(

1− α
1− α(1− µ)

)k+1

. (15)

Thus it suffices now to evaluate the probabilities Pr(ak).

Probability Pr(ak) for a fixed k. Let k be an integer between 0 and n − 1. The
different outcomes that lead the adversary to obtain an advantage of k blocks can be modelled
as paths on an (n− 1)× (n− 1) grid of blocks from the point (0, 0) to the point (n− 1, n− 1−k)
as in Figure 7, in Appendix A. Following certain constraints.

Each point (a, h) of a path corresponds to the moment at which A has a valid branch from
block 0 to block a whereas the honest chain only goes up to the block h. The adversary’s strategy
enforces h ≤ a, i.e. the path never overpasses the diagonal line. The short arrows forming the
path represent the events that a new valid block has been found. The arrow is black if the block
was found by A and light gray if it was found by a honest miner. There are only three kinds of
arrows:

1. Black arrows to the right: when A finds a block, it only increases their own secret branch.
2. Gray arrows that go up, without overpassing the diagonal: when a honest miner finds a new

block but A’s chain is longer, this block only increases the honest branch.
3. Gray arrows on the diagonal: when a honest miner finds a new block and A’s branch coincides

with the honest chain, this block increases both chains.

Also, the path never follows the blue line: once the blue line has been reached, the next phase
of A’s strategy begins. To determine the probability of ak, the strategy will consist in computing
the number of such paths to (n− 1, n− 1− k) for any specified number of black arrows.

Let Cx,y,r denote the number of paths from (0, 0) to (x, y) that follow all the previous
requirements and go through r black arrows precisely. Cx,y,r can be computed thanks to the
following recursive formulae:

Cx,y,r =

0 if y = 0, r 6= x
1 if y = 0, r = x
Cx−1,y,r−1 if x = n− 1, y 6= n− 1
Cx−1,y−1,r if x = n− 1 = y
Cx,y−1,r + Cx−1,y−1,r if x = y, y 6= n− 1
Cx,y−1,r + Cx−1,y,r−1 otherwise.

18

At the end, since the number r of black arrows to go to (n− 1, n− 1− k) varies between k and
n− 1, the probability of ak is given by:

Pr(ak) =

n−1∑
r=k

(1− α)n−1−kαrCn−1,n−1−k,r.

Together with Equation (15), we find:

Pr(e0) =
(1− µ)(1− α)n

1− α(1− µ)

n−1∑
k=0

(
1

1− α(1− µ)

)k n−1∑
r=k

αrCn−1,n−1−k,r. (16)

The probability PA that A wins is so computed thanks to Equation (14), using Equations (3), (4)
and (16) as explicit formulae for the inner probabilities Pre0(f0), Pre0(f01) and Pr(e0). Figure 8,
in Appendix A, shows how PA varies with α, for µ = 1/2 and a fixed value of n = 144 that
roughly corresponds to an adversary that starts mining with a day in advance. Note that with
a relative computational power α = 1/4, the probability that a provident adversary wins takes
off from 50% to 74% in the realistic case when ∆ = 6. Figure 8 also suggests that being too
provident is not necessary. Indeed, Pr(e0) is the only parameter that governs the variations of the
probability PA when the adversary mines more or less in advance. We note that this probability
stabilises very quickly, as mining with half-a-day, a day or a week in advance is roughly the same
in terms of success.

Conclusion

We have shown that a random beacon producing random numbers by extracting entropy from
the last block of a blockchain does not provide a strong level of security. Their “random” output
can easily be biased by large groups of miners.

We have been studying a beacon that outputs the hash of the very last block of the chain.
One could naturally wonder if a stronger beacon could be build by hashing the last n blocks
BN−n+1, . . . , BN for n > 1, say H(BN−n+1, . . . , BN) for a secure hash function H. Unfortu-
nately, any bit of such a beacon could be manipulated in the very same way, with the same
resulting biases, by still considering the last block as the decisive one. Indeed, once the blocks
BN−n+1, . . . , BN−1 are determined, the function H ′(x) = H(BN−n+1, . . . , BN−1, x) is a hash
function with security properties as good as H itself (assuming H is cryptographically secure).

