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NONPARAMETRIC PARTIAL CORRELATION 1

Dana Quade

University of North Carolina, and Mathematical Center, Amsterdam

1. INTRODUCTION

It is often desired to measure the correlation between two variables,
say X and Y, controlled for a third variable, say Z. Any such measure may
be called a partial correlation, written C(X,Y|Z). Here C indicates conre-
Zai@on and l_indicates controlled forn; the varying interpretations of these
two concepts form a basis for distinguishing among the indices proposed so
far in the literature. In the next three sections I shall briefly review

- these concepts and the indices derived from them; afterwards I shall present

a new index with examples and discussion.

2. CONCEPTS OF CORRELATION

Consider firét correlation between X and Y, with Z being ignored at
p?esent. Iﬁ genefal terms one may say that X and Y are positively corre-
lafed if there is a tendency for high values Qf X to occur together with
high values of Y, and low values of X with low values of Y; they are
negatively correlated if high values of X tend to occur with low values of
Y, and low X with high Y. Aﬁd correlation per 4e means either positive or

negative correlation.



Quantitative indices of correlation C(X,Y) are generally standardized

so that

(i) -1 <c(X,Y) <1 or 0<C(XY) <1,

where the valués +1 and -1 are attaipable in case of extreme or perfect
.positive or negative correlation; the second set of limits applies to those
indices which do not distinguish between the two directiogs. In addition,
correlation indices are'ordinariiy required to satisfy'éertaiﬁ proﬁerties

of symmetry, such as

(ii) c¢(x,Y) = ¢(Y,X) and C(X,Y) = -C(-X,Y) = -C(X,-Y) = C(-X, —Y)
Furthermore, it is considered desirable for them to have some form of
invariance, meaning in genefal terms that if X and Y are sepérately trans-
forﬁedito new variables X' = f(X) and Y' = g(Y), where £ and g are taken

from a suitable class of functions, then

(iii) c(x',Y') = Cc(X,Y).

In particular, Linean invailance obtains if d(X' ,Y') = C(X,Y) whenever
£(X) = aX + by X and g(Y) = ay + b Y Wlth both by and by > 0. The more
restrictive condition of monofonic Ainvariance, which is reguired if the
index ié to be suitable for ordinal4data, obtaiﬁs if C(X',Y‘) = C(X,Y)
" whenever f and g,are.both monotonic incréasing functions.

The first and best-known index is undoubtedly the classical product-

moment correlation of Pearson, which may be defined by the formula

(covarlance of X and Y)
(standard deviation of X).(standard deviation of Y) °

p(X,Y) =

It is difficult to provide any interpretation of this index unless X and Y



are both metric variablés. In that casé [ méasurés thé tendency of the
population to be concentrated on a straigh% line; in fact p méy well be
4called, as i1t has been by some authors, the coefficient of linear corre-
lation. We have perfect positive (negative) correlation if the entire
population lies exactly on a straight line of positive (negative) slope.

A rival concept of correlation, which requires no more than ordinal
measurement of X and Y, is based on consideration of pairs of observations,
for example (X1,Y1) and (X2,Y2). Such a pair is called concordant if

X, < X, and Y1 <Y or if X, > X, and Y, > Y_; that is, if the observation

1 2 2 1 2 1 23

with the smaller value of X also has the smaller value of Y, and the one
-with the larger X has the larger Y, or, to put it another way, if the
ordering of the pair is the same with respect to both variables. The pair

_is discondant if X, < X, and Y, > Y. or if X, > X, and Y, < Y.; that is,

15 %2 17 %2 17 %2 1S tab
if the observation with the smaller X has the larger Y, or if the ordering
of the pair given by one variable is opposite to the ordering given by the
other. If X1 = X2 or Y1 = Y2

Pp be the respective probabilities that a randomly-chosen pair is concordant,

or both then the pair is fied. Let Py» Pp» and

discordant, or tied; Po + Py +Pp = 1. Then a possible index of correlation

is Kendaﬂﬁ'b tau-a [9], defined as
1, (X,Y) = p, - pp-

This may be interprefed as the difference between the probability that a
random pair will be concordant and the probability that it will be dis-
cordant; we have perfect positive (negative) correlation if random pairs

are concordant (discordant) with certainty, as is the case when the entire



population lies on some monotonically incréasihg (décréasing) curve. Note
however that if ties can occur, as in particular is the case with cate-
gorized variables, then T, cannot reach the limits +1 and -1. Such an
infeliéity can be avoided by using a variation on the same theme, namely

the Goodman-Kuuskal index [6]

Pe " P _Pc " %
Pc*P  T-Pp

y(X,Y) =. .
This may be interpretéd as the difference between the conditional proba-
bility that a random pair will be concordant, and the conditional proba-
bility that will be discordant, given that it is nét tied; we now have
perfect positive (negative) correlation if discordant (concordant) pairs
are impossible, whether tied paifs are possible or not - unless tied pairs
occur with certainty, in which case y is undefined. Another well-known
variant, Kendafl's tau-b [9], may be defined as follows. Let Ppy be thé
probability that the random observations (X1,Y1) and (X2,Y2) will be such

that X, = X

1 that is, the probability that the pair is tied on X, whether

2;
or not it is tied on Y. Similarly let Poy be the probability of a tie on Y.

Then

Pc = Pp

Jq-pTi /1

Tb(X,Y) = :
~Ppy

This index, though often used, has no simple interpretation; its advantages

are more theoretical in nature. It is not difficult to see that Ty always

lies between Ty, and y - usually it 1s very nearly halfway between them -

§0 that 0 < 7 <t <y <1lor -1 <y <1 <1 <0. Note that the only

b a



difference among these indicés, and othér variants which'appéar in the
literature but which I shall not diécuss here, lies in their treatment of -
vtied pairs:_in fact, if Pp = 0 they all coincide.

A third basic concept of correlation does not>#iewvit as describing
- a population, but rather operationaily as measufing the value of knowing
something about one variable when one needs to know soﬁething about the
other. For example, suppose we will be asked to guess the_cogponent Y of
an observation (X,Y) takeﬁ at random, and that if our guess is Y, when the

1

true value is Y2 then we will suffer some'non—negative L0545 L(Y1,Y2).

Consider two situations: (1) we will be given no further information before
we must guess Y; and (2) we will first be told the value of X. Let R, and
R2 be the expected loss, or nisk, in the two situations. Then an index of

value of knowing X is the proportional reduction in risk of Situation 2

as compared with Situation 1, or’

w‘ o
n

PRR(X,Y) = 1 -

we have 0 < PRR 5_1; the value 1

Since clearlyﬁRgcan be no greater than R1

is attained if R 0, that is if knowledge of X reduces the risk to zero,

2

and PRR = 0 if R, = R], that is, if knowledge of X is of no value whatever

2
- for.the purpose of guessing Y. Note that ﬁhe-direction of the correlation
between X and Y is ignored, and indeed,it is irrelevant; with this concept
an index of association can be constructed even for variables X and Y

which have no ordering; As 5ust defined, PRR is not symmetric wiﬁh réspect

to X and Y, but this can be corrected as follqws. Suppose that we are

equally likely to be asked to guess either Y or X, and that in Situation 1



we will be given no further.information, but in Situation 2 before we must
guess the one variable ﬁe will be told the value of the other; then just
'redefine R1 and R2, and hence PRR, in the obvious manner. In this generality
the present concept was first formalized by Goodman and Kruskal [6, Section
71; a somewhat less general version is well-known as proportional reduction
in QULORL or PRE. All the above may be further generalized, of course, by
replacing fhe requirement to "guess Y" by more general situations then this
simple prediction.

Many of the indices originally based on other concepts of correlation
can also be given PRE interpretations. For example, the well-known PRE
interpretation of the product-moment correlation proceeds as follows.
Suppose we must guess Y when the loss will be equal to squared error. In
Situation 1 the minimum risk is achieved by using the mean of Y, and is
then equal to the variance, say 02(Y); in Situation 2 it 1s achieved by
using the conditional mean of Y given X, and is then equal to the conditional
variance, say GZ(YIX). The proportional reduction in risk is then equal to
1 - 02(Y|X)/02(Y); but this is just p2(X,Y) if the conditional mean is a
linear function of X. As another example, suppose‘two observations (X1,Y1)
and (X2,Y2) are to be taken at random, and we will be required to guess
whether Y1 < Y2 or Y1 > Y2. If>ﬁe guess correctly.we lose 0, and if in-
correctly 1, except that if it should happeq that Y1 =‘Y2 - but we are not
permitted to make this our guess - then we lose the amount 3. If we are
giveﬁ no information about X1 and X2 our risk is R1 = 3 no matter what

strategy we adopt for guessing the ordering of Y1 and Y2; we may as well

toss a coin. But if we are told the ordering of X, and X, then we may adopt

2

the following minimum-risk guessing scheme: for X1 = X2 toss a coin anyway;



but otherwise guess the ordering of Yj and Y2 so as to make the pair con-

cordant (diécordant) if T, is positive (nggative). Then the risk turns out
to ﬁe R2 = min(pc,pD) + %pT; and the proportional reduction in risk is then
PRR = |7_|. For a PRE interpretation of Goodman and Kruskel's gamma see

- Costner [3], and for 1, - this one Being rather strained - see Wilson [191].

b
There are of course many other concepts of correlation, yielding for

example the familiar Spearman's rho, various form of medién and quadrant

correlation, and more; but since these do not yet seem to have been used in

measuring partial correlation I shall not treat them here. For further dis-

cussion see the papers by Goodman and Kruskal [6], [7], and [10]."

