
Soft Agents: Exploring Soft Constraints
to Model Robust Adaptive Distributed Cyber-Physical

Agent Systems

Carolyn Talcott1, Farhad Arbab2, and Maneesh Yadav1

1 SRI International, Menlo Park, CA 94025, USA
{carolyn.talcott,maneesh.yadav}@sri.com

2 CWI Amsterdam, The Netherlands
Farhad.Arbab@cwi.nl

Abstract. We are interested in principles for designing and building open dis-
tributed systems consisting of multiple cyber-physical agents, specifically, where
a coherent global view is unattainable and timely consensus is impossible. Such
agents attempt to contribute to a system goal by making local decisions to sense
and effect their environment based on local information. In this paper we pro-
pose a model, formalized in the Maude rewriting logic system, that allows ex-
perimenting with and reasoning about designs of such systems. Features of the
model include communication via sharing of partially ordered knowledge, mak-
ing explicit the physical state as well as the cyber perception of this state, and the
use of a notion of soft constraints developed by Martin Wirsing and his team to
specify agent behavior. The paper begins with a discussion of desiderata for such
models and concludes with a small case study to illustrate the use of the modeling
framework.

With Best Wishes to Martin Wirsing

This work has roots in the joint work with Martin on the PAGODA project and soft
constraint solving[1], carried out when Martin spent a sabbatical at SRI in 2005. This
work was continued by Martin, Max Meier and Matthias Hölzl [2,3], leading to a new
notion of soft constraints that seems very well suited to the world of cyber-physical
agents. The present work also builds on many discussions over the last few years on the
challenges of cyber-physical systems, including several Interlink workshops [4] lead by
Martin.

It has been a great privilege and pleasure to know Martin, to have the opportunity
to work together from time to time, and to exchange ideas as our paths have crossed
over the years. I look forward to many more years of exchanging ideas and tackling
challenging problems.

1 Introduction

Consider a future in which an explosion of small applications running on mobile devices
combine and collaborate to provide powerful new functionality not only in the realms

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 273–290, 2015.
c© Springer International Publishing Switzerland 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

274 C. Talcott, F. Arbab, and M. Yadav

such as large collections of automated vehicles, but also harnessing the underlying com-
munication and robust people power for new kinds of cyber crowd sourcing tasks.

Complex cyber-physical agents are becoming increasingly ubiquitous, in part, due
to increased computational performance of commodity hardware and the widespread
adoption of standard mobile computing environments (e.g. Android). At the time of
writing, one can purchase (for a few hundred US dollars in the retail market) a four ro-
tor “drone” capable of precise, controlled hovering that can be equipped with a portable
Android phone that provides integrated communication (e.g. wifi ad hoc) and sensing
(e.g. high resolution camera) capability as well as considerable processing power (e.g.
multiple GPU cores) and memory. The increasingly impressive capabilities of such plat-
forms have led to autonomous cyber-physical systems that implement realtime methods
for computer vision[5], machine learning[6] and computational aerodynamics[7]. Tech-
nology has progressed to the point that many of these capabilities can be easily applied
by non-specialists.

The disparity between the growing sophistication of cyber-physical agents and prac-
tical, scalable methods that autonomously coordinate agent collectives (without central
control) is clear from the lack of widely available frameworks. There are very few practi-
cal tools available to non-specialists that would enable them to specify joint goals across
a cyber-physical agent collectives in a way that is robust to a dynamic environment.

The specification of goals and constraints for agent collectives broadly falls under
a number of problem representations that have been long explored, these include Dis-
tributed Constraint Satisfaction Problems [8], Distributed Control Optimization Prob-
lems [9], Distributed Continual Planning [10], Multi-Agent Planning [11] and multi-
agent coordination[12]. Not all methods that we have surveyed in the literature have
proven correctness or bounds, but amongst those that have, coordination is clearly dif-
ficult since all methods that we are aware of are exponential in the number of messages
sent (with the exception of DPOP[13], where the number of messages is kept linear at
the cost of exponential memory usage).

Most methods focus on distributed systems, but practical distributed systems are of-
ten further complicated from unexpected changes in goals, (partial) agent failure and
delays in agent communication. In the context of such complicating factors, some coor-
dination methods will suffer (unbounded) delays in performing actions towards a spec-
ified goal (e.g., halt during consensus formation), when it would make eminent sense
for the agents to begin doing something towards achieving their goal. While many of
the problem representations that have explored distributed systems have carefully con-
sidered dynamic environments and failure, we use the term fractionated to emphasize
these aspects.

