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§0. Introduction 

In this report we present three independent results concerning the com

binatorial problem on finite Abelian groups which was discussed earlier 

in [2], [5] and [6]. The report is considered to be a continuation of 

[2]. We repeat therefore only a few definitions; for other definitions 

and notations the reader is referred to [2]. 

Let G be a finite Abelian group. There exists an unique decomposition 

of Gin cyclic groups: G = cd1 @ cd2 @ ... @ C~ with 1 < d1 id2 1,,, I<\_• 

We consider the following invariants of G:, 

A(G):= d1 + d2 + ••• + <\_-k; 

M(G):= A(G) + 1 ; 

A(G):= the maximal length n of a sequence a 1 ,a2 , ••• ,an of elements 

of G which contains no non-empty subsequence with sum zero ; 

µ(G) = A(G) + 1. 

(Hence any sequence of µ(G) elements contains a non-trivial zero-sub

sequence.) 

It was conjectured in 1965 by P.C. BAAYEN that the equality A(G) = A(G) 

was generally true. In May 1969 he found that the group 

c2 @ c2 @ c2 @ c2 @ c6 was a counterexample; for this group 

A(G) = A(G) + 1. 

In section I we prove the equality A= A for three new families of groups. 

The proofs are based on the induction method used in [2] and combinatorial 

properties of the group (c3 )3 which are stated but not proved in this 

section; proofs appear in the separate report ZW 1969-010 [4]. 

Section II presents a general method to construct examples of groups 

for which A> A. The method gives besides the example given above also 

the relatively small group c3 @ c3 @ c 3 @ c6 to be a counterexample. 
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In Section III the following upper bound for µ(G) is given. Let Q be 

the order of G and let m be the maximal order of an element of G. Then 

we have: 

· µ(G) < m(1 +log.!!.). 
- m 

k For homogeneous groups G = (C) and large k this is approximately equal . m 
to 

M(G) • m~1 log m. 

This bound is good for groups containing a large number of cyclic factors 

which are not too small compared to the maximal element-order of G. 
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I. Some groups for which A(G) = A(G). 

§ 1 • Introducticm 

In [2] the equality A(G) = A(G) was proved for the following cases: 

I G is an Abelian p-group. 

II G = C @Cb a a 

III G = H $ C 

IV G = C n 
2p 1 

n qm 

{B C 

where His a p-group of order qj such that 

qn .::_ M(H) 

EB C with p prime n n 
2p 2 2p 3 

V G = C @ C EB c2 with n = 2k1 k2 k3 k4 
k. > 0 and 3 5 7 ' 2 2nm1 nm2 J. -

either m1 = 1 arbitrary or m1 m2 = p 
s p prime m2 = p 

In [1] was shown that A= A holds for 

VI (for odd m) 

In this section we extend the above list by three new series: 

for 3 '\ m 

VIII G = C n $ C n {BC n 
3.2 1 3.2 2 3,2 3 

IX G = c3 @ c6 nm1 
with n, m1 and m2 like in series V. 

r 
' 

The proof of these series is based on a couple of lemma's and theorems 

which we formulate below. First we repeat some of the definitions of 

notions we use in the sequel which were given in [2]. 

Let G 

A short zero-sequence Sis a zero-sequence with length.::_~· 
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By µB (a) WE~ denote the smallest integer n such that any a-sequence S 

of length ~:.. n contains a short zero-subsequence. We always have 

µ ( a) .:_ µB ( G) .:. ( <\_ -1 ) ( w ( a )-1 ) + 1. 

A hole of a. a-sequence Sis an element 'f O of a which does not appear 

as the sum of a subsequence of S. 

By v(a) we denote the smallest integer n such that for any primitive 

non-maximal G-sequence S of length n there exists a subgroup N ca so 

that all holes of Sare contained in a proper coset x + N xi N. 

We always have A (a) - 1 .:. v (a) .::_ A (a). 

A new notion we use in this section is the following property· ( Q): 

For any primitive non-maximal a-sequence S of length v(a) there exists 

a subgroup N ca of index 2 so that all holes of Sare contained in the 

proper COSE~t a '\N. 

Property (q,) puts a restriction on the subgroups N which are supposed 

to exist by the definition of v(a). 

Now we state our lemma's and theorems: 

Lemma (1.1t: The equality >.(a)= /1.(a) holds for a= c3 e c3 e c6. 

ii) Any c3 ffi c3 ffi c3 - sequence S with length 14 and value 

zero contains a short-zero-sequence. 

Lemma ( 1,3t: Property (a) is shared by groups of the following types: 

a) a= c2m 

b) a= c n e c n e c2n3 
2 1 2 2 

c) a= C e C 
2nm1 2nm2 

k1 k2 k3 k4 
n = 2 3 5 7 , k.· > 0 

J. -

and either m1 = 1, m2 arbitrary 
r s 

or m1 = p, m2 = p. 
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Theorem. (1.4): Let H = C $ C $ C • If v(H) = A(H) - 1 and if H n1 n2 n3 
shares property (Q) then for G = c3 $ c3 $ c3 the n1 n2 n3 
equality ;\.(G) =. A(G) is true. 

The proof of Theorem (1.4) depends on Lemma (1.1). Therefore we treat 

the case c3 $ c3 $ c6 separately; see §2, and also [3]. 