3. CONCEPTS OF CONTROL

Let us now consider what it means to control for the variable Z. It
seems possible to distinguish at least four diffe?ent concepfs in the
literature, of which the most basic may be célied holding 7 constant. The
usual technique here is to partition‘the population into strata within
each of which Z is indeed cohstant, at least approximately. Then contingency
tables are displayed, or summary}pafameters - in particular measures of
correlation, which mﬁy then be called coﬁditionaﬁ correlations - are pro-

_ vidgd, for each of the strata. Of dourse, to reduce the variation in Z to

a reasoﬁable range often requires so many étrata that the mind cannot com-
prehend them all, and some may occur Witp such small probability that with
any realistic number of observations sampling variation will hide the re- |

lationships .- they should show. One way out, suggested by Rosenberg [1&]?

is standardization: we might call the correlation in the standardized



population the partial corrélatioh; Altérnativély, wé may define the
‘partial corfelation as an average conditional correlation. This approach
was formalized by Goodman and Kruskal [6, Section 11], who applied it there
to their coefficient A, an index most appropriate when X and Y are purely
‘nominal. | |

An important index obtained by holding Z constant is Davis' partial
correlation coefficient based Qn.Goodman and Kruskal'S'gamma;[QJ;bﬁavis
considers the case where X,Y, and Z are all categorized, so that the
population might be displayed as a 3-way éontingency table; Let Pp; be the
probability that a random observation will have the‘i-th value of Z, and
let PCi(PDi,pTi) be the probability that a random pair willibe both tied
on Z at its i—th'value and also concordant (discordant, tied) with respect
to X and Y,.so that Po; * bDi + Pp; = pi‘ Davis then defipes‘his-index of

partial correlation as

v(X,¥]2) = Lo - Loy

]
Ipes * IPpg

where zipci'(zipDi) is the total probability that a random pair will be

. tied on Z and concordant (discordant) ﬁith respect to X and Y. Thus y is

the difference between the probability that a random pair tied on Z bﬁt not

“on X or ¥ will 5e concordant with respect to X and Y, and the probability

that it will be discordant. But if we Writein for the conditional Goodman-

Kruskal correlation between X and Y at the i-th level of Z, that is |
Pei ~ Ppi

Yi B Pci +.PDi ?



then we see that the partial correlation can be re-expressed as

that is, v is a weighted average of the conditional correlations in which
the weight given to the i-th correlation is proportional to the probability
that a random pair of observations will be tied on Z at its i-th value but
not tied on X or Y.

When considered as a wgighted average, Davis' y may seem to use
rather unusual weights. Goodman and Krusgal [6] suggested that it might
_ seem natural to use weights proportional to the probabilitie; of the various
levgls of Z, the pi‘s. Another reasonable approach might be to use equal
weights for all strata. However, Davis' weights are somewhat simpler in
this context, and are intuitively reasonable in view of his original def-
inition. Furthermore, as he states, and as was verified empirically in
considerable Monte Carlo experimentation by Reynolds [13], the three
weighting schemes do not differ appreciably in typical research situations.

The second major concept of control may be called adjusting for Z. To
.do this we proceed as follows. Let f be a suitable fﬁnction to use in
predictiné'X from Z, in that the zesidual X' = X - £(2) is concentrated
about zero as closely as possible according to some reasonable criterion.
Similarly let g be suitable for predicting Y from Z, with Y' =Y - g(z)
the correspénding residual. Then let the index of partial correlatién
C(X,YIZ) = C(X',Y'), the total correlation between the residuals. (To corre-
late what might more properly be called adjusted values, obtained perhaps

by adding the respective means of X and Y to X' and Y', is of course equi-
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valent when the index being uséd is linéarly invariant.) If in particular
the criterion‘of concentration is variance, then f and g are the hegression
“punctions, the éonditional means of X and Y given Z, and if product-moment
corrélation is used, we obtain the classical product-moment partial corre-
lation coefficient, p(X,YlZ). If furthermore it happens that the regression
functions are linear in Z, and that the conditional variances do not depend

on Z, then the same result can also be obtained directly from the familiar

partial cowrelation formula: : e

D(X,Y) - Q(X,Z)Q(Y,Z) R
f1-0%(x,2) V1-0°(1,2)

p'(X,YIZ) =

which is even used as a definition of partial éorrelation by some authors.
The formula can of course be generalized in the well-known manner to allow
for multiple and curvilinear regression. In principle it would seem possible
to implement the concept of adjuétment by using.different methods of pre-
diction, different indices'of correlation, or both, but I have not yet
éeen any other partial correlation measures of this type ip the literature.
Although there may be no problem in holding constant a categorical Z,
Somers [18, p.972] claims that with a continuous Z methods derived from
that concept "would be inappliéable, e#cept by appfoximation, since each
subgroup on the control variable would have no more than one observation'".
It must be admifted that in such a case the theoretical average conditional
correlation generally cannot be estimated without some bias. However, it
will be shown that this bias can be made negligible in practice, particﬁlarly:
by using the techniques.proposed in Section 5. A more important objection |

is that a summary'average may.have no useful interpretation without the’
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assumption, so far implicit; thét thé ébn&itionél corrélations béing
avaraged are not substantially different. For discussion of this point see
4Ploch [11]. The corresponding difficulty with methods based on the concept
of adjustment, of course, is the need for structural assumptions, that is
for knowledge of the functional form of the relationships of X and Y to Z.
For example, the préduct-moment partial correlation as found from the
simple formula is entirely inappropriate unless both X and Y have linear
regressions on Z.

The two basic concepts of cont?ol discussed so far are often confused
in the literature because of the importance of one special case in which
~they are entirely equivalent: when X, Y, and Z have a joint normal dis-
tribution. In such a population the conditional correlations between X and
. Y given Z = z afe the same for every z, and hence also the same as their
average. In addition, the conditions for applying the simple partial cor-
relation formula hold, and the measuré of partial correlation so obtained
turns out to be identical with the constant conditional correlation. But
since such a state of affairs obviously cannot be expected in general it
would seem best always to keep. clearly in mind what is to be meant by con-
~trolliné for 7 before attempting to choose an appropriate measure of measure
of partial correlation.

A third concept of control is employed in constructing Kendall's t9]
partial correlation coefficient. Suppose that X, Y, and Z are all at least
ordinal, and to simplify matters assume for the moment that ties ére im-
possible. Then any randomly-chosen pair of observations such as (X1,Y1,Z1)

and (X2,Y 22) can be classified as to whether it shows X and Y concordant

2’

or discordant with Z, the probabilities of these events being arranged as
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in the following fourfold table:

X and Z

Concordant Discordant

Y Concordant’ Pg PX
and
Z Discordant Py Py

Specifically,po is the probability of the pair being non-discordant, meaning

that (x1—x2)(z1—z ) > 0 and (Y1—Y2)(Z1-22) > 0, which imply that

2
(X1-X2)(Y1—Y2) > 0 also; py is the probability that the pair is X-discordant,
meaning that (X,-X,)(2Z,-Z,) < 0 but (¥,-¥,)(2,-2,) > 0, and hénge
(X1;X2)(Y1—Y2) < 0; and similarly.pY (pZ) is the probability of the pair
being Y-discorndant (Z-discordant). Note that, with respect to X and Y, non-
discordant and Z;discordant pairs are concordant, while X~ and Y-discordant
pairs are discofdant; hence Po = Pg + Py» P =py * pi. According to Somers
[18, p.9T4], Kendall [9] argues that if the non- and Z-discordant pairs

. predominate over the X- and Y-discordant pairs the partial correlation is
positive, whereas ifvthe X- and Y-discordant pairs predominate it is nega-
tive; and "if they are proportionately the same, then the partial is zero,
that is, if the fourfold table exhibits statistical independence". This is
because the non- and Z-discordant pairs show X and Y "rising and falling
together, regardless of the change in the confrol variable", while the X-

and Y-discordant pairs show X and Y "moving consistently in opposite direc-

tions, regardless, again, of the behavior of the control variable". Kendall

proposed using as an index of partial correlation the well-known ¢-coeffi-
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cient computed from the table: that is

- PGP, ~ PyPy
6(x,Y]2) = S :
/(x PPy ) (Py*P, ) (Potey ) (Pytp,, )

He also achieved the surprising result that the same result is obtained if
one substitutes the Kendall total correlations into theApartiai correlation
formula! This apparent coincidence was first explained by Somers [17],
Further development by Hawkes [8], in terms .of a formal "regr;essi_on of
pairwise differences'", suggests that the partial correlation formula is
still valid if ties can occur - and can even be extehded to more than one
control variable - provided the tau-b version is used for the total corre-
lations; however Somers [18] prefers to discard the tieé and calculate the
¢—coefficieht from only the untied pairs..A somewhat different line of
development is pursued by Goodman [5]. It is difficult to describe his
approach except in terms of a sample of observatiogs, say (Xi’Yi’Zi) for
i=1,2,...,n. Then for any positive integer k'< n a fourfold table can be
constructed which classifies the (n-k) pairs in which the ranks of the two
values of Z differ by exactly-k. The index of association in such a table
may then be regarded as a partial inaex of partial association. Note that
if k is very small then the table includeé only pairs in which Z is approX-
_iﬁaﬁely constant. .

A final concept of controlling for Z éxtends to partial correlation
the proportional reduction in error concgpt of total correlation. In general
terms, suppose we will be asked to make a statement about Y, subject to
specified losses in case‘bf error, in one of two situations: (1) we wil; be

given information about Z but not about X; (2) we will be given information
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about both Z and X. Then the proportional reduction in expected4loss for
the second situation as compared with the first may be taken as a measure
of partial correlation. Several of the indices of partial correlation
presented previously can also be given such PRE interpretations. For
example, the product-moment partial correlation can be obéained just as
the total correlation, by specifying the loss as the squared error in pre-
dicting Y, Also, a PRE interpretation of the Davis coefficient follows
from that of Goodman and Kruskal's gamma if the statement we must make is
a prediction of the ordering on Y of two random observations having the
same value of Z, where in Situation 1 we will be told only the common value
- of Z but in Situation 2 we will also be told the ordering on X. It should
again be noted that the PRE concept cannot produce an index which distin-

guishes positive from negative correlation.

