
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

A distributed computational model for Reo

C.T.H. Everaars, D.F. de Oliveira Costa, N.K. Diakov,
F. Arbab

REPORT SEN-E0601 FEBRUARY 2006

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A distributed computational model for Reo

ABSTRACT
The work described in this document aims at producing a formal computational model for the
Reo coordination language, that can facilitate the implementation of Reo circuits in a distributed
computing environment. The model introduced here partially covers what Reo requires - it
implements a less strict form of the merge behavior of mixed nodes. While this already allows
computing of a large class of useful circuits, it does not properly deal with some synchronous
circuits that contain LossySync channels. This work has lead to a new and more powerful
approach to computing the behavior of Reo circuits, called Connector Coloring.

1998 ACM Computing Classification System: C.2.4, D.1.3, D.1.m, D.3.2, D.3.3, F1.2
Keywords and Phrases: Coordination Language; Reo; Computational Model

A Distributed Computational Model for Reo

Functional Specification of a partial model

Kees Everaars, David Costa, Nikolay Diakov, Farhad Arbab
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

February 6, 2006

Abstract: The work described in this document aims at producing a formal
computational model for the Reo coordination language, that can facilitate the
implementation of Reo circuits in a distributed computing environment. The model
introduced here partially covers what Reo requires - it implements a less strict form
of the merge behavior of mixed nodes. While this already allows computing of a
large class of useful circuits, it does not properly deal with some synchronous circuits
that contain LossySync channels. This work has lead to a new and more powerful
approach to computing the behavior of Reo circuits, called Connector Coloring.

1

Contents

1 Introduction 4
1.1 Background . 4
1.2 Rationale . 4

1.2.1 Global View . 4
1.2.2 Communication Infrastructure 4
1.2.3 Look-up and Commit vs Roll-back 5
1.2.4 Concurrency . 5
1.2.5 Partial Failure . 5

1.3 Reo concepts . 5
1.4 Basics of the Operational Semantics 6

2 Functional Notation 7
2.1 Normal Function Declarations . 7
2.2 Function Declarations Using Pattern Matching 8
2.3 List Comprehension a.k.a. ZF-notation 8

3 Data Types 8
3.1 Data Type Definition . 8
3.2 Auxiliary Functions per Data Type 9

3.2.1 Node . 9
3.2.2 CE . 9
3.2.3 Channel . 9
3.2.4 PendingOp . 9

4 Simplified Computational Model 9
4.1 Auxiliary Node Functions . 11
4.2 Simplified Node Behavior . 11

4.2.1 Simplified Accepts . 11
4.2.2 Simplified Offers . 12
4.2.3 Simplified τ . 12

4.3 Some Simplified Synchronous Channels 12
4.3.1 Simplified Sync . 13
4.3.2 Simplified SyncDrain . 13
4.3.3 Simplified SyncSpout . 13

4.4 Some Examples . 14
4.4.1 Circuit 1 . 14
4.4.2 Circuit 2 . 18
4.4.3 Circuit 3 . 21

5 Node Behavior 22
5.1 Node Functions . 22

5.1.1 Accepts . 23
5.1.2 Offers . 24
5.1.3 τ . 25

6 Channel Behavior 26
6.1 Asynchronous Channels . 27

6.1.1 FIFO . 27
6.1.2 FIFOn . 27

6.2 Synchronous Channels . 28
6.2.1 Sync . 28
6.2.2 SyncDrain . 28

2

6.2.3 SyncSpout . 29
6.2.4 LossySync . 29
6.2.5 Filter . 30

7 Examples 31
7.1 Loop categorization . 31
7.2 Loops . 32

7.2.1 Source-source-source loops (loop 1) 32
7.2.2 Source-source-sink loops (loop 2) 32
7.2.3 Source-sink-source loops (loop 3.1 and loop 3.2) 34
7.2.4 Source-sink-sink loops (loop 4) 35
7.2.5 Sink-source-source loops (loop 5) 36
7.2.6 Sink-source-sink loops (loop 6) 36
7.2.7 Sink-sink-source loops (loop 7) 37
7.2.8 Sink-sink-sink loops (loop 8) 37

8 Conclusions 37

A Examples of traces of loops 39
A.1 Trace of a source-source-source loop (loop 1) 39
A.2 Trace of a source-sink-source loop (loop 3.1) 42
A.3 Trace of a source-sink-source loop (loop 3.2) 44
A.4 Trace of a source-sink-sink loop (loop 4) 47
A.5 Trace of a sink-source-source loop (loop 5) 48
A.6 Trace of a sink-source-sink loop (loop 6) 50

3

1 Introduction

This document presents a computational model for Reo specified using a functional
notation. This computational model can facilitate a fully distributed realization of
the Reo coordination language.

1.1 Background

The Reo coordination language presents a paradigm for coordinated composition of
software components. We refer to a software component composition specified in
Reo as a circuit. Reo can serve not only as a specification language for component
compositions, but also as their implementation language. For this we require an
operational semantics (a formal computational model) that defines how one can
compute a Reo circuit.

Modern computing environments involve powerful computers connected in a net-
work by high-speed communication infrastructure. We observe, among others, the
following interesting characteristics of the modern computing environment: high
physical and geographical distribution of the individual computing devices; high
availability of the network services; and an increasing growth in computing capa-
bilities with the advances of technology. The work described in this document aims
at producing an operational semantics for Reo, that facilitates implementation of
Reo circuits in a distributed computing environment.

1.2 Rationale

Arbab discussed the wide variety of architectural models [1] that Reo can support
as a specification language. Below we provide several important issues that an
operational semantics for Reo should address in order to preserve the expressiveness
of Reo for Reo as a specification language, during the computation of Reo circuits
in a distributed environment.

1.2.1 Global View

In a geographically distributed environment, different parts of an instance of a Reo
circuit may have to operate on remote hosts. An operational semantics that relies on
a global view of the state of a Reo circuit imposes a centralized computational model.
Centralized computational models promote implementations with contention and
single-point-of-failure vulnerability. These often inhibit the parallelism inherent in
physically distributed systems, by injecting additional delays necessary to maintain
a consistent global view.

We acknowledge the high architectural and performance cost of centralized com-
putational models. We concentrate on a computational model in which an authority
computing an instance of a Reo circuit can obtain only a limited knowledge about
the circuit. When such authority needs to perform some activity for which it does
not have sufficient information, it delegates this activity to some other authority
that has the necessary information. This principle of partial information underlies
the Reo operational semantics that we present in this paper.

1.2.2 Communication Infrastructure

In Reo, channels encapsulate all communication-related activities. To compute an
instance of a Reo circuit according to the principle outlined above, requires signif-
icant exchange of intermediate control information over the communication infras-
tructure. Since Reo offers only channels as communication medium, its operational
semantics should not “cheat” by using an additional communication infrastructure

4

for signaling than the channels themselves. Using an additional communication in-
frastructure may violate the relations among the elements in a Reo circuit. Such
violation may produce a difference between what the specification claims to do and
what the operational semantics actually does in a distributed environment.

1.2.3 Look-up and Commit vs Roll-back

Reo has two types of channels: synchronous and asynchronous. Computing a Reo
circuit consisting of synchronous channels requires an atomic evaluation of all con-
ditions under which the circuit transports data through its synchronous channels.
One can achieve atomicity following two approaches: (1) by performing the neces-
sary transportation until either it succeeds or fails, in which case all intermediate
transportation must roll back; or (2) by looking ahead at the result of every trans-
portation, commit to these results, and only in the case of complete success, actually
perform all transportation.

In order to compute an instance of a Reo circuit in the first approach, we need
to restrict all channels used in the circuit to ones that support reversible transports.
Such restriction would disallow the use of channels whose implementation has side
effects that forbid reversing of transportation (or make it very difficult and costly).
For example, transportation of volatile materials may prove too costly to perform in
reverse if required in a roll back. Therefore, employing roll backs in the Reo opera-
tional semantics limits the expressive power of Reo as an implementation language,
as compared to its power as a specification language for real-life coordination.

To overcome this limitation we rely on the second approach to computing Reo
circuit instances. For this we require from a channel to provide a look ahead of
the result of a transportation, before the actual transportation occurs. In this
document we successfully construct an operational semantics that uses the look
ahead capabilities of basic channels to provide look ahead capabilities for Reo circuit
instances.

1.2.4 Concurrency

If we consider the principle of partial information together with the inherent con-
currency in a distributed environment, it becomes clear that many authorities may
start competing over the computation of an instance of the same Reo circuit in a
distributed environment. This may lead to various race conditions, livelocks, dead-
locks, etc. The Reo operational semantics should properly avoid, or detect and
resolve race conditions during the computation of a Reo circuit.

1.2.5 Partial Failure

Having partial information in a large distributed environment prevents us from
predicting failure in the system. Therefore, a part of the platform on which a Reo
circuit instance runs may fail, while the information about this failure may not
become available until someone actually tries to communicate with that part. The
Reo operational semantics must properly deal with partial failure of the run-time
platform of an instance of a Reo circuit.

1.3 Reo concepts

In this section we briefly introduce the basic Reo concepts. Arbab gives an extensive
introduction to all Reo concepts [1]. Figure 1 shows the basic elements of a Reo
circuit. A channel has precisely two channel ends. Reo introduces two types of
channel ends: sink and source. A sink dispenses data out of its channel. A source
accepts data into its channel. Channel ends coincide on nodes. Visually, one can

5

NodeReo Channel
End

Channel
+coincides with1..*1..*22

Figure 1: Reo elements and their basic relations

view a Reo circuit as a connected graph of nodes and edges, where one or more
channel ends may coincide on every node, every channel end coincides on exactly
one node, and an edge exists between two nodes if and only if there exists a channel
whose channel ends coincide on those nodes.

Reo has three types of nodes: source, sink, and mixed. A source node contains
only sources. A sink node contains only sinks. A mixed node contains both sources
and sinks. Nodes typically serve as pumping stations for their channel ends, where
from sinks (if any) the node takes an available data item, and replicates it to all of
its sources (if any). Arbab gives a detailed description of node behavior [1].

1.4 Basics of the Operational Semantics

Reo defines a number of operations that application components can use to ma-
nipulate and interact with an instance of a Reo circuit. In the Reo operational
semantics we consider only I/O operations: take and write. We disregard the rest
of the operations, since they do not concern the traffic of data through an instance
of a Reo circuit. A component can invoke an I/O operation on a node by using
a channel end that coincides on that node. After an invocation, the operation be-
comes pending on the node. At this point, nodes, channels and their composition in
a circuit, determine the working of a Reo circuit. The functional specification that
we present in this paper defines the behavior of nodes and the behavior of channels.

The Reo operational semantics utilizes the principle of partial information in
a distributed system in the following way. Nodes and Channels may act as active
entities that execute on more than one host. Nodes constantly try to pump data
from and to the channels whose ends coincide on them. Nodes also try to satisfy
requests for Reo I/O operations from application components. Channels constantly
try to transport data (channel behavior varies from one type of channel to another).
We design the operational semantics in the form of queries posed (functions) to a
Reo circuit element (node or channel) to determine what it can do. The Reo oper-
ational semantics presented in this paper answers all necessary queries to provide
the look ahead capabilities necessary to ensure that a Reo circuit can successfully
transport data items maintaining a result consistent with the algebraic semantics
of Reo [2, 5].

One may ask a node what kind of traffic of data items it can perform at some
moment in time. In the operational semantics, we represent this question using the
τ function. In reply, the τ function returns the candidate data items. A mixed
node, for example, pumps a data item out of one of its coincident sinks and into
all its coincident sources. The traffic query may appear too complex, and therefore
we decompose it further into two separate queries: (1) what data items can a node
offer as available; and (2) what data items can a node accept? We represent the
first query as the Offers function, and the second query as the Accepts function.

Since in Reo nodes may interact only through their coincident channel ends
with their respective channels, the node queries naturally propagate through a Reo
circuit in the form of some channel queries and a relation among the answers to
those queries. We define the precise relations in detail later in the text. We again

6

consider the mixed node as an example. To evaluate its Offers function (denoted
with a capital first letter), a mixed node needs to ask the channels of all of its
coincident sinks whether they have anything to offer. We represent this channel
query using an offers function (denoted with a small first letter). Similarly, to
evaluate its Accepts, a mixed node needs to ask the channels of all of its coincident
sources whether they can accept a certain data item. We represent this channel
question using an accepts function. How offers and accepts propagate through a
Reo circuit becomes a prerogative of the channels only. Since Reo does not depend
on fixed definitions of channels, the Reo computational model remains open for
consistent use with new channel behavior.

2 Functional Notation

In this section we present the bare minimum of the functional notation that we need
to define the specification of the Reo operational semantics. For readers unfamiliar
with a functional notation we refer to [4]. Furthermore, we introduce d � p to
designate that d matches with the pattern p.

2.1 Normal Function Declarations

The specification consists of a set of function declarations. The first line of each
function declaration contains the function signature. A function signature consists
of the name of the function, the type of its parameters and the type of its returned
value (in this order).

FunctionName :: Type1 → Type2 → ... → TypeL → ReturnType
FunctionName(a, b) =

body clause
where

local function definition1

...
local function definitionn

The very last type name always represents the function return type, and the number
of parameters equals to one less than the number of types in the signature line (or
just the number of →’s). The specification of the function body, always follows
after the function signature followed by an optional where clause. The function
body consists of a head that defines the function argument variables, followed by
the = sign, and a body clause that defines how the function utilizes the argument
variables. The body clause may contain an if then else block to provide conditional
results.

All the lines in a where clause represent definitions of local functions. A local
function definition does not have a function signature. We define local functions
with =, on the left of which we indicate the function name and argument names, and
on the right of which we define a single line body. We use local function definitions in
order to keep the function body more understandable. After a function declaration,
we provide a detailed informal explanation of the function.

A type name between square brackets [] denotes a list of elements with type
identified by the type name. We denote an empty list with []. The expression [h:t]
states that a list has a head h (the first element of the list), and tail (the rest of the
list) t. One can concatenate lists together using the operator ++. The head applied
to a list returns the first element of the list. The tail applied to a list returns a list
without the first element of the original list. The length applied to a list returns
the current number of elements in a list.

7

A list of type names between brackets, e.g., (A, B, C), indicates a tuple with
elements of the corresponding type names. The fst applied on a pair returns the
first element of the pair. The snd applied on a pair returns the second element of
the pair.