Fer Lemma (1.2) we give no proof in this report. It depends on some 

propositions treating the structure of c3 $ c3 $ c3 which have been 

proved by trying out all possibilities. The proof will appear in the 

separate report [4]. For more details see §3. 

For Lemma (1.3) we only give a sketch of a proof. A complete proof would 

demand an almost complete transcription of proofs given in [2]. We only 

give indicatiens hew the proofs given there have to be modified; see §3, 

The proof of Theorem (1.4) is given in 4. 

It ,is known from the results in [2] that for groups of types a), b) and 

c) in (1.3) the equality v(G) = A(G) - 1 holds. 

By application of (1.3) and (1.4) one easily sees that the equality 

;\.(G) = A(G) holds for groups of the types VII, VIII and IX. 
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Lemma (1.1): FGr G = c3 E& c3 E& c6 the equality ;\.(G) = A(G) holds. 

Proef: We write Gin the shape G = c3 E& c3 E& c3 E& c2• 

Elements from Gare written as columns (;) with x € (c3)3 , 

y = o,,. 

We have A(G) = 9, It is therefore sufficient to show ;\.(G) < 10. 

Let S therefore be a G-sequence of length 10. We prove that Sis 

not primitive. 

X1 x10 
Put s = ( ( ) ' ... ' ( ) ) • 

Y1 Y10 

Supp0se first that the (c3)3-sequence S' = (x1, •• ,,x10 ) contains 

two disjoint zer0-subsequences T', V'. 

Then Sis n~t primitive. For let T and V be the cGrresponcilng 

subsequences of S then we have 

Hence T, V or Tu Vis a zero-subsequence of S. The above 

situation certainly arises if S' contains a short zero-subsequence 

as the remaining~ 7 elements in S' cannot form a primitive 

sequence (;\.((c3)3) = 6). 

(The argument presented above is a special case of the argument 

from [2] §3). 

Without loss of generality we may assume y1 = y2 =,,,=Yr= 1, 

yr+ 1 = ••• = y 10 = 0, 0 ~ r ~ 10, 

We consider subcases for the problem depending on the value of r. 

case 1: r < 6. 

Lett= [r/2] and form the sequence: 
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(( x 1 +x2) 
T=: 0 ., ••• , ( x2t-

0
1 +x2t ) ( x t 1) ( x 1 O ) 

' ro ,. "' 0 

This is a H-sequence of length,~ 7 where His the subgroup of 

all(;) with y = O. As H; (c3)3 we have >-(H) = 6. Hence T and 

therefore• Sas well 1.s not primitive. 

case 2: r ~- 9. 

Consider the sequence S' = ((~1 ) , •• , , ( ~9 )) to be a 

(C:) 3 al c3 sequence! We have >-({c3 )4 ) = 8, .hence S' is not 

primitive as (c3)4 sequence. We conclude that the sequence 

(x 1 , ••• ,x9 ) contains a zero-subsequence of length k = 3, 6 or 

9. 

If k = 3 we have a short zero-sequence which makes S to be not 

primitive. If k = 6 the corresponding subsequence of S' 1.s a 
3 (C,.) al c2 zero-subsequence of Sas well. Finally if k = 9 the 

~ 3 
corresponding {c3 ) - zero-sequence is not irreducible. Hence 

(x 1 , ••• ,x 10 ) contains two disjoint zero-subsequences. Again S 

1.s not primitive. 

case 3: r :: 8. 

Age.in we consider the sequence s' = ((~ 1) , ••• , ( ~8)) 

(C )4 - sequence. 3, 

to be a 

If S' is not primitive we conclude that Sis not primitive like 

1.n case 2. If S' however is primitive it is a maximal (C )4 -
3 

sequence and all elements 'f O in (C )4 are the sum of some sub-
3 

sequence of S' . 

Lett= ~ 1 + x2 + + x 10 . Now there exists a subsequence T' 

of S' with T' = (~) (calculating in (c3 )4!). 

We conclude that (x 1 , ••• ,x8) contains a subsequence with sum tad 

and. length k = 1, 4 or 7, We may assume j(x1 , ... ,xk)j = t. 



8 

I:f' k 111 1 then {x2 .,,, .x10 ) is a. zero-sequence o:f' length 9 which 

cannot be irreducible, It is therefore the union of two disjoint 

zero-subsequencesl 

If k • 7 then, (x8,x91x10) is a. short zero-sequence, We conclude 

that Sis not pri~itive if k • 1 or 7, 
If~= 4 however the subsequence 

:is .13- zero-subsequence of S, 

case 4: r = 7, 

Le~ t = -{x1+x2+ ... +x10 ). If Sis primitive than the sequence 
S u· {{~)} is an irreducible zero-sequence, 

t This implies that a.11 subsequences of S u {(1 ) } a.re primitive. 

, Consider the following sequence 

t S' is a subsequence of length 10 of Su {( 1)}. 

It has however r 111 8, Therefore 6 1 is not primitive as has been 

shown in case 3, 

Again we conclude that Sis not primitive, 

This completes the proof of Lemma· (1,1), 
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§ 3 . Background information for theorem ( 1 • 4) • 

In this section no complete proofs are given. Readers willing to accept 

Lemma (1,2) and (1.3) as being true can proceed to§ 4 straight away. 

