
Formal Specification of JavaSpaces™
Architecture Using µCRL*

Jaco van de Pol and :tvliguel Valero Espada

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{Jaco.van.de.Pol, Miguel.Valero.Espada}©cwi.nl

Abstract. We study a formal specification of the shared data space
architecture, JavaSpaces. This Java technology provides a virtual space
for entities, like clients and servers, to communicate by sharing objects.
We use µCRL, a language that combines abstract data types with pro
cess algebra, to model an abstraction of this coordination architecture.
Besides the ba.sic primitives write, read and take, our model captures
transactions and leasing. The main purpose of the proposed formalism
is to allow the verification of distributed applications built under the
.JavaSpaces model. A simple case study is analyzed and automatically
model checked using the [LCRL and CADP tool sets.

1 Introduction

It is well known that the design of reliable distributed systems can be an ex
tremely arduous task. The parallel composition of processes with a simple be
havior can even produce a wildly complicated system. A distributed application
has to face some important challenges: it has to facilitate communication and
synchronization between processes across heterogeneoufi networks, dealing with
latencies, partial failures and system incornpatibilities. The use of coordination
architectures is a suitable way to manage the complexity of specifying and pro
gramming large distributed applications.

Re-usability is one of the most important issues of coordination architectures.
Once the architecture has been implemented on a distributed network, different
applications can be built according to the requirements without any extra adap
tation. Programmers implement their systems using the interface provided by
the architecture, which consists of a set of primitives or operators.

In this paper we study the .JavaSpaces TM [14] technology that is a Sun
I'vlicrosystems, Inc. architecture based on the Linda coordination language [6].
J avaSpaces is a JiniTM [15] service that provides a platform for designing dis
tributed computing systems. It gives support to the communication and synchro
nization of external processes by setting up a common shared space. JavaSpaces

' Partially supported by PROGRESS, tlw embedded systems research program of the
Dutch organisation for Scientific Research NWO, the Dutch tvlinistry of Economic
Affairs and the Technology Foundation STvV, grant CES.5009.

F. Arbab aud C. Talcott (Eds.): C'OO!U)!NATION 2002. LNCS 2:lJG. Pl" 274 290, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Formal Specification of JavaSpacesTM Architecture Using µCRL 275

is both an application program interface (API) and a distributed programming
model. The coordination of applications built under this technology is modeled
as a flow of objects. The communication is different from traditional paradigms
based on message passing or method invocation models. Several remote pro
cesses can interact simultaneously with the shared repository, the space handles
the details of concurrent access. The interface provided by JavaSpaces is essen
tially composed by insertion and lookup primitives. In the following section we
present some details of the technology specification.

The goal of our research is to verify the correctness of applications built
using JavaSpaces services. Therefore we propose a formal model of the archi
tecture which will allow to prototype these distributed applications. We use the
language µCRL [11] to create an operational and algebraic definition of the
technology. µCRL is a language based on the process algebra ACP [9], extended
with equational abstract data types. Its tool set [l] combined with the CJESAR
ALDEBARAN DEVELOPMENT PACKAGE (CADP) [8] allows the automatic anal
ysis of finite systems.

This paper is structured as follows. After this introduction, we complete
the description of J avaSpaces and we present the µCRL language. We continue
with the study of a model of JavaSpaces in the formal language µCRL. Then
we present a simple case study showing the main features of the proposed
specification and the model checker. Before the conclusions, we provide pointers
to some related work. The formal specification and some examples can be found
at: "http://www.cwi.nl;-miguel/.JavaSpacesj".

2 J avaSpaces

Components of applications built under the JavaSpaces model are "loosely cou
pled", they do not communicate with each other directly but by sharing informa
tion via the common repository. They execute primitives to exchange data with
the shared space. Figure 1 presents an overview of the JavaSpaces architecture.

A write operation places a copy of an entry into the space. Entries can be
located by "associative lookup" implemented by templates. Processes find the
entries they are interested in by expressing constraints about their contents with
out having any information about the object identification, owner or location.
A read request returns a copy of an object from the space that matches the
provided template, or n·ull if no object has been found. If no matching entries
are in the space, then read may wait a user-specified amount of time (timeout)
until a matching entry arrives in the space. ReadlfExists performs exactly like
read, but it only blocks if there are matching objects in the space but they have
conflicting locks from oue or more other transactions. Take and takeIJExists are
the destructive versions of read and readlfExists: once an object is returned, it
is removed from the space.