2.2 Function Declarations Using Pattern Matching

Alternatively, one can define functions using pattern matching. In pattern match-
ing, the programmer supplies several alternative function bodies, with different head
parts (tail parts may also differ). To select a proper body for processing a function
invocation, we start with matching the head of the function body with the current
function and its parameters. The matching starts in the order in which the pro-
grammer defines the alternative bodies. The first matching head determines the
body selected for evaluation.

2.3 List Comprehension a.k.a. ZF-notation

A list comprehension has the form [e | q1, · · · , qn], n >= 1, where a qi qualifier
constitutes one of the following:

• generators of the form p ←g, where p represents an element of type t and g
represents an expression producing a list of type t, where p ranges over all the
elements of the list. A list comprehension makes sense if it has at least one
generator;

• guards, which represent arbitrary expressions of boolean type that filter the
values that come from generators;

• local bindings that provide new definitions for use in the generated expression
e or subsequent guards and generators.

3 Data Types

In this section we describe the Reo data types used in the specification. We explain
to which Reo element a data type relates. Where applicable, we also provide a list
of auxiliary functions per data type.

3.1 Data Type Definition

Table 1 introduces the data types we use in this document.

Data Type Description
Node A type that represents Reo nodes.
Channel A type that represents Reo channels.
CE A type that represents Reo channel ends.
Data A type that represents the data items flowing through Reo

channels.
Pattern A type that represents the patterns passed to the take and

read Reo I/O operations, to filter out required data items.
PendingOp A type that represents Reo I/O operations pending on a

node.
Bool A type representing boolean values.

Table 1: Table of all basic data types

8

3.2 Auxiliary Functions per Data Type

We define two types of auxiliary functions: selectors and predicates. A selector
takes as an argument an item of a basic data types, and “selects” some result based
on the relation between the Reo element represented by the argument, with some
other Reo element. We defined the possible relations in Section 1.3. A predicate
checks for some condition on its argument. Note that Data and Pattern do not have
selectors or predicates. We allow combining two patterns using the ∧ operation.

3.2.1 Node

Table 2 introduces node functions.

Function Name Type Description
pendingOpsel(n) selector Returns a list of all I/O operations pend-

ing on n.
srcCEsel(n) selector Returns a list of all source channel ends

coincident with n.
sinkCEsel(n) selector Returns a list of all sink channel ends co-

incident with n.
issinknode(n) predicate Checks whether n represents a sink node.
issourcenode(n) predicate Checks whether n represents a source

node.

Table 2: Node functions

3.2.2 CE

Table 3 introduces channel end functions.

Function Name Type Description
channelsel(ce) selector Returns the channel to which the channel

end ce belongs.
nodesel(ce) selector Returns the node on which the channel

end ce coincides.

Table 3: Channel end functions

3.2.3 Channel

Table 4 introduces channel functions.

3.2.4 PendingOp

Table 5 introduces functions on pending I/O operations.

4 Simplified Computational Model

In this section we give the basic formulas underlaying Reo’s operational semantics.
We give them first in a simplified form and work out some examples with them.
Thereby some shortcomings in the formulas come to light. The final form of the
formulas are given later in §5 and §6. First we start with some auxiliary functions
we need for the simplified computational model as well as for the more complex
final version.

9

Function Name Type Description
acceptssel(ch) selector Returns the accepts function of the chan-

nel ch.
offerssel(ch) selector Returns the offers function of the chan-

nel ch.
channelendsel(ch) selector Returns a list of the channel ends that

belong to channel ch.
buffersel(ch) selector Returns a list representing the buffer of a

channel ch.
capacitysel(ch) selector Returns the capacity of the buffer of a

channel ch. Returns 0 for a channel with
no buffer, and -1 for channels with unlim-
ited capacity.

patternsel(ch) selector Returns the pattern of a channel (e.g.,
Filter).

Table 4: Channel functions

Function Name Type Description
patternsel(tk op) selector Returns the pattern of a pending take op-

eration tk op.
datavaluesel(wr op) selector Returns the data item of a pending write

operation wr op.
πwrite(op) predicate Checks whether op represents a pending

write.
πtake(op) predicate Checks whether op represents a pending

take.

Table 5: Pending I/O operation functions

10

4.1 Auxiliary Node Functions

We define two functions that allow us to work with the I/O operations pending on
a node: P and W .

P :: Node → [Pattern]
P(n) = [patternsel(op) | op ←pendingOpsel(n), πtake(op)]

The P function takes a node n as argument and returns the list of patterns of the
takes pending on n.

W :: (Node, Pattern) → [Data]
W (n, p) = [datavaluesel(op) | op ←pendingOpsel(n), πwrite(op) ∧

datavaluesel(op) � p]

The W function takes an ordered pair consisting of a node n and a pattern p, and
returns a list of those data items of the writes pending on n, that match the pattern
p.

4.2 Simplified Node Behavior

In this section we define the simplified versions of the three node functions that
define the behavior of nodes in Reo circuits: Accepts, Offers, and τ .

4.2.1 Simplified Accepts

The Accepts function takes an ordered 2-tuple (a pair) consisting of a node n and
a data item d, and returns a boolean value indicating whether or not the node n
accepts the data item d.

Accepts :: (Node,Data) → Bool
Accepts (n, d) = if issinknode(n) then

P(n) �= [] ∧ ∧
[d �p | p ←P(n)]

else∧
[accepts(x , d) | x ←scrCEsel(n)]

where
accepts = acceptssel(ch)
ch = channelsel(x)

The Accepts function states that if n is a sink node the result is a boolean “AND”
(the ∧) of two boolean expressions. The first boolean expression (P (n) �= []) checks
whether there are pending take operations on the node. We examine this in a
indirect way by checking whether the list of patterns of pending takes on n is
empty or not (when there is no pending take there is also no pattern). In the second
boolean expression (

∧
[d �p | p ←P (n)]) we apply the boolean “AND” (the

∧
) on a

list of booleans (note the []) formed by the return values of checking whether or not
d matched with the pattern of each of the pending takes (p ←P (n)). If n is not a
sink node we apply the boolean “AND” on the list (note the []) of booleans formed
by the return values of the accepts of each of the source channel ends. Note that
the accepts function used while visiting each source channel end is channel specific.
In the where-clause we pick out with the selector acceptssel(ch) the correct accepts
function. The ch used thereby is determined by applying the selector channelsel on
the channel end we currently deal with.

Briefly summed up: Accepts states that if n is a sink node, it accepts a data
item d only if d matches with the read-patterns p of all take operations currently
pending on n. Otherwise, n accepts d only if all the source channel ends in n accept
d.

11

4.2.2 Simplified Offers

The Offers function takes an ordered 2-tuple consisting of a node n and a pattern
p and returns a list of data items.

Offers :: (Node, Pattern) → [Data]
Offers (n, p) = if issourcenode(n) then

[d | d ←W (n, p)]
else⋃

[offers(x , p) | x ←snkCEsel(n)]
where

offers = offerssel(ch)
ch = channelsel(x)

The Offers function states that if n is a source node it offers the data values proposed
by the write operations pending on that node that match the specified pattern p.
If n is not a source node, it is either a mixed node or a sink node. A mixed node
cannot be involved in any write operations in Reo. Therefore Offers returns in
that case the union (

⋃
) of all values offered by all the sink nodes of n. In the

where-clause the correct channel specific offers function is selected.

4.2.3 Simplified τ

The τ function takes an ordered 2-tuple consisting of a node n and a pattern p and
returns a list of data items.

τ :: (Node, Pattern) → [Data]
τ (n, p) = [d | d ←Offers(n, p), Accepts(n, d) == True]

The τ function defines the data items that are qualified to be chosen for transfer.
These are the data items offered by the node n that match with the pattern p and
which are also acceptable by the node.

4.3 Some Simplified Synchronous Channels

For every channel, the Reo operational semantics defines an accepts for its source
ends, and an offers for its sink ends. The accepts function takes an ordered 2-tuple
consisting of a channel end x and a data item d and returns a boolean that indicates
the acceptability of the data item d into the channel. The offers function takes an
ordered 2-tuple consisting of a channel end y and a pattern p and returns a list of
data items offered by the channel that matches p. For completeness, below we define
accepts for sink channel ends, and offers for source channel ends. Note that the Reo
operational semantics properly distinguishes between sources and sinks coincident
on a node, and performs the accepts on sources and offers on sinks only.

offers :: (CE , Pattern) → [Data]
offers (x , d ,S ,E) = []

A source never offers any data items, hence the offers returns [].

accepts :: (CE , Data) → Bool
accepts (y , d) = False

A sink never accepts data items, hence the accepts returns False.
Below we specify the behavior of only the three synchronous channels we need

for the example in §4.4. Synchronous channels all share the characteristic that they
propagate the queries made at one of their ends to the node at their other end,
effectively synchronizing the behavior of the nodes at both their ends.

12

4.3.1 Simplified Sync

A Sync channel has a source and a sink and thus it can both accept and offer data.
A Sync channel accepts a data item d through its source x only if the node n of its
sink y accepts the data item d from this channel.

accepts :: (CE , Data) → Bool
accepts (x , d) = Accepts(n, d)

where
n = nodesel(y)
[y] = channelendsel(c)\[x]
c = channelsel(x)

Note how node n is determined in the where-clause by nodesel(y). The used param-
eter y comes from the singleton list [y]. List [y] is determined as the subtraction
of two lists. The first list comes from channelendsel(c) and yields the two channel
ends of channel c. The c used thereby comes from channelsel(x) where x is the
source channel end received as parameter on the left side. The second list contains
only the source channel end x. Subtraction of these lists yields a singleton list [y]

A Sync channel offers a data item matching a pattern p through its sink y only
if the node n of its source x can traffic a data item matching the pattern p into this
channel.

offers :: (CE , Pattern) → [Data]
offers (y , p) = τ (n, p)

where
n = nodesel(x)
[x] = channelendsel(c)\[y]
c = channelsel(y)

A Sync is graphically represented as −−−−−−−>. The arrow head identifies the sink
channel end.

4.3.2 Simplified SyncDrain

A SyncDrain channel has two sources and thus it can only accept data. A SyncDrain
channel accepts a data item d through its source x1 only if the node n of its other
source x2 can traffic an arbitrary data item (pattern “*”) into the channel as well.

accepts :: (CE , Data) → Bool
accepts (x1, d) = τ (n, ∗) �= []

where
n = nodesel(x2)
[x2] = channelendsel(c)\[x1]
c = channelsel(x1)

A SyncDrain is graphically represented as −−>−−−−−<−−. The arrow heads identify the
two sources.

4.3.3 Simplified SyncSpout

A SyncSpout channel has two sinks and thus it can only offer data. A SyncSpout
channel offers a non-deterministically-generated data item d from its sink y1 only
if d matches the pattern p and the node n of its other sink y2 accepts another
non-deterministically-generated data item d′ from this channel.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]

13

W1
comp 1 1.1

4.1

3.1

2.1 2.2

2.3

T2

T3
comp 3

comp 2

�� ��

��

�
�
�
�

Figure 2: A simple circuit

offers (y1, p) = [d | d ← random() ∧ d �p, d ′ ← random(),
Accepts(n, d ′) == True]

where
n = nodesel(y2)
[y2] = channelendsel(c)\[y1]
c = channelsel(y1)

Note that the random() function serves as a non-deterministic generator of data
for the SyncSpout.

A SyncSpout is graphically represented as −−<−−−−−>−−. The arrow heads both
represent sink channel ends.

4.4 Some Examples

4.4.1 Circuit 1

In Figure 2 we show our first Reo circuit. This circuit consists of three component
instances, three Sync channels and four nodes. We represent component instances
as rectangles and nodes as small circles. Channel ends are represented identified
using two integers separated by a dot. The first integer identifies the node where
the channel end has its domicile and the second integer indentifies the channel end
locally within that node. Together they form a unique identifier for a channel end.
In Figure 2 we see that the three channels have the source sink pairs 1.1 and 2.1,
2.2 and 3.1, and 2.3 and 4.1, respectively. Node 1 is a source node and houses only
the source channel end 1.1. Node 2 is a mixed node and houses sink channel end 2.1
and the source channel ends 2.2 and 2.3. Node 3 is a sink node and houses only the
sink channel end 3.1. Node 4 is also a sink node and houses only the sink channel
end 4.1. Further, we see that nodes 1, 3, and 4 are connected to, respectively,
component 1, 2 and 3.

A component instance can invoke an I/O operation on a node by using a channel
end that coincides on that node. After an invocation, the operation becomes pending
on the node. Triggered by this invocation the node, which is an independent process,
becomes active and tries to find out whether there is something to transport to
channels connected to this node. Therefore the node computes the τ function (see

14

§4.2.3). When the result of the τ is empty there is nothing to transport; otherwise
we can transport data. This main question concerning τ , results in a chain of sub-
questions that propagate through the Reo circuit. Note that our only concern is
whether we can transport data or not. When we know this, and the answer is yes,
we can do it, but how we do it is not discussed in this report.

We consider the following command scenario for the components (see Figure 2).

• First, component 1 writes an integer (let us say 9) to channel end 1.1. (denoted
by the W1 in the component’s rectangle)

• After this, component 2 performs a take operation via channel end 3.1 (de-
noted by the T2 in the component’s rectangle). The 2 in T2 refers to the later
time of the command invocation. The pattern used in the take operation is
the “*”, so the take operation is not selective about for what it takes.

• After this, component 3 performs a take operation via channel end 4.1 (de-
noted by the T3 in the component’s rectangle). Again, this take operation
uses the “*” pattern.

We give for the W1, T2 and T3 commands the τ computations and show how
its subsequent sub-questions propagate through the circuit. Intuitively, we know
that the W1 invocation leads to an empty τ because there is nobody who can take
the data. Also, the T2 invocation leads to an empty τ because component 3 does
not take data which makes it also impossible for component 2 to get it. Only after
component 3 performs the T3 command, τ will be not empty and the data can flow
through the network, replicating the written data into channel end 2.2 and 2.3.