Our intent is to address the design, prototyping and eventually implementation of
systems which we call Fractionated Cyber-Physical Systems (FCPS) [14,15]. FCPS
are distributed systems composed of many small cyber-physical agents that must act
using only local knowledge in the context of an uncertain environment, communication
delays as well as agent failure/replacement/addition. Agents in FCPS interact by sharing
knowledge that is gained by sensing and by reasoning. We are particularly interested in
principles for designing FCPS in which desired cooperation/coordination emerges from
local behaviors, under practical conditions.

Soft Agents: Exploring Soft Constraints 275

FCPS promise robustness and fault tolerance using many small entities such that
no specific individual is critical. Entities can come and go without disrupting the sys-
tem, as long as the needed functionality is sufficiently represented. Defective, worn out,
or out-of-date entities can be easily replaced by fresh, improved versions. The term
“fractionated” was originally coined to describe replacing small sets of multifunctional
space satellites with an collective of smaller more specialized “nanosats” that could be
launched cheaply and easily replaced, providing a resilient system capable of complex
functionality at a lower overall cost[16]. We suggest that this notion has become much
more relevant with the advent of ubiquitous mobile computing and applicable to “down
to earth” problems such as package delivery.

Towards these goals, we propose a framework we call Soft Agents and describe a
prototype implementation in the Maude rewriting logic system [17] along with a small
package delivery case-study to illustrate the ideas.

The notion of fractionated cyber-physical systems is very similar to the notion of
ensemble that emerged from the Interlink project [4,18] and that has been a central
theme of the ASCENS (Autonomic Service-Component Ensembles) project [19]. In
[20] a mathematical system model for ensembles is presented. Similar to FCPS and
soft agents, the mathematical model treats both cyber and physical aspects of a system.
A notion of fitness is defined that supports reasoning about level of satisfaction. Adapt-
ability is also treated. In contrast to the soft-agent framework which provides an exe-
cutable model, the system model for ensembles is denotational. The two approached are
both compatible and complementary and joining them could lead to a very expressive
framework supporting both high-level specification and concrete design methodologies.

The soft agents framework combines ideas from several previous works: the use
of soft constraints [1,2,3] and soft constraint automata [21] for specifying robust and
adaptive behavior; partially ordered knowledge sharing for communication in disrupted
environments [14,22,23,15], and the Real-time Maude approach to modeling timed
systems [24].

Soft constraints allow composition in multiple dimensions, including different con-
cerns for a given agent, and composition of constraints for multiple agents. In [2] a new
system for expressing soft constraints called Monoidal Soft Constraints is proposed.
This generalizes the Semi-ring approach to support more complex preference relations.
In [3] partially ordered valuation structures are explored to provide operators for com-
bination of constraints for different features that respects the relative importance of the
features.

Given local constraints, a global theoretical model can be formed as a cross prod-
uct, that considers all inter-leavings of actions of individual agents. This is generally an
infeasibly complex problem to solve. We propose solving the complex problem by con-
current distributed solution of simpler local problems. This leads us to study questions
such as

– Under what conditions are the local solutions good enough?
– Under what conditions would it not be possible?
– How much knowledge is needed for satisfactory solution/behavior?
– What frequency of decision making is needed so that local solutions are safe and

effective?

276 C. Talcott, F. Arbab, and M. Yadav

Plan. Section 2 discusses desiderata for a framework for FCPS. Section 3 presents
the proposed framework and its formalization in Maude. Section 4 illustrates the ap-
plication of soft-agents to a simple autonomous drone packet deliver system. Section 5
summarizes and discusses future directions.

2 Desiderata for Soft Agents

CPS agents must maintain an overall situation, location, and time awareness and make
safe decisions that progress towards an objective in spite of uncertainty, partial knowl-
edge and intermittent connectivity. The big question is: how do we design, build, and
understand such systems? We want principles/tools for system designs that achieve
adaptive, robust functionality using diversity, redundancy and probabilistic behavior.

The primary desiderata for our FCPS are localness, liveness and softness. We explic-
itly exclude considering insincere or malicious agents in our current formulation.1

Localness. Cooperation and coordination should emerge from local behavior based on
local knowledge. This is traditionally done by consensus formation algorithms. Con-
sensus involves agreeing on what actions to take, which usually requires a shared view
of the system state. In a distributed system spread over a large geographic area beyond
the communication reach of individual agents, consensus can take considerable time
and resources, but an FCPS agent must keep going. Thus consensus may emerge but
can’t be relied on, nor can it be be forced.

In less than ideal conditions what is needed is a notion of satisficing consensus: for
any agent, consensus is satisficed when enough of a consensus is present so that agents
can begin executing actions that are likely to be a part of a successful plan, given that
there is some expectation for the environment to change.

Our POKS knowledge dissemination framework underlying an FCPS takes care of
agreeing on state to the degree possible. In a quiescent connected situation all agents
will eventually have the same knowledge base. As communication improves, an FCPS
approaches a typical distributed system without complicating factors. This should in-
crease the likelihood of reaching actual consensus, and achieving ideal behaviors.