JavaSpaces also provides support to distributed events, leasing and transac-
tions, from the .Jini architecture [15]:

276 J. van de Pol and M. Valero Espada

waiting for
notification

read

not~f1'. • entries

.... _ --"' • notify'--S-pa_ce--~-~~---1-4'
event

read(waiting) /

Fig. 1. JavaSpaces architecture overview

Entry

JavaSpaces supports a transactional model ensuring that a set of grouped
operations are performed on the space atomically, in such a way that either
all of them complete or none are executed. Transactions affect the behavior
of the primitives, e.g. an object written within a transaction is not externally
accessible until the transaction commits, the insertion will never be visible if
the transactions aborts. Transactions provide a means for enforcing consistency.
Transactions on JavaSpaces preserve the ACID properties: Atomicity, Consis
tency, Isolation and Durability.

JavaSpaces allocates resources for a fixed period of time, by associating a
lease to the resource. The lease model is beneficial in distributed systems where
partial failures can produce waste of resources. The space determines the time
during which an object can be stored in the repository before being automatically
removed. Also transactions are subject to leasing, an exception is sent when the
lease of a transaction has been expired. Leases can always be renewed or canceled.

The space manages some distributed events, in particular: a process can
inform the space its interest in future incoming objects, by using the notify
primitive. The space will notify by an event when a matching object arrives to
the space. Notification will not be studied in this paper.

To know more about JavaSpaces, please consult the references [10,14].

3 Introduction to µCRL

A µCRL specification is composed by two parts. First, the definition of the data
types, called sorts. A sort consists of a signature in which a set of function
symbols, and a list of a..xioms are declared. For example, the specification of the
booleans (Boo0 with the conjunction operator (and) is defined as follows:

sort Bool
func T,F:-tBool

Formal Specification of JavaSpaces™ Architecture Using µCRL 277

map and: BoolxBool-+Bool
var b: Bool
rew and(T, b) = b

and(F, b) = F

The keyword func denotes the constructor function symbols and map is used
to declare additional functions for a sort. We can add equations using variables
(declared after rew and var) to specify the function symbols.

The second part of the specification consists of the process definition. The
basic expressions are actions and process variables. Actions represent events in
the system, are declared using the keyword act followed by an action name
and the sorts of data with which they are parameterized. Actions in µCRL
are considered atomic. There are two predefined constants: 5 which represents
deadlock, and T which is a hidden action. Process variables abbreviate processes,
and are used for recursive specifications.Process operators define how the process
terms are combined. We can use:

The sequential, alternative and parallel composition (.,+,/[) process opera
tors.

sum (2:) to express the possibility of infinite choice of one element of a sort.
The conditional expression "if-then-else" denoted p <J b I> q, where b is
a boolean expression, p and q process terms. If b is true then the system
behaves as p otherwise it behaves like q.

They keyword comm specifies that two actions may synchronize. If two
actions are able to synchronize we can force that they occur always in com
munication using the operator OH. The operator TJ hides enclosed actions by
renaming into T actions. The initial behavior of the system can be specified with
the keyword init followed by a process term:

System = r18H(Po II p1 II ...)
init System

4 Formal Specification

The µCRL model we propose supports the main features of the J avaSpaces speci
fication introduced in previous sections. The choices made on the implementation
of the model try to keep it as compliant as possible with the specification. How
ever, some concepts have been abstracted away trying to keep the model simple
and suitable to do model checking.

First we present the architecture from the application point of view focusing
on the APL going later into specific details of the implementation.

4.1 Application Point of View

The space is modeled as a single process called .iavaspace (we have not experi
mented with using multiple spaces). User applications are implemented as exter
nal processes executed in parallel with the space. External applications exchange

278 J. van de Pol and M. Valero Espada

data between them by transferring entries through the shared space. The com
munication between the javaspace process and the external applications is done
by means of a set of synchronous actions, derived from the JavaSpaces APL A
JavaSpaces system is specified in µCRL as follows:

System= rr&H(javaspace(...) II externaLPa(ido: Nat, ...)
II externaLP1(id1 : Nat, ...) II ...)