Other games could use the randomness of the last n blocks without first hashing them
together. A lot of naturally occurring games seem susceptible to a form of “last block attack”,
yet each game would require a case-by-case analysis. In particular, we do not claim that it is
impossible to generate secure random numbers from the blockchain. On the contrary, it seems
to be possible by incorporating ideas from [LW15] in a blockchain protocol (see [But16] for an
informal discussion).

Acknowledgements

We would like to thank Arjen Lenstra for his comments and Antoine Joux for both his technical
and financial support. A special thanks goes to Direction Générale de l’Armement and CNRS
for funding the first author, and to the Swiss National Science Foundation for supporting the
second author via grant number 200021-156420.

19

References

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public random-
ness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.

[Blo16] Blockchain Luxembourg SARL. https://blockchain.info, 2016.
[BNM+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll,

and Edward W. Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In
Financial Cryptography and Data Security: 18th International Conference, FC 2014,
pages 486–504, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[Bon16] Joseph Bonneau. Why buy when you can rent? - bribery attacks on bitcoin-style con-
sensus. In Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, pages 19–26, 2016.

[But16] Vitalik Buterin. Could Ethereum do this better? [Tor Project is working on a web-wide
random number generator]. Reddit post (accessed on 2017-08-25), 2016.

[CCC+08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc,
Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity ii:
End-to-end verifiability for optical scan election systems using invisible ink confirmation
codes. In USENIX/ACCURATE Electronic Voting Technology Workshop (EVT), 2008.

[CH10] Jeremy Clark and Urs Hengartner. On the use of financial data as a random beacon.
In USENIX EVT/WOTE. USENIX Association, 2010.

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin.
Randomness extraction and key derivation using the cbc, cascade and hmac modes.
In Advances in Cryptology – CRYPTO 2004: 24th Annual International Cryptology
Conference, pages 494–510, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[GGMR14] Christina Garman, Matthew Green, Ian Miers, and Aviel D. Rubin. Rational zero:
Economic security for zerocoin with everlasting anonymity. In Financial Cryptography
and Data Security: BITCOIN, pages 140–155. Springer Berlin Heidelberg, 2014.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone pro-
tocol: Analysis and applications. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, 2015, Proceedings, Part II, pages 281–310, 2015.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx.
Cryptology ePrint Archive, Report 2015/366, 2015. http://eprint.iacr.org/2015/366.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 397–411, May 2013.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2009.

[NIS11] NIST randomness beacon. https://beacon.nist.gov, 2011.
[Rab83] Michael O. Rabin. Transaction protection by beacons. Journal of Computer and System

Sciences, 27(2):256 – 267, 1983.
[RAN98] RANDOM.ORG. https://www.random.org, 1998.
[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining

strategies in bitcoin. In Financial Cryptography and Data Security - 20th International
Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected
Papers, pages 515–532, 2016.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger.
http://gavwood.com/paper.pdf, 2014.

20

A Figures for the provident adversary

(0, 0) (n− 1, 0)

(n− 1, n− 1)

k

1
2

3 4

5

6

7

8 9 10 11

12 13

14

15

16
17 18

19 20 21 22 23 24

0 2

1 3 4

5 6 7 8 12

9 10 11 13 17 18 20 21 22 23 24

14 15 16 19 ?

Initial
block

Decisive
block

Fig. 7. Secret and public blocks mined during the event ak. White blocks (or light gray arrows)
represent the blockchain integrally mined by honest miners whereas black blocks (or black arrows)
are those secretly mined by A. On this example, n = 17 and A finds the block number n − 1
with a head start of k = 6 blocks. The number inside each block (or near each arrow) indicates
the order in which the corresponding block was mined, irrespective of whether it was broadcast
or kept secret.

21

Fig. 8. Probability PA as a function of α when µ = 1/2 and n = 144 (in the case of Bitcoin, 144
blocks are found in an expected time of one day). The corresponding values of ∆ are 0, 1, 3, 6
and 12 as suggested on the curves. The lower curves represent the inner probability Pr(e0) as a
function of α for µ = 1/2 and various choices of n. The black one corresponds to Pr(e0) when
n = 6 (corresponding, in Bitcoin, to an expected time of one hour), the blue one when n = 36
(six hours), the purple one when n = 144 (one day) and the red one when n = 1008 (one week).

22