4. SAMPLE MEASURES AND SAMPLING THEORY

In the preceding I have defined indices of partial correlation strictly
_in terms of populations. The sample aﬁalogues I regard as so obvious that
_it is ﬁdt worthwhile to write them down; suffice it fo say that population
moments érg to be replaced by sample moments, that the probability of a
pair having any given characteristic is to be replaced by the proportion of
sample palrs having that characteristic, and that Greek letters in the
notation are to be réplaced by the corresponding Latin ones. At any rate,
the necessary definitions can be found in the literature already cited.

An interesting little exampie presented by Somers [18] illustrates

beautifully several of the concepts discussed above. Consider the sample
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of 6 observations listed in Table L.1. Holding Z constant immediately
produces 3 subgroups of 2 observations each, namely (a and b); (c and 4),
and (e and f). Within each of these subgroups we see perfect positive
correlation, and hence without further ado we put the partial correlation,
viewed as average conditional correlation, equal to +1. At%empting to adjust
for 7 by means of linear regression - although actually Somers presented
his example as involving strictly ordinal variables - we calculate total
product-moment correlations r(X,Z) = r(Y,Z2) = 0, and hence from the partial
correlation formula r(X;YIZ) = r(X,Y) = 1/17. However, plots of X and Y
against Z suggest that linear regression is not appropriate; and on fitting
-quadratic functions instead we find perfect positive correlation between
the. residuals, in agreement with the previous result.

A complete-listing of the 15 possible pairs of observations is given
in Table L.2. With respect to X and Z there are 4 concordant and 4 dis-
cordant pairs, and similarly with respect to Y and Z, so tb(X,Z) = tb(Y,Z) =
= 0. Hence if we use the standard formula to produce an index of partial
correlation, as suggested by Hawkes, we will have tb(X,YlZ) = tb(X,Y). Now
with respect to X and Y we find 5 concordant and k4 discordant pairs, and
‘also 4 tied on X and 4 on Y (including 2 tied on both X and Y); thus the
result is (5-4)/(15-k) = 1/11. Somers himself - and this is his example -
constructs the fourfold table based only on pairs not tied on any variable,

obtaining
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X and Z

Concordant, Discordant

Y Concordant 1 2
and- - :
7 Discordant 2 1

and hence a phi-coefficient equal to -1/3. He remarks
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Table 4.1
Observation
Tdentification X
a 1
b 2
c 2
d 3
e 1
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Table L.2

Classification with respect to:

One variable Two variables A1l three
Pair at a time at a time variables
X Y XY X7 YZ ;CYZ
ab U U C T T T
‘ac " U U U D C D Y-discordant
ad U T U T C T T
ae T T U T T T T
af U U U C C C non-discordant
be T U U T T D T-
bd U U U D C D Y-discordant
be U U U c D D Z-discordant
bf T T U T T T T
cd U U c T T T
ce U 8] U D D C X-discordant
cf T U U T T c T
de U T U - T D T T
arf U 8] U D D C X-discordant
ef U U T C T T T

Note: C = Concordant, D = Discordant, T = Tied, U = Untied.
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[18, p.976] that this is an "example from which most investigators, using
subgroup analysis, would draw an erroneous conclusion". The reader will have
to judge for himself. At any rate one may well agree with his further remark
that "partial association aﬁong ordinal variables is not a simple notion
that can be easily summarized in a single statistic". h

So far I have considered only the descriptive and operational inter-
pretations of measures of partial correlation, in light of the basic con-
cepts involved; there now follow a few remarks on the sampling theory, for
lack gf which inference in this area is fraught with difficulties.

A statistic derived from holding Z constant, namely an average con-
ditional correlation, is likely to be approximately normally distributed
simply because it is an average. Hence only an estimate of variance is
needed, and for this it suffices to have the first two moments of the con-
ditional correlations. For example, Goodman and Kruskal [T] have given
suitable estimates of the moments of their index gamma, and thence an
approximation to the distribution of Davis' coefficient might be obtained.
This line of thought does does not seem to have been pursued, however, and
Davis [2] reports himself unable to obtain any sampling theory. (In the
.next seétion I shall derive the asymptotic sampling distribution of Davis'
qoefficieﬁ@ from a different approach.)

The distribution df the product-moment partial correlation coefficient
is known exactly if the conditions for applying the simple partial corre-
lation formula hold, and if in addition X and Y are conditionally jointly
normal given Z. Although this last assumption is unnecessary for an asymp-

totic result, it is clear that strong assumptions are still required, and

little is known of the effects of departures from them. For the Kendall-
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type measures of partial correlation there are a few results in large-
sample theory but nothing of any value in practice other than Goodman's
'[5] asymptotic "partial tests'" for his partial indices and even those
require fairly strbng structural assumptions. All in all, for the indices

of partial correlation in the literature the sampling theory is in a most

unsatisfactory state.

5. PARTIAL CORRELATION BASED ON MATCHING

| Suppose there is given a population of variables (X,Y,Z), where X and
Y are at least ordinal, but 7 is entirely without restriction - possibly
noménal and/or multivariate - and an index of partial correlation between
X and Y, controlled for Z, is desired. In this section I shall develop a
general index bgsed on the concept of correlation in terms of the concor-
dance and discordance of pairs of observations, and on the concept of
control in terms of holding 7 constant or, more precisely, in termé of the
notion of matching. Speaking intuitively, two observations are considered
matched if their values of Z are "practically" equal. For what follows,
however, it is sufficient if there has been estabiished any specific rule
whatever by which it can always be decided whether two observations are
matched or not. Then an intuitively reasonable way of measuring the partial
correlation, imitating the wording us2d4 by Goodman and Kruskal [6] in
defiﬁing their correlation index gamma, is to find how much more probable
it is to get like than unlike orders with respect to X and Y when pairs of

observations matched on Z are chosen at random from the population.

More specifically, let MATCH be the event that a randomly-chosen pair



21

of ébservatiohs will be matched, and let C (D) be the event that the pair
will be concordant (discordant) with respect to X and Y. Assume without
further ado that P{MATCH} > 0. Then I propése an Aindex of matched cornre-
Lation | |

0(X,Y|z) = P{C|MATCH} - P{D|MATCH},
the difference between the conditional probabilities of concordance and
discordance of a randomly-chosen pair of observations, given that the pair
is matched. This index is standardized so that -1 <6 < 1: 6 = 1 if
P{C|MATCH}.= 1, that is, if all matched pairs are necessarily concordant;

and_e

= -1 if P{D|MATCH} = 1, that is, if all such pairs are discordant.

And 6 = 0 if P{ClMATCH}»= P{DIMATCH}; thét is, if matched pairs are equally
likely to be concordant or discordant.

Suppose the index 6 is to be estimated from a random sample of n ob-
servations (Xi,Yi,Zi), i="1,2,...,n. Among fhe N = n(n-1)/2 possible
pairs of observatipns let the number.which are matched be NM, and among

these let the number concordant (discordant) with respect to X and Y be

NCM-(NDM)' Then therobv1ops estimate of ? is
: N -1
. CM DM
¢ T(X,Y|Z) = -5 >
M .

the difference between the proportion of.matched pairs in the sample which
are concordant and -the proportion discordant. (If it should happen that a
sample contained no matched pairs then T might be arbitrarily set equal-to

zero.) We have -1 <T 5_1 also, with T = 1 if'thé observed matched pairs
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are all concordant, T ; -1 if they are all discordant, and T = 0 if there
are equally as many coﬁcordant as discordant matched pairs.

Let us now consider the sampling distribution of the index T. For
each i, 1 = 1,2,...,n, let M; be the number of observations (Xj’Yj’Zj)’
J#1, which are matched with. the ob;ervation (Xi,Yi,Zi); and let Wi be the
number of these which are concordant with (Xi’Yi’Zi)’ less the number dis-

cordant. Then ZMi = 2N, - the factor 2 appears because each matched pair

M

is counted twice - and zwi = 2( N hence

e pp) 3

IV,
T(X,Y|2) = 5 -
1

This method of computation leads to a convenient formula for the asymptotic

standard error of T, namely

)2 2

s(x,le) -2 /gwg(EMi)Q-QZWiZMiZWiMi+(ZWi M

2
(zM, )

Furthermore, the sampling distribution of T is asymptotically normal: that
is, for large n the quantity (T-6)/S is approximately a standard normal
variable. The only assumptions required for this, other than that sampling
is random, are:

P{MATCH} > 0, -1 <6 <1, o= > 0.

The parameter 62 is defined in the Appendix, where the proof of these

results may be found; as is explained there, the possibility of 02 vanishing
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seems remote for any real sitation. A corollary of these results is that T
is always a consistent estimator of 9.
Thus statistical inference based on the index of matched correlation

is possible, at least in large samples. Let Q  Dbe the critical value for a
_ o Con fidence interval wi
normal devigte Q, so that P{]lega} = a. Then, for example, a two—sidedA

confidence coefficient 100(1-a)%, is

and the hypothesis H_ : 6 = 6. can be rejected in favor of the alternative

0 0
H]: e # % if and only if the value 60

val. One-sided tests and confidence intervals can also be constructed, in

lies outside this confidence inter-

an obvious‘manner.

'As a special case the hypothesis that 6 =.O might be rejected if and
only if IT/S| Z-Qa° However, for this null hypotheéis an alternative test
involving only the W's and'not the M's may be;preferable: namely, reject if

and only if

AR
2/2(W1-W)2 -

jwhe?e W= Ewi/n. (Do not neglect the factor 2 which may give this forﬁula
an unfariliar look). .