The arguments of the javaspace process represent the current state of the
space. They are composed by: stored objects, active transactions, the current
time, etcetera ... These arguments are explained in detail in the following section.

External processes have unique identification number. They have to add it
as parameter to every invocation of a primitive. The space uses this id to control
the access to the common repository.

Processes use the sort Entry to encapsulate the shared data. In the JavaS
paces specification, an entry corresponds to a serializable Java™ object which
implements the public interface Entry (with some other restrictions). In our
model, entries are represented by a sort. Users can define their own data struc
ture according to the application requirements. Data fields, from standard sorts
(naturals, booleans, ...) or new sorts, and operators can be included. The sort
must include the equality (eq) function, and the constructor entryNull because
they are necessary to perform the look up actions. The following code presents
the definition of a simple counter:

sort Entry
func entryNull:-+Entry

counter: Nat-+Entry
map eq: EntryxEntry-+Bool

value:Entry-+Nat
inc:Entry-+Entry

var n,n': Nat
rew eq(entryNull, entryNull) = T

eq(counter(n), counter(n')) = eq(n, n')
eq (entryN u II, counter(n)) = F
eq(counter(n), entryNull) = F
value(counter(n)) = n
inc(counter(n)) = counter(S(n))

The insertion of an entry into the space is done by means of the write action.
This primitive is defined as follows:

sort Nat, Entry
act write: NatxEntryxNatxNat

The arguments of the action write are: the process identification number,
the entry, the transaction identifier and the requested lease. The behavior of the
action depends on whether it is executed under a transaction or not. If it is not
joined to any transaction, the transaction id parameter is equal to 0 or NULL,

Formal Specification of JavaSpacesTM Architecture Using µCRL 279

then the insertion is instantaneously updated in the space. In our model there are
no possible exceptions thrown during the operation. It means that when a write
has been executed the entry is successfully inserted. Different write invocations
will place different objects in the repository, even if the data values are equal.
The use of transactions is explained further in the present section.

When a user performs a write, he can associate a lease to the entry. An
entry is automatically removed from the space when its lease expires. A lease
is a natural number from 0 to FOREVER. The null value (0) means that the
entry is deleted at the same unit of time that it is placed in the space. The
FOREVER value says the entry will never be removed. Our model differs from
the JavaSpaces specification because the lease requested is always granted by
the space and it cannot be canceled or renewed.

An example of write invocation in which the application process inserts a
null counter in the space without transaction and leased for one time tick, is
defined as follows:

proc p(id:Nat) =

.write(id, counter(O), NULL, S(O))

Look up primitives could be classified as: destructive and non-destructive,
depending on whether the item is removed or not after the execution of the
action, and in blocking and non-blocking depending on whether the process waits
until it receives the requested item. We can invoke destructive look ups (take)
or non-destructive (read), setting up the time during which the action blocks.

The JavaSpaces specification says that a look up request searches in the space
for an Entry that matches the template provided in the action. If the match is
found, a reference to a copy of the matching entry is returned. If no match is
found, null is returned. We don't use templates to model the matching operation
but by adding to every invocation one predicate, as argument, which determines
if an Entry matches or not the action. This predicate belongs to the sort Query,
defined by the user according to the specification of the Entry. The sort must
include the operator test used to perform the matching.

Let's see an example of Query sort that has two possible queries: any that
will match any entry in the space and equal that match any entry with a data
field, accessed via the operator value, is equal to a given parameter:

sort Query
func any: -+Query

equal: Nat-+Query
map test: QueryxEntry-+Bool
var e: Entry

n: Nat
rew test(any, e) = T

test(equal(n), e) = eq(n, value(e))

280 J. van de Pol and M. Valero Espada

An entry of the space will match a look up action if it satisfies the associated
query, as indicated by the test predicate.

There are implemented four look up primitives: read, take, readIJExists and
take If Exists. All of them take the following arguments: process identification
number, transaction identification number, timeout and query.