We now follow the τ computations for the different commands more precisely.
After the W1 operation, we have a pending operation on node 1 and as a result of the
operation, node 1 computes the traffic τ(1, ∗). According to §4.2.3 we first evaluate
the data items the node offers and after this we test them for their acceptability.
Because node 1 is a source node it offers the data item from writes pending on
that node (Offers(1) evaluates to [d | d ← W (n, p)]; see §4.2.2). This yields the
singleton list [9]. We now go back to continue evaluating the traffic of node 1 and
check whether node 1 can accept the integer 9. Node 1 can accept this integer if
the Sync channel of 1.1 can accept it. Such a channel can accept data through its
source only if the node of its sink can accept the same data (see §4.3.1). So we
now must evaluate Accepts(2, 9). Because node 2 is not a sink node, we evaluate
accepts(2.2, 9) and/or accepts(2.3, 9) (see

∧
[accepts(x, d) | x ← scrCEsel(n)] in

§4.2.1). Because the Sync channel of 2.2 can accept data when node 3 can accept
data (see §4.3.1) we evaluate Accepts(3,9). Node 3, however, is a sink node so it can
accept data only when there are pending take operations on that node (see §4.2.1).
Because that is not the case, Accepts(4,9) returns false and with that Accepts(2,9)
too, and thus also Accepts(1,9) returns false. This latter implies that τ(1, ∗) is
empty because the offered data in the node (integer 9) is not acceptable in that
node. Because τ(1, ∗) is empty no data can be transported.

Note that there is no reason to evaluate accepts(2.3, 9) because the accepts(2.2,
9) already failed. This lazy evaluation (i.e., we only evaluate what is needed) is
always our basic strategy and fits well in the functional style of our query functions.

Below, we briefly sum up the computational path through the circuits for the
W1 operation. We use thereby the following symbols:

• → is used to denote that the evaluation of the query function to the right of
this arrow is the next step in the traffic computation.

• � means the same as → except that there is a choice of which function
we evaluate on the right. In the W1 computation, we have this situation

15

W1
comp 1 1.1

4.1

3.1

2.1 2.2

2.3

T2

T3
comp 3

comp 2

���� ����

����

��
��
��
��

2.2

Figure 3: Direction of the computation for the write W1 of component 1.

when we evaluate Accepts(2,9). There, we have the choice to proceed with
the evaluation of accepts(2.3,9) or accepts(2.2,9). This choice influences the
computational path taken through the circuit, but of course, not the final
result of the traffic computation.

• � behind a function means that this query function returns back to its caller.
The caller can then proceed with its job.

With this notation, we can give the computational path for the W1 operation
briefly and precisely.1 It is:

τ(1, ∗) → Offers(1,*) = [9] � (because it is a source node and there is a
pending write) Accepts(1,9) → accepts(1.1,9) → Accepts(2,9) � accepts(2.2,9) →
Accepts(3,9) = False � (because it is a sink node and there are no pending takes)
accepts(2.2,9) = False � Accepts(2,9) = False � accepts(1.1,9) = False �
Accepts(1,9) = False � τ(1, ∗) = [] �. Because τ is empty no data transport
is possible.

Note the � after Accepts(2,9). According to the definition of the Accepts func-
tion (see §4.2.1) we have a choice to continue with accepts(2.2,9) (as we did) or
accepts(2.3,9).

In Figure 3 we show the computational path of the write command of component
instance 1.

We continue with the computational path for the T2 operation. It is as follows:
τ(3, ∗) → Offers(3,*) → offers(3.1,*) → τ(2, ∗) → Offers(2,*) → offers(2.1,*) →

τ(1, ∗) → Offers(1,*) = [9] � (because it is a sink node and there is a pending write)
Accepts(1,9) → accepts(1.1,9)....

When we stop at this point in the computation, we may wonder why we have
to evaluate accepts(1.1,9). This evaluation is not necessary at all because the ac-
ceptance of the integer 9 for the Sync channel of 1.1 is a given, because this is the
channel that initiated the offers request (see the offers(2.1,*) in the computational
path). Sync channel of 1.1 issued an offers query to see if its node has anything to

1In order not to become dizzy during a traffic computation (especialy when there are loops in
circuits), it is convient to write down with pen and paper the tree structure that evolves out of
the evaluation of a τ (thus on one side the Offers part and on the other side the Accepts part).
The resulting computational path is then easier to follow as a path through this tree.

16

offer it; the node, then, need not ask this channel if it will accept what it has to
offer.

Note that this also happens when we try to evaluate τ(2, ∗). According to the
τ formule (see §4.2.3) the evaluation of this function involves the computation of
Offers(2,*). In our case this yields the integer 9, so the next step in the computation
is Accepts(2,9). Therefore we must (according to §4.2.3) evaluate accepts(2.2,9)
and/or Accepts(2.3,9). But evaluating accepts(2.2,9) is not necessary because it
is already clear that the Sync channel of 2.2 will accept what it asked the node
had to offer. So in general we can say that for accepts functions of channels that
requires calling τ (e.g., see §4.3.1) we should prevent the Accepts in τ computation
from entering again the channel (with an accepts call) that has already called τ . In
principle we can sharpen the previous statement because it is also valid for offers
functions of channels that require calling τ (e.g., see §4.3.2). This leads to the next
requirement with respect to the traffic computation.

I) For offers and accepts functions of channels that require calling τ we
should prevent the Accepts in the τ computation from entering again the
channel that has already called.

We can easily solve this problem by given τ and Accepts functions an additional
parameter (a third one) that represents the channel end (it is always a source) to
be excluded in the Accepts in τ . With this added third parameter we give the
computational path for the T2 command once again. When there is no channel end
to exclude for the Accepts in τ we use “−” as the third parameter. Note that the
τ function itself does not do anything with the third parameter. It just passes it to
its Accepts.

τ(3, ∗,−) → Offers(3,*) → offers(3.1,*) → τ(2, ∗, 2.2) → Offers(2,*) →
offers(2.1,*) → τ(1, ∗, 1.1) → Offers(1,*)=[9] (because it is a sink node and there
is a pending write) � Accepts(1,9,1.1) = True � (because there are no chan-
nels with source channel ends in node 1 for which we must evaluate their accepts
function. The only channel with a source in node 1 is the Sync channel of 1.1
but this one is excluded in the Accepts in τ(1, ∗, 1.1) because τ has been called
from this channel end and therefore its acceptance is obviously True; see require-
ment I) τ(1, ∗, 1.1) = [9] � Offers(2,*) = [9] � Accepts(2,9,2.2) (take over the
excluded channel end as specified in the caller of this function, i.e., τ(2, ∗, 2.2))
→ accepts(2.3,9) → Accepts(4,9,-) = False � (because it is a sink node and
there are no pending takes) accepts(2.3,9) = False � Accepts(2,9,2.2) = False �
τ(2, ∗, 2.2) = [] � offers(3.1,*) = [] � Offers(3,*) = [] � τ(3, ∗,−) = []. Because
τ is empty no data transport is possible. In Figure 4 we show this computational
path.

The computational path for the T3 command is given below.
τ(4, ∗,−) → Offers(4,*) → offers(4.1,*) → τ(2, ∗, 2.3) → Offers(2,*) →

offers(2.1,*) → τ(1, ∗, 1.1) → Offers(1,*) = 9 � (because it is a source node and
there is a pending write) Accepts(1,9,1.1) = True � (because according to re-
quirement I, accepts(1.1,9) is skipped τ(1, ∗, 1.1) = [9] � offers(2.1,*) = [9] �
Offers(2,*) = [9] � Accepts(2,9,2.3) = True → accepts(2.2,9) → Accepts(3,9,-) =
True � (because it is a sink node and there is a pending take) accepts(2.2,9) =
True � Accepts(2,9,2.3) = True � τ(2, ∗, 2.3) = [9] � offers(4.1,*) = [9] �
Offers(4,*) = [9] � Accepts(4,9,-) = True �. (because it is a sink node and there
is a pending take) τ(4, ∗,−) = [9] �. Because τ is not empty data transport is
possible. In Figure 5 we show this computational path.

17

W1
comp 1 1.1

4.1

3.1

2.1 2.2

2.3

T2

T3
comp 3

comp 2

����

����

�
�
�
�

����

1.1

4.1

3.1

2.1 2.2

2.3

Figure 4: Direction of the computation for the take command of component 2 (T2)

4.4.2 Circuit 2

With the next Reo circuit (see Figure 6) we show that the proposed adaption for
the τ and the Accepts functions, by introducing a third parameter representing the
channel end to be excluded in the Accepts of the tau computation, is not sufficient.

This circuit is almost the same as the previous one, only now the components
that perform the take operations disappear and are replaced by a SyncDrain. In
this channel data can disappear when something is written on both sides, i.e., 3.2
and 4.2 (see §4.3.2).

Intuitively, we know that the write operation of the component instance can be
performed. The data is replicated at node 2 into the Sync channels of 2.2 and 2.3.
Via node 3 and node 4 the two copies disappear in the SyncDrain.

The computational path for the write command of component 1 is given below.
τ(1, ∗,−) → Offers(1,*) = [9] (because it is a source node and there is pending
write) � Accepts(1,9,-) → accepts(1.1,9) → Accepts(2,9,-) � accepts(2.2,9) →
Accepts(3,9,-) → accepts(3.2,9) → τ(4, ∗, 4.2) → Offers(4,*) → offers(4.1,*) →
τ(2, ∗, 2.3) (we are back in node 2!) →

The first time we visit node 2 was with the Accepts(2,9,-). We could naively
continue with the τ(2, ∗, 2.3) and evaluate its Offers, but that is not necessary
because we know already that the node offers something, namely the integer 9 for
which we were testing acceptance to node 2. There is no need to evaluate this again
by proceeding with the computation in the direction of node 1. The only problem
is that the offered data is not available in the node. This leads to the following two
requirements with respect to the traffic computation.

II) We must be able to recognize during the traffic computation whether
or not we have already visited a node.

III) After we have visited a node through an Accepts call, if by propaga-
tion of traffic computation we reenter the same node asking it to compute
τ , we must be able to remember the data item that was the parameter of
the Accepts call.

We can fulfill requirement II in two ways. Either we store the information about

18

W1
comp 1 1.1

4.1

3.1

2.1 2.2

2.3

T2

T3
comp 3

comp 2

��
��
��
��

��
��
��
��

��
��
��
��

Figure 5: Direction of the computation for the take command of component 3 (T3)

1.1

4.1

3.1

2.1 2.2

2.3

4.2

3.2

W
comp
���� ����

����

����

Figure 6: Another simple circuit

19

whether a node is visited or not in the node, or we take it with us as an additional
parameter in the query functions. The same holds for the not yet (fully) checked
offered data of a node with respect to requirement III.

A more serious problem is that once we visit a node for the second time with
τ(2, ∗, 2.3) (recall that we first visited it with Accepts(2,9,2.3)), we also have to
evaluate (after τ ’s Offers) its Accepts(2,9,2.3) function. Because this leads to the
evaluation of accepts(2.2,9) and this function is already used earlier in the compu-
tational part (as part of Accepts(2,9,-)) we have the situation that accepts(2.2,9)
is based upon itself. This is the same as saying that Accepts(2,9,-) is based upon
Accepts(2,9,2.3). We have a loop. The only thing we can do to prevent this situa-
tion, is to adapt the τ computation such that once it detects that it has visited a
node already with an Accepts, it returns the data item, whose acceptance we were
testing. This leads to a fourth requirement that our traffic computation must fulfill.

IV) When we enter a node asking whether it can accept some data item
this always results in the node asking whether some channel (through its
source) accepts this data item. If this leads to a propagation that comes
back to this node with a τ query, then we do not evaluate τ ’s Offers
and Accepts functions as specified in §4.2.2 and §4.2.1. Instead we let
τ return immediately to it caller with the data whose acceptance we were
testing.

When we resume our stranded computation from node 2 and follow the three addi-
tional new requirements, we get the following traffic path.

τ(2, ∗, 2.3) = [] � (according to IV) offers(4.1,*) = [9] � Offers(4,*) = [9] �
Accepts(4,9,4.2) = True � τ(4, ∗, 4.2) = [9] � accepts(3.2,9) = True �
Accepts(3,9,-) = True � accepts(2.2,9)=True � accepts(2.3,9) →

Now we are about to continue with the evaluation of the second accepts call in
the not yet fully evaluated Accepts(2,9,-) function. Intuitively, we already know
that evaluation of the accepts(2.3,9) is not necessary. If we still do it we get

accepts(2.3,9) → Accepts(4,9,-) → τ(3, ∗, 3.2) → Offers(3,*) → offers(3.1,*) →
τ(2, ∗, 2.2) = [9] (because node is already visited and according to requirement IV)
offers(3.1,*) = [9] � Offers(3,*) = [9] � Accepts(3,9, 3.2) = True � τ(3, ∗, 3.2) =
[9] � accepts(4.2,9) = True � Accepts(4,9,-) = True � accepts(2.3,9) = True.

This is exactly what we expected. When we test whether a node n accepts data
this always results in the node asking whether some channel (through its source)
accepts this data. Suppose we exit the node in order to answer this question via
source a and by propagation of queries this end asks whether some synchronous
channel, whose source b is also in node n, offers something (which leads to τ(n, ∗, b)).
The result of this propagation is the same as when we exit via source b (with a
channel specific accepts) and reenter the node via source a (with a channel specific
offers that leads to τ(n, ∗, a)). In other words exiting a node via source a and
reentering it along a synchronous part of the network via source b gives the same
result as exiting via source b and reentering via source a.

This leads to a fifth requirement that our traffic computation must fulfill.

V) Organize the traffic computation for an Accept call on a node that is
not a sink node, in such a way that the set of source channel ends that
we visit through their channel specific accepts, can shrink during each
accepts evaluation.

Regarding this requirement V we can say that the upperbound for the number of
accepts evaluations in an Accepts function is equal to the number of source channel
ends in the node. However during the computation this number can shrink when
for the evaluation of Accepts we reenter a node (when we have a cyclic part in the

20

1.1

4.1

2.1 2.2

2.3

4.2

W
comp

3.1
3.2

Figure 7: Direction of the computation for the write command of the component
(W)

circuit). Such reentering always takes place via a synchronous part of the network.
Note that a traffic computation always stops when it encounters an asynchronous
channel.

To fulfill requirement V, we can store the source channel end via which we reenter
a node in a list and carry this information with us as an additional parameter in
the query functions. This means that the third parameter in τ and Accepts that
represents, up to now, the excluded channel end, must change into a list of channel
ends to be excluded. Moreover, the channel specific offers and accepts must also
have this list parameter.

Below we give the full computation path for the write operation of the component
instance taking into account all additional requirements with respect to the traffic
computation.

