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NONPARAMETRIC PARTIAL CORRELATION 1 

Dana Quade 

University of North Carolina, and Mathematical Center, Amsterdam 

l. INTRODUCTION 

It is often desired to measure the correlation between two variables, 

say X and Y, controlled for a third variable, say Z. Any such measure may 

be called a pallt,i,a.l c.oMei.a.tion, written C(X,YIZ). Here .Q. indicates c.oMe­

~on and l indicates c.ontJLolied 60~; the varying interpretations of these 

two concepts form a basis for distinguishing among the indices proposed so 

far in the literature. In the next three sections I shall briefly review 

·these concepts and the indices derived from them; after.wards I shall present 

a new index with examples and discussion. 

2. CONCEPTS· OF CORRELATION 

Consider first correlation between X and Y, with Z being ignored at 

present. In general terms one may say that X and Y are positively corre­

lated if there is a tendency for high values of X to occur together with 

high values of Y, and low values of X with low values of Y; they are 

negatively correlated if high values of X tend to occur with low values of 

Y, and low X with high Y. And correlation p~ ~e means either posi~ive or 

negative correlation. 
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Quantitative indices of correlation C(X,Y) are generally standardized 

so that 

(i) -1 ~ C(X,Y) ~ 1 or O ~ C(X,Y) ~ 1, 

where the values +1 and -1 are attainable in case of extreme or petr.6e.c.t 

positive or negative correlation; the second set of limits applies to those 

indices which do not distinguish between the two directions. In addition, 

correlation indices are ordinarily required to satisfy certain properties 

of symmetry, such as 

(ii) C(X,Y) = C(Y,X) and C(X,Y) = -C(-X,Y) = -C(X,-Y) = C(-X,-Y). 

Furthermore, it is considered desirable for them to have some form of 

invariance, meaning in general terms that if X and Y are separately trans­

formed to niew variables X' = f(X) and Y' = g(Y), where f and g are taken 

from a suitable class of functions, then 

(iii) C(X' ,Y') = C(X,Y). 

In particular, Un.e,aJL ,i..n.va!Uan.c.e, obtains if C(X' ,Y') = C(X,Y) whenever 

f(X) = ·~ + bXX and g(Y) = ay + byY with both bX and by> b. The more 

restrictive condition of mon.oton.,i..c. ,l..n.va)l,,i..an.c.e,, which is required if the 

index is to be suitable for ordinal data, obtains if C(X', Y') = C(X, Y) 

whenever f and g are both monotonic increasing functions. 

The first and best-known index is undoubtedly the classical p!r..oduc.t­

mome,n.t c.oJr..Jr..,e.£..ation. of Pearson, which may be defined by the formula 

p(X,Y) (covariance of X and Y) = -,--------"...;;.__,;_,cc;;;...;.:;...;..._;.,_e'---,;~~....;;;;.::::..:;;....:::...,'-----------e-

( standard deviation of X).(standard deviation of Y) • 

It is difficult to provide any interpretation of this index unless X and Y 
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are both metric variables. In that case p measures the tendency of the 

population to be concentrated on a straight line; in fact p may well be 

called, as it has been by some authors, the coefficient of linear corre­

lation. We have perfect positive (negative) correlation if the entire 

population lies exactly on a straight line of positive (negative) slope. 

A rival concept of correlation, which requires no more than ordinal 

measurement of X and Y, is based on consideration of pairs of observations, 

for example (X1,Y1) and (X2 ,Y2). Such a pair is called conconda.n:t if 

x1 < x2 and Y1 < Y2 or if x1 > x2 and Y1 > Y2 ; that is, if the observation 

with the smaller value of X also has the smaller value of Y, and the one 

· with the larger X has the larger Y, or, to-put it another way, if the 

ordering of the pair is the same with respect to both variables. The pair 

is c:U6coJuian:t if x1 < x2 and Y1 > Y2 or if x1 > x2 and Y1 < Y2 ; that is, 

if the observation with the smaller X has the larger Y, or if the ordering 

of the pair given by one variable is opposite to the ordering given by the 

other. If x1 = x2 or Y1 = Y2 or both then the pair is .:U..ed. Let Pc, Pn, and 

pT be the respective probabilities that a randomly-chosen pair is concordant, 

discordant, or tied; Pc+ Pn +. pT = 1. Then a possible index of correlation 

·is Kendal..l'~ .tau-a [9], defined as 

This may be interpreted as the difference between the probability that a 

random pair will be concordant and the probability that it will be dis­

cordant; we have perfect positive (negative) correlation if random pairs 

are concordant (discordant) with certainty, as is the case when the entire 
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population lies on some_monotonically increasing (decreasing} curve. Note 

however that if ties can occur, as in particular is the case with cate­

gorized variables, then T cannot reach the limits +1 and -1. Such an - a 

infelicity can be avoided by using a variation on the same theme, namely 

the Goodman-l(J-uMka.l index [6]. 

This may be interpreted as the difference between the conditional proba­

bility that a random pair will be concordant, and the conditional proba­

bility that will be discordant, given that it is not tied; we now have 

perfect positive (negative) correlation if discordant (concordant) pairs 

are impossible, whether tied pairs are possible or not - unless tied pairs 

occur with certainty, in which case y is undefined. Another well-known 

variant,- Kenda..U. 'f.i ;tau-b [ 9 J , may be defined as follows • Let pTX be the 

probability that the random observations (x1,Y1) and (X2 ,Y2 ) will be such 

that x1 = x2 ; that is, the probability that the pair is tied on X, whether 

or not it is tied on Y. Similarly let pTY be the probability of a tie on Y. 

Then 

This index,though often used, has no simple interpretation; its advantages 

are more theoretical in nature. It is not difficult to see that Tb always 

lies between Ta and y - usually it is very nearly halfway between them -

so that O ~ Ta ~ Tb ~ y < 1 or -1 ~ y ~ Tb ~ .-a ~ 0. Note that the only 



5 

difference among these indices, and other variants which appear in the 

literature l:iut which I shall not discuss here, lies in their treatment of 

tied pairs: in fact, if pT = 0 they all coincide. 

A third. basic concept of correlation does not view it as describing 

· a population, but rather operationally as measuring the value of knowing 

something al:iout one variable when one needs to know something about the 

other. For example, suppose we w1ll be asked to guess the component Y of 

an observation (X,Y) taken at random, and that if our guess is Y1 when the 

true value is Y2 then we will suffer some non-negative lo.6-6 L(Y1 ,Y2 ). 

Consider two situations: (1) we will be given no further information before 

we must guess Y; and (2) we will first be told the value of X. Let R1 and 

R2 be the expected loss, or wk, in the two situations, Then an index of 

value of knowing Xis the p-'l.opoJr.:ti..ona.l Jz.e.ducu.on in wk of Situation 2 

as compared with Situation 1 , or · 

PRR(X,Y) = 1 

Since clearly R2 can be no greater t~an R1 we have O 2. PRR < 1; the value 1 

is attained if R2 = O, that is if knowledge of X reduces the risk to zero, 

and PRR = 0 if R2 = R1 , that is, if knowledge of Xis of no value whatever 

for.the purpose of guessing Y. Note that the direction of the correlation 

between X and Y is ignored, and indeed it is irrelevant; with this concept 

an index of association can be constructed even for variables X and Y 

which have no ordering. As just defined, PRR is not symmetric with respect 

to X and Y, but this can be corrected as follows. Suppose that we are 

equally likely to be asked to guess either Y or X, and that in Situation 1 
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we will be given no further.information, but in Situation 2 before we must 

guess the one variable we will be told the value of the other; then just 

redefine R1 a~d R2 , and hence PRR, in the obvious manner. In this generality 

the present concept was first formalized by Goodman and Kruskal [6, Section 

7]; a somewhat less general version is well-known as p1topoJL;t[ona£. Jte.duct[on 

in eJULOlt or PRE. All the above may be further generalized, of course, by 

replacing the requirement to "guess Y" by more general situations then this 

simple prediction. 

Many of' the indices originally based on other concepts of correlation 

can also be given PRE interpretations. For example, the well-known PRE 

interpretation of the product-moment correlation proceeds as follows. 

Suppose we must guess Y when the loss will be equal to squared error. In 

Situation 1 the minimum risk is achieved by using the mean of Y, and is 

then equal to th~ variance, say o2(Y); in Situation 2 it is achieved by 

using the conditional mean of Y given X, and is then equal to the conditional 

variance, say o2 (Y!X). The proportional reduction in risk is then equal to 

1 - a2 (Y!X)/o2 (Y); but this is just p2 (X,Y) if the conditional mean is a 

linear function of X. As another example, suppose two observations (x1,Y1) 

and (X2 ,Y2 ) are to be taken at random, and we will be required to guess 

whether Y1 < y2 or y1 > Y2. If we guess correctly we lose O, and if in-

correctly 1 ll except that if it should happen that Y1 = y 
2 - but we are not 

permitted to make this our guess - then we lose the amount 1 If we are 2. 

given no in:formation about x, and x2 our risk is R1 = ; no matter what 

strategy we adopt for guessing the ordering of Y1 and Y2 ; we may as well 

toss a coin .. But if we are told the ordering of x1 and x2 then we may adopt 

the following minimum-risk guessing scheme: for x1 = x2 toss a coin anyway; 
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but otherwiBe guess the ordering of Y1 and Y2 so as to make the pair con­

cordant (diBcordant) if, is positive (negative). Then the risk turns out 
a 

to be R2 = min(pC,pD) + hT; and the proportional reduction in risk is then 

PRR = I, j. For a PRE interpretation of Goodman and Kruskel's gamma see 
a 

· Costner [3], and for 'b - this one being rather strained - see Wilson [ 19]. 