The execution of a look up primitive is done by means of two atomic actions.
First the external process invokes the primitive (read, take, ...), then the space
communicates the result of the request by returning a matching entry if the
operation was successfully performed or an entryNull if the timeout has expired
and no objects satisfied the query.

The µCRL specification of the actions is:

sort Nat, Entry, Query
act read, take, readlfExists,takelfExists: NatxNatxNatxQuery

Return:Nat x Entry

Let's see an example program using the take operation, which request any
entry of the space and blocks for one time step:

proc p(id:Nat) =

.take(id, NULL, S(O), any)

.O:=e:Entry Return(id, e)
.(... <1 not(eq(e, entryNull)) !> ...))

The behavior of the four primitives depends on how the space is updated
after the action (whether the entry is removed or not), and whether the action
performs a test of presence (if there are matching objects with conflicting locks).
The behavior is different if the actions are executed under a transaction.

In our model the instantiation of a transaction is done by the action create,
which has the arguments: process identification number, transaction identifi
cation number (assigned by the space), and lease. The space allocates a new
resource and returns to the user the identification number of the created trans
action. Once the transaction has been created, operations join to it by passing
its id number to the primitives.

A transaction can complete by the explicit actions commit and abort, or by
being automatically aborted when its lease expires. If the last case happens the
space informs to the creator of the transaction the expiration of the transaction
by "sending an exception". We model the exceptions by a communication action
called Exception parameterized with the id of the transaction and the id of the
process to whom the exception is directed to. If a process creates a transaction
it has to add the possibility of receiving an exception on all the actions executed
until the commitment of the transaction.

In our model, we restrict to the case that a transaction can only be used by
a single process. Only the creator can join primitives and receives the timeout
exception. The following example shows how the transaction model can be used
in external processes:

Formal Specification of JavaSpaces™ Architecture Using µ,CRL 281

act create: NatxNatxNat
commit, abort, Exception:NatxNat

proc p(id:Nat) =

Ltrc:Nat (create(id, trc, S(O))
.(write(id, ... , trc, ...) + Exception(id, trc).handle_actions)
.(take(id, .. ., trc, ...) + Exception(id, trc).handle_actions)
.(commit(id,trc) + Exception(id, trc).handle_actions))

or
.(abort(id, trc) + Exception(id, trc).handle_actions))

The Jini's transaction model has been simplified, for example our model
doesn't support nested transactions or transactions over multiple processes.

Transactions make changes on the semantics of the primitives, e.g. when a
write action is performed under a transaction, the entry will be externally visible
only after the transaction commits, if the transaction is aborted no changes will
be updated in the space. If a process inserts an entry under a transaction, and
meanwhile another process executes a readlfExists, the second process blocks
waiting for the commitment of the transaction (or for the timeout), if the entry
is the only in the space that satisfies the query.

We have introduced the main features of the specification. Although all the
JavaSpaces services have not been implemented, the proposed framework is suit
able to model and verify many interesting JavaSpaces applications. Now let's
present some details about the space implementation.

4.2 Implementation Point of View

The javaspace process handles the concurrent access of the external applications
to the common repository. It manages a data base storing the shared entries, the
active transactions, and other data structures like pending actions. The process
has also to manage some timeouts of leased resources.

To support leasing and the timeouts, the space has to deal with the notion
of "time". We propose the implementation of a centralized clock. This is appro
priate, because in reality a Javaspace server has a centralized implementation,
in multiple JavaSpaces each space would have its own clock. There is no clock
synchronization between the space process and the external applications, so we
have not made any assumption about the relative speed of the processes.

The clock is implemented by a discrete counter. More than one service can be
processed in the same time unit. So between two units the javaspace process can
treat several communication primitives. Externally we can say several actions
are performed in parallel (in the sense of interleaving).

The javaspace process increments arbitrarily a counter that determines the
duration of time from the start up of the system to the present state. The µCRL
tool set can only analyze finite instances of the specification so we have to limit
the time duration of the system. For this reason we use a constant which indicates

282 J. van de Pol and ~'L Valero Espada

after how many time steps the system must halt. The process will run from 0 to
FOREVER clock ticks.

map FOREVER:--+Nat
rew FOREVER= S(.. .S(O))

Now, we are going to analyze the most important issues of the specification
of javaspaces.