Goodman and Kruskal [T] have estaglished the upper bound
2(1-Y2)/(pc+pD) for the variance of the asymptotic distribution of /h(G-y);

The corresponding upper‘ﬁound for the index of matched correlation would be:
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2(1-92)

asymptotic variance of /n(T-6) i-P{MATCH} ’

Suppose matched pairs cannot be tied on X or Y, as for example when X and Y
are continuous, or when ties are simply excluded in the definition of
matching. Then the upper bound may be proved valid using Goodman and
Kruskal's argument exactly, but interpreting their subscript "s" as in-
dicating "concordant and matched", "d" as "discordant and matched", and "t"
as‘"not matched". The bound is also easily shown to hold if 6 = 0 whether
‘or not matched pairs can be tied. Unfortunately, I have not been able to
prove it in the remaining case (matched tied pairs possible, 6 # 0), al-
though obviously it must hold at least approximately if such ties are un-
likely or 6 is ;mall.

One use for such a bound, as Goodman and Kruskal indicate, is to allow
the possibilitykof "conservative" inference procedure in situations where
use of an asymptotic standard error seems unjustified or its calculation
is inconvenient. Then, for example, a "conservative" 100(1-0)% confidence

interval for 8 is formed by the set of values 6 which satisfy the quadratic

inequality
2 2, .2
N, (T-6)" < 2N(1-67)q_,

where the unknown value of P{MATCH} in the bound has been estimated by
NM/N. A second use for the bound is to show,at least qualitatively, how the
variance of T decreases to O as 6 approaches +1 or -1, and increases as

the probability of obtaining a match decreases.
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The index of matched correlation may be regarded as a somewhat
generalized‘version of partial correlation in the sense of average condi-
tional correlation. Suppose for simplicity that Z is a purely discrete

random variable. For each possible value z of Z let E(z) be the event that

- two randomly-chosen observations (X1,Y1,Z1) and (X

2) haye Z, =2, =z,

that is, are tied on Z at z. Then the conditional correlation between X

2’Y2’Z

and Y given Z = z, as measured by Kendall's tau-a, is .-

t(X,Y|2=2) = P(C[E(2)} - P{D[E(2)}.

-

Let us now construct an average conditional correlation, or partial corre-
lation. With this form of correlation index, 1t seems reasonable to weight
the conditional correlation at z in proportion to the probabilify of ob-

serving a pair tied at z. This yields

T P(E(z)} T(X,Y|7=2)

1(X,Y|2) = 2 _ .
) P{E(z)}
4 .

But, using the definition of T(X,Y|Z=z) in terms of conditional probabi—

»

lities,
P{E(z)} (X,Y|Z=z) = P{C and E(z)} - P{D and E(z)}.

Let TIE be the event that the randomly—chdsen pair of observations is tied

on Z; that is, TIE is the union of all events E(z). Then the denominator of

the last expression for t(X,Y|Z) becomes P{TIE}, the numerator is
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P{C and TIE} - P{D and TIE}, and hence

1(X,Y|2) = P{C|TIE} - P{D|TIE}.
Thus we see that

8(x,Y|z) = (X,Y|2) if MATCH = TIE,

that is, the index of matched corre}ation is a true partial correlation, in
the sense of average conditional correlation, if two observations are
.defined as matched when their values of Z are equal.

_ If the probability function of the discrete random variable Z is h(z),

so that P{E(z)} = h2(z), the partial correlation can be written

X h2(z) (X,Y |Z=2)

J h2(z)

1(X,Y]2) =

If instead we have a continuous Z, with density function h(z), then we may

write the analogous expression

J hz(z) (X,Y |Z=2) dz
(X,Y|z) = s
J h2(z) dz

where 1(X,Y|Z=z) is now the correlation within the conditional distribution
of X and Y given Z = z; but expressions involving h2 do not have such an

intuitive interpretation. In addition, a random sample will now have no
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tied pairs on which to bas€ a sample estimate of 1. It is here that

- matching becomes invaluable: instead of demanding that all pairs used in
the sample index of partial correlation be exactly tied, we relax the
requirement to allow also pairs which are defined as matched though only
"practically" tied. If is convenient to iﬁtroduce here the word tfolerance
as a general term to indicate the maximum discrepancy allowed between two
observations before they must be declared unmatched; for example, if
MATCH = TIE then the tolerance is zero. Now the sample index T of matched
correlation strictly estimates the population index 6, but in any real
situation if the tolerance is small then 6 will be essentially equivalent
to 1. The two population indices will ordinarily ﬁot quite be identical in
value, however. A particular example which should be noted is the case
where X and Y are conditionally independent given Z = z for every z. This
is sufficient --although of course not necessary - to imply that each
conditional correlation T(X,YIZ=z) = 0, and hence that the partial corre-
lation 1(X,Y|Z) = 0 also; but it does not imply that 8(x,Y|z) = o.

It should be clear that what I have been calling the "index" of
matched correlation is really a whole family of indices, distinguished
from one another by their definitions of matching. And there is indeed no
restriction on the definition bf matching, beyond the requirement that
P{MATCH} > 0. In particular, by proper choice of the definition of.matching
- though it may then seem a bit unintﬁitive -~ one can produce several pre-
viously-proposed indices as special cases of the index of matched corre-
lation. For example, suppose we define that "two observations are afways

matched". Then P{MATCH} = 1, and
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6(X,Y|2) = P{C} - P{D} = 7_(X,Y),"

'the total correlation between X and Y, as measured by Kendall's tau-a. In

this case Mi =n-1 for i = 1,2,...,0, and a little algebra will show that

the sample index of matched correlation T ta’ the corresponding sample
index of total correlation. Furthermore, if Ci (Di) is the number of ob-
servations concordant (discordant) with the observation (Xi,Yi,Zi), then

the standard error of ta is

2

S = n(n-1)

2 2
AU (zwi) /n,

where Wi = Ci - Di for i = 1,2,...,0. As a second example, suppose we
define that "two observations aré matched if and only if they are not tied
on X or on Y". Then the event MATCH is just the union of the events C and

D, and

_ p{c} - p{p} _
o(X.¥|2) = ey T 0y -

v(X,Y|2),

the Goodman-Kruskal index of total correlation. Here Wi = Ci - Di again,
and Mi = Ci + Di’ for i = 1,2,.}.,n, and the standard error turns out to

be

S = T /zc?(zn. )2-25C. D, £C.D. +(xC. )2zD° .
1 1 1 1 1 1 1 1

2
.(Zci+zDi)

This expression may be compared with the maximum likelihood estimator of
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asymptotic standard deviation given by Goodman and Kruskal [7]; the two are
asymptotically equivalent. And as a final example, define that "two ob-
‘servations are matched if and only if they are tied on Z but not tied on

X or on Y". With this definition the index of matched correlation becomes

_ P{C and TIE} - P{D and TIE} _
P{C and TIE} + P{D and Tie}

0(X,Y|2) y(X,Y|2),

Davis' partial coefficient for Goodman and Kruskal's gamma. If C (Di) is
now redefined as the number of observations which are concordant (dis-
cordant) with the observation (Xi’Yi’Zi) with respect to X and Y and also

- tied with it on Z, then W, =C; - D, and M, = C, + D, Just as for the total
coefficient, and the asymptotic standard error of the partial coefficient

~ has the same formula. Thus we see how statistical inference with Davis'

coefficient is possible also.

6. EXAMPLES

The first example, which will illustrate the method of computation in
~some detail, is based on the data of Table 6.1. Let X be the examinationv
result, an ordinal variable recorded as A, B{ C, D, or F; and let Y be the
metric variablelheight, recorded in inches. The variable to be controlled
fér is a bivariate 7Z of which the first component is the nominal veriable
sex (Z]) and the second comppnent is IQ (22). |

The sample index of matched correlation between examination result and

height controlled for sex and IQ, that is, between X and Y given both Z,

and Z5s is obtained using the values of Mi and Wi shown in the last section
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of the table. In this computation two children are regarded as matched if
they are of the same sex and differ in IQ by no more than 16 units. The
first child, for instance, is therefore matched with exactly two others,
namely the second and third (for convenience in hand computation the data
have been sorted on the variables to be controlled for),’hence Mi = 23

and he is concordant with both of them - in particular, he is the shortest
of the three, and also received the lowest grade - hence Wi = 2 also. The
values of Mi and Wi for the other 24 children can be checked similarly,

and indeed it would be instructivg for the reader to check at least one or

I

two more. One may then compute ZMi 96, indicating that there are 48 -

matched pairs of children, and ZWi = 10, iﬁé&éétiné thatrfhere ére 5

more concordant pairs than discordant; hegce the index is T = ZWi/)ZMi =

= 10/96 = .10k, (Of the matched pairs, actually 22 are concordant, 17 dis—w‘

cordant, and 9 tied; without modification, however, the computational

scheme here presented does not provide these numbers.) Having calculated

ZM? = Lo2, ZMiWi = 50, and ZW? = 90, one also finds 8 = .191. Thus the index

is smaller than its standard error and certainly not significantly dif-

ferent from zero in the statistical sense. If this sample could be re-

garded as large, one could take T/S = .545 as a normal deviate in making

.such a test, and could also produce the 95% -(say) confidence interval

T + 1.96S, or (-.270, +.469), for the population index 6. However, with

only 25 observations and 48 matched pairs - which are not independent of

each other - it is best to be somewhat restrained in making such inferences.
The first section of Table 6;1,labeled "without matching", shows the

components for the index of total correlation, which cén be obtained by

defining that all pairs are matched, so that Mi = n-1 = 24 for all i. We

then have 300 matched pairs, of which there are 21 more concordant than
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Table 6.1