τ(1, ∗, [] → Offers(1,*) = [9] (because it is a source node and there is pending
write) � Accepts(1,9,[] → accepts(1.1,9,[]) → Accepts(2,9,[]) � accepts(2.2,9,[]) →
Accepts(3,9,[] → accepts(3.2,9,[] → τ(4, ∗, [4.2]) → Offers(4,*,[4.2]) →
offers(4.1,*,[4.2]) → τ(2, ∗, [4.2, 2.3]) = [9] � (according to IV we go back)
Offers(4,*,[4.2,2.3]) = [] � Accepts(4,9,[4.2,2.3] = True � τ(4, ∗, [4.2, 2.3]) = [9] �
accepts(3.2,9,[4.2,2.3]) = True � Accepts(3,9,[4.2,2.3]) = True �
accepts(2.2,9,[4.2,2.3])) = True � (so now accepts(2.3,9) is skipped, because ac-
cording to requirement V the set of source channels has shrunk) Accepts(2,9,[]) =
True � accepts(1.1,9,[]) = True � Accepts(1,9,[]) = True � τ(1, ∗, []) = [9] �.
Because τ is not empty data transport is possible. We show this computation path
in Figure 7.

4.4.3 Circuit 3

In previous examples it was always the write operation of a component that offered
the data for a transport. In our next Reo circuit (see Figure 8) this is different:
it is a SyncSpout that generates the data. In this circuit, three Sync channels, one
SyncSpout, and one SyncDrain are connected to each other as shown in Figure 8.
The component instance performs a take operation. Intuitively, we see that the
component instance can perform the take operation because the data comming from
the SyncSpout (see §4.3.3) can flow via node 3 to node 2. There it is replicated into
the source channel ends of 2.1 and 2.2, and can flow through their respective Sync

21

T
comp 4.1

5.1
5.2

3.1
3.2

2.31.1 2.1

4.2
2.2

Figure 8: A simple third circuit

channels to the component instance, and via node 5 into the SyncDrain, whose
other end at node 4 synchronously receives the data item produced by the other
end of the SyncSpout.

It is clear that when we start the traffic computation in node 1, the data that
it offers is not yet determined. It becomes available later when we encounter the
SyncSpout during traffic computation. This “later availability” is not a problem
when we organize the computation as follows: We introduce a list in which we
store pairs consisting of a visited node and the data it offers. We call this list the
list of visited nodes. Every time we call a channel specific offers function during
the traffic computation, we store such a pair in the visited nodes list. When it is
not yet known what a node offers (as in our case with node 1) we use the symbol
nyd (not yet determined) for the data item in the pair. If we carry this additional
parameter with us during the traffic computation the nyd data can be filled in when
we encounter a SyncSpout.

Note that by introducing this list of visited nodes and having it available during
the traffic computation, we also solve the problems formulated in the requirements
II and III. When we visit a node through some function, we can always look up in
the visited nodes list whether we have already visited that node (i.e., solving require-
ment II) and we can also look up the data a node offers (i.e., solving requirement
III).

The reader can work out the full computation path similarly to how we derived
it for Figure 7. Doing this, it turns out that τ is a non-empty list. This means that
the component comp can successfully perform the take operation. The computation
path is shown in Figure 9.

5 Node Behavior

In this section we give the final version of the node functions.

5.1 Node Functions

In this section we define the three node functions that define the behavior of nodes
in Reo circuits: Accept, Offers, and τ . All node functions take three common

22

T
comp 4.1

5.1
5.2

3.1
3.2

2.31.1 2.1

4.2
2.2

Figure 9: Direction of the computation for the take command of the component
(T)

arguments: n - the node that executes the function (performs the query); S - the
list of already visited nodes; and E - the list of excluded channel ends. We organize
all arguments together using a tuple.

5.1.1 Accepts

The Accepts function takes an ordered 4-tuple consisting of a node n, a data item
d, a list of visited nodes S, and a list of excluded channel ends E, and returns an
ordered pair consisting of a boolean value and an updated list of excluded channels
ends. The boolean value indicates whether or not n accepts d.

Accepts :: (Node,Data, [(Node,Data)], [CE]) → (Bool , [CE])
Accepts (n, d ,S ,E) = if (n,) ∈ S then

(False,E)
else

if issinknode(n) then
(P(n) �= [] ∧ ∧

[d �p | p ←P(n)], E)
else

if cel �= [] then
(bool ,E ′) �� Accepts(n, d ,S ,

E ′ ∪ [head cel])
else

(True,E)
where

cel = srcCEsel(n)\ E
(bool ,E ′) = accepts (head cel , d ,S ∪ [(n, d)],E)
accepts = acceptssel(ch)
ch = channelsel(head cel)

In the Accepts function, we check whether we have visited n, by testing whether S
already contains an ordered pair (n,) that contains n. Note that we use “ ” as a
shorthand for any data item. We exit a node that we visit in only two cases: (1)
we exit it through a source (by asking accepts within its Accepts), or (2) we exit
it through a sink (by asking offers in its Offers - see below). Suppose we visit an

23

already visited node n to ask (with Accepts) whether it can accept d. To accept d in
the first case would mean that whatever n accepts depends on whatever n accepts
(i.e., a self reference). To accept d in the second case would mean that n tries to
synchronize two sinks (the first one we get from the offers called when exiting the
visited n, and the second one we get from the call to Accepts). This violates the
rule that a node non-deterministically selects precisely one of its sinks to take data
from. In both cases Accepts returns (False,E) indicating that n cannot accept d.

A sink node that we visit for the first time accepts a data item only if the
patterns of all takes (there must exist at least one) pending on the node, match
the data item. Any mixed or source node that we visit for the first time accepts d
only if the channels of all of its sources that do not belong to E also accept d. We
perform this check in a recursive manner.

We define cel in the where-clause as the source channel end list in a node minus
the list of excluded channel ends E. We first evaluate whether one source (head cel)
from the cel list accepts d, and then we recursively evaluate Accepts over the rest
of the sources in n. Evaluating (bool, E′) requires calling accepts of the channel
that corresponds to head cel. Furthermore, we pass to accepts of the channel an S
added with (n, d) to indicate that we have visited this node with some data element
d. Accepts returns the result of (bool, E′) combined with the result of the recursive
call to Accepts, by using the �� operation. Note that the recursive call to Accepts
uses E′, which contains E updated with any channel ends from possible loops that
we may have encountered during the call to the accepts on head cel.

The recursion ends when the cel becomes empty, in which case Accepts returns
(True,E) indicating that it has accepted d. We make sure that cel becomes empty,
because every time we make the recursive call to Accepts we effectively reduce cel
by one element.

Below we define the function ��:

�� :: (Bool , [CE]) → (Bool , [CE]) → (Bool , [CE])
�� (b1, ce1) (b2, ce2) = (b1 ∧ b2, ce1 ++ ce2)

We use �� to combine the result of a testing for acceptance (accepts) of a data item
from a single channel and the result of testing for acceptance (Accepts) from the
rest of the channels whose sources coincide on n. The �� function returns a pair, the
first element of which represents a boolean obtained by applying a boolean ∧ on the
first element of the ordered pair of both its arguments. The second element of the
result pair consists of the concatenation of the list of excluded channel ends of the
second elements of the same ordered pairs. Note that the �� function may produce
repetitions in the second element of the resulting pair, because we use concatenation
(not union) in the last rule. This does not affect the function result with respect to
the node behavior.

5.1.2 Offers

The Offers function takes an ordered 4-tuple consisting of a node n, a pattern p, a
list of visited nodes S, and a list of excluded channel ends E, and returns a list of
ordered pairs, each consisting of a data item and its corresponding list of excluded
channel ends.

Offers :: (Node, Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]

24

Offers (n, p,S ,E) = if (n,) ∈ S then
[(d ,E) | (n1, d) ←S ,n1 == n ∧ d �p]

else
if issourcenode(n) then

[(d ,E) | d ←W (n, p)]
else⋃

[offers(x , p,S ∪ [(n,nyd)],E)
| x ←snkCEsel(n)]

where
offers = offerssel(ch)
ch = channelsel(x)

In the Offers function, we first check whether we have already visited n. Having
visited n can mean that this node already has something to offer. Therefore, Offers
returns an ordered pair (d,E) containing the data item d for which (n, d) belongs
to S and d matches p. Note that nyd does not match any pattern including “*” -
it matches “ ”only. Therefore, offers does not return any pairs containing nyd.

A source node that we visit for the first time offers ordered pairs (d,E), where
d’s come from the writes pending on the node that match p (produced by W (n, p)).
Any mixed or sink node that we visit for the first time offers a union of what the
channels of its sinks have to offer. We call offers with an S updated with (n, nyd)
to indicate that we have visited n, but because we do not know what this node
has to offer yet, we pair n with the special data item nyd (not yet determined).
Effectively, we delay determining what n has to offer, until we come to a node that
has something to offer, which would also imply that n has something to offer.

5.1.3 τ

The τ function takes an ordered 4-tuple consisting of a node n, a pattern p, a list of
visited nodes S, and a list of excluded channel ends E, and returns a list of ordered
pairs, each consisting of a data item and its corresponding list of excluded channel
ends.

τ :: (Node, Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
τ (n, p,S ,E) = if (n,) ∈ S then

Offers(n, p,S ,E)
else

[(d ,E ′′) | (d ,E ′) ←Offers(n, p,S ,E),
(b,E ′′) ←Accepts(n, d ,S ′,E ′),
b == True]

where
S ′ = update S d

In the τ function, we first check whether we have already visited n. Having visited n
can mean that we have already determined what this node has to offer. Therefore,
we delegate to Offers to determine the result. Note that we do not need to test for
acceptance as we have done it before when we visited the node for the first time.

For a node that we have not visited yet, we return the ordered pairs (d,E′′),
such that d represents a data item that the node offers and accepts. We determine
the offered data from the ordered pairs (d,E′) returned by Offers. We consider only
data items d for which Accepts returns as a result (True,E′′). Passing E′ to Accepts
makes sure that we do not enter a loop encountered by Offers. By returning E′′

with each offered and accepted data item we make sure that we do not enter again
loops encountered either by Offers or Accepts. Furthermore, we pass an updated
visited nodes list S′ to Accepts.

25

Previous calls to Offers up to and including the current call to τ , may have
accumulated in S′ pairs with nyd in them, indicating that we have visited some
nodes, but have not yet determined the data they offer. In τ , when we obtain the
result of Offers for n, we proceed to test for acceptance of the pairs in the result.
The moment we select a data item d from the result of Offers, we effectively assume
that n has d to offer, and we continue to test this hypothesis by calling Accepts. At
this point we need to replace all nyd data items in pairs in S, because the d has
become available in them too. Note that previous calls to Offers and τ , chain up
only for synchronous channels (see definitions in the next section). We require the
replacement of nyd as early as this point, because the subsequent call to Accepts
may result in a loop ending on one of the nodes that previously had nyd in S.
Effectively, here we resolve the delay in determining what some previously visited
nodes have to offer. Note that the SyncSpout channel (see the next section) has a
similar behavior with respect to generating and offering data. We make S′ from S
using the update function defined below:

update :: [(Node,Data)] → Data → [(Node,Data)]
update [] d = []
update ((n, nyd) : t) d = [(n, d)] ++ (update t d)
update ((n, d1) : t) d = [(n, d1)] ++ (update t d)

The update function takes as arguments a visited nodes list and a data item, and
returns an updated visited nodes list. We update all pairs in the visited nodes list
argument, so that if a pair contains a nyd data item, we replace it with the data
item argument. The lines from the function declaration read as follows. Updating
an empty list results in an empty list. Updating a list with a head, a pair that
contains a nyd as data item, results in a list with a head, the same pair with the
nyd replaced by d, followed by the updated tail of the argument list. A list with a
head pair that does not contain nyd as data item, results in a list with the same
head followed by the updated tail of the argument list.

6 Channel Behavior

For every channel, the Reo operational semantics defines an accepts for its source
ends, and an offers for its sink ends.

The accepts function takes an ordered 4-tuple consisting of a channel end x, a
data item d, a list of visited nodes S, and a list of excluded channel ends E. The
accepts function returns an ordered pair consisting of a boolean and an updated ex-
cluded channel ends list. The boolean indicates whether or not the channel accepts
data item d.

The offers function takes an ordered 4-tuple consisting of a channel end y, a
pattern p, a list of visited nodes S, and a list of excluded channel ends E, and
returns a list of ordered pairs consisting of a data item offered by the channel that
matches p, and its corresponding list of excluded channel ends.

For completeness, below we define accepts for sink channel ends, and offers for
source channel ends. Note that the Reo operational semantics properly distinguishes
between sources and sinks coincident on a node, and performs the accepts on sources
and offers on sinks only.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (x , d ,S ,E) = ([],E)

A source never offers any data items, hence its offers returns [].

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])

26

accepts (y , d ,S ,E) = (False, E)

A sink never accepts data items, hence its accepts returns False.

6.1 Asynchronous Channels

In this section we specify the behavior of several useful asynchronous channels.
Asynchronous channels typically share the characteristic that they do not propagate
the queries made at one of their ends to the node at their other end.

6.1.1 FIFO

A FIFO channel has a source and a sink and thus it can both accept and offer
data. A FIFO channel also has an unbounded buffer for storing data items. A FIFO
channel always accepts a data item d through its source x.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x , d ,S ,E) = (True, E)

A FIFO channel offers nothing through its sink y if its buffer contains no data item.
Otherwise, it offers the data item d that is the oldest in its buffer, if d matches the
pattern p.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y , p,S ,E) = if B �= [] ∧ d � p then

[(d , E)]
else

[]
where

B = buffersel(c)
c = channelsel(y)
d = head B

6.1.2 FIFOn

A FIFOn channel has a source and a sink and thus it can both accept and offer
data. A FIFOn channel also has a buffer for storing up to n data items. A FIFOn

channel accepts a data item d through its source x, if its buffer B can hold at least
one more data item.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x , d ,S ,E) = (length B > n, E)

where
B = buffersel(c)
c = channelsel(x)
n = capacitysel(c)

A FIFOn channel offers through its sink y nothing if its buffer is empty. Otherwise,
it offers the data item d in its buffer, if this item matches the pattern p.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y , p,S ,E) = if B �= [] ∧ d � p then

[(d , E)]
else

[]

27

where
B = buffersel(c)
c = channelsel(y)
d = head B

6.2 Synchronous Channels

In this section we specify the behavior of several useful synchronous channels. Syn-
chronous channels all share the characteristic that they propagate the queries made
at one of their ends to the nodes at their other ends, effectively synchronizing the
behavior of the nodes at both their ends.