There are of course many other concepts of correlation, yielding for 

example the familiar Spearman's rho, various form of median and quadrant 

correlation, and more; but since these do not yet seem to have been used in 

measuring partial correlation I shall not treat them here. For further dis­

cussion see the papers by Goodman and Kru_skal [6], [7], and [10].· 

3, CONCEPTS OF CONTROL 

Let us now consider what it .means to control for the variable Z. It 

seems possible to distinguish at least four different concepts in the 

literature, of which the most basic may be called holcUng Z c.on6.:ta..n.:t. The 

usual technique here is to partition the population into strata within 

each of which Z is indeed constant, at least approximately. Then contingency 

tables are displayed, or summary parameters - in particular measures of 

correlation, which may then be called c.ond.Ltlona.£. c.oMef.a.;t[on6 - are pro­

vided, for each of the strata. Of course, to reduce the variation in Z to 

a reasonable range often requires so many strata that the mind cannot com­

prehend thein all, and some may occur with such small probability that with 

any realistic number of observations sampling variation will hide the re­

lationships . they should show.. One way out, suggested by Rosenberg [ 14 J .' 

is standardization: we might call the correlation in the standardized 
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population the partial correlation. Alternatively, we may define the 

partial correlation as an average conditional correlation. This approach 

was formali 1~ed by Goodman and Kruskal [ 6, Section 11 ] , who applied it there 

to their coefficient A, an index most appropriate when X and Y are purely 

·nominal. 

An important index obtained by holding Z constant is Davis' partial 

correlation coefficient based on Goodman and Kruskal's garnma,[2]. Davis 

considers the case where X,Y, and Z are all categorized, so that· the 

population might be displayed as a 3-way contingency table. Let p. be the 
1 

probability that a random observation will have the i-th value of·z, and 

let Pc·(Pn· pT.) be the probability that a random pair will be both tied 1 1:, 1 

on Z at its i-th value and also concordant (discordant, tied) with respect 

to X and Y, so that Pei+ PDi + PTi 

partial correlation as 

y(X,YIZ) = 
LPc1 lPDi 

lPci + lPDi 

2 . . . . . 
= p .• Davis then def1nes·h1s index of 

1 

where l·Pc· (I.pD.) is the total probability that a random pair will be 1 1 1 1 

tied on Zand concordant (discordant) with respect to X and Y. Thus y is 

the difference between the probability that a random pair tied on Z but not 

on X or Y will be concordant with respect to X and Y, and the probability 

that it will be discordant. But if we write y. for the conditional Goodman-
. 1 

Kruskal correlation between X and Y at the i-th level of Z, that_is 

y. = 
1 

Pei - Pni 

Pei +. PDi ' 
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then we see that the partial correlation can be re-expressed as 

that is, y is a weighted average of the conditional correlations in which 

the weight given to the i-th correlation is proportional to the probability 

that a random pair of observations will be tied on Z at its i-th value but 

not tied on X or Y. 

When considered as a w~ighted average, Davis' y may seem to use 

rather unusual weights. Goodman and Kruskal [6] suggested that it might. 

seem natural to use weights proportional to the probabilities of the various 

levels of Z, the p.'s. Another reasonable approach might be to use equal 
1 

weights for all. strata. However, Davis' weights are somewhat simpler in 

this context, and are intuitively reasonable in view of his original def­

inition. Furthermore, as he states, and as was verified empirically in 

considerable Monte Carlo experimentation by Reynolds [13], the three 

weighting schemes do not differ appreciably in typical research situations. 

The second major concept of control may be called ad.jU6:ti..n9 oon Z. To 

do this we procee.d as follows. Let f be a suitable function to use in 

predicting X from Z, in that the nu,lduai. X' ~ X - f(Z) is concentrated 

about zero as closely as possible according to some reasonable criterion. 

Similarly let g be suitable for predicting Y from Z, with Y' = Y - g(Z) 

the corresponding residual. Then let the index of partial correlation 

C(X,YIZ) = C(X',Y'), the total correlation between the residuals. (To corre­

late what might more properly be called adjU6~ed vai.uu, obtained perhaps 

by adding the respective means of X and Y to X' and ,Y', is of course equi-
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valent when the index being used is linearly invariant.} If in particular 

the criterion of concentration is variance, then f and g are the ~eg~U-0ion 

ounc;tlon-0, the conditional means of X and Y given Z, and if product-moment 

correlation is_used, we obtain the classical product-moment partial corre­

lation coefficient, p(X,YIZ). If furthermore it happens that the regression 

functions are linear in Z, and that the conditional variances do not depend 

on Z, then the same result can also be obtained directly from the familiar 

p(X,YIZ) = p(X,Y) - p(X,Z)p(Y,Z) 
/1-p2(x,z)1 l1-p 2(Y,z)1 

' 

which is even used as a def1nition of partial correlation by.some authors. 

The formula can of course be generalized in the well-known manner to allow 

for multiple and curvilinear regression. ·rn principle it would seem possible 

to implement the concept of adjustment by using di~ferent methods of pre­

diction, different indices .of correlation, or poth, but I have not yet 

seen any other partial correlation measures of this type in the literature. 

Although there may be no problem in holding constant a categorical Z, 

Somers [18, p.972] claims that with .a continuous Z methods derived from 

that· concept "would be inapplicable, except by approximation, since each 

subgroup on the control variable would have no more than one observation". 

It must be admitted that in such a case the theoretical average conditional 

correlation generally cannot be estimated without some bias. However, it 

will be shown that this bias can be made· negligible in practice, par~icularly 

by using the techniques.proposed in Section 5. A more important objection 

is that a summary average may have no useful interpretation without the 
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assumption, so far implicit, that the conditional correlations being 

avaraged are not substantially different. For discussion of this point see 

Ploch [11]. The corresponding difficulty with methods based on the concept 

of adjustment, of course, is the need for structural assumptions, that is 

for knowledge of the functional form of the relationships of X and Y to z. 

For example, the product-moment partial correlation as found from the 

simple form~ua is entirely inappropriate unless both X and Y have linear 

regressions on z. 

The two basic concepts of control discussed so far are often confused 

in the literature because of the importance of one special case in which 

they are entirely equivalent: when X, Y, and Z have a joint normal dis­

tribution. In such a population the conditional correlations between X and 

Y given Z = z are the same for every z, and hence also the same as their 

average. In addition, the conditions for applying the simple partial cor­

relation formula hold, and the measure of partial correlation so obtained 

turns out to be identical with the constant conditional correlation. But 

since such a state of affairs obviously cannot be expected in general it 

would seem best always to keep clearly in mind what is to be meant by con­

trolling for Z before attempting to choose an appropriate measure of measure 

of partial .correlation. 

A third concept of control is employed in constructing Kendall's [9] 

partial correlation coefficient. Suppose that X, Y, and Z are all at least 

ordinal, and to simpl'ify matters assume for the moment that ties are im­

possible. Then any randomly-chosen pair of observations such as (x1,Y1,z1) 

and (x2 ,Y2 ,z2 } can be classified as to whether it shows X and Y concordant 

or discordant with Z, the probabilities of these events being arranged as 



in the following fourfold table: 

y 

and 

z 

Concordant· 

Discordant 

12 

X and_Z 

Concordant Discordant 

J?o Px 

Py Pz 

Specifically, p0 is the probability of the pair being non-cll6eolt..dan:t, meaning 

that (X1-x2)(z 1-z2 ) > 0 and (Y 1-Y2)(z1-z2 ) > O, which i~ply that 

(x1-x2)(Y1-Y2 ) > o also; Px is the probability that the pair is X-cll6eolt..dan:t, 

meaning that (x1-x2)(z1-z2 ) < O but (Y1-Y2 )(z1-z2 ) > O, and hence 

(x1~x2 )(Y1-Y2) < O; and similarly_py (pz) is the probability of the pair 

being Y-clloeondan:t (Z-clloeondan:t). Note that, with respect to X and Y, non­

discordant and Z-discordant pairs are concordant, while X- and Y-discordant 

pairs are discordant; hence Pc= p0 + Pz, PD= Px + Py• According to Somers 

[18, p.974], Kendall [9] argues that if the non- and Z-discordant pairs 

predominate over the X- and Y-discordant pairs the partial correlation is 

positive, whereas if the X- and Y-discordant pairs predominate it is nega­

tive; and "if they are proportionately the same, then the partial is zero, 

that is, if the fourfold table exhibits statistical independence". This is 

because the non- and Z-discordant pairs show X and Y "rising and falling 

together, regardless of the change in the control variable", while the X­

and Y-discordant pairs show X and Y "moving consistently in opposite direc­

tions, regardless, again, of the behavior of the control variable". Kendall 

proposed using as an index of partial correlation the well-known ~-coeffi-
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cient computed· fro.m the table: · that is 

.He also achieved the surprising result that the same result is obtained if 

one substitutes the Kendall total correlations into the partial correlation 

formula! This apparent coincidence was first explained by Somers [17]. 

Further development by Hawkes [8], in terms .of a formal "regress~on of 

pairwise differences", suggests that the partial correlation formula is 

still valid if ties can occur - and can even be exte.nded to more than one 

control variable - provided the tau-b version is used for the total corre­

lat~ons; however Somers [18] prefers to discard the ties and calculate the 

~-coefficient from only the untied pairs. A somewhat different line of 

development is pursued by Goodman.[5]. It is difficult to describe his 

approach except in terms of a sample of observations, say (X. ,Y.,Z.) for 
1 1 1 

i-= 1,2, ••• ,n. Then for any.positive integer k < n a fourfold table can be 

constructed which classifies the (n-k) pairs in which the ranks of the two 

values of Z differ by exactly k. The index of association in such a table 

may then be regarded as a partial index of partial association. Note that 

if k is very small then the table includes only pairs in which Z is approx-

. imately constant • 

A final concept of controlling for Z extends to partial correlation 

the proportional reduction in error concept of total correlation. In general 

terms, suppose we will be asked to make a statement about Y, subJect to 

specified losses in case of er~or, in one of two situations: (1) we will be 

given information about Z but not about X; (2} we will be given information 
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about both Zand X. Then the proportional reduction in expected loss for 

the second situation as compared with the first may be taken as a measure 

of partial correlation. Several of the indices of partial correlation 

presented previously can also be given such PRE interpretations. For 

example, the product-moment partial correlation can be obtained just as 

the total correlation, by specifying the loss as the squared error in pre­

dicting Y. AJ.so,a PRE interpretation of the Davis coefficient follows 

from that of Goodman and Kruskal's gamma if the statement we must make is 

a prediction of the ordering on Y of two random observations having the 

same value of Z, where in Situation 1 we will be told only the common value 

of Z-but in Situation 2 we will also be told the ordering on X. It should 

again be noted that the PRE concept cannot produce an index which distin­

guishes positive from negative correlation. 