A key question here is how a system determines the minimal required level of con-
sensus? In particular what quality of connection/communication is required to support
formation of this minimum level of consensus?

Safety and Liveness. Another formal property of an FCPS to consider concerns safety
and liveness: something bad does not happen and something good will eventually hap-
pen. From a local perspective this could mean avoiding preventable disaster/failure as
well as making progress and eventually sufficiently satisfying a given goal.

– An agent will never wait for an unbounded time to act.
– An agent can always act if local environment/knowledge/situation demands.

1 This is a strong assumption, although not unusual. The soft agents framework supports mod-
eling of an unpredictable or even “malicious” environment. We discus the issue of trust or
confidence in knowledge received as part of future work.

Soft Agents: Exploring Soft Constraints 277

– An agent will react in a timely manner based on local information.
– An agent should keep itself “safe”.

We note that the quality calculus [25,26] provides language primitives to support
programming to meet such liveness requirements and robustness analysis methods for
verification. One of the motivations of the Quality Calculus was to deal with unreali-
able communication. It will be interesting to investigate how soft constraints and the
quality calculus approach might be combined to provide higher level specification and
programming paradigms.

Softness. We want to reason about systems at both the system and cyber-physical en-
tity/agent level and systematically connect the two levels. Agent behavior must allow
for uncertainty and partial information, as well as preferences when multiple actions
are possible to accomplish a task, as often is the case.

Specification in terms of constraints is a natural way to allow for partiality. Soft con-
straints provide a mechanism to rank different solutions and compose constraints con-
cerning different aspects. We refer to [2] for an excellent review of different soft con-
straint systems. Given a problem there will be system wide constraints characterizing
acceptable solutions, and perhaps giving measures to rank possible behaviors/solutions.
Rather than looking for distributed solution of global constraints, each agent will be
driven by a local constraint system. Multiple soft constraint systems maybe be involved
(multiple agent classes) and multiple agents may be driven by the same soft constraint
system.

3 Soft Agent Model Formalized in Maude

3.1 Networked Cyber-Physical Systems and Partially-Ordered Knowledge
Sharing

To motivate the formal model we give a brief overview of our Networked cyber-physical
systems (NCPS) framework. The theoretical foundation is a distributed computing model
based on sharing knowledge that is partially ordered (POKS) [22,14,15]. An NCPS is a
collection of cyber-physical agents (CPAs or simply agents) with diverse capabilities and
resource limitations. They may cooperate and/or compete to achieve some global or lo-
cal goal. An agent can communicate directly with connected peers to share knowledge.
Information propagates opportunistically when connections arise. Communication, as
well as an agent’s own sensors, may update the agent’s local knowledge base. A CPA
must function somewhat autonomously, making decisions based on local information.
It should function safely even in absence of communication and should be capable of a
wide spectrum of operation between autonomy and consensus/cooperation to adapt to
resource constraints and disruptions in communication. Interpreting knowledge items
as facts or goals enables declarative specification of sensing and control. Conflicts be-
tween information received from various peers, through various channels, and/or local
sensors, acquired/received at different times, need to be resolved. The partial order on

278 C. Talcott, F. Arbab, and M. Yadav

knowledge provides a mechanism for revision, control, conflict resolution and consensus
under suitable conditions.

Soft agents are based on the NCPS framework with two additional features: formu-
lation of an agent’s goals as soft constraint problems and representation of an agent’s
physical state separated from its knowledge. Actions are carried out based on the physi-
cal state, and an agent makes decisions based on its local knowledge. In the following we
describe the formalization of Soft Agents in the Maude rewriting logic language [17].

3.2 Soft Agents in Maude

A Maude cyber-physical soft-constraint system is an executable model with two parts:
(1) the application independent modules (SOFT-AGENTS, SOFT-AGENT-RULES) and
(2) modules specifying capabilities and behavior of the agents by defining the abstract
functions used in the rewrite rules.

The following is a brief summary of the data structures and behavior rules used to
specify the framework, including the functions that must be defined for each applica-
tion. We present fragments of Maude code followed by informal discussion to clarify
and augment the fragments. 2

Knowledge. We use knowledge to represent properties of the world (the environment
perspective) as well as an agents local view. An agent can receive or post knowledge.
The environment, represented by rewrite rules, provides sensor information to agents.

sorts PKItem TKItem KItem Info .
subsort PKItem TKItem < KItem .
op _@_ : Info Nat -> TKItem .