6.2.1 Sync

A Sync channel has a source and a sink and thus it can both accept and offer data.
A Sync channel accepts a data item d through its source x only if the node n of its
sink y accepts the data item d from this channel.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x , d ,S ,E) = Accepts(n, d ,S ,E)

where
n = nodesel(y)
[y] = channelendsel(c)\[x]
c = channelsel(x)

A Sync channel offers a data item matching a pattern p from its sink y only if
the node n of its source x can traffic a data item matching the pattern p into this
channel.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y , p,S ,E) = τ (n, p,S ,E ∪ [x])

where
n = nodesel(x)
[x] = channelendsel(c)\[y]
c = channelsel(y)

We call the τ function with an excluded channel end list added with the source of the
channel to prevent τ from entering the same channel, when testing for acceptance
in its call to Accepts, after having selected some data item from the result of its
call to Offers. Furthermore, adding the source to the excluded channel end list
also makes sure that it will appear as an excluded channel end in the result of the
offers function (node behavior takes care of this). This makes sure that should we
later (in τ) discover that we have already visited n (and hence we have a loop), the
channel end through which we looped belongs to the excluded channel ends list in
the result. This contributes to preventing entering a loop from the other side (its
other channel end on the node on which the loop begins).

6.2.2 SyncDrain

A SyncDrain channel has two sources and thus it can only accept data. A SyncDrain
channel accepts a data item d through its source x1 only if the node n of its other
source x2 can traffic an arbitrary data item (pattern “*”) into the channel as well.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x1, d ,S ,E) = (tau �= [], ⊕ tau)

28

where
tau = τ (n, ∗,S ,E ∪ [x2])
n = nodesel(x2)
[x2] = channelendsel(c)\[x1]
c = channelsel(x1)

The accepts returns an ordered pair consisting of a boolean expression indicating
whether tau (see its definition in the where-clause) contains at least one data item,
and an expression ⊕tau (the defintion of ⊕ is given below), which produces a list of
excluded channel ends that contains the excluded channel end lists of all data items
returned by τ . We call the τ function with an excluded channel ends list added
with the other source of the channel to prevent τ from entering the same channel,
when testing for acceptance in its call to Accepts, after having selected some data
item from the result of its call to Offers.

The ⊕ function takes as its argument the result of τ , and returns as its result the
concatenation of all the channel ends lists of the ordered pairs from its argument
list. Below, we provide the function declaration using pattern matching:

⊕ :: [(Data, [CE])] → [CE]
⊕ [] = []
⊕ (e : t) = (snd e) ++ (⊕ t)

The declaration lines read as follows. Performing the function on the empty list
results in an empty list. Performing the function on the list with the head pair e
results in the concatenation of the second element of e and the result of performing
the function recursively to the tail of the argument list.

6.2.3 SyncSpout

A SyncSpout channel has two sinks and thus it can only offer data. A SyncSpout
channel offers a non-deterministically-generated data item d from its sink y1 only
if d matches the pattern p and the node n of its other sink y2 accept another
non-deterministically-generated data item d′ from this channel.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y1, p,S ,E) = [(d ,E ′) | d ← random() ∧ d �p,

d ′ ← random(),
(b, E ′) ← Accepts(n, d ′, S ′, E),
b == True]

where
n = nodesel(y2)
[y2] = channelendsel(c)\[y1]
c = channelsel(y1)
S ′ = update S d

Note that the random() function serves as a non-deterministic generator of data
for the SyncSpout channel. Furthermore, the SyncSpout channel serves as a data
generator and therefore we pass S′, derived from S by replacing all nyd in its pairs
with d′, to Accepts. Effectively, with update here we resolve a previous delay in
determining what some already visited nodes have to offer.

6.2.4 LossySync

A LossySync channel has a source and a sink and thus it can both accept and offer
data. A LossySync channel always accepts any data item d through its source x.

29

However a LossySync channel always tests whether the node n of its sink y accepts
the data item d from this channel.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x , d ,S ,E) = (True, snd Accepts(n, d ,S ,E))

where
p = patternsel(c)
n = nodesel(y)
[y] = channelendsel(c)\[x]
c = channelsel(x)

We require the LossySync to test for acceptance on n, because if the n accepts,
we need to return the resulting excluded channel ends list, to prevent re-entering
possible loops from the other side.

A LossySync channel offers a data item matching a pattern p from its sink y
only if the node n of its source x can traffic a data item matching the pattern p into
this channel.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y , p,S ,E) = τ (n, p,S ,E ∪ [x])

where
n = nodesel(x)
[x] = channelendsel(c)\[y]
c = channelsel(y)

6.2.5 Filter

A Filter channel has a source and a sink and thus it can both accept and offer
data. A Filter channel always accepts through its source x any data item d that
does not match its pattern p. A Filter channel accepts a data item d that matches
its pattern p only if the node n of its sink y accepts the data item d from this
channel.

accepts :: (CE , Data, [(Node,Data)], [CE]) → (Bool , [CE])
accepts (x , d ,S ,E) = = if d �� p then

(True, E)
else

Accepts(n, d ,S ,E)
where

p = patternsel(c)
n = nodesel(y)
[y] = channelendsel(c)\[x]
c = channelsel(x)

A Filter channel offers a data item matching a pattern p from its sink y only if
the node n of its source x can traffic a data item matching the pattern p and the
Filter’s pattern fp into this channel.

offers :: (CE , Pattern, [(Node,Data)], [CE]) → [(Data, [CE])]
offers (y , p,S ,E) = τ (n, p ∧ fp,S ,E ∪ [x])

where
n = nodesel(x)
fp = patternsel(c)
[x] = channelendsel(c)\[y]
c = channelsel(y)

30

7 Examples

In this section we demonstrate how one can apply our operational of Reo semantics
to compute the data traffic in a set of example circuits. Computing the traffic in a
Reo circuit with an acyclic graph does not pose any significant challenge. Further-
more, we focus only on circuits that contain synchronous channels, because only
they propagate queries to their opposite ends. Therefore, we select examples that
demonstrate how we can compute the traffic in synchronous Reo circuits containing
various loops.

As an example selection criteria we use an exhaustive classification of loop types
in Reo circuits. By selecting a set of examples containing every possible loop we
increase our confidence in the correctness of the proposed specification. In a separate
ongoing work, we also plan to provide an actual proof that the proposed operational
semantics produces results equivalent to the algebraic semantics of Reo.

7.1 Loop categorization

In Reo, data flow through a sink of a channel into a node, on which the sink
coincides. Data flow through a source into its channel from a node on which the
source coincides. When computing the traffic in a Reo circuit, individual queries
propagate through channels and nodes via channel ends. Therefore, we can enter
and exit a node through either a sink or a source. Using sink and source we can
describe a path in the computation using a list. For example, assuming we have a
path that starts and finishes at a node,

[sink, source, sink, sink, source, source]

indicates that the starting node asks what some channel had to offer, then the
channel asks the node on its other side what it has to traffic, the node then asks
another channel what it has to offer, the channel now changes the flow direction
asking whether the node at its other side can accept something, then the node
asks a channel whether it can accept something, then the channel changes the flow
direction asking what the node on its other side can traffic. Note that alternations
of sink and source mean that data flow in one direction only, while two subsequent
sinks or two subsequent sources mean that we have a switch in the direction of
the flow of data. SyncSpout and SyncDrain do such switching. Furthermore, a
node also may perform switching: when asked to evaluate its τ (always through
a source), after evaluating Offers and determining the data it offers, the node
evaluates Accepts (always through a source), resulting in a [source, source] direction
switch at this node (exiting through Offers does not count because it returns some
result successfully).

In our operational semantics, we keep track of which nodes we have already
visited. When we encounter an already visited node, we detect a loop. We use the
notation we introduced above to categorize loops based on the characteristics of the
propagations that occur at the node that we visit for a second time.

We can enter, exit, and re-enter a node (re-entering means a loop) either through
a sink or through a source. This produces 23 = 8 combinations of propagations that
can form a loop. Since we want to visit every node precisely once, during a second
visit the operational semantics of Reo should provide a return value without further
propagation. In Table 6 we list all loop types together with the return values at
node re-entry.
Figure 10 depicts the different loop cases. In each case we zoom in only on the
node that we visit for the second time. For simplicity, wherever necessary we depict
other nodes as black dots. We also abstract away from whole channels, depicting
only the channel ends that belong to the visited node and also depict a line and

31

Nr. Enter Exit Re-enter Switch count Result to return at re-entry
1 source source source N/A [d]
2 source source sink N/A False

3.1 source sink source 0 []
3.2 source sink source 2 ∗ k, k ≥ 1 [d]

4 source sink sink N/A False
5 sink source source N/A [d]
6 sink source sink N/A False
7 sink sink source N/A N/A
8 sink sink sink N/A N/A

Table 6: Table of all possible loops

an arrow to indicate the type of the channel end. An arrow pointing to the node
indicates a sink. An arrow pointing away from the node indicates a source.

7.2 Loops

7.2.1 Source-source-source loops (loop 1)

In this type of loops, shown in Figure 10, we enter the node asking about its traffic
(i.e., τ). This results in the node asking the channel of its coincident sinks about
data. Suppose that the node offers some data item d (shown by a “d” on Figure 10)
but as part of the traffic query we need to test for acceptance. This results in the
node asking a channel through one of its coincident sources whether it accepts d.
We abstract away from what happens next, but at some point the propagation of
queries returns to this node with asking what the node has to traffic. Since during
the first visit we have already decided that the node offers d, we answer that the
node traffics the data item d.

In Figure 11 we show a circuit with a loop of this type. This circuit contains two
Sync channels, a SyncDrain, three nodes, and two application component instances
(comp1 and comp2). First comp1 performs a write operation on node 1 (W1) and
later comp2 performs a take operation on node 2 with a pattern “*” (T2).

In this example, we expect that the take operation on node 2 will succeed to
retrieve the data item of the write operation on node 1, because the computation
of the traffic on node 2 results in source-source-source loop (loop 1) in node 3. In
Figure 11 we also show the computation path for the take operation.

Note that, when we evaluate the traffic in node 1 for the W1 operation along
the path [1.1, 3.1, 3.2, 3.3] or along [1.1, 3.1, 3.3, 3.2] we have a sink-source-source
loop in node 3 (loop 5; see §7.2.5). Note also that the other possibility to propagate
along the path [1.1, 3.1, 3.4, 2.1] will not yield a loop.

7.2.2 Source-source-sink loops (loop 2)

In this type of loops, shown in Figure 10, we enter the node asking about its traffic.
Because a traffic computation (i.e., τ) always starts with asking the channels of the
node’s coincident sinks what data they offer (i.e., the offers part of τ) we always
exit via a sink with an offers query. Suppose we return from this offers query with
some data item d (shown by the a “d” in Figure 10) in the node, and again we exit
the node via a source channel end (so with an accepts query). We abstract away
from what happens next, but at some point the propagation of queries returns to
this node via a sink (i.e., reenters the node) asking whether the node can accept
some data item (this can be d but not necessarily so). We answer this last question
with False, because otherwise we allow this circuit to synchronize two sinks - the

32

d

source−sink−source loop (loop 3.2)

d_1 d_2

source−sink−source loop (loop 3.1)

sink−source−source loop (loop 5)

source−source−source loop (loop 1)

sink−source−sink loop (loop 6)

source−source−sink loop (loop 2)

source−sink−sink loop (loop 4)

sink−sink−source loop (loop 7) sink−sink−sink loop (loop 8)

Figure 10: Loop types illustrated

one through which the data item is intended to come and the one through which
we re-enter the node. For this reason, the channels of these sinks can never offer
anything to this node in a circuit containing this kind of loop.

In Figure 12 we show a circuit with a loop of this type. This circuit contains
three Sync channels, three nodes, and two application component instances (comp1
and comp2). First comp1 performs a write operation on node 3 (W1) and later
comp2 performs a take operation on node 1 with a pattern “*” (T2). In this
example, we expect that the take operation on node 2 will fail to retrieve the data
item of the write operation on node 3, because the computation of the traffic on
node 2 results in a source-source-sink loop (loop 2) in node 3. We also show the
computation path for the take operation in Figure 12.

Note that if we evaluate the traffic in node 1 for the W1 operation along the
path [1.1, 3.2, 3.3, 3.4], we encounter a sink-source-sink loop in node 3 (loop 6; see
§7.2.6).

33

��

comp2
T2

��

�
�
�
�comp1

W1
1.1

3.2
3.3

2.1

3.1

3.4

Figure 11: A source-source-source loop (loop 1)

��

comp2
T2

�
�
�
�

��

comp1
W1

1.1

3.2
3.3

2.1

3.1

3.4

Figure 12: A source-source-sink loop (loop 2)

7.2.3 Source-sink-source loops (loop 3.1 and loop 3.2)

In this type of loops, shown in Figure 10, we enter the node asking about its traffic.
This results in the node asking what some channel (through its sink) offers. We
abstract away from what happens next, but at some point the propagation of the
queries returns to this node asking what the node has to offer.

We distinguish two subtypes of these loops based on for the path between the
exit and the re-entry of the node: (1) data generation has occurred in the path
(see Figure 10, loop 3.1), and (2) no data generation had occurred in the path (see
Figure 10, loop 3.2). Note that data generation occurs when at least one [sink, sink]
switch occurs in the path. To have this type of a loop, the path we speak about
must start with a sink and end with a source. Therefore, after a [sink, sink] switch
we must have a subsequent [source, source] switch. A path that generates data has
2 ∗ k, k ≥ 1 switches in total, while a loop path that does not, has 0 switches.

If the case we have a path without switches the visited node has nothing to offer
(none of its channels can generate anything within the loop). If we have a path
that generates data, as we discussed above, the node offers a data item d1 (see in
Figure 10, loop 3.2) generated by the first switch in the path, because the node has
delegated the answer to the offers query (asked upon entry) to one of its channels,
and somewhere in the loop path some entity (a channel or another node) answered
it. The re-entry askes the same question as the first entry, and hence should get
the same answer.

In Figure 13 we show a circuit with a loop of this type where no data is generated

34

��
��
��
��

�
�
�
�comp 2.11.1 2.2

2.3T

Figure 13: A source-sink-source loop (loop 3.1)

in the loop path. This example contains two Sync channels, two nodes and an
application component instance that performs a take operation on node 1. In this
example, we expect that the take operation on node 1 will never succeed to retrieve
any data, because the computation of the traffic on node 1 results in a source-sink-
source loop without data generation (loop 3.1), which tries to take data from a node
that does not offer anything (yet). In Figure 13 we also show the computation path
for take operation.