In the first part of the specification we define a number of standard data
types which will allow us to define more complex structures. We can find at the
top of the specification the sorts: booleans (Boo0 and naturals numbers (Nat)
with their usual operations. The declaration of the sort Boal must be included
in every µCRL specification because booleans are used for modeling the guards
in the "if-then-else" construction. The Boal specification has been presented in
Section 3. Naturals have two constructors: 0 for the null value and S(n), for the
successor of a natural.

Entries are internally encapsulated in the Object sort, which includes the
entry, the requested lease and an identification number. The space automatically
assigns a fresh id to every new entry. The signature of the Object sort is defined
as follows:

sort Object
func object: NatxEntryxNat-tObject
map eq: ObjectxObject--+Bool

id:Obj ect--+ Nat
entry:Obj ect--+Entry
lease:Obj ect--+Nat

Objects are stored in a data base that has the structure of a set. The javaspace
process manages this data base by inserting, removing and looking up entries.
The entries are organized without any order, so when the space executes a search
action, all of the matching entries have the same possibility to be selected.

The data base is defined by the ObjectSet sort. It has two constructors the
emO that creates a new empty set and in that inserts an object in a set. It has
other operators to locate entries, remove, compare et cetera ...

When the space receives an external invocation of a write, it creates a new
object and it inserts it in the set. The following fragment of code corresponds to
a write action without transaction.

proc javaspace(t:Nat, M:ObjectSet, ... , objectslDs:Nat, ...) =

+
Lprocess!D:Nat(Le:Entry(LtrcJD:Nat(L1~ase:Nat(

Write(processlD, e, trclD, lease)
.javaspace(t, in(object(objectlDs, e, plus(lease,t)),M), .. , S(objectlDs))

<l

and(eq(trclD, NULL), ...)
I> 8))))
+ ...

Formal Specification of JavaSpacesTM Architecture Using µCRL 283

In the code, M represents the object set, t is the current time, and object!Ds
is a counter used to assign a fresh id to every new entry.

Regarding the look up primitives: when the space receives a search request
first it creates a pending action. A pending action includes: the id of the process
that executed the primitive, the type (read, take, ...), the transaction id, the
time the process wants to block and the query. The pending actions are stored
in a set of the sort ActionSet whose definition is similar to the object set's one.

If there is an object that matches one of the pending actions then the space
returns the entry to the corresponding external process by means of the return
action. An entry matches an action if the execution of the test operation of
the associated query returns true. If there is a pending action with an expired
timeout the space returns the entryNull Figure 2 shows how this mechanism
works.

• • Objec1Se1

{successful t.akel

Space AclionSet

Fig. 2. Look up mechanism

We can see below the sort that defines a transaction:

sort Transaction
func transaction: Nat xNat x ObjectSet xDbjectSet x Obj ectSet-+Transaction
map eq: TransactionxTransaction-+Bool

id:Transaction-+Nat
timeout :Transact ion-+N at
Wset, Rset, Tset:Transaction-+DbjectSet

Every new transaction receives a fresh identification number, 0 is reserved
for the NULL transaction. Transactions have three object sets. The sets are used
to trace the changes performed by the operations joined to the transaction:

- Wset: stores the entries written under a transaction. After a commit the
objects are placed in the space set.
Tset: after a take the object is removed from the space and is placed in the
transaction set. If the transaction commits the Tset is deleted, if it aborts
the objects are put back in the space.

284 .J. van de Pol and M. Valero Espada

- Rset: stores the entries read under the transaction. When an object is in a
Rset it cannot be taken outside the transaction.

When a process executes a readlfExists or takelfExists and there is no match
ing object in the space, we check in the Wsets and Tsets of the other transactions
to decide if the process has to block or not. When the lease of a transaction ex
pires the space aborts it and informs the user by executing the action Exception.

In summary, the javaspace process can ever:

- Receive request of services: look ups or insertions.
- Match entries with pending actions, sending the result to the external pro-

cesses.
- Perform actions related to the lease or timeout expirations: to remove old

entries, abort expired transactions, unblock process waiting for an entry.
- Increment the clock by one unit until the time limit, leaving unchanged the

state of the system. This action is only possible if there are no matched
actions or expired timeouts (or leases) in the system.