Knowledge is represented as a set of knowledge items (sort KItem), and comes in
two flavors: persistent (sort PKItem) and ephemeral/temporary (sort TKItem). Per-
sistent knowledge is knowledge that doesn’t change over time, such as the class of an
agent, size of a packet or capacity of a drone. Ephemeral knowledge concerns things
that are expected to change over time such as sensor information, delivered by the
environment, (received) logical and shared state knowledge (received and/or posted).
Ephemeral knowledge is constructed from the underlying information (sort Info) and
a timestamp (info @ t).

op _<<_ : KItem KItem -> Bool . *** knowledge partial order
eq kitem << kitem’ = false [owise] . *** not ordered default

Knowledge is partially ordered (<<) providing a mechanism to discard knowledge that
is no longer valid/relevant. This allows an agent to deal with situations where, for exam-
ple, newer state knowledge is available, or knowledge representing a goal is no longer
valid because the goal has been satisfied or timed out. The equation with the [owise]

2 Maude specifications consist of sort and subsort declarations, specifying the data type hierar-
chy, function and constant declarations (keyword op) giving argument and result sorts, equa-
tions (keyword eq) used to define functions, and rewrite rules rl[rulename]: lhs =>
rhs. --- and *** precede comments.

Soft Agents: Exploring Soft Constraints 279

label says that the default is that two items are not ordered. It will be used if no other
equation for the relation << matches.

An agent is modeled by a structure of the form

[id : class | envkb | localkb | cachedkb | events]

where id is the agent’s identity and class is the agent’s class. The terms envkb,
localkb, and cachekb denote knowledge bases—sets of knowledge items, where
envkb contains facts representing an agent’s physical state. In mobile settings it will
include location and may include energy or fuel level, load, weight, etc.. The agent
doesn’t see envkb directly, only via sensor readings which maybe posted automatically
or upon request. The knowledge items in localkb contain the agent’s perception of its
state and other knowledge which could include mode, plans, and knowledge posted by
other agents. The knowledge items in cachedkb form the local cache of knowledge,
used by the environment to implement knowledge sharing. It is not directly visible
by the agent, although the agent has had the opportunity to process the knowledge in
the cache. An agent system evolves by application of event handling rules. Rules for
different types of event use information from different knowledge bases as appropriate.

Events, actions and tasks. Events include those that an agent handles and those handled
by the environment. There are four classes of event:

– received knowledge such as local sensor information or shared knowledge, handled
by the agent

– tasks scheduled by the agent, possibly with delay, to be handled by the agent
– actions to execute posted by agents, possibly with delay, handled by the environ-

ment (using rewrite rules that reflect the model physics)
– knowledge posted by an agent, handled by the communication system rewrite rules

sorts IEvent DEvent Event .
subsort IEvent DEvent < Event . --- immediate/delayed events
sorts Action Task ActTask . --- delayed event body
subsort Action Task < ActTask .

Events are classified as immediate (sort IEvent) or delayed (sort DEvent). Delayed
events are actions or tasks with a timestamp. The following are the event constructors.

op _@_ : ActTask Nat -> DEvent .
op rcv : KB -> IEvent [ctor] . *** receive event
op post : InfoSet -> IEvent [ctor] . *** posting information
op done : Action Bool -> Info [ctor] . *** action status
op tick : -> Task . *** built in task

Time For initial studies we assume a global clock. Agents can run at different speeds
by scheduling actions with different delays. In the current simple model only tasks
and actions cause time to pass. Other events are handled instantaneously. An agent’s
behavior rules can cause delay in handling received knowledge by posting tasks.

280 C. Talcott, F. Arbab, and M. Yadav

3.3 Rules

An agent system has the form

{ aconf clock(t) }

whereaconf is a multiset of agents, assumed to have distinct identifiers, andclock(t)
is the global clock. There are five rewrite rules for describing how an agent system
evolves over time. An agent may be reactive, and only respond when new knowledge
is received, or agents may be proactive, scheduling tasks rather than waiting for input.

Rules for communication, posting and receiving knowledge, and handling scheduled
tasks operate on a local part of the agent configuration. The rule for executing actions
and the rule for passing time must capture the whole system.

Knowledge sharing. Notation convention: In the following we use id (and decorated
variants) to range over agent identifiers, cl to range over agent classes, ekb for envi-
ronment knowledge bases, lkb for local knowledge bases, ckb for cache knowledge
bases, evs for event sets, and rcvk for received knowledge bases. For example, in
the following code ekb1 is the environment knowledge base of the agent with identity
id1, and evs1 is the set of pending events for this agent.

crl[KnowledgeSharing]:
[id1 : cl1 | ekb1 | lkb1 | ckb1 | evs1]
[id2 : cl2 | ekb2 | lkb2 | ckb2 | evs2]
=>
[id1 : cl1 | ekb1 | lkb1 | ckb11 |

evs1 (if rcvk1 == none then none else rcv(rcvk1) fi)]
[id2 : cl2 | ekb2 | lkb2 | ckb21 |

evs2 (if rcvk2 == none then none else rcv(rcvk2) fi)]
if inContact(id1,ekb1,id2,ekb2)
/\ {ckb11, rcvk1} := share(ckb2,ckb1,none) --- ckb2 to ckb1
/\ {ckb21, rcvk2} := share(ckb1,ckb2,none) --- ckb1 to ckb2
/\ rcvk2 rcvk1 =/= none .