Let G = c3 i c3 t c3 • A short G- zero-sequence has length ~ 3, We 

have the following types of short zero-sequences: 

length 

length 2 

length 3 

( 0) 

(x, -x) 

(x, x, x) or (x, x+a, x-a) 

From this we see that in a short zero-sequence all elements are distinct 

except for the case of length 3 that the three elements are equal, For 

the presence of a short zero-sequence in some G-sequence Sit makes 

therefore no difference whether some element xis contained one or two 

times. One needs only to consider G-sequences consisting of distinct 

elements. 

Now the following properties are shared by G = c3 e c3 e c3 . 

Property 1: The maximal length of a G-sequence of distinct elements 

containing no short zero-sequence is 8. 

Property 2: Any G-sequence of length 8, consisting of distinct elements 

and containing no short zero-subsequence is a zero-sequence. 

Property 3: No G-sequence of length 7, consisting of distinct elements 

and containing no short zero-subsequence is a zero-sequence. 

These properties are shown in [4]. 

Lemma (1.2) is easily derived from properties 1, 2 and 3, 

Let S be a G-sequence of 8 distinct elements not containing a short zero

subsequence then Su S has length 16 and contains no short zero

subsequence. Hence µB ( G) ,::_ 17. 

Any sequence of length 17 not containing some element three times 

contains ,::_ 9 distinct elements; hence µB ( G) ::., 17. 
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Let S be a sequence of length 14 containing no short zero-sequence, 

Then it contains at least 7 and at most 8 distinct elements. 

In the first case S =Tu T where.Tis a sequence as described in 

property 3, !Tl ~ 0 and therefore Isl ~ O. 

In the second case S =Tu V where Tis a sequence as described in 

property 2 and Vis a subsequence of T of length 6. Now IT! = O and 

!vi ~ 0 (else T\V is a short zero-sequence) and therefore Isl ~ O. 

Next we treat Lemma (1,3). For any of the three types of groups the 

equality v(G) = A(G) - 1 is proved in [2], We consider these proofs 

in details. 

case a: G = c2m. See [2], prop. (1.19), 

It is shown there that any non maximal primitive c2m-sequence 

S of length 2m - 2 consists of a fixed generator a E c2m taken 

2m - 2 times. The unique hole of Sis the element -a. Now take 

N = {ka I k is even}. Then N is a subgroup in c2m of index 2 

and -a E c2m\N. 

It follows that G has property (Q). 

case b: G = C n e C n2 e C n3• See [2], th. (2.8). 
2 1 2 2 

It is showen there that for any p-group G = C n e ... e C nk 
p 1 p 

and for any G-sequence S of length h(G) - 1 which is primitive 

and not maximal, there exist constants c 1, ••• ,ck E Fp (the 

finite field of p elements) not all being zero such that the 

following implication holds: 

( x::k1) is a hole of S ==- c 1x1 + ••• + ckxk - -1 (mod p). 
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Now we have in this special case p = 2. Then the equation 

c 1x1 + ••• + ckxk = 0 determines a subgroup Nin .G of index 2 

and the equation c 1x1 + ••• +ck~= 1 determines its unique 

coset. 

case c: G = c i c2 . See [2], prop. (5.5). 
2nm1 nm2 

The equality v(G) = A(G) - 1 is proved by complete induction, 

We perform this induction in such a way that the latest 

applica~ion of th. (5,4) is in a situation represented by the 

following short exact sequence: 

& C J:.... C & C -24- C & C 0 
IV 2 IV 2 2 IV 2·----+- • nm2 nm1 nm2 

In the proof of (5.4) the coset x' + TI- 1(N) containing the holes 

from Sis the complete original under TI of a proper coset x + N 

in C EB C •. 
p p 

For our special case we have p = 2. Then the index of Nin 

c2 EB c2 is two, and by the surjectivity of TI the same holds in 

G: index [TI- 1(N):G] = 2, 

This completes our sketch of a proof of Lemma (1,3), 

In the formulation of property (Q) the fact that index [N:G] 

is even presupposes that the .. order of G is even, This is how

ever not a sufficient condition for (Q). 

Consider for example G = c3 EB c6. Then w(G) = 18 is even. The 

equality v(G) = A(G) - 1 follows by [2], prop. (5,5), 
1 0 0 0 0 0 Take for S the sequence S = (( 0),( 1 ),( 1 ),( 1 ),( 1 ),( 1 )), The holes 

. . • X 
of S form the proper coset {( ) Ix = 2}. Thi.s collection however, 

y 
has a non empty intersection with any subgroup of index 2. 

It is unknown whether or not v(G) = A(G) - 1 implies (Q) for 

groups G = C n, for which all n. are even. 
1 
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§4. Ptoof of theorem (1.4). 

We consider an exact sequence 

We denote H = C e C 19 C ' G = C e C e c3 . 
n1 n2 n3 3n 1 3n2 n3 

In order to show >.(G) = J\(G) we prove µ(G) = M(G), We take a zero-

sequence s of length M(G) + 1 and prove that s is not irreducible, 

Let S be a G-zero-sequence of length M(G) + 1 = 3(n 1+n2+n3 ) - 1. 

We have by Lemma (1.2) µB(c 3ec3ec3 ) = 17. Hence TIS contains at least 

n1 + n2 + n3 - 5 disjoint short zero-subsequences, say TIS 1, ... ,TISr_ 1. 