�� �
�
�
�

�
�
�
�comp

T 2.3

2.2 3.1

3.2

2.1

1.1

Figure 14: A source-sink-source loop (loop 3.2)

In Figure 14 we show a circuit with a loop of this type where a data item
is generated in the loop path. This example contains a Sync, a SyncSpout, a
SyncDrain, three nodes and an application component instance that performs a
take operation on node 1. In this example, we expect that the take operation on
node 1 will succeed to retrieve a data item, because the computation of the traffic
on node 1 results in a source-sink-source loop with data generation (loop 3.2), which
takes data from a node that takes its data from a SyncSpout. In Figure 14 we also
show the computation path for the take operation.

7.2.4 Source-sink-sink loops (loop 4)

In this type of loops, shown in Figure 10, we enter the node asking about its traffic.
This results in the node asking what some channel (through its sink) offers. We
abstract away from what happens next, but at some point the propagation of the
queries returns to this node with asking whether the node can accept some data
item. We answer this last question with False, because otherwise we allow this
circuit to synchronize two sinks on the same node: the one through which we exit
the node and the one through which we re-enter the node. For this reason, the
channels of the exit and re-entry sinks cannot offer anything to this node in a
circuit containing this kind of a loop.

In Figure 15 we show a circuit with a loop of this type. This example con-
tains a Sync, a SyncSpout, two nodes, and an application component instance that
performs a take operation on node 1. In this example, we expect that the take op-
eration on node 1 will never succeed to retrieve any data, because the computation
of the traffic on node 1 results in a source-sink-sink loop (loop 4), which tries to
synchronize two sinks on the same node. In Figure 15 we also show the computation
path for the take operation.

35

��
��
��
��

�
�
�
�comp 2.11.1 2.2

2.3T

Figure 15: A source-sink-sink loop (loop 4)

7.2.5 Sink-source-source loops (loop 5)

In this type of loops, shown in Figure 10, we enter the node asking whether it can
accept some data item. This results in the node asking whether some coincident
channel (through its source) accepts the data item. We abstract away from what
happens next, but at some point the propagation of queries returns to this node
asking what the node has to offer. Since we have already visited the node testing
its acceptance of d, we answer that the node offers d.

��
��
��
��

��
��
��
��

2.11.1 2.2

2.3W
comp

Figure 16: A sink-source-source loop (loop 5)

In Figure 16 we show a circuit with a loop of this type. This example con-
tains a Sync, a SyncDrain, two nodes, and an application component instance that
performs a write operation on node 1. In this example, we expect that the write op-
eration on node 1 succeeds, because the computation of the traffic on node 1 results
in a sink-source-source loop (loop 5). In Figure 16 we also show the computational
path for the take operation.

7.2.6 Sink-source-sink loops (loop 6)

In this type loops, shown in Figure 10, we enter the node asking whether it can
accept some data item. This results in the node asking whether some channel
(through its source) accepts the data item. We abstract away from what happens
next, but at some point the propagation of queries returns to this node asking
whether the node can accept some data item. We answer this last question with
False, because otherwise we allow this circuit to synchronize two sinks on the same
node: the one through which we enter the node and the one through which we
re-enter the node. For this reason, the channels of the entry and re-entry sinks can
never offer anything to this node in a circuit containing this kind of a loop.

��
��
��
��

�
�
�
�comp 2.11.1 2.2

2.3W

Figure 17: A sink-source-sink loop (loop 6)

36

In Figure 17 we show a circuit with a loop of this type. This example contains
two Sync channels, two nodes and an application component instance that performs
a write operation on node 1. In this example, we expect that the write operation
on node 1 always fails, because the computation of the traffic on node 1 results in
a sink-source-sink loop (loop 6), which tries to synchronize two sinks on the same
node. In Figure 17 we also show the computation path for the write operation.

7.2.7 Sink-sink-source loops (loop 7)

In this type of loops, shown in Figure 10, we enter a node asking whether it can
accept some data item. According to the Accepts definition (see §4.2.1) this results
in the node asking some channel (through its source) whether it can accept the data
item. This means that the only way we can exit the node is via a source; exiting
via a sink does not constitute a valid node behavior. Therefore, a sink-sink-source
loop cannot occur.

Because by definition a loop of this type violates node behavior we cannot give
an example.

7.2.8 Sink-sink-sink loops (loop 8)

This loop, shown in Figure 10, cannot occur because it violates the rules for node
behavior in the same way as a sink-sink-source loop (loop 7) does.

Because by definition a loop of this type violates node behavior, we cannot give
an example.

8 Conclusions

In this report we presented a basic computational model for the Reo coordination
language. We provide a functional specification for node behavior and channel
behavior. The specification covers only the “look up” phase of computing a Reo
circuit. We leave out the implementation of the computational model for “commit-
ting” the results in nodes and channels, and performing the actual transportation
of data. Furthermore, we do not supply a locking scheme to manage multiple au-
thorities that attempt to compute the same Reo circuit. We also do not supply a
scheme to support partial fault tolerance. These two issues constitute future work
that extends our proposed computational model.

The model presented in this paper has a major limitation - it can properly com-
pute only a subset of all possible Reo circuits. The main problem comes from the
way this model handles merging in Offers as described in Section 5.1.2. When
selecting a data element the merger should “suppress” data from the other chan-
nels (i.e., exclude the behavior supplying that data), which the formulae does not
do properly. Suppressing requires propagation of the exclusion constraint through
channels and nodes. This problem manifests itself in circuits which contain, for ex-
ample, a LossySync channel. In such circuits, improper propagation of an exclusion
constraint through the sink channel end into a LossySync channel does not allow
this channel to switch to its alternative behavior: to accept and lose the data from
its source end.

Extending the model with propagation of exclusion constraints is possible, but
considerably complicates our functional specification. In order to develop a more
complete model, Costa et al. adopt a different approach to modeling circuits, called
Connector Coloring [3]. This approach, among other things, abstracts away from
the type of flow (inbound or outbound) in order to simplify the representation of
different channel behavior.

37

From our experience with the presented approach, we also observe that in most
practical examples, a circuit typically passes a lot of data between two dynamic
reconfigurations, i.e., most of the time circuits remain static relative to the data
flow through them. This calls for a different approach that instead of computing
the complete circuit behavior every time when components try use the connector,
allows to determine all possible behavior alternatives once and then only select the
relevant alternative when data needs to flow. In such approach, circuit reconfigu-
ration triggers a new behavior computation.

Acknowledgements

We thank David Clarke for his comments on the drafts of this report. Furthermore,
we extend our gratitude to all other members of SEN3, who have contributed in
one way or another to the development of the computational model of Reo.

38

A Examples of traces of loops

In this appendix we provide the full traces of the evaluation of the traffic for some
of the loop examples given in §7.2. In the traffic computation (τ) we first evaluate
Offers in order to determine the data items offered at the node, so that we can then
check them for acceptance.

A.1 Trace of a source-source-source loop (loop 1)

This trace corresponds to the example in §7.2.1 and the circuit in Figure 11. In this
example the application component instance performs a write operation on node 3
with data item 661. Below, we provide a full trace of the evaluation of the traffic
at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 offers what the channel of its sink has to offer:

Offers(1, ∗, [], []) =
⋃

[offers(x , ∗, [] ∪ [(1, nyd)], []) |x ←snkCEsel(1)]
=

⋃
[offers(x , ∗, [(1, nyd)], []) |x ← [1.1]]

= offers(1.1, ∗, [(1, nyd)], []).

We use the offers definition of the Sync channel given in §6.2.1:

offers(1.1, ∗, [(1, nyd)], []) = τ(2, ∗, [(1, nyd)], [2.1]).

We now evaluate the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1]) = [(d2,E ′′) | (d2,E ′) ←Offers(2, ∗, [(1, nyd)], [2.1]),
(b2,E ′′) ←Accepts(2, d2,S ′,E ′),
b2 == True].

We evaluate what node 2 has to offer. It has only one sink 2.2. So:

Offers(2, ∗, [(1, nyd)], [2.1])
=

⋃
[offers(x , ∗, [(1, nyd)] ∪ [(2, nyd)], [2.1]) |x ←snkCEsel(2)]

=
⋃

[offers(x , ∗, [(1, nyd), (2, nyd)], [2.1]) |x ← [2.2]]
= offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]).

We use the offers definition of the Sync channel given in §6.2.1:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]) = τ(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1]).

We now evaluate the traffic at node 3. First we evaluate what the node offers and
which of the offered data items the node accepts.

τ(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1])
= [(d3,E ′′) | (d3,E ′) ←Offers(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1]),

(b3,E ′′) ←Accepts(3, d3,S ′,E ′), b3 == True]

We evaluate what node 3 has to offer. Node 3 has only one source and therefore it
offers the data item 661 of its pending write operation (661 matches *):

Offers(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1])
= [(d , [2.1, 3.1]) | d ←W (3, ∗)] = [(661, [2.1, 3.1])].

39

We now return to continue evaluating the traffic at node 3:

τ(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1])
= [(d3,E ′′) | (d3,E ′) ← [(661, [2.1, 3.1])],

(b3,E ′′) ←Accepts(3, d3,S ′,E ′), b3 == True]
= [(661,E ′′) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(b3,E ′′) ←Accepts(3, 661, [(1, 661), (2, 661)], [2.1, 3.1]),
b3 == True].

We now evaluate whether node 3 accepts 661. It does, because

cel = srcCEsel(3)\[2.1, 3.1] = [3.1]\[2.1, 3.1] = []

and therefore

Accepts(3, 661, [(1, 661), (2, 661)], [2.1, 3.1]) = (True, [2.1, 3.1]).

We now return to finish evaluating the traffic at node 3:

τ(3, ∗, [(1, nyd), (2, nyd)], [2.1, 3.1])
= [(661,E ′′) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(b3,E ′′) ←(True, [2.1, 3.1]), b3 == True]
= [(661, [2.1, 3.1]) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(True, [2.1, 3.1]) ←(True, [2.1, 3.1]),
True == True]

= [(661, [2.1, 3.1]).]

We now return to evaluate what the channel of 2.2 offers:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]) = [(661, [2.1, 3.1])].

We now return to finish evaluating what node 2 has to offer:

Offers(2, ∗, [(1, nyd)], [2.1]) = [(661, [2.1, 3.1])].

We now return to continue evaluating the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1])
= [(d2,E ′′) | (d2,E ′) ← [(661, [2.1, 3.1])],

(b2,E ′′) ←Accepts(2, d2,S ′,E ′), b2 == True]
= [(661,E ′′) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(b2,E ′′) ←Accepts(2, 661, [(1, 661)], [2.1, 3.1]),
b2 == True].

We now evaluate whether node 2 accepts 661:

Accepts(2, 661, [(1, 661)], [2.1, 3.1])
= (bool ,E ′) �� Accepts(2, 661, [(1, 661)],E ′ ∪ [head cel])

where

cel = srcCEsel(2)\[2.1, 3.1] = [2.1, 2.3, 2.4]\[2.1, 3.1] = [2.3, 2.4]
(bool ,E ′) = accepts(head [2.3, 2.4], 661, [(1, 661)] ∪ [(2, 661)], [])

= accepts(2.3, 661, [(1, 661), (2, 661)], [2.1, 3.1]).

We evaluate whether the channel of 2.3 accepts 661. We use the accepts definition
of the SyncDrain channel given in §6.2.2:

40

accepts(2.3, 661, [(1, 661), (2, 661)], [2.1, 3.1])
= (τ(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4]) �= [],

⊕ τ(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4]).

We now evaluate the traffic at the visited node 2. Visited nodes traffic whatever
they offer:

τ(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4])
= Offers(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4]).

We now evaluate what the visited node 2 offers. A visited node offers data items
matching the required pattern, which come from the node’s pair in the visited nodes
list:

Offers(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4])
= [(d , [2.1, 3.1, 2.4]) | (n1, d) ← [(1, 661), (2, 661)],n1 == 2 ∧ d �∗]
= [(661, [2.1, 3.1, 2.4])].

We now return to finish evaluating the traffic at the visited node 2:

τ(2, ∗, [(1, 661), (2, 661)], [2.1, 3.1, 2.4]) = [(661, [2.1, 3.1, 2.4])].

We now return to finish evaluating whether the channel of 2.3 accepts 661:

accepts(2.3, 661, [(1, 661), (2, 661)], [2.1, 3.1])
= ([(661, [2.1, 3.1, 2.4])] �= [], ⊕ [(661, [2.1, 3.1, 2.4])]
= (True, [2.1, 3.1, 2.4]).

We can now continue to evaluate whether node 2 accepts 661:

Accepts(2, 661, [(1, 661)], [2.1, 3.1])
= (True, [2.1, 3.1, 2.4]) �� Accepts(2, 661, [(1, 661)],

[2.1, 3.1, 2.4] ∪ [head [2.3, 2.4]])
= (True, [2.1, 3.1, 2.4]) �� Accepts(2, 661, [(1, 661)],

[2.1, 3.1, 2.4] ∪ [2.3])
= (True, [2.1, 3.1, 2.4]) �� Accepts(2, 661, [(1, 661)], [2.1, 3.1, 2.4, 2.3]).

We now evaluate the recursive call to Accepts for node 2. Since

cel = srcCEsel(2)\[2.1, 3.1, 2.4, 2.3] = [2.1, 2.4, 2.3]\[2.1, 3.1, 2.4, 2.3] = []

therefore

Accepts(2, 661, [(1, 661)], [2.1, 3.1, 2.4, 2.3]) = (True, [2.1, 3.1, 2.4, 2.3]).

We now return to finish evaluating whether node 2 accepts 661 (we ignore any
duplicates that �� produces because of its implementation with ++ instead of ∪):

Accepts(2, 661, [(1, 661)], [2.1, 3.1])
= (True, [2.1, 3.1, 2.4]) �� (True, [2.1, 3.1, 2.4, 2.3])
= (True, [2.1, 3.1, 2.4, 2.3]).

We now return to finish evaluating the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1])
= [(661,E ′′) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(b2,E ′′) ←(True, [2.1, 3.1, 2.4, 2.3]), b2 == True]
= [(661, [2.1, 3.1, 2.4, 2.3]) | (661, [2.1, 3.1]) ← [(661, [2.1, 3.1])],

(True, [2.1, 3.1, 2.4, 2.3])
←(True, [2.1, 3.1, 2.4, 2.3]),

True == True]
= [(661, [2.1, 3.1, 2.4, 2.3])].

41

We now return back to finish evanuating what the channel of 1.1 has to offer:

offers(1.1, ∗, [(1, nyd)], []) = [(661, [2.1, 3.1, 2.4, 2.3])].

We now return back to finish evaluating what node 1 offers:

Offers(1, ∗, [], []) = [(661, [2.1, 3.1, 2.4, 2.3])].