Knowledge is propagated to neighbors upon contact. The definition of contact is part of
each specific model and a model could have several different forms of contact. This
is formalized by declaring a function inContact(id1,ekb1,id2,ekb2) that
takes two agent identifiers and their corresponding environment knowledge bases and
returns a boolean. A simple notion of contact is for two agents to be within a given dis-
tance of each other. Upon contact two agents fully exchange knowledge in their cache
knowledge base and each agent is notified (via a receive event) of any new knowl-
edge obtained. The function share(ckb2,ckb1,none) returns ckb11,rcvk1,
where ckb11 is ckb1 updated with knowledge from ckb2 that is not present or sub-
sumed/replaced by knowledge already in ckb1, and rcvk1 is the set of knowledge
items newly added, used to notify the agent via the rcv(rcvk1) event.

Future work could limit the number of knowledge items that can be exchanged upon
each contact, controlled by a policy or by the physics. Other properties of channels
could be modeled as well, such as one way channels.

Soft Agents: Exploring Soft Constraints 281

Posted Knowledge.

crl[post]:
[a : cl | ekb | lkb | ckb | post(iset) evs] clock(t)
=>
[a : cl | ekb | lkb’ | ckb’ | evs] clock(t)
if kb := tstamp(iset,t)
/\ ckb’ := addK(ckb,kb)
/\ lkb’ := addK(lkb,kb) .

Posted knowledge is time stamped (tstamp(iset,t)) with the current time and
added to the cached knowledge base and the local knowledge base. The function addK
adds knowledge items from its second argument, kb1, to its first argument, kb0, that
are not less than in the partial order to knowledge already present in kb0. It also re-
moves elements of kb0 that are less in the partial order than a newly added item.

Receiving Knowledge.

crl[rcv]:
[id : cl | ekb | lkb | ckb | rcv(rcvk) evs] clock(t)
=>
[id : cl | ekb | lkb’ | ckb | evs fixTime(evs’,t)] clock(t)
if {lkb’, evs’} := handle(cl,id, lkb,rcvk) .

Agents have class specific procedures for handling new knowledge. These procedures
specify how the local knowledge base is updated, possibly raising new events to sched-
ule. This is formalized by the function

handle(class,id,lkb,rcvkb) = {lkb1,evs1}

where lkb is the current local knowledge base, lkb1 is the updated local knowledge
base, and evs1 is the possibly empty set of events to schedule.

Tasks. Tasks provide a mechanism for an agent to control scheduling its activity.

crl[doTask]:
[id : cl | ekb | lkb | ckb | (task @ t) evs] clock(t’)
=>
[id : cl | ekb | lkb | ckb | evs fixTime(ev,t’)] clock(t’)
if t <= t’
/\ ev evs’ := doTask(cl, id, task,lkb) .

The event task @ t expresses that the agent plans to carry out task at time t. The
task can be carried out if its time stamp is not greater than the current time. The task
handling function, doTask(class,id,lkb,task), returns a set of alternative ac-
tions. task is the task to be carried out, lkb is the agents local knowledge base. One of
the alternative actions is chosen non deterministically and added to the agents event set.
The pattern ev evs’ models the selection of an event from a non-empty set of events.

The framework provides a generic task tickwhich an agent can use as a mechanism
to periodically check the local state and decide on possible actions, if any. In our appli-
cations the agent solves a soft constraint problem for this purpose, but the framework
allows other methods of deciding on actions.

282 C. Talcott, F. Arbab, and M. Yadav

Actions. For each agent class there is a (possibly empty) set of actions that its instances
can perform. The event act @ t expresses that the agent intends to execute the action
act at time t. For example the agent could move to a new location, press a button,
pickup or drop an object.

crl[doAct]:
{[id : cl | ekb | lkb | ckb | (act @ t’) evs] clock(t) aconf}
=>
{ updateAConf([id : cl | ekb | lkb | ckb | evs],{id,ekb’,evs’})

updateAConf(aconf,idkbevset) clock(t) }
if t’ <= t
/\ {id,ekb’,evs’} idkbevset := doAction(cl,id,act,t,ekb,aconf) .