The corresponding subsequences s 1, ... ,sr_ 1 therefore have values in i(H). 

Let T be the sequence of the remaining .:_ 14 elements. We may assume 

that the length of T is 14. If not we take the first 13 elements and 

the sum of the remaining elements producing in this way a sequence T' 

of length 14, such that IT I = IT' I • 

In fact we change the sequence S by taking some elements together. 

However, if' we prove that the resulting sequence S' is not irreducible 

then Sis not irreducible either. 

Now TIT has length 14 and further \TIT\ = 0. By Lemm.a (1.2) we conclude 

that TIT contains another short zero-subsequence TIS. Let S be the r r 
corresponding subsequence of T and let T2 = T\Sr. Then T2 contains at 

least 11 elements. Further \TIT2 \ = O. 

We have r ~~ n 1 + n2 + n3 - 4, 

By assumption we have v(H) = J\(H) - 1 = n1 + n2 + n3 - 4. Further we 

have assumed that H has property ( Q). 

Consider the H-sequence V = (i-1 ls 1 I,, .. ,i-1 lsrl ). 

If Vis not primitive then V contains a zero-subsequence. This implies 

that S contains a proper subsequence with value zero hence Sis not 

irreducible. 
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If Vis maximal then 1rT2 contains another proper zero-subsequence 

say TIS 1 for 11 > µ ( ( c3 ) 3 ) = 7. But then V u {i - 7 IS 1 l } contains a zero-
v+ r+ 

subsequence. We conclude that S contains a proper zero-subsequence, 

hence Sis not irreducible. 

Finally we suppose that V is not maximal. Then there exist a subgroup 

N c Hof index 2 such that all holes of V are contained in H\N, Let 

K be the group G/i(N). It is easy to see that K is an 54 element group 

which can be mapped homomorphically onto (c 3 )3 by the map 

x + i(N) 1-- x + i(H). Therefore 

Let T be the natural projection from G onto K. The sequence TT2 has 

length 11. As A(K) = 9 (Lemma (1.1)) we conclude that TT2 is not 

primitive or irreducible. 

TT2 contains a proper zero-subsequence TU of length.::_ 10. Let Ube the 

corresponding proper subsequence of T2 then lul € i(N). As all holes 

of V were eontained in H\N we conclude that V u {i- 1 lul} is not primitive. 

Again we derive that Sis not irreducible. 

This completes the proof of theorem ( 1 . 4). 

Corollary ( 1 . 5): The equality A ( G) = A( G) holds for the following series 

of groups: 

VII C = c3 al c3 al c6m 3tm 

VIII G = C n a, C 
3,2n2 

al C n3 
3,2 1 3,2 

IV c3 e c6nm1 al C 
k1 k2 k3 k4 

G = n = 2 3 5 7 6nm2 
and either m1 = 1 ' 

arbitrary r 
m2 or m1 = p 

' 
m3 = p s . 
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proof: by ( l, 3) and ( 1 . 4) 

remark: The equality >.(G) = A(G) is known to be true for all groups of 

diltllension 1 and 2 (Type II). For dimension 4 there exists an 

example of a group for which >.(G) .::_ A(G) + 1. 

(G = c3 $ c3 $ c3 a, c6). The problem whether or not the equality 

is generally true for groups of dimension 3 remains open. After 

thie results of this section the smallest groups of dimension 3 

for which it is unknown whether or not>.= A are 

G w A 

(' 
"3 

a, c3 a, c,5 135 18 

c3 a, c3 a, c21 189 24 

C5 a, c5 a, c10 250 17 

c3 a, C3 a, c33 297 36 

C\ a, C4 a, c20 320 25 

c3 a, c3 a, c39 351 42 

c5 a, c5 a, c15 375 22 

c3 a, C3 a, C45 405 48 

C4 a, C4 a, C28 448 33 

c3 a, c3 a, c51 459 54 

c3 a, c9 a, c18 486 27 

c5 a, c5 a, c20 500 27 

c5 a, c10 a, c10 500 22 

In this list the group C4 a, C4 a, c 12 is missing although this 

group is not contained in any of th~ series I upto IX. The 

equality>.= A however can be derived for this group by from 

the equality v(c2 a, c2 a, c6) = A(c2 a, c2 a, c6) - 1. See [2] 

th. (4.2). The latter equality can be verified "by brute force" 

(i.e. checking all posi bilities). 

The condition 3 'i-. m is introduced to make series VII disjoint 

from series III. 
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II. Some groups for which A(G) > A(G). 

§5, Some series of excessive groups. 

The function A - A will be called the excess. A group G will be called 

excessive iff A(G) - A(G) > 1. 

Theorem (5, 1): Let n ,:_ 2, k ,:_ 2, (n,k) = 1, then we have: 

a)' ckn-1 i C . is excessive 
n nk 

b) c:n-n+2 i Cnk is excessive 

c) If either 
c(k-1 )n @ 

n 

2 (k,n+1) ,:_ 2 or k ,:_ n -n+1 then the group 

Ckn is excessive. 