SEX, 1Q, HEIGHT, AND FINAL EXAMINATION RESULTS FOR A CLASS

OF FOURTH-GRADE CHILDREN (fictitious data)

Result . Matching | Matching | Matching
of Height | Sex IQ | Without on sex on.IQ* ‘on sex
exam. | (in.) matching| only only and IQ*
il X Y Z, Z,|M W| M WM WM W
1 F 50 M 85| 2k 19| 12 9| k4 3|2 - 2
2 D 58 M 92|24 -12f 12 =31 9 -L|5 -1
3 D 54 M 93| 2k 2] 12 5] 10 2| 6 5
L A. 56 M 96| 2k 9|12 1] 10 2|5 -1
5 c 55 M 100 | 24 3| 12 6| 10 2| 6 2
6 c 58 M o102| 24 -1 12 1] 11 0| 6 -1
T B 57 M 103 24 7| 12 2| 10 315 - 1
8 C . 53 M 109 | 24 3| 12 el10 15 1
9 F 5h M 115| 24 11 12 Ll 9  -=3|%4 -2
10 B 57 M 118 24 7|12 2| 8 3|5 - 2
1 A Lo M o120 24 -21| 12 -1 7 -6| 4 -b
12 D 52 M 12324 - 7|12 6| 7 0 4
13 B 60 M 128 | 24 12] 12 6| 6 113
L] C 51 -F 83124 o 11 o] bk 2| 1 -1
15 B so | F 86| 2k 13|11 6| 5 21 -1
6| ¢ 52 | F 98| 24 1] 11 ol 9 -2|3 -2
17| D 5T F o99|2k - -91 11 -9/ 10 -3|3 -1
18 F- 53 F 105] 24 6| 11 o 11 -6| 5 2
19 c 53 F 106 2k 311 1N 15 0
20 A 54 F 111 2k 21 1 5 10 ol b4 2
21 c 55 | F 114 24 3[11 -3 9 2|1 0
22 C 51 F 121| 2k of 11 o| 8 o3 1
23 C 52 F 13124 1] 11" 0] 5 313 2
ol A 55 | .F 135| 2k 71 11 7| 3 1] 2 2
25 B 5Y F ko[ 24 5| 11 5| 2 2| 2 2
* within a tolerance of 10 units.
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discordant (aétually there are 122 concordant pairs, 101 discordant, and
7T tied) and hence the index takes fhe value T = 21/300 = ,070. Its
vstandard error may be computed according to the formﬁlas given earlier and
turns out to be S = .136. Again the correlation is not significant.

The other two sections of Table 6.1 show the componeéts for indices
where matching has been performed on only one of the tﬁo variébles, either
sex or IQ; the computations proceed in exactly the same mgnner. ﬁeSults
are summarized in Table 6.2. Note that the two indices of conditional
correlation given sex are obtainable almost as byproducts of the computa-
tion for the index of matched (or, in this case, paftial) correlation given
sex: to obéain the conditional correlation among males, take M. and Wi the
same as for the matched correlation if the i-th student isrmale, and take
Mi = Wi = 6 if the i-th student is female; and for the conditioﬁal_corre—
lation amoné females do the reverse. The values of ZWi, iMi, ZW?, ZME; and
ZWiMi for the matched correlation indices argleéual to the sums of the
corresponding values for the two conditional éorrelation indices. A similar
situation will obtain whenever the variable being controlled for is dis~
crete. |

. Now iet us consider an example in which the underlyiné population |

distribution is known. For i = 1,2,...,50 let C,., C.., and C

11> Coi 3 be the

3

entries in columns 01, 02, and 03 of the table of random normal deviates
given by Dixon and Massey [L4], and for i = 51, 52,...,100 continue with

+ C Y. =C.. + C 7. = C

31 i 2i 31 “i 3i’

for i = 1,2,...,100. Then simple considerations show that the population

columns 11, 12, and 13. Define Xi = C1i

total (product-moment) correlation is P(X,Y) = 3, with partial correlation

p(X,Y|z) = 0; the corresponding sample values happen to be r(X,Y) = .533,
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Table 6.2
Correlation Pair is .
‘matched M, (2w, | MC DML, | st T S
if: 1 1 1 11 1
Total (always) 600| 42 | 1kkoo| 1008 | 1726 | .0TO | .136
Matched z1i=z1'j 288| 30 | 332L 360 | 600 | .10k | .165
on sex ‘
Conditional Z1i=Z1"j="malev"- 156 30 | 1872| 360| 37k | .192| .22k
on male
Conditional Z1i=Z1j="female" 1321 0| 1bs2 0| 226| .000| .228
on female
Matched’ |Z2.—Z2.| <10 | 198] 10| 1744| 88| 178| .051| .133
* 1 J T ‘ .
on IQ
‘Matched on Z,;%24; and 96| 10 hoo 50 90 | .104 | .191
* : ' : .
sex and IQ
‘ |z2i-zzj| < 10

* within a tolerance of 10 units.




3L

Table 6.3
Tolerance for Number of Population Sample Standard
" matching on Z* | Matched pairs index index error
¢ N, 6 | EN ‘ S
o | 4950 .333 .363 | 053
3.00 | ok | 311 | .33 | .os2
2.00 b6k 237 261 | .053
1.50 3486 .168 179 .05'5
1.00 251k .090 .086 .060
5 19h2 .055 | .ohg |  .063
.50 1308 .026 040 | 069
25 6Tk .007 -.003 .078
0 0 _ .000 - .

* . . . . .
- The true standard deviation of Z is GZ = 1.000, with S, = .997.
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r(X,Y|2) = -.009. In a normal population

g"s'in_] :
- P

oA
1}

_hence t(X,Y) = 1/3, t(X,¥|2) = 0. If two observations (X;,Y,,2.) and
(Xi,Yi,Zi) are defined to be matched if and only if |zi—zj| < €, then with

X, Y, and Z as specified above we have
(X,Y|Z) = 1(e) = 1 é{lql <=}
v ] 3 _‘/§ H]

vhere Q is'a normal (0,1) variable. (The proof of this ma& be found at tne
end of the Appendix.) Note»that t(e) decreases steadil& frém 1/3 to 0 as
decreases from +o to 0. Results of compnting the sample index of metched
correlation.for decreasing values of the tolerance ¢ are shown in Table 5.3,
and these show a similar steady decrease. Note also that as the tolerance
decreases, and the number of matched pairs cefrespondingly, the standard
error increases; this would be expecfed, of course, on inﬁuiti#e grounds,
and also from the form of the upper bound given in Section 5; but the
increase is not drastic nntil a.ver& small tolerance has been reached.
Three examéles.will now be presented, using previously published data,
in which the index of matched correlation may be compared with other‘
measures. Consider first the example qriginslly presented by Yule [20] and
extensively quoted since, in which X is;the estimated average earnings of
agricultural laborers, Y is-the ratio of the number of paupers feceining
"outdoor" relief to the number receiving relief in the workhouse, and Z is

the percentage of population on relief, for n = 38 rural districts. The
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product—momenﬁ‘total correlations are r(X,Y) = -.13, r(X,2) = -.66, and
r(Y,z) = +.60, so that the partial correlation formula gives r(X,Y|Z) = +.hbk.
’The results of computing the index of matcﬁed correlation, summarized in
Table 6.4, show a similar relationship.

A second example uses the data of Angell quoted by.Bialock [1, p.300]
for n = 29 non-Southern cities of 100,000 or more. Here X is én index of
moral integration "derived by combining crime-rate indices with those for
weifare effort", Y is an index.of hetorogeneity "measured in,terms of the-
relative numbers of nonwhites and foreign-born whites in the population",
and Z is "a mobility index measuring the relative nﬁmpers of persons
moving in and out of the city". The produc£—moment total éorrelations are
r(X,Y) = -.156, r(X,Z) = -.456, r(Y,Z) = -.513, with paftial correlation
r(X,Y Z) = ~.511. Results for the index of matched correlation are summa-
rized in Table 6.5, and as in the previous example they agree nicely with
those found by the more standard method. In these éwo examples the index
increases in absolute value as the tolerance.ié reduced, and since a
correlation is the more accurately détermined the farther it is from zero

this has to some extent cancelled out the otherwise-expected increase in

standard error.



37

Table 6.4
Tolerance for Number of Index of Standard
matching on Z* | matched pairs matched error
correlation
€ NM »T S
© 703 -.078 .096
2.00 500 .136 ‘ .089
1.50 393 .226 .092
1.00 269 .294 .1677
.50 12 .331 .115
The standard error of Z is s, = 1.29.
Table 6.5
Tolerance for Number of Index of Standard
matching on z* | matched pairs matched error
correlation
€ . NM T ]
» 406 -.138 .100
20 349 -.209 -090 -
15 286 -.294 .079
10 ‘ 215 -.349 .085
| 5 125 -.488 .103
2 b7 -.532 .13k
1 2l -.583 .165
The standard error of Z is s, = 9.66.

Z
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The last>¢xample uses the data of Hajda quoted by Davis [2], which were
obtained from a sample survey of Baltimore women. Here X is a dichotomy,
/taking the value "high" ("low") if the respondent was above (below) L5 years
of age; Y is another dichotomy, faking the value "high" ("low") if she had
.(had not) recently read a book; and 7 distinguishes thrée ;ategories of
educational attainment, "college", "high school", and “1ess‘than high school".
Two definitions of matching will be considered: the first, produéingva
straightforﬁard partial correlétion coefficient,>declares tw; observations
matched if they are tied on Z; whereas the second, producing Davis' partial
coefficient for Goodman and Kruskal's gamma,, declarés@them matched only if
they are béth tied on Z and also not tied on X or Y. Sincé it may be
instructive to follow the calculations for a problem in&ol#ing categorical
data, Table 6.6 shows them in some detail. There are listed the 12 possible
values of (X,Y,Z), and the frequency with which each occurs in the sample,
labeled F. Then are shown how many observations are both tied on Z and
concordant (discordant, tied) with respect té X and Y with each of the ob-
servations at a given value, labeled.C (D,T). We have W = C - Dg for the

first definition of matching, M

1

=C+ D+ T, and for the second, M2 =C + D,

In either case

and.