5 Verification

We are going to formalize a simple JavaSpaces application to show the possi
bilities of the µCRL tool set for system verification. The system is inspired by
the classical arcade game Ping-Pong, in which two players throw one ball from
one to the other. This example has been taken from the chapter 5 of the book
"JavaSpaces™ Principles, Patterns, and Practice" [10]. The players are mod
eled by two processes called Ping and Pong which communicate by means of an
entry that encapsulates the ball. In the first section we propose a very simple
version of the game, in the second we did some small changes to the game rules,
that allow us to use more functionality of the specification.

5.1 Simple Ping-Pong

In this version, players can only catch and throw the ball. The system halts when
players have sent the ball a fixed number of rows or when the space life time
expires.

The Entry sort (ball) is defined as follows:

sort Entry
func entryNull:-+Entry

ball: Name-+Entry
map eq: EntryxEntry-+Bool

recei ver:Entry-+Name
var e: Entry

n,n': Name
rew eq(... , ...)

receiver(ball(n)) = n

Formal Specification of JavaSpaces™ Architecture Using µCRL 285

The only field the entry has is the name of the player whom the ball is directed
to. The name is from the sort Name, that has two constructors Ping and Pong,
and one function (other) used to switch from one to the other (other(Ping) =
Pong). To get the ball from the space, a player uses a query:

sort Query
func forMe: Name-+Query
map test: QueryxEntry-+Bool
var e: Entry

n,n': Name
rew test(forMe(n), e) = eq(n, receiver(e))

The code of both players is the same. It has as arguments: the given name,
the identification number, and the number of player rows:

proc player(id:Nat,name:Name,round:Nat) =
take(id, NULL, FOREVER, forMe(name))
·Le:Entry (Return(id,e)

.print(name)

.write(id, ball(other(name)), NULL, FOREVER))
. player(id,name,S(round))
<J lt(round, maxRounds) C> 8

Print is an external action used to communicate to the environment that a
player has catched the ball and is going to throw it back. In the initial state
the space includes a ball directed to Ping. The values of the other main data
structures (TransactionSet, PendingActionSet, ...) are initialized to empty. The
system instantiation is as follows:

System = T{W,E,Rt} a{ write, Write,take,Take,return,Return}

(javaspace(O, in(object(O, ball(Ping), FOREVER), emO),
emT, emA, S(NU LL), S(O), 0)
II player(O, Ping, 0) 11 player(S(O), Pong, 0))

To each µCRL specification belongs a labeled transition system (LTS) beiug a
directed graph, in which the nodes represent states and the edges are labdf~d with
actions. If this transition system has a finite number of states the 11.CRL tool sd.
can automatically generate this graph. Subsequently, the CiESAil ALD1'.:BAllAN

DEVELOPMENT PACKAGE (CADP) can be used to visualise awl to a11alys1~ this
transition system. Figure 3 shows the generated LTS of a two rows gauw rPdtw!'d
by tau equivalence.

The fair execution of the game is O-a-1-2-4. If the tiuw rcadws th<~ hrnmd
the system halts, and it's possible that the system stops lwforp all t.lw rows ltav<•
been completed, this behavior corresponds to tlw transitions 0-4, :~-4 awl 1-·I.

Some properties can be automatically verified by tlw Evaluator tool fr<Jlll t.lu·
CADP package. These properties are cxpressPd i11 t.<·mporal logic. \V,. 11s<'d t) 11 •

regular alternation-free µ-calculus formulas [1 :{j. For (•xam ph·, a saf1>tv I ir111 wit v
expresses the prohibition of "bad" execution seqU('ll<'f'S. Tlu~ folluwi11g f"rlll 11 l;1

means that the player Ping cannot throw tl11~ hall t.wi<:<~ iu a row:

286 J. van de Pol and M. Valero Espada

[true* . "print(Ping)" . (not "print(Pong)")* . "print(Ping)"] false

The tool set verifies if the formula holds or not. In the same way we can
verify invariants, liveness or fairness properties et cetera ...