The environment has an action execution function, doAction, parameterized by agent
class, formalizing the physics of the model. The physics may involve the state of the
local environment, which is represented in the environment knowledge base of nearby
agents. This is formalized by the abstract equation

doAction(class,id,act,t,ekb,aconf) = idekbevents

where act is the action to be executed,ekb is the agent’s local environment knowledge
base, and aconf contains the nearby agents. The variable idekbevents stands for a
set of updates of the form id,ekb’,evs’, one for the agent doing the action and one
for any nearby agent affected by the action. ekb’ is the new environment knowledge
base and evs’ is added to the existing event set.

Advancing time.

crl[timeStep]:
{ aconf clock(t) } => { aconf clock(ni) }
if ni := minTime(aconf,t)
/\ ni :: Nat .

Following the real-time Maude approach [24], time passes if there is nothing else to do
at the current time. The function minTime returns infinity (which will not satisfy the
membership ni :: Nat) if there are any immediate events or any knowledge sharing
enabled. Otherwise, it returns the smallest timestamp of a delayed action or task.

4 A Simple Packet Delivery System

The drones and packets simple package delivery problem was inspired by a small
startup in San Francisco developing an instant package delivery/courier service. There
is a service area; packets at various locations in the service area, that want to be at
another location (called the destination); and drones (mobile agents capable of mov-
ing around) that can transport packets. Drones use energy when moving and there are
charging stations where a drone can recharge. We start with a simple case where there
is one kind of packet and one kind of drone. The service area is a grid, locations are
points on the grid, some of these locations are charging stations.

Soft Agents: Exploring Soft Constraints 283

Knowledge partial order. The partially ordered knowledge for drones and packets adds
three kinds of knowledge items for packet state

dest(idp,loc) *** the destination of packet pid
pickupOk(pid,id,b) @ t *** models a pickup light indicating

*** permission for drone id to pickup pid
delivered(pid) @ t *** packet pid has been delivered

and one item for drone state

energy(id,e) @ t *** drone id has energy reserve e

where we use idp and id as variables for packet and drone identifiers; t, t0, t1
range over natural numbers representing discrete time; and loc,l0,l1 range over
locations. The partial order is given by the following equations.

ceq (atloc(id,l0) @ t0) << (atloc(id,l1) @ t1)
= true if t0 < t1 .

ceq (energy(id,n0) @ t0) << (energy(id,n1) @ t1)
= true if t0 < t1 .

*** once delivered, packet info disappears.
eq (atloc(idp,l0) @ t0) << (delivered(idp) @ t1) = true .
eq dest(idp,l0) << (delivered(idp) @ t1) = true .
eq (pickupOk(idp,id,b0) @ t0) << (delivered(idp) @ t1) = true .
eq class(idp,packet) << (delivered(idp) @ t1) = true .

The first two equations say that new information about energy or location of an agent
replaces older information. The last four formalize the policy that once a packet is
delivered, it is no longer part of the system.

Actions. Drones are proactive, periodically choosing an action and executing it. The
possible drone actions are

– mv(dir): moving in direction dir to an adjacent grid point, where dir is one of
N,S,E,W.

– charge: charge one charge unit, if located at a charging station
– pickup(idp): picking up packet idp, if permitted
– drop(idp): dropping packet idp, if carrying idp

It is permitted for a drone to pickup a packet if they are co-located and the packet agrees
to ride (it may prefer another drone). Packets are largely passive, they react to sensing
the presence of a drone by indicating whether they will accept a ride from that drone.
This is done by action setPickUpOk(id,b), where b is a boolean. If b is true the
pickup light should turn on, otherwise it turn off.

The system objective is that packets get delivered with minimal delay and minimal
cost (drone energy). Less delay gives more satisfaction as does less energy consumption.

Choosing actions. As a first step, drones operate independently. A drone repeatedly
chooses an allowed action to execute. The choice is formulated as a family of soft-
constraint problems parameterized by the drone’s local knowledge. This pro-activity of
individual drones is insufficient by itself to ensure liveness of the system, there are two
local criteria to consider, in designing the soft constraints.

284 C. Talcott, F. Arbab, and M. Yadav

(Safety) The drone should not run out of energy.
(Benefit) If there are packets needing transport, the drone should pick a packet
according to some notion of benefit gained for work done and transport that packet.

We start with a simple drone behavior in which the drone will try to pick a packet that
requires the least work to deliver, where work to deliver is a function of the distance to
the packets destination, going via the packet’s current location.

We use the definition of Soft Constraint Problem (SCP) presented in [2]. An SCP
over a set of variables V with values in domain D consists of a tuple of grading func-
tions

[(Gi, ci)|1 ≤ i ≤ k]

together with a ranking structure

(R, [pi|1 ≤ i ≤ k], I)

where each Gi is a monoid, ci maps variable value tuples d̄ to the domain of Gi, and
pi is an action of Gi on R (pi(gi) : R → R). The solution is the set of variable value
tuples with maximal rank.

maxS(SCP) = {(d̄, S(d̄)|S(d̄) is maximal over DV }
where S(d̄) = ©1≤i≤k(pi(ci((d̄))(I))). Here © is the binary operation in the ranking
structure, ∗ in our case.