—2 /ZFMQ( ZFW)2—2ZFMZFWZFMW+(EFM)22FW2 .

S
(zFM)®
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Table 6.6

Age  Book Education | Frequency

Reading
' c D T W M, M,
X Y 7 F

High 10k L6 0 302 46 348 L6
High

Low 36 0 163 185 -163 348 163

College

High 163 0 36 312 -36 348 36
Low

Low L6 104 0 244 104 348 104

High 159 327 0 627 327 954 327
High _

Low High 179 0O 290 664 -290 954 290
. migh ~ ochool 290 0 179 75 -179 954 179
Low ]

Low 327 159 0 795 159 954 159

High 54 133 0 k12 133 545 133
High

Low - Less than 335 0 24 5219 24 545 2L

High

High School 2k 0 315 210 =335 545 335
Low .

Low 133 54 0 ko1 54 545 54
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In the second case the equiwvalent formula for S in terms of C's and D's
given at the end of section 5 might also be used; in grouped-data form it

is

S = — /chz(ZFD)Z—EZFCZFDZFCD+(ZFC

(ZFC+EFD)2

)2ZFD2 .

For the example, IFW = -3718 and ZFW2

= 5572911k, For the first definition
of matching, IFM = 1330092, ZFM2 = 1073601726, and ZFMW = -1531320, yielding
partial correlation T = -.0028 with S = .0112. For the second definition,
:FM = 259554, ZFM2 = ZFW2 (this equality would hold whenever X and Y are
both dichotomous, but notin general), and EFMW = -1070650, yielding Davis'
coefficient T = -.0143 with S = .0581. Note that both Davis' coefficient
aﬁd its standard error are about five times larger than when ties on X and
Y are retained rather than disc@irded, and the level of significance for
testing the null hypothesis of no partial correlation is thus about the
same. The alternative test for this null hypothesis would of course be
identical for the two definitions of matching, since it depends only on
the W's. By the way, it is obvious that a number of shortcuts could have
been taken in the calculations for this rather simple example; a general
computer program, however, wouid probably best proceed from the formulas as
given.

In this same example the total correlation between age (X) and book
reading (Y) is -.0596 as measured by ta’ or -.2412 as measured by G, and
this is significantly different from zero at o < .01; thus holding education

constant has reduced the correlation by substantially more than 90%, to a

clearly insignificant value. On the other hand, using the partial correlation
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formula With_tb as suggested by Hawkes, we calculate tb(X,Y) = -,1206,
t, (X,2) = -.239k, and tb(Y,Z) = .4139, and hence tb(X,YIZ) = -.0243, for
"a reduction of only 80%. And if we adopt Somers' method, we have the four-

fold table

X and Z
Concordant | Discordant
Y | Concordant | 68987 180932 '
and
Z Discordant 15600 - 2Ths6
from which ¢ = -.06Tk; this again illustrates the difference in results

which can arise from different concepts of control.

T. DISCUSSION

Since thé sampling theory presented abo%é is strictly asymptotic, you
may well ask for the distribution of the index of matched correlation in
small samples, or.at least for the proper definition of "small" in this
con?ext. I can give no.really satisfactory answer gt this stage, but offer

" the following sﬁecuiatioﬁ. The general ihdex T of matched correlation has
the same form as its special case, the Goodman and Kruskal index G, in tﬁat_
it is arratio of which the denominator is the number of sample pairs
falling in a specified class gnd the nﬁmeraﬁor is the difference between
the numbers of pairs in two subclasses of that class. It seem reasonéble

- that the validity of as&ﬁptotic methods in finite samples may depend most

directly on the total .number of pairs observed in the special class, which
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for T consists of pairs which are matched, while for G it consists of pairs
vwhich are ﬁot.tied on X or on Y. Fairly extensive sampling experiments by
'Rosenthal [15] for 5x5 cross-classifications over a wide range of true
values of y showed the distribution of (G-y)/s, where s2 is the maximum
likelihood estimator of the asymptotic variance of G, to be reasonably
close to the standard normal in samples of n = 25 or 50 for Iyl < .50. The
probability of a tie in a 5x5 cross-classification cannot be less than .20,
and in the representative examples presented by Rosenthal it varies from
about .25 up to more than .40; hence, since the total number of pairs is
300 at n = 25 and 1225 at n = 50, it appears that her experiments must
~typically have involved some 200 untied pairs at n = 25 and 800 at n = 50.
One_may then speculate that similar results would be obtained for indices of
matched correlation based on numbers of matched pairs in that range. There
was a tendency for 52 to underestimate the variance of G, particularly for
larger values of G. Very possibly SQAtends to underestimate the variance of
T also: for instance, S = 0 if the matched pairs are all concordant, all
discordant, or all tied, and this is not unlikely in very small samples.
Other estimates are, of course, possible: the one I have used, based on the
_.work of Sen [16], was chosen almost entirely on the‘basis of its simpli-
city.

You may also ask for .guidelines in choosing the definition of matching.
Now, in the preceding I have implicitly assumed that such a definition is
to be based on substantive>considerations, and one might take the attitude
that this is not really a ;tatisticél question at all. Yet I may still offer
somé remarks, particularly for tﬁe case where ties on Z are rare or non-
existent. (If ties are common then the simple definition that MATCH = TIE

should nearly always be satisfaétory.)
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Suppose the immediate goal is to estimate the partial correlation as

defined in Section 5. If the tolerance were infinite, so that all pairs were -

considéred matched, then the matched correlation would be equivalent to the
total correlafion. As the toierance decreases to zero, the population
matched correlation approachgs the partial correlation; but in a sample the
number of matched pairs decreases aiso, leaving & smaller and smaller basis
for the‘estimate, whose variance accordingly increases. Thus the optimal
tolerance for estimating a partial correlation is a compromise: a large
value may have too much bias, a small value too much variance. Presumably
the investigator will first propose a definition of matching based on
totally non-statistical substantive grounds. If this definition implies too
few matched pairs, say less than 200, a relaxation might be éuggested to
maké the asymptotic theory more tenable. And if the proposed definition
implies a very large number of matched pairs, say more than 1000, it might
be tightened to ;educe possible bias. On the other hand, it mignt well be
in practice thét the easily-understood population index of matched corre-
lation would be accepted as the proper object of interest in itself, re-
gardless of whether it equalled the somewhat abstract index of partial
correlation; then presumably the statistician should comment only on the
sample size and not on the definition of matching itself.

A related question of interest to the mathematical statisticilan is
this: what happens asymptotically as the sample size increases if the
dgfihition of matching is simultaneously tightened? Presumably a consistent
estimator of the partial correlation could be obtained in this manner, but

the theory has not yet been worked out. Similar questions arise if the

definition of matching is made relative rather than absolute: for instance,
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one might decide to pair each observation with the k others most closely
matched to it, or simply to use the K most closely matched pairs out of the
total N. Such a decision ﬁould confer the advantage of making the number of
matched pairs fixed instead of random; but again the theory is not available,
It may be also noted, with respect to this last point, that both
practical and theoretical problems are raised in attempting to order pairs
of observations according to closeness of matching. In general this requires
defining a sort of distance function - though it need not have all the
properties which mathematicians imply by use of. that term - to measure the
discrepancy between any two points in the sample space. Where such a func-
“tion can be defined, however, a generalization of the concept of matching
is possible., Specifically, let D((X1,Y1,z1),(X2,Y2,22)) be the distance,
. or discrepancy,-between any two observations (X1,Y1,Z1) and (X2,Y2,Z2).
Then for example one might give to a pair of observations with discrepancy
D the weight f(d) = 1/D or exp(-D), say. Define

-

M; = jzi f(D((Xi,Yi,Zi),(Xj,Yj,Zj))
“for i = 1,2,..;,n, and Wi similarly as the difference between weighted sums
of concordant and discordant pairs, and hence a generalized index
T = zwi/ZMi“ It is not difficult to show that the Theorem of the Appendix
applies for such generalized indices also, and thus that the entire asymp-
totic theory is stili valid. |
Even if such a generalized index is not contemplated, a distance

function may still be extremely useful in practice. For example, suppose we

have a vector-valued Z = (Z(1),Z(2),...,Z(m))', and we want to balance off
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discrepancies due to the various components of Z. This can be accomplished
conveniently by declaring two observations matched if and only if the
‘distance between them is no greater than some fixed amount, which of course
corresponds to what has been called the tolerance. Then two observations
may be called matched if they differ little on the averag;, though they

may differ more on some components if they are particularly close on others.

It is often suitable to use distance functions of the form

D((X;,¥;58,), (X5 525))

3 (2;-2,)" W(zZ;-Z5)

J

i

vwhere W is a matrix of weights. If W V_1, where:V is the sample variance
matrix of Z, then D becomes the Mahalanobis distance which gives each com-
ponent of 7 equal importance in determining a match.

It may also be useful to point out, by the way, that in many situa-
tions it will be convenient to match only after first transforming the
variable Z. For example, if Z is the age of an individual, one might
hesitate to designate a match as "within so many years" on the grounds that
the same difference in age means more for young individuals than old ones.
This could be handled easily, however, by transforming Z to log Z, say,
instead of using 7 directly.