We now continue evaluating the traffic of node 1:

τ(1, ∗, [], [])
= [(d1,E ′′) | (d1,E ′) ← [(661, [2.1, 3.1, 2.4, 2.3])],

(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [(661,E ′′) | (661, [(661, [2.1, 3.1, 2.4, 2.3])]) ← [(661, [2.1, 3.1, 2.4, 2.3])],

(b1,E ′′) ←Accepts(1, 661, [], [(661, [2.1, 3.1, 2.4, 2.3])]), b1 == True].

We now evaluate whether node 1 accepts 661. Node 1 contains only one sink and
it has a take pending with pattern *:

Accepts(1, 661, [], [(661, [2.1, 3.1, 2.4, 2.3])])
= (P(1) �= [] ∧ ∧

[991 �p | p ←P(1)], [2.1, 3.1, 2.4, 2.3])
= (True ∧ 991 �∗, [2.1, 3.1, 2.4, 2.3])
= (True, [2.1, 3.1, 2.4, 2.3]).

We now return to finish evaluating the traffic of node 1:

τ(1, ∗, [], [])
= [(661,E ′′) | (661, [(661, [2.1, 3.1, 2.4, 2.3])]) ←

[(661, [2.1, 3.1, 2.4, 2.3])],
(b1,E ′′) ←(True, [2.1, 3.1, 2.4, 2.3]), b1 == True]

= [(661, [2.1, 3.1, 2.4, 2.3]) | (661, [(661, [2.1, 3.1, 2.4, 2.3])]) ←
[(661, [2.1, 3.1, 2.4, 2.3])],

(True, [2.1, 3.1, 2.4, 2.3]) ←(True, [2.1, 3.1, 2.4, 2.3]),
True == True]

= [(661, [2.1, 3.1, 2.4, 2.3])].

Because this traffic list τ is not empty, the components comp1 and comp2 in Fig-
ure 11 succesfully perform, respectively, a write and a take operation.

A.2 Trace of a source-sink-source loop (loop 3.1)

This trace corresponds to the example in §7.2.3 and the circuit in Figure 13. Below,
we provide a full trace of the evaluation of the traffic at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 offers what the channel of its sink has to offer:

Offers(1, ∗, [], []) =
⋃

[offers(x , ∗, [] ∪ [(1, nyd)], []) |x ←snkCEsel(1)]
=

⋃
[offers(x , ∗, [(1, nyd)], []) |x ← [1.1]]

= offers(1.1, ∗, [(1, nyd)], []).

We use the offers definition of the Sync channel given in §6.2.1:

offers(1.1, ∗, [(1, nyd)], []) = τ(2, ∗, [(1, nyd)], [2.1]).

42

We now evaluate the traffic at node 2. In the same way as node 1, we first evaluate
the data items the node offers and then test for their acceptance:

τ(2, ∗, [(1, nyd)], [2.1]) = [(d2,E ′′) | (d2,E ′) ←Offers(2, ∗, [(1, nyd)], [2.1]),
(b2,E ′′) ←Accepts(2, d2,S ′,E ′),
b2 == True].

Node 2 offers what the channel of its sink has to offer:

Offers(2, ∗, [(1, nyd)], [2.1])
=

⋃
[offers(x , ∗, [(1, nyd)] ∪ [(2, nyd)], [2.1]) |x ←snkCEsel(2)]

=
⋃

[offers(x , ∗, [(1, nyd), (2, nyd)], [2.1]) |x ← [2.2]]
= offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]).

We use the offers definition of the Sync channel given in §6.2.1:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]) = τ(2, ∗, [(1, nyd), (2, nyd)], [2.1, 2.3]).

We have already visited node 2. A visited node traffics what it offers:

τ(2, ∗, [(1, nyd), (2, nyd)], [2.1, 2.3]) = Offers(2, ∗, [(1, nyd), (2, nyd)], [2.1, 2.3]).

A visited node offers any data item that we visited it with. Node 2 appears in the
visited nodes list with a nyd data item, which means that the node cannot offer
anything (the nyd does not match any valid pattern including *). So:

Offers(2, ∗, [(1, nyd), (2, nyd)], [2.1, 2.3])
= [(d ,E) | (n1, d) ← [(1, nyd), (2, nyd)],n1 == 2 ∧ d �∗]
= [].

We now return to finish evaluating what the visited node 2 traffics:

τ(2, ∗, [(1, nyd), (2, nyd)], [2.1, 2.3]) = [].

We now return to finish evaluating what the Sync offers:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]) = [].

We now return to finish evaluating what node 2 offers:

Offers(2, ∗, [(1, nyd)], [2.1]) = [].

We now return to finish evaluating the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1])
= [[] | [] ← [], (b2,E ′′) ←Accepts(2, d2,S ′,E ′), b2 == True]
= [].

We now return to finish evaluating the offers of the channel of 1.1:

offers(1.1, ∗, [(1, nyd)], []) = [].

We now return to finish evaluating what node 1 offers:

Offers(1, ∗, [], []) = [].

We now return to finish evaluating the traffic at node 1:

τ(1, ∗, [], []) = [[] | [] ← [], (b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [].

Because this traffic list τ is empty, the component comp in Figure 13 cannot perform
the take operation (i.e., it remains pending).

43

A.3 Trace of a source-sink-source loop (loop 3.2)

This trace corresponds to the example in §7.2.3 and the circuit in Figure 14. Below,
we provide a full trace of the the evaluation of the traffic at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 offers what the channel of its sink has to offer:

Offers(1, ∗, [], []) =
⋃

[offers(x , ∗, [] ∪ [(1, nyd)], []) |x ←snkCEsel(1)]
=

⋃
[offers(x , ∗, [(1, nyd)], []) |x ← [1.1]]

= offers(1.1, ∗, [(1, nyd)], []).

We use the offers definition of the Sync channel given in §6.2.1:

offers(1.1, ∗, [(1, nyd)], []) = τ(2, ∗, [(1, nyd)], [2.1]).

We now evaluate the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1]) = [(d2,E ′′) | (d2,E ′) ←Offers(2, ∗, [(1, nyd)], [2.1]),
(b2,E ′′) ←Accepts(2, d2,S ′,E ′),
b2 == True].

Node 2 offers what the channel of its sink has to offer:

Offers(2, ∗, [(1, nyd)], [2.1])
=

⋃
[offers(x , ∗, [(1, nyd)] ∪ [(2, nyd)], [2.1]) |x ←snkCEsel(2)]

=
⋃

[offers(x , ∗, [(1, nyd), (2, nyd)], [2.1]) |x ← [2.2]]
= offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1]).

We use the offers definition of the SyncSpout channel given in §6.2.3. We assume
that its random generator produces 991 and 992:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1])
= [(991,E ′) | 991 ← random() ∧ 991 �∗, 992 ← random(),

(b,E ′) ← Accepts(3, 992, [(1, 991), (2, 991)], [2.1]),
b == True].

We evaluate whether node 3 accepts 992:

Accepts(3, 992, [(1, 991), (2, 991)], [2.1])
= (bool ,E ′) �� Accepts(3, 992, [(1, 991), (2, 991)],E ′ ∪ [head cel])

where

cel = srcCEsel(3)\[2.1] = [3.2]\[2.1] = [3.2]
(bool ,E ′) = accepts(head [3.2], 992, [(1, 991), (2, 991)] ∪ [(3, 992)], [2.1])

= accepts(3.2, 992, [(1, 991), (2, 991), (3, 992)], [2.1]).

We use the accepts definition of SyncDrain given in §6.2.2:

accepts(3.2, 992, [(1, 991), (2, 991), (3, 992)], [2.1])
= (τ(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3]) �= [],
⊕ τ(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3])).

We evaluate the traffic at the visited node 2:

44

τ(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3])
= Offers(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3]).

The visited node 2 offers the data item that it has in a pair in the visited nodes
list. This data item should also match the pattern *:

Offers(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3])
= [(d , [2.1, 2.3]) | (n1, d) ← [(1, 991), (2, 991), (3, 992)],n1 == 2 ∧ d �∗]
= [(991, [2.1, 2.3])].

We now return to finish evaluating what the visited node 2 can traffic:

τ(2, ∗, [(1, 991), (2, 991), (3, 992)], [2.1, 2.3]) = [(991, [2.1, 2.3])].

We now return to finish evaluating whether the SyncDrain of 3.2 accepts 992:

accepts(3.2, 992, [(1, 991), (2, 991), (3, 992)], [2.1])
= ([(991, [2.1, 2.3])] �= [], ⊕ [(991, [2.1, 2.3])])
= (True, [2.1, 2.3]).

We now return to continue evaluating whether node 3 accepts 992:

Accepts(3, 992, [(1, 991), (2, 991)], [2.1])
= (bool ,E ′) �� Accepts(3, 992, [(1, 991), (2, 991)],E ′ ∪ [head cel])
= (True, [2.1, 2.3]) ��

Accepts(3, 992, [(1, 991), (2, 991)], [2.1, 2.3] ∪ [3.2])
= (True, [2.1, 2.3]) �� Accepts(3, 992, [(1, 991), (2, 991)], [2.1, 2.3, 3.2]).

We now evaluate the recursive call to Accepts for node 3. Since

cel = srcCEsel(3)\[2.1, 2.3, 3.2] = [3.2]\[2.1, 2.3, 3.2] = []

therefore

Accepts(3, 992, [(1, 991), (2, 991)], [2.1, 2.3, 3.2]) = (True, [2.1, 2.3, 3.2]).

We now finish evaluating whether node 3 accepts 992:

Accepts(3, 992, [(1, 991), (2, 991)], [2.1])
= (True, [2.1, 2.3]) ��

Accepts(3, 992, [(1, 991), (2, 991)], [2.1, 2.3, 3.2])
= (True, [2.1, 2.3]) �� (True, [2.1, 2.3, 3.2])
= (True, [2.1, 2.3, 3.2]).

We now return to evaluate what the SyncSpout of 2.2 has to offer:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1])
= [(991,E ′) | 991 ← random() ∧ 991 �∗, 992 ← random(),

(b,E ′) ← (True, [2.1, 2.3, 3.2]), b == True]
= [(991, [2.1, 2.3, 3.2]) | 991 ← random() ∧ True, 992 ← random(),

(True, [2.1, 2.3, 3.2]) ← (True, [2.1, 2.3, 3.2]),
True == True]

= [(991, [2.1, 2.3, 3.2])].

We now return to finish evaluating what node 2 has to offer:

Offers(2, ∗, [(1, nyd)], [2.1]) = [(991, [2.1, 2.3, 3.2])].

We now return to continue evaluating the traffic at node 2:

45

τ(2, ∗, [(1, nyd)], [2.1])
= [(d2,E ′′) | (d2,E ′) ← [(991, [2.1, 2.3, 3.2])],

(b2,E ′′) ←Accepts(2, d2,S ′,E ′), b2 == True]
= [(991,E ′′) | (991, [2.1, 2.3, 3.2]) ← [(991, [2.1, 2.3, 3.2])],

(b2,E ′′) ←Accepts(2, 991, [(1, 991)], [2.1, 2.3, 3.2]),
b2 == True].

We now evaluate whether node 2 accepts 991. It does, because

cel = srcCEsel(2)\[2.1, 2.3, 3.2] = [2.1, 2.3]\[2.1, 2.3, 3.2] = []

and therefore

Accepts(2, 991, [(1, 991)], [2.1, 2.3]) = (True, [2.1, 2.3, 3.2]).

We now return to finish evaluating the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1])
= [(991,E ′′) | (991, [2.1, 2.3]) ← [(991, [2.1, 2.3, 3.2])],

(b2,E ′′) ←(True, [2.1, 2.3, 3.2]), b2 == True]
= [(991, [2.1, 2.3, 3.2]) | (991, [2.1, 2.3, 3.2]) ← [(991, [2.1, 2.3, 3.2])],

(True, [2.1, 2.3, 3.2]) ←(True, [2.1, 2.3, 3.2]),
True == True]

= [(991, [2.1, 2.3, 3.2])].

We now return to finish evaluating what the Sync of 1.1 has to offer:

offers(1.1, ∗, [(1, nyd)], []) = [(991, [2.1, 2.3, 3.2])].

We now return to finish evaluating what node 1 has to offer:

Offers(1, ∗, [], []) = [(991, [2.1, 2.3, 3.2])].

We now return to continue evaluating the traffic at node 1:

τ(1, ∗, [], [])
= [(d1,E ′′) | (d1,E ′) ← [(991, [2.1, 2.3, 3.2])],

(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [(991,E ′′) | ((991, [2.1, 2.3, 3.2]) ← [(991, [2.1, 2.3, 3.2])],

(b1,E ′′) ←Accepts(1, 991, [], [2.1, 2.3, 3.2]),
b1 == True].

We now evaluate whether node 1 accepts 991. Node 1 contains only one sink and
it has a take pending with pattern *:

Accepts(1, 991, [], [2.1, 2.3, 3.2])
= (P(1) �= [] ∧ ∧

[991 �p | p ←P(1)], [2.1, 2.3, 3.2])
= (True ∧ 991 �∗, [2.1, 2.3, 3.2])
= (True, [2.1, 2.3, 3.2]).

We now return to finish evaluating the traffic at node 1:

τ(1, ∗, [], [])
= [(991,E ′′) | ((991, [2.1, 2.3]) ← [(991, [2.1, 2.3, 3.2])],

(b1,E ′′) ←(True, [2.1, 2.3, 3.2]), b1 == True]
= [(991, [2.1, 2.3, 3.2]) | ((991, [2.1, 2.3, 3.2]) ← [(991, [2.1, 2.3, 3.2])],

(True, [2.1, 2.3, 3.2]) ←(True, [2.1, 2.3, 3.2]),
True == True]

= [(991, [2.1, 2.3, 3.2])].

Because this traffic list τ is not empty, the component comp in Figure 14 successfully
performs the take operation.

46

A.4 Trace of a source-sink-sink loop (loop 4)

This trace corresponds to the example in §7.2.4 and the circuit in Figure 15. Below,
we provide a full trace of the evaluation of the traffic at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 offers what the channel of its sink has to offer:

Offers(1, ∗, [], []) =
⋃

[offers(x , ∗, [] ∪ [(1, nyd)], []) |x ←snkCEsel(1)]
=

⋃
[offers(x , ∗, [(1, nyd)], []) |x ← [1.1]]

= offers(1.1, ∗, [(1, nyd)], []).