In the independent drone problem there is one variable, the action, and actions are
graded based on the state predicted to result from executing the action. Thus the drone
soft constraint problem DSCP is a family of SCPs parameterized by the drone identifier
and local knowledge base (the drones view of the system state). We use two grading
functions one for the Benefit criteria, one for the Safety constraint. Safety is a crisp
constraint – the value of an action is 0 if it leads to an unsafe situation and 1 otherwise.
An action is deemed safe if in the resulting state the drone has sufficient energy to
reach a charging station. Thus it should be provable that if a drone is initially in a safe
condition, it will remain safe. (Although it may not be able to move.)

Benefit ranges from 0 to maxBenefit. The ranking function combines Safety and
Benefit by multiplication, thus ensuring an unsafe action has rank 0.

DCP (id, lkb) =

[(NatMax ,Benefit(id , lkb)),

(ZeroOne, Safety(id , lkb)),

(NatMult , ∗, 1)]
where NatMax is the natural numbers ordered as usual taking max as the binary oper-
ator, and maxBenefit as the identity. NatMult is the natural numbers with multipli-
cation as the binary operator and 1 as the identity. ZeroOne is like the boolean ordered
monoid using 0, 1 rather than booleans to support the multiplicative action.

Only moves perceived to be possible are considered. Thusdropwon’t be considered
if the drone is not carrying a packet, and moves off the grid or to a point thought to be

Soft Agents: Exploring Soft Constraints 285

occupied by another drone will not be considered. This is done just to simplify the
grading functions, as such moves will be given a 0 grade.

The Benefit function is the key. It depends on the drone’s mode: searching (for a
packet) or carrying (a packet). In searching mode, if the drone is co-located with a
packet the only action with a non-zero grade is to pickup the packet. Otherwise the
grade is the max of 1 and the gain for delivering known packets, where the gain is the
max possible cost minus the actual cost. The actual cost for delivering a given packet is
the distance to the packets destination going via the packet’s current location.

In carrying mode if the drone’s location is the packet’s destination then the only
action with a non-zero grade is dropping the packet. Otherwise moves that decrease
distance to destination are preferred. Charging gets a maximal grade if the drone is at a
charging station and its energy is below the upper bound.

The doTask function for drones formalizes the above.

ceq doTask(drone,id,tick,lkb) = tstampA(bestActs,0)
if acts := droneActs(id,lkb)
/\ bestActs := selectMax(rankDroneActs(id,lkb,acts),1,none) .

The function droneActs(id,lkb) enumerates the allowed actions, and the func-
tion tstampA(acts,n) stamps each action in acts with delay n (0 in the above
equation). The function selectMax(rankDroneActs(...)...) selects the
maximal solutions.

4.1 The doAction and Handle Functions

The doAction function specifies the physical effects of an action as updates on local
environment knowledge bases and the perceived/sensed effects of the action by infor-
mation in a rcv event. Part of the sensed effects of the agent executing an action act
is the information item done(act,b) @ t where b is a boolean indicating success
or failure, and t is the time at which the action was executed.

Drone actions. The drone move and charge actions effect only the drone state. For
example the equation defining a move is

ceq doAction(drone,id,mv(dir),t,ekb,aconf) =
{id, addK(ekb,mvkb), rcv((done(mv(dir),b) @ t) mvkb)}
if l0 := getLoc(id,ekb)
/\ l1 := doMv(l0,dir)
/\ e := getEnergy(id,ekb)
/\ b := not(occupied(l1,aconf)) and e > 1
/\ mvkb := (if b

then mvInfo(id,l1,sd(e,1),t)
else mvInfo(id,l0,e,t) fi) .

where mvInfo computes the new location and energy information items for the drone.
The charging action succeeds if the drone is located at a charging station and the new
information is the new energy level.

286 C. Talcott, F. Arbab, and M. Yadav

The handle function for drones for response to receiving action information adds
the new information to the local knowledge base of the drone, schedules a tick at
delay droneDelay and posts new location information if any.

The dronepickup(idp)/drop(idp) actions, if successful also affect the packet
idp. In the case of a successful pickup(idp)/drop(idp) action the packet is
added/removed from the drone’s environment knowledge base. The packet environment
knowledge base is updated with new packet location and the packet is notified of its new
location. When the packet handles the new location information it will post this infor-
mation, thus the drone local knowledge base will be updated as well. A pickup(idp)
by a drone will fail if not co-located or if the packet environment knowledge base has
the pickupOk light off (explicitly or by default). A drop(idp) fails if the packet is
not carried by the drone (which should not happen in our simple setting). If pickup
or drop fails then nothing changes (except that the time stamp on packet location may
be updated).