4. SAMPLE MEASURES AND SAMPLING THEORY 

In the preceding I have defined indices of partial correlation strictly 

in terms of populations. The ~ample analogues I regard as so obvious that 

it is not worthwhile to write them down; suffice it to say that population 

moments are to be replaced by sample momentss that the probability of a 

pair having any given characteristic is to be replaced by the proportion of 

sample pairs having that characteristic, and that Greek letters in the 

notation are to be replaced by the corresponding Latin ones. At any rate, 

the necessary definitions ?an be found in the literature already cited. 

An interesting little example presented by Somers [18] illustrates 

beautifully several of the concepts discussed above. Consider the sample 
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of 6 observations listed in Table 4.1. Holding Z constant immediately 

produces 3 fmbgroups of 2 observations each, namely (a and b), (c and d), 

and (e and f). Within each of these subgroups we see perfect positive 

correlation:, and hence without further ado we put the partial correlation, 

viewed as average conditional correlation, eq_ual to +1. Attempting to adjust 

for Z by means of linear regression - although actually Somers presented 

his example as involving strictly ordinal variables - we calculate total 

product-moment correlations r(X,Z) = r(Y,Z) = O, and hence from the partial 

correlation formula r(X,YIZ) = r(X,Y) = 1/17, However, plots of X and Y 

against Z suggest that linear regression is not appropriate; and on fitting 

q_uadratic functions instead we find perfect positive correlation between 

the. residuals, in agreement with the previous result. 

A complete listing of the 15 possible pairs of observations is given 

in Table 4.~!. With respect to X and Z there are 4 concordant and 4 dis­

cordant pairs, and similarly with respect to Y and Z, so tb(X,Z) = tb(Y,Z) = 

= O. Hence if we use the standard formula to produce an index of partial 

correlation:, as suggested by Hawkes, we will have tb(X,YIZ) = tb(X,Y). Now 

with respect to X and Y we find 5 concordant and 4 discordant pairs, and 

also 4 tied on X and 4 on Y (including 2 tied on both X and Y); thus the 

result is (.~i-4) / ( 15-4) = 1 / 11. Somers himself - and this is his example -

constructs the fourfold table based only on pairs not tied on any variable, 

obtaining 



y 

and 
z 

Concordant 

Discordant 

16 

X and Z 

Concordant Discordant 

1 2 

2 1 

and hence a phi-coefficient equal to -1/3. He remarks 

.. 
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Table 4.1 

Observation 

Identification X y z 

a 1 2 1 

b 2 3 1 

C 2 1 2 

d 3 2 2 

e 1 2 3 

f 2 3 3 
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Table 4.2 

Classification with respect to: 

One variable Two variables All three 

Pair at a time at a time variables 
-

X y Z. XY xz YZ XYZ 

ab u u T C T T T 

ac u u u D C D Y-discordant 

ad u T u T C T T 

ae T T u .T T T T 

af u u u C C C non-discordant 

be T u u T T D T· 

bd u u u D C D Y-discordant 

be u u u C D D Z-discordant 

bf T T u T T T T 

cd u u T C T T T 

ce u u u D D C X-discordant 

cf T u u T T C T 

C 

de u T u T D T T 

df ·u u u D D C X-discordant 

ef u u T C T T T 

Note: C = Concordant, D = Discordant, T = Tied, U = Untied. 
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[18, p.976] that this is an "example from which most investigators, using 

subgroup analysis, would draw an erroneous conclusion". The reader will have 

to judge for himself. At any rate one may well agree with his further remark 

that "partial association among ordinal variables is not a simple notion 

that can be easily summarized in a single statistic". 

So far I have considered only the descriptive and operational inter­

pretations of measures of partial correlation, in light of the basic con­

cepts involved; there now follow a few remarks on the sampling theory, for 

lack of which inference in this area is fraught with difficulties. 

A statistic derived from holding Z constant, namely an average con~ 

ditional correlation, is likely to be approximately normally distributed 

simply because it is an average. Hence only an estimate of variance is 

needed, and for this it suffices to have the first two moments of the con­

ditional correlations. For example, Goodman and Kruskal [7] have given 

suitable estimates of the moments of their index gamma, and thence an 

approximation to the distribution of Davis' coefficient might be obtained. 

This line of thought does does not seem to have been pursued, however, and 

Davis [2] reports himself unable to obtain any sampling theory. (In the 

_next section I shall derive the asymptotic sampling distribution of Davis' 

coefficient from a different approach.) 

The distribution of the product-moment partial correlation coefficient 

is known exactly if the conditions for applying the simple partial corre­

lation formula hold, ·and if in addition X and Y are conditionally jointly 

normal given z. Although this last assumption is unnecessary for an asymp­

totic result, it is clear that strong assumptions are still required, and 

little is known of the effects of departures from them. For the Kendall-
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type measures of partial co~relation there are a few results in large­

sample theory but nothing of any value in practice other than Goodman's 

[5] asymptotiq "partial tests" for his partial indices and even those 

require fairly strong structural assumptions. All in all, for the indices 

of partial correlation in the literature the sampling theory is in a most 

unsatisfactory state. 

5. PARTIAL CORRELATION BASED ON MATCHING 

Suppose there is given a population of variables {X,Y,Z), where X and 

Y are at least ordinal, but Z is entirely without restriction - possibly 

nominal and/or multivariate - and an index of partial correlation between 

X and Y, controlled. for Z, is desired. In this section I shall develop a 

general index based on the concept of correlation in terms of the concor­

dance and discordance of pairs of observations, and on the concept of 

control in terms of holding Z constant or, more precisely, in terms of the 

notion of ma.:tehing. Speaking intuitively, two observations are considered 

matched if their values of Z are "practically" equal. For what follows, 

however, it is sufficient if there has been established any specific rule 

whatever by which it can always be decided whether two observations are 

matched or not. Then an intuitively reasonable way of measuring the partial 

correlation, imitating the wording us0d by Goodman and Kruskal [6] in 

defining their correlation index gamma, is to find how much more probable 

it is to get like than unlike orders with respect to X and Y when pairs of 

observations matched on Z are chosen at random from the population. 

More specifically, let MATCH be the event that a randomly-chosen pair 
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of observations will be matched, and let C (D) be the event that the pair 

will be conc!ordant (discordant) with respect to X and Y. Assume without 

further ado that P{MATCH} > O. Then I propose an index on ma:tQhed QOJVte­

WJ.,on 

e(x,Ylz) = p{c!MATCH} - P{DIMATCH}, 

the difference between the conditional probabilities of concordance and 

discordance of a randomly-chosen pair of observations, given that the pair 

is matched. This index is standardized so that -1 < e < 1: e = 1 if 

P{CIMATCH} == 1, that is, if all matched pairs are necessarily concordant; 

and e = -1 if P{DIMATCH} = 1, that is, if all such pairs are discordant. 

And e = O if P{CIMATCH}.= P{DIMATCH}; th~t is, if matched pairs are eq_ually 

likely to be concordant or disco:r:dant. 

Suppose the index e is to be estimated froni a random sample of nob­

servations (X.,Y.,Z.), i =·1,2, ... ,n. Among the N = n(n-1)/2 possible 
l l. l 

pairs of observations let the number which are matched be NM, and among 

these let the number concordant (discordant) with respect to X and Y be 

NCM. (NDM). ~rhen the obvious estimate of e is 

. T(X;YIZ) = 

the difference between the proportion of.matched pairs in the sample which 

are concordant and•the proportion discordant. (If it should happen that a 

sample contained no matched pairs then T might be arbitrarily set e~ual-to 

zero.) We have -1 < T < 1 also,. with T = 1 if the observed matched pairs 



22 

are all concordant, T = -j if they are all discordant, and T = 0 if there 

are equally as many concordant as discordant matched pairs. 

Let us now consider the sampling distribution of the index T. For 

each i, i = 1,2, ••• ,n, let M. be the number of observations (X.,Y.,Z.), 
l. J J J 

j -:/,i, which are matched with.the observation (X.,Y.,Z.); and let w. be the 
. l._l. l. l. 

number of these which are concordant with (X.,Y.,Z.), less the number dis­
J. l. l. 

cordant. Then EMi = 2NM - the factor 2 appears because each matched pair 

is counted twice - and EWi = 2(NCM-NDM); hence 

EW. 
T(X,YIZ) = _J. EM. 

l. 

This method of computation leads to a convenient formula for the asymptotic 

standard error of T, namely 

s(x,Ylz) = 

Furthermore, the sampling distribution of Tis asymptotically normal: that 

is, for large n the quantity (T-0)/S is approximately a standard normal 

variable. The only assumptions required for this, other than that sampling 

is random, are: 

P{MATCH} > O, -1 < 0 < 1, 2 a >·O. 

The parameter o2 is defined in the Appendix, where the proof of these 

2 results may be found; as is explained there, the possibility of o vanishing 
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seems remote for any real sitation. A corollary of these results is that T 

is always a consistent estimator of e. 

Thus statistical inference based on the index of matched correlation 

is possible, at least in large samples. Let Q be the critical value for a 
. · a · · Col"! fidence. in-ler,1«/ wi 

normal deviate Q, so t~at P{IQl>Q0 } =a.Then, for exampl~, a two-sidedA 

confidence coefficient 100(1-a)%, is 

and the hypothesis H0: e = e0 can be rejected in favor of the alternative 

H1: e # e0 lf and only if the value e0 lies outside this con~idence inter­

val. One-sided tests and confidence intervals can also be constructed, in 

an obvious manner. 