Theorem (5,1) c) confirms BAAYEN's excessive example C~ i c6 and yields 

the excessive group C~ i c6. This group is four-dimensional~ We do not 

know whether there are 3-dimensional groups (three-cyclic groups) with 

a positive excess. We shall prove theorem (5,1) with help of the following 

complicated statement: 

Theorem (5,2): Let n ,:_ 2, k ,:_ 2, (n,k) = 1 and let 

( 1 ) C = c(k-1 )n+p 
n i ckn ( 0 .::_ p .::_ n-1 ) • 

Then we have: 

a) G has an excess > p -
if < p < n-1 and p $ n mod k. -

b) G has an excess > p+l -
if 0 < p .::_ n-2, provided -

that 

(2) x(n-p+1) $ n modulo k 

for x = 1 , 2 , • · .• , n- 1 • 
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Remarks: (5,2) a) implies (5,1) a), because n-1 $ n mod k. 

(5,2) b)~ restricted to the case p = O, gives the following 

statement (which we call (5,2) c): 

(5,2) c) (k-1)n . . . C i Ck has a positive excess if k does not n n 
divide any term of the finite arithmetic sequence 

2 2 1, n+2, 2n+3, ••. , n -n-1, n. 

This statement implies (5.1) c). For the proof of (5.1) b) we 

distinguish three cases: 

(p) n = 3 2 k =:2. Here (5,1) a), which has just been proved, 

c6incides with (5,1) b), even with ''better" excess. 

(q) n 2:.. 4. n = 1 mod k, We take P = 2 in (5,2) b), Then (2) 

shrinks to O $ n mod k, which cannot fail to be true. 

Excess,.::_ 3, 

(r) n ¥ 1 mod k, Here (5,2) a) gives. a positive excess for 

p = 1. Does it follow that the same holds true if the 

exponent is hk-k+2? Yes. Let us consider canonical ex

tensions of an arbitrary group G, by a cyclic component , 

C *' Here the word "canonical" means that m* should fit 
m 

somewhere in the divisor chain of G. Then A increases by 

* ' . * m -1 and it can be seen that/\ increases by at least m -1 

[see [2] (1,16)]. It follows that the excess does not 

diminish, and Ib is true. [We -mention further tJ:i.at the 

extension procedure proves at once the inequality 

A(G) .::_ A(G) for all G.] 

We have derived by now theorem (5.1) from (5,2). Further ex

ploration of the contents of (5,2) seems worth while, but- can 

be tedious. The following observations reduce the number of 

calculations, especially if-k < n._ 

(5,2) a) is without meaning and (5,2) b) is useless for all 

those cases where p = n modulo k. 
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In such a case one should proceed by canonical extension from 

downward. 

(5.2) b) is useless for p = 1 and for all further cases where 

p = 1 mod k. 

Example: n = 8, k = 5 

p ...... • 0 2 3 4 5 6 7 

excess by (5.2) a) > - 2 4 5 6 7 

excess by (5,2) b) > 0 0 5 0 

Hence, excess > 0 2 2 5 5 6 7, 
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§6. Proof of Theorem (5,2) 

We define T by: 

(3) T = (k-1 )n + p (0 ~ p ~ n-1) 

and note that we have T .::_ 3, besides: 

(4) T = p-n modulo k. 

The elements of the group CT will be presented as vectors 
n 

(5) modulo n. 

That basic vector which has a - 1 and the remaining marks ze~o, is 
].l 

denoted by eµ. 

The vector in which all a are is denoted by f, Let S be the following 
].l 

structure(= sequence) over CT 
n 

(6) s = e 1 ••• e 1 e 2 ••• e 2 

B1 B2 

* * where each of the blocks B. has n terms and wher.e B has n terms. Here 
* 1 

n has the following definition: 

* is n either n or n-1. The choice is free for 
(7) 

* 0 .:. p ~ n-2, but if p = n-1, then n must be n-1. 

A simple calculation shows, by ( 3)' that we have: 

* if n = n 
(8) 

* if n = n-1, 

where 18 is the length of S. This gives a certain hope that we shall 

succeed. 
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Before doing so, we study the zero-structure (subsequences with 

vanishing sum) in S. 

* Let Z be any zero structure in Sand let the intersection of Zand B 

* be a sequence of a elements (0 <a.::_ n ). Then there are three possi-

bilities: 

P1) a= 0. In order to obtain the sumvalue zero, Z must necessarily be 

the union of one or more blocks of type B .. 
i 

Hence we find: 

There is av with 1 < v < nk-1 such that Z consists of v blocks, 

* and such that B is not among these blocks. 

* P2) a= n. Then we haven = n and according to (7): 
p .::_ n-2. By analogous argument as in the foregoing case we find now: 

. There is aµ with 1 .::_ µ < nk-1 such that Z consists ofµ blocks 

* . * and where B, with n = n, may be present among these blocks, 

P3) * 1 <a~- n-1. Besides the a elements from B, Z must now contain 

n-a elements from each one of the other blocks. It follows: 

. There is an x with 1 < x < n-1 such that Z consists of Tx elements 
. * . . * outside B and n-x elements inside B. 

After these preparings we define a structure Rover C~ ~ Ckn by canonical 

extension, as designed in (9) and (10) 

( 9) 

n terms 

* If n = n-1, take , 1 -

( 10) 

* 

n terms 

E, - T mod nk 
n-1 

* n terms 

If n = n , take, - k+1, , 2 - - , - 1 mod nk n 

* There can be no ambiguity, as n > 2 and n > 1, 
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Let Q(Z) be a substructure of R, which is the extension of some zero

structure Z · in ( 6). 