Fig. 3. External behavior of 2 rows simple Ping-Pong game

5.2 More Complex Ping-Pong

We introduce a small change in the rules of the game. In this version, once a
player catched the ball, he has one time unit to put it back in the space, otherwise
he looses the game. \Ve model this approach by using transactions. After a player
has performed the take, he creates a transaction leased for one second. Once the
write operation is done, the transaction can commit. Let's see the process code:

proc player(id:Nat,name:Name,round:Nat) =
take(id, NULL, FOREVER, forMe(name))
·Le:Entry (Return(id,e)

·Ltrc:Nat (create(id, trc, S(O))
.(write(id, ball(other(name)), trc, FOREVER)

+ Exception(id, trc).looser(name))
.(print(name) + Exception(id, trc).looser(name))
.(commit(id, trc)) + Exception(id, trc).looser(name)))

. player(id, name,S(round))
<l lt(round, maxRounds) C> o

proc looser(name:Name) = l_am_the_looser(name).o

Figure 4 shows the reduced LTS associated to the system. In the state number
6 the game has finished. The system can halt due to the end of the match or
because .:me of the players has lost or the time has expired.

From the state 0 there are 5 possible transitions:

- prrnt(Ping) to the state 3. The player Ping has taken the ball and the
transaction expires. Ping looses.
pnnt(Piny) to the state 6. The player displays the message and the system
halts (because t = FORE-VER). Nobody looses.

- f _cwLthe_/ooser(Ping) to the state 6. The player takes the ball but the
tran,;action expires before printing. Ping looses.

Formal Specification of JavaSpaces™ Architecture Using µCRL 287

Fig. 4. External behavior of 2 rows complex Ping-Pong game

- print(Ping) to the state 9. Normal execution, player has catched and thrown
the ball. The fair game execution path is 0-9-1-4-6.

- print(Ping) to the state 8. The player throws the ball correctly but in the
last time step of the system so the transaction can not expire anymore.
In the states 8, 2 and 5 the transactions timeouts are always greater than
FOREVER. Following this path nobody can loose.

We can see that the property "A player has one unit of time to throw the ball
after he catched it" doesn't hold, because after the return of the take action the
player can wait as long as he wants before creating the transaction. \Ve prove
this by showing that the following formula doesn't hold for the system (without
hiding internal actions):

[true*. 'T. *'.(not ('E.*' or 'print.*')*). "clock". (not ('E.*' or 'print.*')*) .
. , clock"] false

The formula says that after a take communication (T). we can not have two
consecutive clock ticks without an intermediate exception (E) or a print. The
model checker gives a path that doesn't satisfy the formula. Next, we rewrite

288 J. van de Pol and M. Valero Espada

the property in the following way: "A player has one unit of time to throw the
ball after he created a transaction, otherwise he receives an exception". This is
expressed by the formula:

[true*. 'C(.*)'.(not ('E.*'or 'Cm.*')*). "clock". (not ('E.*'or 'Cm.*')*).
"clock"] false

After the creation of the transaction (C), players have to commit (Cm) in
one time step otherwise they get an exception. The system indeed satisfies this
formula.

6 Related Work

Our information on JavaSpaces is based upon the book [10], and the documen
tation from Sun on JavaSpaces [14] and Jini [15]. The latter document describes
a.o. the concepts of leasing, transactions and distributed events. The basic ideas
of JavaSpaces go back to the coordination language Linda [6].

Some work on the formalization of J avaSpaces (or other Linda-like languages)
exist, notably [3,4,5]. In these papers, an operational semantics of JavaSpaces
programs is given by means of derivation rules. In fact, in this approach JavaS
paces programs become expressions in a special purpose process algebra. Those
authors aim at general results, i.e. comparison with other coordination languages,
expressiveness, and results on serializability of transactions. Verification of indi
vidual JavaSpaces programs wasn't aimed at.

Although we also take an operational approach, our technique is quite dif
ferent. We model the Javaspace system, and the JavaSpaces programs as ex
pressions in the well-known, general-purpose process algebra, µCRL [11]. This
allows us to use the existing µCRL tool set [1] and the CADP tool set [8] for
the verification of individual JavaSpaces programs. In our model, the JavaSpaces
programs communicate with the J avaSpaces system synchronously.