As a special case the hypothesis that e = 0 might be rejected if and 

only if IT/SI~ Q0 • However, for this null hypothesis an alternative test 

i.nvolving only the W's and ·not the M's may be preferable: name~y, reject if 

and only if 

rn w > Q 

2/E(W.-W) 2 - a 
. ·1 

-where W = EW./n. (Do not neglect the factor 2 which may give this formula 
. . . 1 

an unfa.r::.iliar look). 

Goodman and Kruskal [7] have established the upper bound 

2(1-y2 )/(pC+pD) fo~ the variance of the asymptotic distribution of /n(G-y). 

The corresponding upper bound for the index of matched correlation would be: 
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r < 2( 1-e2 ) 
asymptotic variance of Yn(T-0) _ P{MATCH} 

Suppose matched pairs cannot be tied on X or Y, as for example when X and Y 

are continuous, or when ties are simply excluded in the definition of 

matching. Then the upper bourid may be proved valid using Goodman and 

Kruskal's argument exactly, but interpreting their subscript "s" as in­

dicating "concordant and matched", "d" as "discordant and matched", and "t" 

as "not matched". The bound is also easily shown to hold if 0 = O whether 

or not matched pairs can be tied. Unfortunately, I have not been able to 

prove it in the remaining case (matched tied pairs possible, e ~ O), al~ 

though obviously it must hold at least approximately if such·ties are un­

likely ore is small. 

One use for such a bound, as Goodman and Kruskal indicate, is to allow 

the possibility of "conservative" inference procedure in situations where 

use of an asymptotic standard error seems unjustified or its calculation 

is inconvenient. Then, for example, a "conservative" 100(1-a)% confidence 

interval fore is formed by the set of values e which satisfy the quadratic 

inequality 

where the unknown value of P{MATCH} in the bound has been estimated by 

NM/N. A second use for the bound is to show,at least qualitatively, how the 

variance of T decreases to Oas e approaches +1 or -1, and increases as 

the probability of obtaining a match decreases. 



25 

The index of matched correlation may be regarded as a somewhat 

generalized version of partial correlation in the sense of average condi­

tional correlation. Suppose for simplicity that Z is a purely discrete 

random variable. For each possible value z of Z let E(z) be the event that 

two randomly-chosen observations (X1 ,Y1,z1) and (X2 ,Y2,z2 ) have z1 = z2 = z, 

that is, are tied on Z at z. Then the conditional correlation between X 

and Y given Z = z, as measured by Kendall's tau-a, is. 

,(X,YIZ=z) = P{CIE(z)} - P{DIE(z)}. 

Let us now construct an average conditional correlation, or partial corre­

lation. With this form of correlation index, it seems reasonable to weight 

the conditional correlation at z in propprtion to the probability of ob-· 

serving a pair tied at z. This yields 

I P{E{z)} ,(X,YIZ=z) 
,(X,YIZ) = _z _______ _ 

I P{E(z)} 
z 

But, using the definition of ,(X,YIZ=z)_ in terms of conditional probabi­

lities, 

P{E(z)} ,(X,YIZ=z) = P{C and E(z)} - P{D and E(z)}. 

Let TIE be the event that the randomly-chosen pair of observations is tied 

on Z; that is, TIE is the union of all events E(z). Then the denominato;r of 

the last expression for ,(X,YIZ) becomes P{TIE}, the numerator is 
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P{C and TIE} - P{D and TIE}, and hence 

T(X,YIZ) = P{CITIE} - P{DITIE}. 

Thus we see that 

e(x,Ylz) = .(x,Ylz) if MATCH= TIE, 

that is, the index of matched correlation is a true partial correlation, in 

the sense of average conditional correlation, if two observations are 

defined as matched when their values of Z are equal . 

. If the probability function of the discrete random variable Z is h(z), 

so that P{E(z)} = h2(z), the partial correlation can be written 

.(X,YIZ) = 
l h2 (z) T(X,YIZ=z) 

l h2(z) 

If instead we have a continuous Z, with density function h(z), then we may 

write the analogous expression 

J h2(z) T(X,YIZ=z) dz 

.(X,YIZ) = --------­

J h2(z) dz 

where .(X,YIZ=z) is now the correlation within the conditional distribution 

of X and Y given Z = z; but· expressions involving h2 do not have such an 

' intuitive interpretation. In addition, a random sample will now have no 
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tied pairs on which to base a sample estimate.of T. It is here that 

matching becomes invaluable: instead of demanding that all pairs used in 

the sample index of partial correlation be exactly tied, we relax the 

requirement to allow also pairs which are defined as matched though only 

"practically" tied. It is convenient, to introduce here the word toleJta.nc.e 

as a general term to indicate the maximum discrepancy allowed between two 

observations before they must be declared unmatched; for example, if 

MATCH= TIE then the tolerance is zero. Now the sample index T of matched 

correlation strictly estimates the population index e, but in any real 

situation if the tolerance is small then 0 will be essentially equivalent 

to T. The two population indices will ordinarily not quite be identical in 

value, however. A particular example which should be noted is the case 

where X and Y are conditionally independent given Z = z for every z. This 

is sufficient -·although of course not necessary - to imply that each 

conditional correlation T(X,YIZ=z) = O, and hence that the partial corre­

lation T(X,YIZ) = 0 also; but it does not imply that e(X,YIZ) = o. 

It should be clear that what I have been calling the "index" of 

matched correlation is really a whole family of indices, distinguished 

from one another by their definitions of matching. And there is indeed no 

restriction on the definition of matching, beyond the requirement that 

P{MATCH} > O. In particular, by proper choice of the definition of matching 

- th?ugh it may then seem a bit unintuitive~ one can produce several pre­

viously-proposed indices as special cases of the index of matched corre­

lation. For example, suppose we define that "two observations are aiwayf.i 

matched". Then P{MATCH} = 1, and 
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T (X, Y), · 
a 

the total correlation between X and Y, as measured by Kendall's tau-a. In 

this case M. = n-1 for i = 1,2, ••• ,n, and a little algebra will show that 1. 

the sample index of matched correlation T = t , the corresponding sample a . 

index of total correlation. Furthermore, if C. (D.) is the number of ob-1. 1 

servations concordant (discordant) with the observation (X. ,Y.,Z.), then . 1. 1. 1 

the standard error oft 1.s 
a 

where w. = C. - D. for i = 1,2, ••• ,n. As a second example, suppose we . 1. 1. 1. 

define that "two observations are matched if and only if they are not tied 

on X or on Y". Then the event MATCH is just the union of the events C and 

D, and 

P{C} - P{D} I e(x,Ylz) = P{C} + P{D} = y{X,Y z), 

the Goodman-Kruskal index of total correlation. Here W. = C. - D. again, 1. 1. 1. 

and M. = C. + D., for 1. = 1,2, ••• ,n, and the standard error turns out to 1. 1. 1. 

be 

S = ---4--2- /2c~(ED.) 2-2EC.ED.EC.D.+(EC.)2ED~ 
) 1. 1. 1. 1. 1. 1 1. 1. (EC.+ED. 

l. 1 

This expression may be compared with the maximum likelihood estimator of 



29 

a~ymptotic standard deviation given by Goodman and Kruskal [7]; the two are 

asymptotically equivalent. And as a final example, define that "two ob­

servations are matched if and only if they are tied on Z but not tied on 

X or on Y". With this definition the index of matched correlation becomes 

( I ) P{C and TIE} - P{D and TIE} ( I ) 
e X,Y z = P{C and TIE}+ P{D and Tie}= y X,Y z' 

Davis' partial coefficient for Goodman and Kruskal's gamma. If c. (D.) is 
]. ]. 

now redefined as the number of observations which are concordant (dis-

cordant) with the observation (X. ,Y.,Z.) with respect to X and Y and al~o 
]. ]. ]. 

tied with it on Z, then w. = c. - D. and M. = C. + D. just as for the total 
]. ]. ]. ]. ]. ]. 

coetficient, and the asymptotic standard error of the partial coefficient 

has the same formula. Thus we see how statistical inference with Davis' 

coefficient is possible also. 

6. EXAMPLES 

The first example, which will illustrate the method of computation in 

some de.tail, is based on the data of Table 6.1. Let X be the examination 

result, an ordinal variable recorded as A, B, C, D, or F; and let Y be the 

metric variable height, recorded in inches. The variable to be controlled 

for is a bivariate Z of which the first component is the nominal VPriable 

sex (z1) and the second component is IQ (z2 ). 

The sample index of matched correlation between examination result and 

height controlled for sex and IQ~ that is, between X and Y given both z1 

and z2 , is obtained using the values of Mi and Wi shown in the last section 
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of the table. In this computation two children are regarded as matched if 

they are of the same sex and differ in IQ by no more than 10 units. The 

first child, for instance, is therefore matched with exactly two others, 

namely the second and third (for convenience in hand computation the data 

have been sorted on the variables to be controlled for), hence M. = 2; 
J. 

and he is concordant with both of them - in particular, he is the shortest 

of the three, and also received the lowest grade - hence W. = 2 also. The 
J. 

va,lues of M. and W. for the other 24 children can be checked similarly, 
J. J. 

and indeed it would be instructive for the reader to check at least one or 

two more. One may then compute rM. = 96, indicating that there are 48 
J. 

matched pairs of children, and rw. = 10, indicating that there are 5 
J. 

mqre concordant pairs than discordant; hence the index is T = rw./rM. = 
. J. J. 