In case P1) we find that the sum-value of·Q(Z) is ( O ) for some v v(k+n) 
with < v < nk-1. 

* In case P2) we haven = n and find the value ( O ) for some 11 with µ(k+n) "' 
1 .::_ µ < nk--1 . 

These sums are not zero, as n + k is a generator of the additive group 

modulo kn (n coprime with k). 

Hence R has no zero-substructures of type P1 ) and type P2) . 

In case P3) let ( 0 ) be the sum-value of Q(Z). q 
Here we are not able to evaluate q modulo nk, but we can do it modulo k. 

* If n = n-1 , we find by ( 9) and ( 1 0) : 

q = Tx.1 + (n-x)T = nT mod k. 

Hence, by (4), q = n(P-n) mod k. 

This cannot be zero if p $ n mod k. 

* If n = n (which in case P3) is certainly possible), we find: 

q = Tx.1 + (n-x) .1 = n-x(n-p+1) mod k. 

This cannot vanish if condition (2) is fulfilled. 

Hence, under the conditions of theorem (5,2) R is primitive over the 

group c~ al cnk' 

On account of (8) the proof is now complete. 
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III. Upper estimates for A(G) 

§7. Introduction 

Let G be an Abelian group with order n = Q(G) and with maximal element

order m = m(G). 

Let µ(G) = A(G) + 1, hence µ(G) is the minimal positiveµ such that 

(g. ~ G) 
i 

has always a subsequence which, under the operation in G, has the unit

element in Gas its value. We shall prove: 

Theorem (7.1) 

n µ(G) < m(1 +log-). 
- m 

Equality in this formula holds for cyclic groups, for there we have 

µ(G) = m. For non-cyclic groups the sign~ improves itself to<, due to 

the irrationality of the right-hand member. The latter function is 

moreover< n as we have log x ~ x-1 for x > 1. A further discussion 

will be given in §12. 

Theorem (7.1) will be proved, indirectly, by complete induction with 

regard ton, for a fixed value of m. This is not done by adding succesive 

prime-factors, but by stepping from n to Q+1, where n+1 of course is a 

pseudo-order. Exposition: 

Theorem (7.2) 

Let -r ( l ,m) ( 1 ;:_ 1 , m ;:_ 1 ) be the combinatorial function which is to be 

defined in §8 below. Then we have: 

( 11 ) i(l,m) < m(1 + log 1) 
- m 

for 1 .:_ m. 

Theorem (7.3) 

Let n = n(G), m = m(G), then 

( 12) µ ( G) 2- , ( n ,m) • 

It is clear that (7.2) and (7.3) imply theorem (7.1). 
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§8. Description of the function T(1 2m) 

We consider a finite matrix M with arbitrary things as elements, and 

define as a track in Many sequence which can be constructed under the 

following device: 

Examples: 

( 13) 

Among the 

but not p 

like those 

Choose, from left to right, one element from each column of 

M, such that identity holds for any two elements, which are 

taken from one and the same row. 

a a a a b c 0 0 0 0 1 2 
M1 = d e d e d f M2 = 0 1 0 1 0 2 

pqpqpq 0 0 0 

tracks of M1 are a a a a d q, dqdqbq and d q d q d q, 

ad a pf. Matrix M2 has tracks which are exactly situated 

in M1. In .fact, the two matrices are equivalent as to the 

problem of finding tracks, but M1 is softer on the eye. 

A matrix is called tractable if it has at least one track. 

Square and upstanding matrices are always tractable. The above notions 

are weatherbox-proof in both directions, hence by row-interchange and 

column-interchange any track can be presented as starting in the upper 

left corner of the matrix and ending somewhere in the final column, 

without ascendings underway. 

A matrix M with length 1 and heigth his called of type (1, h, m) 

if each row in M has at most m different elements ( 1 ~ 1 , h ~ 1 , m ~ 1 ) • 

The same M belongs clearly to type (1, h, m+1) then. The triple of in

tegers (1, h, m) is called tractable if all matrices of type (1, h, m) 

are tractible. 

Together with (1, h, m) the triples (1-1, h, m), (1, h+1, m) and 

(1, h, m-1) will be tractable (1 ~ 2, m ~ 2). 

Triple (1, h, m) with 1 .::_his always tractable, but if h < 1 ~m, the 

triple is not tractible, (take matrix with lh different elements). 
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Definition. T(l,m) is the least positive integer h such that the triple 

(1, h, m) is tractable. 

Basic properties: T(l,m) is a non decreasing function in 1 and m 

separately. Further: 

( 14) { T ( l ,m) < 1 

T ( l ,m) = 1 for 1 < m 

( 15) T(l,1) = 

( 16) T(m,n) = T (m+1 , m) = m. 

The function is interesting, if so, only for 1 > m > 2. 

* Lemma (8.1). Given m > 2 and L > m+2, there is an L with 

( 17) 

such that we have: 

( 18) 

m < 1* < m-l L 
- m 

* T(L,m) ~ T(L ,m) + 1. 

* * Proof: Put L =~+a with 1 < o < m and define L by L = L - (q+1). 

Then we have: 

* L L= - .9.!.J__ < 1 
qm+o - m 

* Further L = q(m-1) + cr-1 > m-1. Here the sign of equality cannot hold, 

it would imply q = 1, o = 

assumption L ,:_m+2. 

and hence L = m+1, contradictory to our 

* We have now proved that L satisfies (17). 