Let us now move on to the troublesome question of ties. In constructing
an index of correlation based on the notion of concordant and discordant
paifs, should tied pairs be included of not? The index of matched correla-
tion is defined in éufficient generality that one may have it either way,

and the choice is to some extent a matter of taste. For one thing, exclu-

sion of tied pairs often simplifies computations, at least hand computations,
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if only by diminishing the numbers involved; and the sample indices which
it produces m;y be more satisfying since they are greater in magnitude. On
" the other hand, the theory is perhaps moré elegant when matching can be
defined in terms of the control variables alone.

But suppose we take the point of view that X and Y, &ven if not con-
tinuous as recorded, usually represent underlying continudus %ariables, with
ties occurring énly because the measurements are impregise or because they
are grouped afterwards. Then it is a reasonable goal to déte%mine fhé cor-
relation in the underlying continuous population. (For simplicity, consider
only the total correlation at present.) We may begin by asking, how many of
the tied pairs we observe would be found goncordant, gnd howléany diséor—
dant, if they could be properly resolved? This requires guessing the corre-
lationé within subpopulations where the range of X and/or Y is restrictea.
One would ordinarily expect such subcorrelations to be smaller, on‘the
whole, than the correlation for unrestricted X and Y. As an extreme case,
set them all équal to zero. This can be effeétively accomplishgd in the
sample by adjusting the data so that half the tied pairs are counted as

concordant and half discordant. Then

where N, (ND,NT) is the number of concordant (discordant, tied) pairs in
the data as recorded, and Né (NB) is the number of concordant (discordant)

pairs after adjustment. And the adjusted correlation index is

-Ny Ng-N
g1 = CTD_"CcTD
N N a




T

(the denominator for the adjustéd data is unequivocally N, sihce there are
~1OW 1o ties); that is we get the same result as if we had calculated ta
from the original data. As a second extreme case, set the subcorrelations
equal to the total correlation. In the sample this amounts to allocating

the tied pairs in the same proportions as the untied ones. Then

vt -
N N NC ND

= T =
N NC ND

G;

that is, the result is now the séme as if we had calculated G from the
original data. In general, those measures which include ties may be regarded
as conservative, or pessimistic, since they tend to underestimate the
strength of any underlying correlation; whereas those which discard ties
are optimistic, tending to overestimate its strength. Probably in most
contexts underestimation would be preferable to overestimation, thus
suggesting that tied pairs be rgtained.

On the other hand, at least for the total correlation it is possible
to compromise, by accepting the index tb which always lies between the other
two. My personal impression, admittedly based on a rather limited number of
examples, is that the correlation T of en underlying continuous population
almost always lies between the T, and y of the modified population determined

by imposing some grouping on it. Thus t, may well be a good overall estimator

b

for realistic cases, since ta tends to declare the correlation somewhat
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too weak and G makes it much too strong, although peculiar populations can
be invented to favor any of the three indices. It might also be mentioned

that considerable numerical work by Reynolds [13] also suggests that G is

inferior to ta and especially t., for a somewhat different purpose but

b’

perhaps for the same reasons. Of course, t, is more difficéult to interpret

b

in terms of the measurements actually at hand, and it is certainly much
more difficult to work with both numerically and theoretically.

Also, t. is not in general a special case of the index of matched

b

correlation. However, the following suggestion may be made. Consider a

modified index

o= Nom = Npu
- + + 3 + s
Now * Npy * 2 (M)

where NCM and NDM are as defined in Section 5, and NXM (NYM) is the number
of matched pairs which are tied on X but not Y (Y but not X). Equivalently,
in the alternative computational scheme for T, replace Mi by the number of
observations which.are matched with the observation (Xi,Yi,Zi) and are
either concordant or discordant with it, plus half the number of matched
-observations which are tied with it on X but not Y, or on Y but not X,

for i = 1;2,...,n; leave Wi unchanged. The asymptotic results then hold
%ithout fu?thervmodification. If all pairs are considered matched, this
pfoposal yields the total correlation index tb if the number of pairs tied
on X equals the number tied pn Y; otherwise it gives a value between tb

b Further work will be required, of

course, for a complete evaluation of this proposal.

and ta but ordinarily very close to t
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A few remarks may be made with respect to computational matters. It
is perhaps a disadvantage that the calculation of an index of matched
correlation must always begin from scratch, since there is no formula by
which one of these indices can be determined from others previously found.
Yet the partial correlation formula is sometimes deceptively easy, since its
numerical instability in the presence of highly correlated variables is
not always obvious. This is not so with matched correlations, where any
instability is always clearly indicated, if not by the asymptotic variance
formula, then certainly by a paucity of matched pairs. Of course, any
statistic which requires individual consideration of &ll pairs of obser-
vations is tedious to calculate; even on the comﬁuter, although a matched
correlation program maybe simple and short, the time it requires may be
long. This computational probleﬁ can be avoided by grouping the data, but
unfortunately the resulting ties reduce the precision of the estimate.

Por large numbers of observations it may be preferable to consider only
a sample of the possible’pairs; but inference procedures would have to be
modified accordingly.

In review, let me summarize the comparison between matched correlatibn,
as an index of the partial correlation between X and Y given Z, and its
major competitors. Since Davis; coefficient is not a competitor but is
instead a special case of matched correlation, the main rivals wouid
appear to be the product-moment partiél correlation and the Kendall-Somers
Hawkes measures. Of these the former is inapplicable, or at any rate dif-
ficult to interpret, unless X and Y are metric variables; the latter re-

quire Z to be at least ordinal. Small sample theory for the product-moment
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partial correlation is_availablé, but only under strong assumptions in-
’clﬁding normality, and even for asymptotic results the form of relationship
of X and Y to-Z must be known; for the Kendall-type measures sampling
theory is practically non-existent. On the other hand, the proposed new
index has the following clear advantages:

1) The applicability of matched correlation is almost unlimited. It
may be used to control for a completely arbitrary variable Z, even a multi-
variate 7 in which each component separately may be metric, ordinal, or
purely nominal, provided only that a definition of matching can be supplied.
And the variables X and Y need be no more than ordinal, including ordered-
categorical. -

2) The Anterpretation of matched correlation is based on two very
simple concepts: determination aé to whether two observations are matched
or not, and as to whether they are concordant or discordant with respect
to X and Y. The index may then be defined as the probability that a randomly-
chosen matched pair will be concordant, less the probability that it will
be discordant. (This definition applies to the sample index also, if we
think of choosing two observations from the sample, at random and withoutv
replacement. )

3) Asymptotic sampfing theory for matched correlation indices is
available, without restrictive assumptions,. and hence statistical inference

is possible at least in large samples.
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APPENDIX

Consider estimating the value of a parameter w in the distribution of
some random vériable Q, possibly multivariaté. Define the degiee of w as
‘the size of the smallest random sample from which w can be estimated with
no bias and with finite variance. (if no such estimator can be found for a
any samble size then we may say that the degree of w is infinite.) For
example, suppose we have a normal population with mean p and variance 02.
If the parameter of interest is w = u, then the degree is 1 and the corres-

ponding unbiased estimator, which we call the kernel, is W(Q1) =Q,. If

1°

the parameter of interest were w = 02, with p known, then the degree would

be 1 again, and the kernel w(Q]) (Q1-u)2. But with p not kﬁown, we require
at.least two observations, that is, the degree is 2. Now there are in-
finitely many possible estimators: two candiates are v, = (QT-Q2)2/2 and
W, = Q? - Q1Q2. In such situations we reject those estimators, such as Voo
which depend oﬁ the ordering of the observations, ana define the kernel

as the symmetric estimator, here W This estimator in general is unique
and has minimum variance.

Now suppose that the parameter of interest is w, of degree k, with
kernel W(Q],Qg,...,Qk), and that we have a random sample of size n > k.
Calculate w for every subset of k observations out of the n available;
take the sum; and divide by the number of such subsets, namely
(E) = n'/k!(n-k)!, the number of combinations of n things taken k at a

time. The resulting average is called the U-sfatistic for estimating w;

in symbols,
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- ' n
W= g W(Q-i1‘,Qi23"'sQik)/(k)-

For example, if w is the population mean, with degree 1 and kernel

W(Q1) = Q1a then

L) W(Qi1)/(r11) =] a/m=4g

the sample mean. And if w is the population variance, where the mean is

unknown, then

- 1 2 n
W= g 2(Qi1—Qi2) /(5),

where (g) = n(n-1)/2. This can be re-expressed as

. 1 2
W= n(n_1) z (Qi_Qj) >

1<i<j<n

and after some algebra it can be shown that

)2 = s?

b

=1 5
W=7 (a;-§
i
the usual unbiased estimated of variance.
U-statistics are always unbiased - that is what the "U" stands for -

and they have various other nice properties. For a summary of the by now

sizeable body of theory which has been worked out for them, see Chapter 3
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of Puri and Sen [12]. I shall present here only a few of the most relevant
results.

Let a function wa be defined as

_ ‘ ‘ p)
Ze( Q205+ 58y _1) = Q005005 Q ) QR s sy q) - 0%

Note that the set of k observations on which the first w depends and tﬁe
set of k on which the second depends have exactly one observation in
common. And let the expected value of wa, assuming it exists, be S
Then we have

1lim n var(W) = k2 Tuw > 0,

n->o

or, in words, t?e asymptotic variance of W is k2 gww/n. An estimate of .
can be obtained by the following method, due to Sen [16], which also
provides an alternative expression for W. For each i = 1,2,...,n calculate
w for only those subsets of k observations out of the n available which
include the i-th observation - there are (E:l) of these - and let Wi be

their sum: in symbols

W = ) (.0

C.
1

,Qj seeesQs ).

1 92 Jg-1

Then it is not difficult to see that

W= /a0,
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But in addition it can be shown that

1 n2,mel2 2
Sy = 77 (/G )T - )

is a consistent estimator of T Apd furthermorg, if gwﬁl> 0 then W is
asymptoﬁically normally distributed: that is, for large n the quantity
/E(W—W)/k/gg% is approximately a standard normal variable.