= 10/96 = .104. (Of the matched pairs, actually 22 are concordant, 17 dis-

cordant, and 9 tied; without modification, however, the computational 

scheme here presented does not provide these numbers.) Having calculated 

r~ = 422, rM.W. = 50, and rw~ = 90, one also finds S = .191. Thus the index 
J. J. J. J. 

is smaller than its standard error and certainly not significantly dif-

ferent from zero in the statistical sense. If this sample could be re­

garded as large, one could take T/8 = .545 as a normal deviate in making 

.such a te~t, and could also produce the 95% ·(say) confidence interval 

r .:t. 1.96s, or (-.270, +.469), for the population index e. However, with 

only 25 observations and 48 matched pairs - which are not independent of 

each other - it is best to be somewhat restrained in making such inferences. 

The first section of. Table 6. 1, labeled "without matching", shows the 

components for the index of total correlation, which can be obtained by 

defining that all pairs are matched, so that M. = n-1 = 24 for all i. We 
J. 

then have 300 matched pairs, of which there are 21 more concordant than 
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Tabl.e 6.1 

SEX, IQ, HEIGHT, AND FINAL EXAMINATION RESULTS FOR A CLASS 

OF FOURTH-GRADE CHILDREN (fictitious data) 

Result Matching Matchtng Matching 
Height Sex IQ Without * of on sex on.IQ ·on sex 
(in.) matching · only only * exam. and IQ 

X y z1 z2 M w M w M w M w . 
F 50 M 85 24 19 12 9 . 4 3 2 2 

D 58 M 92 24 -12 ·12 -3 9 -4 5 -1 
D 54 M 93 24 2 12 5 ·10 2 6 5 . 
A. 56 M 96 24 9 ·12 1 10 2 5 -1 

C 55 M 100 24 3 12 6 10 2 ·6 2 

C 58 M 102 24 -1 12 1 11 0 6 -1 
B· 57 M ·103 24 7 12 2 10 3 5 1 

C 53 M 109 24 3 12 2 10 1 5 1 

F 54 M 115 24 1 12 4 9 -3 4 -2 

B 57 M 118 24 7 12 2 8 3 5 2 
; 

A 49 M 120 24 -21 12 ·-11 7 -6 4 -4 

D 52 M 123 24 7 12 6 7 0 4 0 
' 

B 60 M . 128 24 12 12 6 6 1 3 0 

C 51 -F 83 24 0 11 0 4 -2 1 -1 . 
B 50 F 86 24 -13 11 -6 5 -2 1 -1 

C '52 F 98 24 1 11 0 9 -2 3 : -2 

D 57 F 99 24 -9 11 -9 10 -3 3 -1· 

F· 53 F 105 24 6 1J 0 11 -6 5 2 

C 53 F 106 24 3 11 1 11 1 5 0 
A 54 F 111 24 2 11 5 10 0 4 2 

C 55 F 114 24 3 11 -3 9 2 4 0 

C 51 · F 121 24 0 11 0 8 0 3 1 .. 
C 52 F 131 24 1 11 0 5 3 3 2 

A 55 .F 135 24 7 11 7 3 1 2 2 

B 54 F 140 24 5 11 5 2 2 2 2· 

* within a tolerance of 10 units. 
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discordant (actually there are 122 concordant pairs, 101 discordant, and 

77 tied) and hence the index takes the value T = 21/300 = .070. Its 

standard error may be computed according to the formulas given earlier and 

turns out to be S = .136. Again the correlation is not significant. 

The other two sections of Table 6.1 show the components for indices 

where matching has been performed on only one of the two variables, either 

sex or IQ; the computations proc·eed in exactly the same manner. Results 

are summarized in Table 6.2. Note that the two indices of conditional 

correlation given sex are obtainable almost as byproducts of the computa­

tion for the index of matched (or, in th~s case, partial) correlation given 

sex: to obtain the conditional correlation among males, take.M- and w. the 
1 1 

same as for the matched correlation if the i-th student is male, and take 

Mi= Wi = 0 if the i-th student is femal~; and for the conditional corre-
2 2. 

lation among females do the reverse. The values of LW., LM., LW., LM., and 
1 1 1 1 

LW.M. for the matched correlation indices are equal to the sums of the 
1 1 

corresponding values for the two conditional correlation indices. A similar 

situation will obtain whenever the variable being controlled for is dis-

crete • 

. Now let us consider an example in·which the underlying population 

distribution is known. For i = 1,2~··•,50 let c1i, c2i, and c3i be th~ 

ent~ies in columns 01, 02, and 03 of the table of random normal deviates 

given by Dixon and Massey [4], and for i = 5_1, 52, •.• , 100 continue with 

columns 11, 12, and 13. Define xi= c1i .+ c3i, Yi= c2i + c3i, zi = c3i, 

for i = 1,2, •.• ,100. Then simple considerations show that the population 

total (product-moment) correlation is P(X,Y} =~'with partial correlation 

p(X,YIZ) = O; the corresponding sample values.happen to be r.(X,Y) = ,533, 
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Table 6.2 

Correlation Pair is 
·matched EM. EW. EM~ EM.W. EW~ T s 

if: i i i i i i 

Total (always) 600 42 14400 1008 1726 .070 . 136 

Matched z 1i=z1j 288 30 3324 360 600 . 1 o4 . 165 

on sex 

Conditional z 1i=z1j="male" 156 30 1872 360 374 . . . 192 .• 224 

on male 

Conditional z 1i=z 1j="female" 132 0 1452 0 226 .000 .228 

on female 

Matched· lz2i-z2jl < 10 198 10 1744 88 178 .051 , 133 -
* on IQ 

Matched on z,i=Z1j and 96 10 422 50 90 • 104 .191 
* sex and IQ I z2i -z2j I .::. 1 o 

* . . . . within a tolerance of 10 units. 
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Table 6 .3 

Tolerance for Number of Population 
· matching on z* Matched pairs index 

E NM e 

(X) 4950 ,333 

3.00 4804 ,311 

2.00 4164 .237 

1 • ~)0 3486 . J68 

1.00 2514 .090 
. 

.·75 1942 .055 

.50 1308 .026 

-~~5 674 .007 

0 0 .000 

* . The true standard deviation of Z is crz = 

Sample Standard 
index error 

T s 

,363 ;053 

,343 .052 

.261 .053 

.179 .055 

.086 .060 

.049 .063 

.040 .069 

-.003 .078 

-- --

1 . 000, vri th s = 
z .997. 
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r(X,YIZ) = -.009. In a normal population 

2 .. -1 
-r = - sin p 

1T 

hence -r(X,Y) = 1/3, -r(X,YIZ) = 0. If' two observations (x:,Y. ,z.) and 
1. 1 .1 

(X.,Y.,Z.) are defined to be matched if ·and only if jz.-z. I.::_ e, then with 
1 1 1 1 J 

X, Y, and Z as specified above we have .. 

-r(X,YIZ) 
· 1 . 2 

= -r(e) = 3 P{IQI .::_ /2} , 

where Q is a normal (0,1) v~iable. (The proof of this may be found at the 

enq of the Appendix.) Note that -r(e) decreases steadily from 1/3 to Oas 

decreases from+~ to O. Results of comp~ting the sample index of matched 

correlation for decreasing values of the tolerance e are shown in Table 6.3, 

and these show a similar steady decrease. Note also that as the tolerance 

decreases, and the number of matched pairs correspondingly, tbe standard 

error 1ncreases; this would be expected, of course, on intuitive grounds, 

and also from the form of the upper bound given in Section 5; but the 

increase is not drastic until a.very small tolerance has been reached. 

Three examples will now be presented, using previously published data, 

in which the index of matched correlation may be compared with other 

measures. Consider first the example originally presented by Yule [20] and 

extensively quoted since, in which Xis.the estimated average earnings of 

agricultural labo~ers, Y is the ratio of the number of paupers receiving 

"outdoor" relief.to the numbe;r receiving relief in the workhouse, and~ is 

the percentage of population on relief, for ri =·38 rural districts. The 
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product-moment total correlations are r(X,Y) = -.13, r(X,Z) = -.66, and 

r(Y,Z) = +.60, so that the partial correlation formula gives r(X,Y!Z) = +.44. 

The results of computing the index of matched correlation, summarized in 

Table 6.4, show a similar relationship. 

A second example uses the data of Angell g_uoted by Blalock [ 1 , p. 300] 

for n = 29 non-Southern cities of 100,000 or more. Here Xis an index of 

moral integration "derived by combining crime-rate indices with those for 

welfare effort", Y is an index of hetorogeneity "measured in terms of the· 

relative numbers of nonwhites and foreign-born whites in the population", 

and Z is "a mobility index measuring the relative numbers of persons 

moving in and out of the city". The product-moment total correlations are 

r(X~Y) = -.156, r(X,Z) = -.456, r(Y,Z) = -.513, with partial correlation 

r(X,Y Z) = -.511. Results for the index of matched correlation are summa­

rized in Table 6.5, and as in the previous example they agree nicely .with 

those found by the more standard method. In these two examples the index 

increases in absolute value as the tolerance is reduced, and since a 

correlation is the more accurately determined the farther it is from zero 

this has to some extent cancelled out the otherwise-expected increase in 

standard error. 
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Table 6.4 

Tolerance for Number of Index of Standard 
matching on z* matched pairs matched error 

correlation 

E NM T s 

CX) 703 -.078 .096 

2.00 500 . 136 .089 

1.50 393 .226 .. 092 
' 

1.00 269 .294 . 107 

.50 142 ,331 • 115 

* The standard error of Z is sz = 1.29. 

Table 6.5 

Tolerance for Number of Index of Standard 
t . * ma ching on Z matched pairs matched error 

correlation 

E NM T s 

CX) 406 - • 138 . 100 

20 349 -.209 .090 

15 286 -.294 .079 
. ,. . 

10 215 -.349 .085 

5 125 -.488 • 103 

2 47 -,532 • 134 

1 24 ..... 583 . 165 

* The standard error of Z is sz = 9.66. 
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The last .example uses the data of Hajda quoted by Davis [2], which were 

obtained from a sample survey of Baltimore women. Here Xis a dichotomy, 

taking the value "high" ("low"} if the respondent was above (below) 45 years 

of age; Y is another dichotomy, taking the value "high" ("low") if she had 

. (had not) recently read a book; and Z distinguishes three categories of 

educational attainment, "college", "high school", and "less than high school". 