Next we choose h so large that the triple (1*, h, m) is tractable and 

we consider a matrice M of type (L, h+1, m). Its first row contains a 

subsequence, say S, consisting of q+1 equal elements, otherwise we 
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would have L ~ qm. We cancel those columns of M which intersect Sand 

we cancel forthwith the whole first row of M. Now we are left with 
. * (* ) *· a matrix M ?f type L, h, m, hence M is tractable. If we undo the 

cancellings, any track in M*, united with S, becomes a track in M. 

Taking in particular h = ,(1*, m), we find (18). 
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§9. Interlude for puzzlers 

The algorithm of the foregoing proof: 

L = qm+<:1 } 1 s o s m 
L* = L - (q+1) 

is not uncommon in cocoa-nut-puzzles, where m missionaries take part 

in a store of cocoa-nuts, but an ape sploils the outcome every night, 

by ta.king away.one of the participating_nuts. 

In our problem, the determination of t(l,m), we deal with a fixed m 

( though in special cases m can be lowered during the work) • By i tera-
. ( * ** ) . . ( k ) tion procedure L, L, L , ••••• one will find that 2, k+1, 2 and 

, . . , . _, k 
(9, 5, 3) are tractable~ Hence t(2, 2) s k+1 and t(9, 3) s 5. The al-

gorithm is too weak. to show that (6, 4, 4) is tractable, but this can 

be amended by direct verification. Then the algorithm gives that 

(16, 7, 4) is tractable and it follows that t(16, 4) s 7. Those who 

are acquainted with the group-problem which is the subject of this 

report, will certainly have seen, that in the above three cases equality 

must apply as a consequence of (7.3) for special small groups. Next, 

let us try to find t(27, 3). The algorithm gives here ts 8 and we know, 

by applying a certain group, that here t ~ 7. A sufficient condition 

fort.::_ 1 would be r(8,3) .::_ 4. But recently E. LIEUWENS has studied 

the matrix 

aaabbccc 

ppqrrpqq 

vwxvwxvw 

S t V t S V S t 

and has found that it is non-tractable. Hence we do not know whether 

t(27, 3) = 7 or 8. An efficient computer algorithm for this track

function has· been looked for, but not yet found. 
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§10. Pr0of of Theorem (7.2) 

Cases m = 1; 1 = m; 1 = m+1 are dealt with by (15) and (16). 

Hence we mey assume m ~ 2. Furtherm0re we mey assume that the asser

tien of the theorem is true for all 1 with 

ms 1 s L-1 (m fixed), 

where Lis s0me number~ m+2. Under this assumption we proceed to 

prove it fer 1 = L. We choose 1 * according to lemma ( 8 ·• 1 ) · and fina 

by (17): m ~ 1* s L-1; hence assertion (7.2) is true for 1 = 1* 

Deneting m( 1 + log 1.m-1) by f(l), we have: 

f(1) - f(1*) = m log.!!_ 
1* 

and hence, by ( 17) : 

* m 1 f(1) - f(1 ) ~ m log - = - m log( 1 - -) = m-1 m 

1 1 
= 1+-+-+ ••••• >1 

2m 3m2 

Starting from (18) we find at last: 

,(1,m) s ,(1*,m) + 1 s f(1*) + 1 < f(1), 

which completes the proof. 
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§ 11. Proof of Theorem (7. 3), 

The proof depends-on basic properties of the group-characters of G into 

a projection fields F. For F we mey take the complex domain, as is ha

bitual in textbooks. But our argument remains valid if we take for F 

a finite field of order= 1 modulo m(G). Hence the proof does not range 

outside elementary combinatorics. See §13 for comment, if needed. 

We take G in the multiplicative version, so that we can use a group

algebra FG, where Fis a field of the above description. We are inte

rested in products of the form 

the interest being due to the fact that g1, g2, ••• , gh will have a 

subsequence with product-value 1 in all cases where (19) present the 

zero in FG. The latter assertion is proved as follows (cf. OLSON [5]): 

If all the z. are zero, the product (19) cannot be the zero of the al~ 
J. 

gebra. Hence, if the product is zero, at least one of the z. is+ O. 
J. 

We restrict our attention to those factors, where z. f o. There will be 
J. 

no loss of generality, and probably no confusion, if we denote their 

product again by (19), where now we mey suppose that all z. + O. 
J. 

Clearly, the product is equal to 

where n = 2h-1, the~- are constants in F, and g. are subsequence pro-
J. J. 

ducts of g1, g2, ••• ,~•The final term is+ 0 and it follows easily, 

that the whole form cannot be zero, unless at least one of the g. is the 
J. 

unit-element of G, which is 1. 

We give an example. 

Take G = {1, g, g2, g3 , g4, g5} with g6 = 1 and let F be the residue

system modulo 13. 

Then we have: 

g(g-1) (g+1) (g2-3) (g2+4) = 0 in FG. 
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2 2 Indeed, the sequence g, g, g, g, g has three subsequences with pro-

duct value 1. 

How do we find a sufficient condition for (19) to be 0 in FG? 

By a well-known principle of character theory (see §13 if needed) 

we have the following cri teri um: 

( 20) 

The product (19) presents the zero in FG if and only 

if the product 

vanishes in F for every group-character x which maps G 

into F \ {0} • 

How do we find a sufficient condition for (20) to be zero in F for any 

choice of x? This is a question of factors 0, which will caper through 

(20) when the sequence z 1, ••• , zh is chosen in a special way. 