Thus if w is the population variance 02, so that W(Q],Q2) = (Q]—Q2)2/2,
and W = s2, then

-1 2 2 L

The expected value of this can be worked out as
1 I
t = Lo,

where M), is the fourth central moment of Q; if Q is normal then n, = 30u.
Now, according to the theory of U-statistics, the asymptotic variance of
32 must be hcww/n, or (uu—oh)/n; and this can be verified, since the exact
varience is well-known, namely>

1 n-3 L

var(sg) = H(uu - a5 ° )

Furthermore, defining Wi as above, some algebraic manipulation shows that

= %{H(QI"Q)E + (1’1—1)52}



and thence that

.
2(Q;-Q)
_ 1, n.\3 i n-1,2 b,
SWW - h(n—]) { n - ( n ) S }9

this clearly is a consistent estimator of ¢ though not generally un-

W
biased. Finally, U-statistics theor& claims thatAthe quantity
/Ezsg—og)/z/gaafmust have asymptotically the standard normal distribution,
provided only that M), exists and is not zero. This can be easily verified
at least where Q is normal, since then (n—1)32/02 has exactly a chi-square
distribution with (n-1) degrees of freedom; it is well-known that a chi-
square variable approaches normality as its degrees of freedom increase
without limit.

The results given above have been extended to the joint distribution
of two U-statistics, or indeed of any number of them. Thus in particular
if u is a second parameter, of degree 2, with kernel m(Q1,Q2,...,Q£), then
the U-statistic for estimating it is

M= ] omla 50 seeesQ )/(p)s
c 1 2 )

with asymptotic variance 22cMM/n, where T is the expected value of

- P 2
ZMM = m(QlaQQ:“-9Q£)m(Q!=Q£+]9'--3Q22_]) - H .

Let also EWM be the expected value of

Zopg = W(QqsQps e+ 5@ Im(QsQ 15 evvsQ g o) - wus

then as n -+ » the asymptotic joint distribution of the quantities
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UW = /n(W-w) and Uy = /n(M-u) is bivariate normal with means equal to zero,

variances equal to k2C and ﬁecMM, and covariance kQQWM; this includes

WW

the possibility of a degenerate normal distribution.

Finally, if

M, = g m(Qi,Qj

1

5Qj29"‘3Qj )

1 2-1

for i = 1,2,...,0, then

- _1 2,,n-1,2 2
Sy = ot DG/ G2q)7 - me)
and
s, = —— {Jw.m /(2" (7Y C
YR I AL AP DA

are consistent estimators of Tam and e respectively.

Starting from these known results, the following general theorem
: concerﬁipg the ratio of two U-statistics can be obtained.
Theonem. Let w and y be parameters of degrees k and f, respectively, and
let W and M be the U-statistics for estimating them from a random'sample
of size n. Then as n » « ﬁhe random variable vn(W/M-w/u)/s has asymp-
totically the normal distribution with mean O and variance 1 where, using

the notation established above,
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2 2
XMS_ - 2k2MwsWM + 87w Sy

s = H
. M)f :

422
- 2k@uug. o+ £ .y
n >

¥

0.

u

Proof. The quantity 02 is defined since by assumption u# 0. Nowasn~>

we have W > w, M »> u, Sww - (AVTE and SWM 7 T in probability; hénce also
2

s - 02, in probability. But since by assumption 02_> 0, the asymptotic

distribution of vn(W/M-w/u)/s must be the same as that

vyn W %
o (i - %) = M (Wu-wM) .

And then since M - y the required asymptotic distribution must also be the
same as that of /H(Wu—wM)/gu2. The desired result is then easily verified

from the known asymptotic joint normal distribution of W and M.

Remastk. The ratio of the theorem would be undefined should M or S vanish,
“and this may be possible for any finite nj thus invgeneral the ratio has no

mean and variance.

Now let us see how this Theorem applies to the index T of matched
correlation. We may identify the variable Q of this Appendix with the multi-

variate (X,Y,Z). Suppose we have a random sample of observations

Qi = (Xi,Yi,Zi), for i = 1,2,...,n. Having established some definition of
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matching, consider estimating the parameter y = P{MATCH}. Its degree is 2,

and 1ts kernel is

1 if the observations Q1 and Q2 are matched

m(Q] 3Q2) =

0 otherwise.

We then have

M, = ) omlQ,a,), 3
J#i

1,2,00.,0,

which agrees with the definition, gilven in Section 5, that Mi is the
number of observations matched with the i-th observation; and the
U-statistic for estimating up turns out to be M = NM/N. Similarly, the para-

meter

w = P{C and MATCH} - P{D and MATCH}

. is also of degree 2; its kernel is

1 if Q1 and Q2 are concordant and matched
W(Q],QZ) = -1 if Q, and Q, are discordant and matched

0 ifQq

1 and Q2 are tied or unmatched,

corresponding to this we have
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W= 8 owlene), i

= 1,2,...,50,
i .
J#i
and the U-statistic for estimating w turns out to be W = (NCM—NDM)/N. Then

finally the sample index is T = W/M, and the population index is 6 = w/u.

After substituting k = € = 2 into their definitions, a little algebra

shows that . ' 2 .
W.
_ 1 1 2
Sew = 77 BT - W),
M. .
1 1. 2
= —— y(—
SMM n-1 (n—1 M7,
and
1 W M,
SWN[ = '—"n_1' Z('n_] - W)( -1 - M)s
and thence
' 2 : . . 2.2
s = bn” ewP(eM. )P-ozw, M. oW M, + (2w, )2} = 25
(n—1)(ZM.) i 1 i 1 11 1 1 n-1
1

where S is as defined in Section 5. Now when this result is substituted
into the Theorem we find that the quantity ¥(n-1)/n(§-6)/S is asymptotically a
normal (0,1) variable, but this agrees with Section 5, since for large n

the factor v(n-1)/n can be ignored.
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The assumption that

2

of = —%'(u L. =2pwg, .+ 2 ) >0
' u

WY By

may be interpreted as follows. Let F(Q) be the distribution function of

Q = (X,Y,2). Then

m w(Q,,Q,)w(Q,,Q;5)dF(Q, )ar(q,)dr(as) - o,

T
i

WW
~ C(r( ,
S = n m(Q1an)m(Q2aQ3)dF(Q1)dF(Qg)dF(Q3) ~ 2,
S = )] ¥(Q4505)m(0,,0)0R(Q, )ar (0 )ar (@) - w,
and hence
iy J” r(Q,,Q,)r(Q,,0,)aF(Q,)ar(a,)ar ()
u
= 4| (fxta,,0,)ar(e,))? ar(a,)
) ut 1772 27 Y
where

r(Q1,Q2) = uW(QT,Qe) - wm(Q],Qz)-

Now clearly 02 = 0 is possible only if Jr(Q1,Q2)dF(Q2) = 0 with probab-

ility 1 under F; that is, if
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[RERSEEON
P(R) = =
| m(R,Q) aF(Q)

Ele
n
D@

~ But P(R) isﬂseen to be'the probability that if an obsefva%ion Q matched

with the specified point R is drawn at random it will be éoncbrdant with R,
less the probability that it will be discordant with R: if this probability

is tofally independent of R, that is of all the componenté (k,Y,z) of R,

then and only then can 02 = 0. This does occur in the extreme cases where

6 = +1 or -1; otherwise, quoting Goodman and Kruskdgl in a similar context

[T, p.364] "we suggest that‘this is an ugiikely state of affairs in mést appli-
capions". Thus for practical purposes one may regard the asymptotic results

for thé sample index of matched correlation as valid providgd only that fhe
probability of a match is positive and that the population index ié neither

+1 nor -1.

For the following argument I am indebted to an anonymous referee of
an earlier version of this paper. It yields the population value of the

index of matched correlation in the second example of Section 6. Let E(z1,22)

. be the event that Zy = z; and Zé =z, in two random observations (Xi’Yi’Zi)
i= 1,2, and let the conditional Jjoint distribution of U = X1—X2 and
vV = Y1—Y2 giveﬁ E(z1,22) be F(u,v|z1,z2)._Let also G(z) be the distribution

function of Z. Then
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PfC | E(z,,2,)} = P{D | E(z,2,)}

]

)}

P{UV>0 | E(z ,2,)} - P{UV<0 | E(z,»z,

1 - 2F(0, | %%,

) - 2F(«,0 | ZT’ZZ) + hF(Q,Q | z1,22)

= W(z1,22),< say.

If métching is defined in terms of Z alone, then the index of matched

correlation is

L} W(z1,22) dG(z1) dG(z2)

9 =
[J dG(z1) dG(z2)
M
where M is the set of pairs (z1,22) which are considered matched. If M is
the region where |z1—22! < e, and if H is the distribution fuﬁction of the

difference between two independent Z's, then the denominator of 6 is
P{MATCH} = H(e) - H(-e) = 2H(e) - 1

since H must be symmetric about zero. Now if in addition we have
.= A . +A.,Y. =A.+A ., % =A_., w ' i
X1 A11 A31’ Yl A21 A31, Z1 A31’ where the A's are 1ndependent

- and identically distributed, then

Flu,v | 2,,2,) = Bu - (2,-2,)) Ky = (z,-2,)),
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and
W(z,,z.) = [1 - 2H(z,-2 )]2
21072 172200

Thus the numerator of 6 is

€
[ (1 - 28(e)2? ae) = 2 rou(e) - 173
-€
and finally
o = % [2H(e) - 1]2 = -;; PZ{MATCH}.

For the case where Z is a normal (0,1) variable,

£3.

P(MATCH} = P{|2,-2,| < e} = P{]z] < &

It may be noted that the first part of this argument gives a general

approach to the evaluation of population indices of matched correlation