Two definitions of matching will.be considered: the first, producing a 

straightforward partial correlation coefficient, declares two observations 

matched if they are tied on Z; whereas the second, producing Davis' partial 

coefficient for Goodman and Kruskal's gamma, declares.them matched only if 

they are both tied on Zand also not tied on X or Y. Since it may be 

instructive to follow the calculations for a problem involving categorical 

data, Table 6.6 shows them in some detail. There are listed the 12 possible 

values of (X,Y,Z), and the frequency with which each occurs in the sample, 

labeled F. ~~hen are shown how many observations ·are both tied on Z and 

concordant (discordant, ti~d) with respect to X and Y with each of the ob­

servations at a given value, labeled C (D,T). We have W = C - D; for the 

first definition of matching, M1 = C + D + T, and for the second, M2 = C + D. 

In ~ither case 

and 

s = 

T = 
LFW 
LFM 
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Table 6.6 

Age Book Education Frequency 
Reading 

C D T w M1 M2 
X y z F ,. 

High 104 46 0 302 46 348 46 
High· 

Low 36 0 163 185 -163 348 163 
College 

High 163 0 36 312 -36 348 36 
Low 

Low 46 104 0 244 104 348 104 

High 159 327 0 627 327 954 327 
High 

Low High 179 0 290 664 -290 954 290 

High School 290 0 179 775 -179 954 179 
Low 

Low 327 159 0 795 159 95li 159 

High 54 133 0 412 133 545 133 
High 

Low Less than 335 0 24 521 -24 545 24 
High 

High School 24 0 315 210 -335 545 335 
Low 

Low 133 54 0 491 54 545 54 
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In the second case the equi~alent formula for ·sin terms of C's and D's 

given at the end of section 5 might also be used; in grouped-data form it 

1S 

s = 4 /2Fc2(EFD) 2-2EFCEFDEFCD+(EFC) 2E;D2 
(EFC+EFD) 2 

For the example, EFW = -3718 and EFW2 = 55729114. For the first definition 

of matching, EFM = 1330092, EFM2 = 1073601726, and EFMW = -1531320, yielding 

partial correlation T = -.0028 with S = .0112. For the second definition, 

4 2 2 ( . 1· EFM = 25955 , EFM = EFW this equa ity would hold whenever X and Y are 

both dichotomous, but not in general), and EFMW = ~1070650, yielding Davis' 

coefficient T = -.0143 with S = .0581. Note that both Davis' coefficient 

and its standard error are about.five times larger than when ties on X and 

Y are retained r.ather than discllrded, and the level of significance for 

testing the null hypothesis of no partial correlation is thus about the 

same. The alternative test for this null hypothesis would of course be 

identical for the two definitions of matching, since it depends only on 

the W's. By the way, it is obvious that a number of shortcuts could have 

been taken in the calculations for this rather simple example; a general 

computer program, however, would probably best proceed from the formulas as 

given. 

In this same example the total correlation between age (X) and book 

reading (Y) is -.0596 as measured by t , or -.2412 as measured by G, and 
a 

this is significantly different from zero at a< .01; thus holding education 

constant has reduced the correlation by substantially more than 90%, to a 

clearly insignificant value. On the other hand, using the partial correlation 
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formula with tb as suggested by Hawkes, we calculate tb(X,Y) = -.1206, 

tb(X,Z) = -.2394, and tb(Y,Z) = .4139, and hence tb(X,Ylz) = -.0243, for 

·a reduction of only 80%. And if we adopt Somers' method, we have the four­

fold table 

X and Z 

Cop.cordant Discordant 

·y Concordant 68987 180932 
and 

z Discordant 15600 27456 

from which~= -.0674; this.again illustrates the difference in results 

which can arise from different concepts of control. 

7. DISCUSSION 

Since the sampling theory presented above is strictly asymptotic, you 

may well ask for the distribution of the index of matched ·correlation in 

small samples, or at least for the proper definition of "small" in this 

context. I can give no really satisfac~ory answer at this stage, but offer 

· the following specuiation. The general index T of matched correlation has 

the same form as its special case, the Goodman and Kruskal index G, in that 

it is a ratio of which the denominator is the number of sample pairs 

falling in a specified class and the numerator is the difference between 

the numbers of pairs in two·subclasses of that class. It seem reasonable 

that the validity of asymptotic methods in finite samples may depend most 

directly on the total.number of pairs observed in the special class, which 
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for T consists of pairs which are matched, while for Git consists of pairs 

which are not tied on X or on Y. Fairly extensive sampling experiments by 

Rosenthal [15] for 5x5 cross-classifications over a wide range of true 

values of y showed the distribution of (G-y)/s, where s2 is the maximum 

likelihood estimator of the asymptotic variance of G, to be reasonably 

close to the standard normal in samples of n = 25 or 50 for IYI < .50. The 

probabiltty of a _tie in a 5x5 cross-classification cannot be less than .20, 

and in the representative examples presented by Rosenthal it varies from 

about .25 up to more than .40; hence, since the total number of pairs is 

300 at n = 25 and 1225 at n = 50, it appears that her experiments must 

_ typically have involved some 200 untied pairs at n = 25 and 800 at n = 50. 

One may then speculate that similar results would be obtained for indices of 

matched correlation based on numbers of matched pairs in that range. There 

2 was a tendency for s to underestimate the variance of G, particularly for 

2 larger values of G. Very possibly S tends to underestimate the variance of 

T also: for instance, S = 0 if the matched pairs are all concordant, all 

discordant, or all tied, and this is not unlikely in very small samples. 

Other estimates are, of course_, possible: the one I have used, based on the 

work of Sen [16],_ was chosen almost entirely on the basis of its simpli­

~ity. 

You may also ask for-guidelines in choosing the definition of matching. 

Now, in the preceding I have implicitly assumed that such a definition is 

to be based on substantive considerations, and one might take the attitude 

that this is not really a statistical question at all. Yet I may still offer 

some remarks, particularly for the case where ties on Z are rare or non­

existent. (If ties are common then the simple definition that MATCH= TIE 

should nearly always be satisfactory.) 



Suppose the immediate goal is to estimate the partial correlation as 

defined in Section 5, If the tolerance were infinite, so that all pairs were 

considered matched, then the matched correlation would be equivalent to the 

total correlation. As the tolerance decreases to zero, the population 

matched correlation approaches the partial correlation; b~t in a sample the 

number of matched pairs decreases also, leaving a smaller and smaller basis 

for the estimate, whose variance accordingly increases. Thus the optimal 

tolerance for estimating a partial correlation is a compromise: a large 

value may have too much bias, a small value too much variance. Presumably 

the investigator will first propose a definition of matching based on 

totally non-statistical substantive grounds. If this definition implies too 

few matched pairs, say less than 200, a relaxation might be suggested to 

make the asymptotic theory more tenable. And if the proposed definition 

implies a very large number of matched pairs, say more than 1000, it might 

be tightened to reduce possible bias. On the other hand, it might well be 

in practice that the easily-understood population index of matched corre­

lation would be accepted as the proper object of interest in itself, re­

gardless of whether it equalled the somewhat abstract index of partial 

correlation; then presumably the statistician should comment only on the 

sample size and not on the definition of matching itself. 

A related question of interest to the mathematical statistician is 

this: what happens asymptotically as the sample size increases if the 

definition of matching is simultaneously tightened? Presumably a consistent 

estimator of the partial correlation could be obtained in this manner, but 

the theory has not yet been worked out. Similar questions arise if the 

definition of matching is made relative rather than absolute: for instance, 
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one might decide to pair each observation with the k others most closely 

matched to it, or simply to use the K most closely matched pairs out of the 

total N. Such a decision would confer the advantage of making the number of 

matched pairs fixed instead of random; but again the theory is not available. 

It may be also noted, with respect to this last point, that both 

practical and theoretical problems are raised in attempting to order pairs 

o_f observations according to closeness of matching. In general this req_uires 

defining a sort of fu.tanc.e., function - though it need not have all the 

properties which mathematicians imply by use of.that term - to measure the 

discrepancy between any two points in the sample space. Where such a func­

tion can be defined, however, a generalization of the concept of matching 

is possible. Specifically, let D((x1,Y1,z 1),(x2,Y2,z2)) be the distance, 

or discrepancy, between any two observations (X1,Y 1,z1) and (x2 ,Y2 ,z2 ). 

Then for example one might give to a pair of observations with discrepancy 

D the weight f(d) = 1/D or exp(-D), say. Define 

M. = 
1 

f(D((X.,Y.,Z.),(X.,Y.,Z.)) 
i i 1 J J J 

· for i = 1 , 2 :, .•• ,n, and W i similarly as the difference between weighted sums 

of concordant and discordant pairs, and hence· a generalized index 

T = LW./LM ... It is not difficult to show that the Theorem of the Appendix 
1 1 

applies for such generalized indices also, and thus that the entire asymp-

totic theor;ir is still valid. 

Even if such a generalized index is not contemplated, a distance 

function may still be extremely useful in practice. For example, suppose we 

have a vector-valued Z = (z( 1),z( 2 ), ••• ,Z(m))', and we want to balance off 
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discrepancies due to the various components of Z. This can be accomplished 

conveniently by declaring two observations matched if and only if the 

distance between them is no greater than some fixed amount, which of course 

corresponds to what has been called the tolerance. Then two observations 

may be called matched if they differ little on the average, though they 

may differ more on some components if they are particularly close on others. 

It is often suitable to use distance functions of the form 

D((X.,Y.,Z.),(X.,Y.,Z.)) = (z.-z.)' W(Z.-Z.) 
J. J. -i J J -J -i -J --i -J 

where Wis a matrix of weights. If W = v- 1, where Vis the sample variance 

ma~rix of Z, then D becomes the Mahai.anob,t,6 futanee which gives each com­

ponent of Z equal importance in determining a match. 