Our technical approach is similar to the research in [7,12]. In these papers,
programs written under the Splice architecture [2] are verified. Both papers
give an operational model of Splice in µCRL, and use the µCRL and CADP
tool sets to analyse Splice programs. One of the main purposes of the Splice
architecture is to have a fast data distribution of volatile data. To this end,
the data storage is distributed, as opposed to the central storage in JavaSpaces.
In Splice, data items are distributed by a publish/subscribe mechanism. Newer
data items simply overwrite outdated items.

7 Conclusion

In this paper, we provide a framework to verify distributed applications built
using the JavaSpaces architecture. We have modeled in µCRL a formal specifica
tion of the main features of the coordination architecture that allow to prototype
and analyse JavaSpaces applications. The language µCRL is expressive enough

Formal Specification of JavaSpaces™ Architecture Using µCRL 289

mpport all the functionality of JavaSpaces. The main features have been im
inented: primitives, leases, timeouts, transactions and events. We foresee no
jor problems in the specification of the remaining services.
The last part of the paper is dedicated to the study of a very simple JavaS
:es application. Although we cannot verify the correctness of the proposed
dfication, we can see in small examples, that the behavior corresponds to the
raSpaces specification. Together with the µCRL simulator this provides some
idation of the model. We also present some ideas of how to verify properties
applications. In the same way of the example we can study more complex
>blems.
There are many possibilities for future work. First we can extend the specifi

;ion by including the remaining features: notify primitive, lease renewal, nested
bilSactions, multiple spaces, etc. We can also analyse properties of the formal
~cification or the transactional model, do formal comparision with other ap
)aches [4,5], or to go further in the verification of applications by studying real
1rld applications.

eferences
l] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. Langevelde, B. Lisser, and J.C.

van de Pol. µCRL: a toolset for analysing algebraic specifications. In Proc. of
CAV, LNCS 2102, pages 250-254. Springer, 2001.

2] M. Boasson. Control systems software. IEEE Trans. on Automatic Control,
38(7):1094-1106, July 1993.

3] M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing coordination models
based on shared distributed replicated data. In Proc. of SAC, pages 146-155.
ACM, 1999.

4] N. Busi, R. Corrieri, and G. Zavattaro. Process calculi for coordination: From
Linda to JavaSpaces. In Proc. of AMAST, LNCS 1816, pages 198-212. Springer,
2000.

i5J N. Busi and G. Zavattaro. On the serializability of transactions in JavaSpaces. In
U. Montanari and V. Sassone, editors, Electronic Notes in Theoretical Computer
Science, volume 54. Elsevier Science Publishers, 2001.

[6] N. Carriere and D. Gelernter. How to Write Parallel Programs: A First Course.
MIT Press, 1990.

[7) P.F.G. Dechering and I.A. van Langevelde. The verification of coordination. In
Proc. of COORDINATION, LNCS 1906, pages 335-340. Springer, 2000.

[8) J.-C. Fernandez, H. Caravel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP - a protocol validation and verification toolbox. In Proc.
of CA V, LNCS 1102, pages 437-440. Springer, 1996.

[9] W. J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer-Verlag, 2000.

10] E. Freeman, S. Hupfer, and K. Arnold. Java::ipaces principles, patterns, and prac
tice. Addison-Wesley, Reading, l\fA, USA, 1999.

11] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra et
al., editor, Handbook of Process Algebra, chapter 17. Elsevier, 2001.

12] J.l\LM. Hooman and J.C. van de Pol. Formal verification of replication on a dis
tributed data space architecture. In Proceedings ACM SAC, Coordination Models,
Languages and Applications, page (to appear), l\ladrid, 2002. ACM press.

290 J. van de Pol and M. Valero Espada

[13] R. Mateescu. Verification des proprietes temporelles des programmes pamlleles.
PhD thesis, Institut National Polytechnique de Grenoble, 1998.

[14] SUN Microsystems. JavaSpacestm Service Specification, 1.1 edition, October 2000.
See http: I I j ava. sun. com/products/ j avaspaces/.

[15] SUN Microsystems. Jinitm Technology Core Platform Specification, 1.1 edition,
October 2000. See http://www. sun. com/ j ini/ specs/.