Let {x 1, x2 , ••• , Xn} be the collection of all characters and let 

g1, g2, ••• ,~be an arbitrary element-sequence over G. 

We consider the matrix 

and we look back at §8. Suppose that ( 21) has a track T, as defined 

in that section. Then we define a sequence z 1, z2, ••• , zh as follows: 

If T does not intersect the a~th row of the matrix, 

put Z, = 0. 
a * 

If T does intersect the a-th row, put z = x , where 
a 

* x is the value of the elements in the intersection. 
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This sequence z , alloted to the given sequence g, makes (20) vanish 
a a 

uniformly as the choice of X• Hence the existence of a track Tin (21) 

is sufficient for the existence of a sequence z , such that (19) prea 
sents the zero in the algebra FG. (As_ may be pointed out, it is necessa-

ry as well). 

Of course, this criterium is conclusive for our problem. We have known 

from the beginning (but not used sofar) that all character-values lie 

in the root-group of the equation zm = 1. It follows that (21) is a 

matrix of type (n, h, m). Hence if h ~ T(Q,m), the matrix is tractable 

for whatever choice of the sequence g1, ••• , gh; and (19) with proper 

z1, ••• , zh will be zero in FG. 

This amounts to (7,3). 
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§12. Discussi0n of the upper estimate 

For cyclic gr0ups we have µ{G) = m. Fer nen-cyclic groups, theorem 

(7.1) and subsequent remark give: 

(22) µ{G) - m 
log Q - log m < m. 

On the other hand we have here: 

(23) p-1 $ µ{G) - m 
log p log rL.- log m 

where pis the least non-trivial cycle-order in G. This is proved as 

follows: 

then k ~ 2, p $ d1 and~= m. 

Further µ(G) ~ M(G), where 

k-1 
M(G) = m + l 

i=m 
(d.-1). 

i 
(see [2]). 

x-1 We note the fact that the function =--- increases from its closurelog x 

value 1 to~ for 1 $ x <~put x = eu), and find henceforth: 

k-1 
µ(G) - m ~ M(G) - m = l 

i=1 

which proves (23). 

d.-1 
i 1 d. log d. eg i 

i 

p-1 
log p 

Q 
l0g -m , 

d 1-1 ~---log d1 

k-1 
I 

i=1 
log d. ~ 

i 
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A final remark as to the strength of (22). For any E > 0 we can find 

a collection of groups G such that m • ~and 

m µ(G) - m > (~ _ E) 
log n - log m. log m .. 

while moreover all the Gare excessive in the sense of §5. 

The proof is left to the reader. 

Now take groups G of type 

then we have 

C $ C $ ••••• $ C, m m m 

µ(G) - m 
~ 

log n - log m 
m-1 
log m ' 

with equality if mis a prime-power. There is a weak suggestion, just 

like in §§5, 6 that equality might hold here in all cases. 
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§13, Some remarks on group-characters 

The following approach to group-characters (added on request) is not 

too elegant, but it may suffice for readers who want to verify §11 in 

a direct way. 

Let G and R be multiplicative groups and let ~ and c • ) be 

isomorphisms, such that 

' ... ' m-1} + modulo 1 , 
m 

where m is the last common multiple of the a., hence m = m(G). We con
l. 

sider a duality mapping x of the lexicon G, G into R, where xis defined 

as follows: 

x(x,y) 

By straightforward reasoning one will find that any homomorphism of G 

into R must be of type x(x0 ,y) for some fixed x0 € G, 

Moreover, if x0 * x 1, the mappings x(x0 ,y) and x(x 1,y) are not identical. 

It follows that there are precisely Q homomorphic mappings, If G = 

= {x1,x2 , .•• ,xn} then 

is the collection of all homomorphisms of G into R. 

Next, let F be either the complex domain, or a finite field of order 

= 1 modulo m. Then the equation Zm = 1 has m roots in F and the roots' 

group is cyclic. Let us denote this group by R. Under isomorphism 

------. we find Q group-characters(= homomorphisms) of G into R, and 
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they are a.t once all the characters of G into the multiplication group 

of F. 

Now the sum-formula of finite geometric sequences leads up to: 

I 
ye:G 

x(x,y) { 
= Q 

= 0 

if X = 

if X f 

(0, o, .•. , 0) 

These are fundamental relations. The fact should be marked that Q f 0 

in F. If F is finite, this is by no means trivial, but it follows from 

the fact that any prime divisor of Q is a prime-divisor of m. If the 

characteristic prime of F were a divisor of Q, it would divide m and 

this is not possible. 

The fundamental relations imply the truth of the following statement: 

If }: f(x) x(x,y) = 0 for ally, (f G • F) 
xe:G 

then f(x) = 0 for all x e: G. 

(The proof proceeds by orthogonal inversion: multiply the sum }: by a 

factor x(x~1,y); next take a summation over ally and divide by Q). 

This chara.cter-proposi tion 1s all we need for the establishing of ( 20) • 

.Any element of the algebra FG has a linear presentation of the form 

I 
xe:G 

I',; X 
X 

(r,; e:F). 
X 

The calculus of homomorphic substitution will do the rest, 
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