It may also be useful to point out, by the way, that in many situa­

tions it will be convenient to match only after first transforming the 

variable z. For example, if Z is the age of an individual, one might 

hesitate to designate a match as "within so many years" on the grounds that 

the sa.me difference in age means more for young individuals than old ones. 

This could be handled easily, however, by transforming Z to log Z, say, 

instead of using Z directly. 

Let us now move on to the troublesome question of ties. In constructing 

an index of correlation based on the notion of concordant and discordant 

pairs, should tied pairs be included or not? The index of matched correla­

tion is defined in sufficient generality that one may have it either way, 

and the choice is to some extent a matter of taste. For one thing, exclu­

sion of tied pairs often simplifies computations, at least hand computations, 
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if only by diminishing the numbers involved; and the sample indices which 

it produces·may be more satisfying since they are greater in magnitude. On 

· the other hand, the theory is perhaps more elegant when matching can be 

defined in terms of the control variables alone. 

But suppose we take the point of view that X and Y, even if not con­

tinuous as recorded, usually represent underlying continuous variables, with 

ties occurring only because the measurements are imprecise or because they 
. 

are grouped afterwards. Then it is a reasonable goal to determine the cor-

relation in the underlying continuous population. (For simplicity, consider 

only the total correlation at present.) We may begih by asking, h9w many of· 

the tied pairs we observe would be found concordant, and how many discor­

dant, if they could be properly resolved? This requires guessing the corre­

lations within subpopulations where the range of X and/or Y is restricted. 

One would ordinarily expect such.subcorrelations to be smaller, on the 

whole, than the correlation for unrestricted X and Y. As an extreme case, 

~et them all equal to zero~ This can be effectively accomplished in the 

sample by adjusting the data so that half the tied pairs are counted as 

concordant and half discordant. Then 

where NC (ND,NT) is the number of concordant (discordant, tied) pairs in 

the data as recorded, and NC (ND) is the number of concordant (discordant) 

pairs after adjustment. And.the adjusted correlation index is 

t' = _N_C ____ N_D_' = Ne 
N 

t 
a 



(the denominator for the adJusted data is unequivocally N, since there are 

now no ties}; that is we get the same result as if we had calculated t 
a 

from the original data. As a second extreme case, set the subcorrelations 

equal to the total correlation. In the sample this amounts to allocating 

the tied pairs in the same proportions as the untied ones. Then 

N' = N' = 
D 

and the adjusted correlation index is 

t' = 

that is, the result is now the same as if we had calculated G from the 

original data. In general, those measures which include ties may be regarded 

as conservative, or pessimistic, since they tend to underestimate the 

strength of any underlying correlation; whereas those which discard ties 

are optimistic, tending to overestimate its strength. Probably in most 

contexts underestimation would be preferable to overestimation, thus 

suggesting that tied pairs be retained. 

On the other hand, at least for the total correlation it is possible 

to compromise, by accepting the index tb which always lies between the other 

two. My personal impression, admittedly based on a rather limited number of 

examples, is that the correlation T of an underlying continuous population 

almost always lies-between the La and y of the modified population determined 

by imposing some grouping on it. Thus tb may well be a good overall estimator 

for realistic cases, since ta tends to declare the correlation somewhat 
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too weak and G makes it much too strong, although peculiar populations can 

be invented to favor any of the three indices. It might also be mentioned 

that considerable numerical work by Reynolds [13] also suggests that G is 

inferior to ta and especially tb, for a somewhat different purpose but 

perhaps for the same reasons. Of course, tb is more difficult to interpret 

in terms of the measurements actually at hand, and it is certainly much 

more .difficult to work with both numerically and theoretically. 

Also, tb is not in general a special case of the index of matched 

correlation. However, the following suggestion may be made. Consider a 

modified index 

where NCM and NDM are as defined in Section 5, and NXM (NYM) is the number 

of matched pairs which are tied on X but not Y (Y but not X). Equivalently, 

in the alternative computational scheme for T, replace M. by the number of 
1 

observations which are matched with the observation (X.,Y.,Z.) and are 
1 1 1 

either concordant or discordant with it, plus half the number of matched 

observations which are tied with it on X but not Y~ or on Y but not X, 

for i = 1,2, ••. ,n; leave W. unchanged. The asymptotic results then hold . 1 

without further modificat~on. If all pairs are considered matched, this 

proposal yields the total correlation index tb if the number of pajrs tied 

on X equals the number tied on Y; otherwise it gives a value between tb 

and ta but ordinarily very close to tb. Further work will be required, of 

course, for a complete evaluation of this proposal. 
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A few remarks may be inade with respect t"o computational matters. It 

is perhaps a disadvantage that the calculation of an index of matched 

correlation must always begin from scratch, since there is no formula by 

which one of these indices can be determined from others previously found. 

Yet the partial correlation·formu.J.~ is sometimes deceptively easy, since its 

numerical instability in the presence of highly correlated variables is 

not always obvious. This is not so with matched correlations, where any 

instability is always clearly indicated, if not by the asymptotic variance 

formula, then certainly by a paucity of matched pairs. Of course, any 

statistic which requires individual consideration of all pairs of obser­

vations is tedious to calculate; even on the computer, although a matched 

correlation program maybe simple and short, the time it requires may be 

long. This computational problem can be avoided by grouping the data, but 

unfortunately the resulting ties reduce the precision of the estimate. 

For large numbers of observations it may be preferable to consider only 

a sample of the possible pairs; but inference procedures would have to be 

modified accordingly. 

In review, let me summarize the comparison between matched correlation, 

as an index of the partial c_orrelation between X and Y given Z, and its 

maJor competitors. Since Davis' coefficient is not a competitor but is 

instead a special case of matched correlation, the main rivals would 

appear to be the product-moment partial correlation. and the Kendall-Somers 

Hawkes measures. Of these the former is inapplicable, or at any rate dif­

ficult to interpret, unless X and Y are metric variables; the latter re­

quire Z to be at least ordinal. Small sample theory for the product-moment 
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partial correlation is available, but only under strong assumptions in­

cluding normality, and even for asymptotic results the form of relationship 

of X and Y to-Z must be known; for the Kendall-type measures sampling 

theory is practically non-existent. On the other hand, th~ proposed new 

index has the following clear advantages: 

1)-The appUeab-Lllty of matched correlation is almost unlimited. It 

may be used to control for a completely arbitrary variable Z, even a multi­

variate Zin which each component separately may be metric, ordinal, or 

purely nominal, provided only that a definition of matching can be supplied. 

And the variables X and Y need be no more than ordinal; including ordered­

categorical. 

· 2) The in.te.Jtpne;ta,tlon of matched correlation is based on two very 

simple concepts: determination as to whether two observations are matched 

or not, and as to whether they are concordant or discordant with respect 

to X and Y. The index may then be defined as the probability that a randomly­

chosen matched pair will be concordant, less the probability that it will 

be discordant. (This definition applies to the sample index also, if we 

think of choosing two observations from the sample, at random and without 

replacement.) 

3) Asymptotic ha.mpUng :theony for matched correlation indices is 

available, without restrictive assumptions, and hence statistical inference 

is possible at least in large samples. 
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APPENDIX 

Consider estimating the value of a parameter win the distribution of 

some random variable Q, possibly multivariate. Define the de.gJte.e. of was 

'the size of the smallest random sample from which w can be estimated with 

no bias and with finite variance. (If no such estimator can be found for a 

any sample size then we may say that the degree of w is infinite.) For 

example, suppose we have a normal population with meanµ and variance o2 • 

If the parameter of interest is w =µ,then the degree is 1 and the corres­

ponding unbiased estimator, which we call the ke.Jtne.l, ~s w(Q1) = Q1• If 

the parameter of interest were w 

be 1 again, and the kernel w(Q1) 

= o2 , withµ known, then the degree would 

2 
= (Q1-µ) • But withµ not known, we require 

at least two observations, that is, the degree is 2. Now there are in-

2 finitely many possible estimators: two candiates are w1 = (Q1-Q2 ) /2 and 

2 w2 = Q1 - Q1Q2 • In such situations we reject those estimators, such as w2 , 

which depend on the ordering of the observations, and define the kernel 

as the symmetric estimator, here w1. This estimator in general is unique 

and has minimum variance. 

Now suppose that the parameter of interest is w, of degree k, with 

kernel w(Q1,Q2 , ••• ,~), and that we have a random sample of size n > k, 

Calculate w for every subset of k observations out of then available; 

take the sum; and divide by the number of such subsets, namely 

(:) ~ n!/k!(n-k)!, the number of combinations of n things taken k at a 

time. The resulting average is called the U-~.t.at-i...t.Ue for estimating w; 

in symbols, 



W = l w(Q. ,Q. '. •. ,Q. )/(kn). 
C 1 1 1 2 1 k 

For example, if w is the population mean, with degree 1 and kernel 

w = z: w(Qi >1<~> = 
C 1 

Z: Q. /n = Q, 
1 

the sample mean. And if w is the population variance, where the mean is 

unknown, then 

where(~)= n(n-1)/2. This can be re-expressed as 

w.:.. 1 \ 
- n(n-1) l 

1<i<j<n 

2 
( Q. -Q.) ' 

1 J 

and after some algebra it can be shown that 

w = _1_ Z: (Q.-Q,)2 = 
n-:l . 1 

1 

2 
s ' 

the usual unbiased estimated of variance. 