We use the offers definition of the Sync channel given in §6.2.1:

offers(1.1, ∗, [(1, nyd)], []) = τ(2, ∗, [(1, nyd)], [2.1]).

We now evaluate the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1]) = [(d2,E ′′) | (d2,E ′) ←Offers(2, ∗, [(1, nyd)], [2.1]),
(b2,E ′′) ←Accepts(2, d2,S ′,E ′),
b2 == True].

Node 2 offers what the channels of its two sinks have to offer:

Offers(2, ∗, [(1, nyd)], [2.1])
=

⋃
[offers(x , ∗, [(1, nyd)] ∪ [(2, nyd)], [2.1]) |x ←snkCEsel(2)]

=
⋃

[offers(x , ∗, [(1, nyd), (2, nyd)], [2.1]) |x ← [2.2, 2.3]]
= offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1])

∪ offers(2.3, ∗, [(1, nyd), (2, nyd)], [2.1]).

We first evaluate what the channel of 2.2 has to offer. We use the offers definition
of the SyncSpout channel given in §6.2.3. We assume that its random generator
produces 881 and 822:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1])
= [(881,E ′) | 881 ← random() ∧ 881 �∗, 882 ← random(),

(b, E ′) ← Accepts(2, 882, [(1, 881), (2, 881)], [2.1]),
b == True].

We evaluate whether node 2 accepts 882. It does not, because we have already
visited node 2:

Accepts(2, 882, [(1, 881), (2, 881)], [2.1]) = (False, [2.1]).

We now return to finish evaluating what the SyncSpout of 2.2 has to offer:

offers(2.2, ∗, [(1, nyd), (2, nyd)], [2.1])
= [(881,E ′) | 881 ← random() ∧ 881 �∗, 882 ← random(),

(b, E ′) ← (False, [2.1]), b == True]
= [(881, [2.1]) | 881 ← random() ∧ 881 �∗, 882 ← random(),

(False, [2.1]), False == True]
= [].

Similarly, the SyncSpout (in this example, the same channel) of 2.3 has nothing to
offer, and thus

47

offers(2.3, ∗, [(1, nyd), (2, nyd)], [2.1]) = [].

We now return to finish evaluating what node 2 has to offer:

Offers(2, ∗, [(1, nyd)], [2.1]) = []
⋃

[] = [].

We now return to finish evaluating the traffic at node 2:

τ(2, ∗, [(1, nyd)], [2.1]) = [].

We now return to finish evaluating the offers of the channel of 1.1:

offers(1.1, ∗, [(1, nyd)], []) = [].

We now return to finish evaluating what node 1 has to offer:

Offers(1, ∗, [], []) = [].

We now return to finish evaluating what node 1 can traffic:

τ(1, ∗, [], []) = [[] | [] ← [], (b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [].

Because this traffic list τ is empty, the component comp in Figure 15 cannot perform
the take operation (i.e., it remains pending).

A.5 Trace of a sink-source-source loop (loop 5)

This trace corresponds to the example in §7.2.5 and the circuit in Figure 16. In this
example the application component instance performs a write operation on node 1
with data item 441. Below, we provide a full trace of the evaluation of the traffic
at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 has only one source, therefore it offers the data items of the write operation
pending on the node:

Offers(1, ∗, [], []) = [(441, []) | 441 ←W (1, ∗)] = [(441, [])].

We now return to continue evaluating the traffic at node 1:

τ(1, ∗, [], [])
= [(d1,E ′′) | (d1,E ′) ← [(441, [])],

(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [(441,E ′′) | (441, []) ← [(441, [])],

(b1,E ′′) ←Accepts(1, 441, [], []), b1 == True].

We now evaluate whether node 1 accepts 441:

Accepts(1, 441, [], [])
= (bool ,E ′) �� Accepts(1, 441, [],E ′ ∪ [head cel])

where

cel = srcCEsel(1)\[] = [1.1]\[] = [1.1]
(bool ,E ′) = accepts(head [1.1], 441, [] ∪ [(1, 441)], [])

48

= accepts(1.1, 441, [(1, 441)], []).

We use the accepts definition of the Sync channel given in §6.2.1:

accepts(1.1, 441, [(1, 441)], []) = Accepts(2, 441, [(1, 441)], []).

We now evaluate whether node 2 accepts 441:

Accepts(2, 441, [(1, 441)], [])
= (bool ,E ′) �� Accepts(2, 441, [(1, 441)],E ′ ∪ [head cel])

where

cel = srcCEsel(2)\[] = [2.2, 2.3]\[] = [2.2, 2.3]
(bool ,E ′) = accepts(head [2.2, 2.3], 441, [(1, 441)] ∪ [(2, 441)], [])

= accepts(2.2, 441, [(1, 441), (2, 441)], []).

We use the accepts definition of the SyncDrain channel given in §6.2.2:

accepts(2.2, 441, [(1, 441), (2, 441)], [])
= (τ(2, ∗, [(1, 441), (2, 441)], [2.3]) �= [],
⊕ τ(2, ∗, [(1, 441), (2, 441)], [2.3]).

We now evaluate the traffic at the visited node 2:

τ(2, ∗, [(1, 441), (2, 441)], [2.3]) = Offers(2, ∗, [(1, 441), (2, 441)], [2.3]).

The visited node 2 offers the data item that in has in a pair in the visited nodes
list. This data item also matches the pattern *:

Offers(2, ∗, [(1, 441), (2, 441)], [2.3])
= [(d , [2.3]) | (n1, d) ← [(1, 441), (2, 441)],n1 == 2 ∧ d �∗]
= [(441, [2.3])].

We now return to finish evaluating the traffic at the visited node 2:

τ(2, ∗, [(1, 441), (2, 441)], [2.3]) = [(441, [2.3])].

We now return to finish evaluating whether the channel of 2.2 accepts 441:

accepts(2.2, 441, [(1, 441), (2, 441)], [])
= ([(441, [2.3])] �= [],⊕[(441, [2.3])] = (True, [2.3]).

We now return to continue evaluating whether node 2 accepts 441:

Accepts(2, 441, [(1, 441)], [])
= (True, [2.3]) �� Accepts(2, 441, [(1, 441)], [2.3] ∪ [head [2.2, 2.3]])
= (True, [2.3]) �� Accepts(2, 441, [(1, 441)], [2.3] ∪ [2.2])
= (True, [2.3]) �� Accepts(2, 441, [(1, 441)], [2.3, 2.2]).

We now evaluate the recursive call to Accepts for node 2. Since

cel = srcCEsel(2)\[] = [2.2, 2.3]\[2.3, 2.2] = []

therefore

Accepts(2, 441, [(1, 441)], [2.3, 2.2]) = (True, [2.3, 2.2]).

We can now return to finish evaluating whether node 2 accepts 441:

49

Accepts(2, 441, [(1, 441)], [])
= (True, [2.3]) �� (True, [2.3, 2.2])
= (True, [2.3, 2.2]).

We now return to evaluate whether the channel of 1.1 accepts 441:

accepts(1.1, 441, [(1, 441)], []) = (True, [2.3, 2.2]).

We now return to continue evaluating whether node 1 accepts 441:

Accepts(1, 441, [], [])
= (True, [2.3, 2.2]) �� Accepts(1, 441, [], [2.3, 2.2] ∪ [head [1.1]])
= (True, [2.3, 2.2]) �� Accepts(1, 441, [], [2.3, 2.2] ∪ [1.1])
= (True, [2.3, 2.2]) �� Accepts(1, 441, [], [2.3, 2.2, 1.1]).

We now evaluate the recursive call to Accepts for node 1. Since

cel = srcCEsel(1)\[2.3, 2.2, 1.1] = [1.1]\[2.3, 2.2, 1.1] = [].

therefore

Accepts(1, 441, [], [2.3, 2.2, 1.1]) = (True, [2.3, 2.2, 1.1]).

We now return to finish evaluating whether node 1 accepts 441:

Accepts(1, 441, [], [])
= (True, [2.3, 2.2]) �� (True, [2.3, 2.2, 1.1])
= (True, [2.3, 2.2, 1.1]).

We now return to finish evaluating the traffic at node 1:

τ(1, ∗, [], [])
= [(441,E ′′) | (441, []) ← [(441, [])],

(b1,E ′′) ←(True, [2.3, 2.2, 1.1]), b1 == True]
= [(441, [2.3, 2.2, 1.1]) | (441, []) ← [(441, [])],

(True, [2.3, 2.2, 1.1]) ←(True, [2.3, 2.2, 1.1]),
True == True]

= [(441, [2.3, 2.2, 1.1])].

Because this traffic list τ is not empty, the component comp in Figure 16 successfully
performs the write operation.

A.6 Trace of a sink-source-sink loop (loop 6)

This trace corresponds to the example in §7.2.6 and the circuit in Figure 17. In this
example the application component instance performs a write operation on node 1
with data item 331. Below, we provide a full trace of the evaluation of the traffic
at node 1.

The traffic at node 1 is:

τ(1, ∗, [], []) = [(d1,E ′′) | (d1,E ′) ←Offers(1, ∗, [], []),
(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True].

Node 1 only has sources, therefore it offers the data items from write operations
pending on the node:

Offers(1, ∗, [], []) = [(331, []) | 331 ←W (1, ∗)] = [(331, [])].

We now return to continue evaluating the traffic at node 1:

50

τ(1, ∗, [], [])
= [(d1,E ′′) | (d1,E ′) ← [(331, [])],

(b1,E ′′) ←Accepts(1, d1,S ′,E ′), b1 == True]
= [(331,E ′′) | (331, []) ← [(331, [])],

(b1,E ′′) ←Accepts(1, 331, [], []), b1 == True].

We now evaluate whether node 1 accepts 331:

Accepts(1, 331, [], [])
= (bool ,E ′) �� Accepts(1, 331, [],E ′ ∪ [head cel])

where

cel = srcCEsel(1)\[] = [1.1]\[] = [1.1]
(bool ,E ′) = accepts(head [1.1], 331, [] ∪ [(1, 331)], [])

= accepts(1.1, 331, [(1, 331)], []).

We use the accepts definition of the Sync channel given in §6.2.1:

accepts(1.1, 331, [(1, 331)], []) = Accepts(2, 331, [(1, 331)], []).

We now evaluate whether node 2 accepts 331:

Accepts(2, 331, [(1, 331)], [])
= (bool ,E ′) �� Accepts(2, 331, [(1, 331)],E ′ ∪ [head cel])

where

cel = srcCEsel(2)\[] = [2.2]\[] = [2.2]
(bool ,E ′) = accepts(head [2.2], 331, [(1, 331)] ∪ [(2, 331)], [])

= accepts(2.2, 331, [(1, 331), (2, 331)], []).

We use the accepts definition of the Sync channel given in §6.2.1:

accepts(2.2, 331, [(1, 331), (2, 331)], []) = Accepts(2, 331, [(1, 331), (2, 331)], []).

We now evaluate whether the visited node 2 accepts 331, however visited nodes do
not accept anything (see §5.1.1):

Accepts(2, 331, [(1, 331), (2, 331)], []) = (False, []).

We now return to finish evaluating whether the channel of 2.2 accepts 331:

accepts(2.2, 331, [(1, 331), (2, 331)], []) = (False, []).

We now return to continue evaluating whether node 2 accepts 331:

Accepts(2, 331, [(1, 331)], [])
= (False, []) �� Accepts(2, 331, [(1, 331)], [] ∪ [2.2])
= (False, []) �� Accepts(2, 331, [(1, 331)], [2.2]).

We now evaluate the recursive call to Accepts for node 2. Since

cel = srcCEsel(2)\[2.2] = [2.2]\[2.2] = []

therefore

Accepts(2, 331, [(1, 331)], [2.2]) = (True, [2.2]).

We now return to finish evaluating whether node 2 accepts 331:

51

Accepts(2, 331, [(1, 331)], []) = (False, []) �� (True, [2.2]) = (False, [2.2]).

We now return to finish evaluating whether the channel of 1.1 accepts 331:

accepts(1.1, 331, [(1, 331)], []) = (False, [2.2]).

We now return to continue evaluating whether node 1 accepts 331:

Accepts(1, 331, [], [])
= (False, [2.2]) �� Accepts(1, 331, [], [2.2] ∪ [1.1])
= (False, [2.2]) �� Accepts(1, 331, [], [2.2, 1.1]).

We now evaluate the recursive call to Accepts for node 1. Since

cel = srcCEsel(1)\[2.2, 1.1] = [1.1]\[2.2, 1.1] = []

therefore

Accepts(1, 331, [], [2.2, 1.1]) = (True, [2.2, 1.1]).

We now return to finish evaluating whether node 1 accepts 331:

Accepts(1, 331, [], [])
= (False, [2.2]) �� (True, [2.2, 1.1])
= (False, [2.2, 1.1]).

We now return to finish evaluating the traffic at node 1:

τ(1, ∗, [], [])
= [(331,E ′′) | (331, []) ← [(331, [])],

(b1,E ′′) ←(False, [2.2, 1.1]), b1 == True]
= [(331, [2.2, 1.1]) | (331, []) ← [(331, [])],

(False, [2.2, 1.1]) ←(False, [2.2, 1.1]),
False == True]

= [].

Because this traffic list τ is empty, the component comp in Figure 17 cannot perform
the write operation (i.e., it remains pending).

References

[1] Farhad Arbab. Reo: A channel-based coordination model for components com-
position. volume 14 of Math. Struct. in Comp. Science, pages 329–366. Cam-
bridge University Press, 2004.

[2] Farhad Arbab. Abstract behavior types: a foundation model for components
and their composition. Sci. Comput. Program., 55(1-3):3–52, 2005.

[3] David Costa, David Clarke, and Farhad Arbab. Connector colouring I: Synchro-
nisation and context dependency. In 4th International Workshop on the Founda-
tions of Coordination Languages and software Architectures (FOCLASA), pages
85–102, August 2005. To appear in ENTCS in 2006.

[4] Jerud J. Mead. Haskell - a tutorial introduction. Available online at
http://www.cs.drexel.edu/˜souter/cs360/sp04/handouts/hugs.pdf.

[5] J.J.M.M. Rutten, M. Kwiatkowska, N. Gethin, and D. Parker. Mathemati-
cal Techniques for analysing concurrent and probabilistic systems, volume 23 of
CRM Monograph series, chapter 5: Component Connectors, page 215. American
Mathematical Society, 2004.

52

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Futura
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /Futura-CondExtraBoldObl
 /Futura-Condensed
 /Futura-CondensedBold
 /Futura-CondensedBoldOblique
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-CondensedOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 822.047]
>> setpagedevice