U-statistics are always unbiased - that is what the "U" stands for -

and they have various other nice properties. For a summary of the by now 

sizeable body of theory which has been worked out for them, see Chapter 3 
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of Puri and Sen [12]. I shall present here only a few of the most relevant 

results • 

. Let a function ZWW be defined as 

2 
- w • 

Note that the set of k observations on which the first w depends and the 

set of k on which the second depends have exactly one observation in 

common. And let the expected value of ZWW, assuming it_ exists, be sww• 

Then we have 

limn var(W) = k2 sww ~ O, 
n-¼-<X> 

2 or, in words, the asymptotic variance of Wisk sww/n. An estimate of sww 

can be obtained by the following method, due to Sen [16], which also 

provides an alternative expression for W. For each i = 1,2, ••• ,n calculate 

w for only those subsets of k observations out of then available which 

(n-1) include the i-th observation - there are k- 1 of these - and let Wi be 

their sum: in symbols 

w. - }: 
i c. 

i 

w(Q.,Q. ,Q. , ••• ,Q. ). 
i Jl J2 Jk-1 

Then it is not difficult to see that 

, ( n-1) 
W = l W/n k-1 • 
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But in addition it can be ihown that 

is a consistent estimator of ~ww· And furthermor~, if ~WW> 0 then Wis 

asymptotically normally distributed: that is, for large n the ~uantity 

lr'i:(W-w)/klBWW is approximately a standard normal variable. 

2 2 Thus if w is the population variance o , so that w(Q1,Q2 ) = (Q1-Q2 ) /2, 

2 and W = s , then 

The expected value of this can be worked out as 

4 where µ4 is the fourth central moment of Q; if Q is normal then µ 4 = 3o 

Now, according to the theory of U-statistics, the asymptotic variance of 

2 4 s must be 4~WW/n, or {µ 4-o )/n; and this can be verified, since the exact 

varience is well-known, namely 

( 2) 1( n-3 4) var s = - µ 4 - - 1 o • n n-

Furthermore, defining W. as above, some algebraic manipulation shows that 
i 
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and thence that 

}:(Q.-Q)4 
s = _!_( _g__ )3 {--1. __ 

WW 4 n-1 n 

this clearly is a consistent_ estimator of ~WW' though not"generally un­

biased. Finally, U-statistics theory claims that the quantity 

/n(s2-cr2 )/2✓SWW must have asymptotically the standard normal distribution, 

provided only that µ4 exists and is not zero. This can be easily verified 

at least where Q is normal, since then (n-1)s2/cr2 has exactly a chi-square 

distribution with (n-1) degrees of freedom; it is well.-known that a chi­

square variable approaches normality as its degrees of freedom increase 

without limit. 

The results given above have been extended to the joint distribution 

of two U-statis~ics, or indeed of any number of them. Thus in particular 

ifµ is a second parameter, of degree 1, with kernel m(Q1,Q2 , ••• ,Qi), then 

the U-statistic for estimating it is 

M = l m(Q. ,Q. , ... ,Q. )/(~), 
1 1 1 2 1 .t .& C 

2 with asymptotic variance 1 ~MM/n, where ~MM is the expected value of 

ZMM = m(Q1,Q2,···,Qi}m(Ql'Q!+1'''"'Q21-1) - µ2 • 

Let also ~WM be the expected value of 

then as n ➔ 00 the asymptotic joint distribution of the quantities 
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UW = in(W-w) and UM= ln(M-µ) is bivariate normal with means equal to zero, 

2 2 
variances equal to k sww and 1 sMM, and covariance kisWM; this includes 

the possibility of a degenerate normal distribution. 

Finally, if 

M. = l 
l C. 

l 

m(Q.,Q. ,Q. , ••. ,Q. ) 
l J1 J2 J2-1 

for 1 = 1,2, ... ,n, then 

and 

are consistent estimators of sMM and sWM' respectively. 

Starting from these known results, the following general theorem 

concerning the ratio of two U-statistics can be obtained. 

The..oll,.e_m. Let wandµ be parameters of degrees k and 1, respectively, and 

let Wand M be the U-statistics for estimating them from a random sample 

of size n. Then as n ➔ 00 the random variable /n(W/M-w/µ)/s has asymp­

totically the normal distribution with mean O and variance 1 where, using 

the notation established above, 
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2 .. k M SWW 

S· = 
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- 2k!MWSWM + .t2w2sMM 

M4_ 

assuming only thatµ:/- 0 and that 

2 2 2k.tµwr;WM. + .t w r;MM 

µ~ 
> o. 

2 Pnoo6. The quantity cr is defined since by assumption µ :/- 0., Now a·s n + 00 

we have W + w, M + µ, SWW + r;MM, and SWM ~ r;WM, in probability; hence also 

s2 + cr2 , in probability. But since by assumption cr2 > O, the asymptotic 

distribution of ln(W/M-w/µ)/s must be the same as that 

In (w - ~) = In (Wµ-wM). 
cr M µ crMµ 

And then since M +µthe required asymptotic distribution must also be the 

same as that of v'n(Wµ-wM)/?µ 2 . The desired res.ult is then easily verified 

from the known asymptotic joint normal distribution of Wand M. 

RemMk. The ratio of the theorem would be undefined should Mor s vanish, 

and.this may be possible for any finite n; thus in general the ratio has no 

mean and variance. 

Now let us see how this Theorem applies· to the index T of matched 

correlation. We may identify the variabie Q of this Appendix with th~ multi­

variate (X,Y,Z). Suppose we have a random sample of observations 

Q. = (X. ,Y. ,Z.), for i = 1,2 •... ,n. Having established some definition of. 
]. ]. J. ]. . "' 
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matching, consider estimating the parameterµ= P{MATCH}. Its degree is 2, 

and its kernel is 

1 if the observations Q1 and Q2 are matched 

We then have 

M. = 
l 

0 otherwise. 

I m(Q1,Q2), 
j#i 

l = 1,2, ••. ,n, 

which agrees with the definition, given in Section 5, that M. is the 
l 

number of observations matched with the i-th observation; and the 

U-statistic for estimatingµ turns out to be M = NM/N. Similarly, the para­

meter 

w = P{C and MATCH} - P{D and MATCH} 

is also of degree 2; its kernel is 

1 if Q1 and Q2 are concordant and matched 

w( Q1 ,Q2) = -1 if Q1 and Q2 are discordant and mate!hed 

0 if Q1 and Q2 are tied or unmatched, 

corresponding to this we have 



w-. = - l w(Q1 ,Q2L 
1. j;li 
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1. = 1,2, •.• ,n, 

and the U-statistic for estimating w turns out to be W = (NCM-NDM)/N. Then 

finally the sample index is T = W/M, and the population ipdex is 0 = w/µ. 

After substituting k = l = 2 into their definitions, a little algebra 

shows that 

and 

1 wi 2 
SWW = - 1 L(-1 - W) , n- n-

M. . 
S = - 1- L(-1 · - M>2 MM n-1 n-1 ' 

1 W. M. 
S = - L(-1 - W)(-2:.1 - M), 

WM n-1 n-.l n-

and thence 

2 4n2 · _2 · 2 · 2 2 
s = _ ___,.;.;;.;;;.___.,...4 {LW-:-(LM.) -2LW.LM.LW.M.+(LW.) LM.} 

( n-1 ) ( LM. ) 1 1 1 1 1 1 1 1 
1. 

n-1 
, 

where Sis as defined in Section 5. Now when this result is substituted 

into the Theorem we find that the quantity /.(n-1)/n(T-0)/S is asymptotically a 

nor~al (0,1) variable, but ~his agrees with Section 5, since for large n 

the factor /(n-1)/n can. be ignored. 
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The as~mmption that 

may be interpreted as follows. Let F(Q) be the distribution function of 

Q = (X,Y,Z). Then 

2 
- w , 

and hence 

where 

Now clearly ri = 0 is possible only if f r(Q1 ,Q2 )dF(Q2 ) = 0 with probab­

ility 1 under F; that is, if 



f w(R,Q) dF(Q) 

P(R) = ------ = ~ = 0. 

f m(R,Q} dF(Q) µ 

But P(R) is seen to be the probability that if an observation Q matched 

with the specified point R is drawn at random it will be concordant with R, 

less the probability that it will be discordant with R: if this probability 

' is totally independent of R, that is of all the components (X,Y,Z) of R, 

- 2 . . then and on.Ly then can a = O. This does occur in the extreme cases where 

8 = +1 or -1; otherwise, quoting Goodman and Kruskal in a simila~ context 

[7, p.364l "we suggest that this is an unlikely state of affairs in most appli­

cations". Thus for practical purposes one may regard the asymptotic results 

for the sample index of matched correlation as valid provia.ed only that the 

probability of a match is positiye and that the population index is neither 

+1 nor -1. 

For the following argument I am indebted to an anonymous ·referee of 

an earlier version of this paper. It yields the population value of the 

index of matched correlation in the second example of Section 6. Let E(z 1,z2 ) 

be the event th~t z 1 = z1 and z2 = z2 in two random observations (Xi,Yi,zi) 

i = 1,2, and let the conditional joint distribution of U = x1-x2 and. 

V = Y1-Y2 given E(z 1,z2 ) be F(u,vlz1'z2 ) •. Let also G(z) be the distribution 

function of Z. Then 
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If matching is defined in terms of Z alone, then the index of matched 

correlation is 

u W(z 1,z2 ) dG(z 1) dG(z2 ) 

e = 

ff dG(z 1) dG(z2 )_ 

M 

where Mis the set of pairs (z 1,z2 ) which are considered matched. If Mis 

the region where lz 1-z2 1.:. s, and if His the distribution function of the 

difference between two independent Z's, then the denominator of e is 

P{MATCH} = H(s) - H(-s) = 2H(s) - 1 

since H must be symmetric about .zero. Now'if in addition we have 

X. = A1. + A3 ., Y. = A2 . + A3., Z. = A3~, where the A's are independent 
i 1 1 1 1 1 1 • 

and identically distributed, then 



and 

Thus the numerator of 0 is 

£ 

J 2 1 3 [1 - 2H(e)J dH(e) = 3 [2H(e) - 1] 

-£ 

and finally 

0 = .1. [2H(e) - 1]2 = .:!. P2{MATCH}. 
3 3 

For the case where Z is a normal (0,1) variable, 

It may be noted that the first part of this argument gives a general 

approach to the evaluation of population indices of matched correlation. 