Drones respond to received information that is not an action report by adding the
new information to their local knowledge bases.

Packet actions. The only packet action is setPickupOk(id,b). If the boolean b
is true, the action turns on the pickupOk light for id in the packet’s environment
knowledge base. This is represented by the knowledge item pickupOk(id,true)
@ t in the environment and local knowledge bases. When the boolean is false, the
pickupOk light is turned off. This is represented by pickupOk(id,false) in the
knowledge base, or by absence of a pickupOk fact. The packet is also notified of the
pickupOk information. This action should succeed (unless the light is broken).

A packet that is delivered, delivered(idp) @ t in the local knowledge base,
handles new information by ignoring it. A packet that is still active handles new self
location information atloc(idp,loc) @ t according to whether loc is its desti-
nation or not. In the first case, the packet posts delivered(idp)which will remove
other information about the packet as it propagates using the partial ordering. Otherwise
the packet remembers the new location (adds it to the local knowledge bases) and also
posts it.

A packet responds to new location for drone id by scheduling a setPickupOk
action for id with boolean true if the drone becomes co-located. In either case it
also remembers the new location. In other cases a packet simply remembers the new
information.

4.2 Experiments

We now describe the results of a few simple experiments in the setting of the drones
and packets model. The are number of parameters to be set. For this set of experiments,
these are fixed as follows.

eq commDistance = 2 . *** upper bound on contact distance
eq gridX = 10 . *** grid dimensions
eq gridY = 10 .
eq chargeLocs = pt(5,5) . *** one charging station at 5,5
eq maxBenefit = 20 .

Soft Agents: Exploring Soft Constraints 287

eq maxCharge = 25 . *** stop charging when full
eq costMv = 1 . *** energy used in a move
eq chargeUnit = 5 . *** energy gained per charge action
eq droneDelay = 2 . *** delay on tick action

Fig. 1. A depiction of the location grid with the drone at (2,2). packet at (4,4), charging station at
(5,5) and destination at (6,6).

Here is a simple ASystem, AS0, with one drone, d(0), at (2,2) with 10 energy units,
and one packet p(0) at (4,4) with destination (6,6).

AS0 =
{clock(1)
[d(0) : drone

| (atloc(d(0),pt(2,2)) @ 0)(energy(d(0),10) @ 0)class(d(0),drone)
| (atloc(d(0), pt(2, 2)) @ 0) (atloc(p(0), pt(4, 4)) @ 0)
(energy(d(0),10) @ 0) class(d(0),drone) class(p(0), packet)
dest(p(0), pt(6, 6))
| none
| tick @ 1]

[p(0) : packet
| (atloc(p(0),pt(4,4)) @ 0) class(p(0),packet)
| (atloc(p(0),pt(4,4)) @ 0) class(d(0),drone) class(p(0),packet)
dest(p(0),pt(6,6))
| none
| none]}

Rewriting this configuration with a limit of 100 results in a system state in which p(0)
was delivered at time 25, (delivered(p(0)) @ 25) is in the local KB of p(0).
Searching starting with AS0 for a state with p(0) delivered at some time using the
search pattern

{[p(0) : packet | ekb:KB | lkb:KB (delivered(p(0)) @ t:Nat)
| ckb:KB | evs:EventSet] ac:Conf }

288 C. Talcott, F. Arbab, and M. Yadav

finds a solution at state 201. If the drones initial energy is only 5, it will not move, as it
is in an unsafe situation. If the initial energy is 8, the drone will recharge before it drops
the packet.

As a next example we use an initial state, AS1, with one drone, d(0), at (2,2) with
10 energy units, and two packets p(0) at (2,6) with destination (4,6) and p(1) at (6,2)
with destination (6,6). Searching from AS1 for a state in which p(0) is delivered finds a
solution at state 66, and searching for a state in which p(1) is delivered finds a solution
at state 459. It the latter case p(0) has also been delivered and the drone has recharged.

Finally, we consider an initial state, AS2, with two drones, d(0), at (2,2) with 10
energy units and d(1), at (7,7) with 10 energy units, and two packets p(0) at (2,6)
with destination (4,6) and p(1) at (6,2) with destination (6,6). Rewriting leads to a state
with both packets delivered: p(0) at time 17, p(1) at 47. Searching from AS2 for a
state in which p(0) is delivered finds a solution at state 21276. Searching from AS2
for a state in which p(1) is delivered finds a solution at state 576171. In this solution
p(0) was delivered at time 15 by d(0) and p(1) was delivered at time 41 by d(1).

Note that it is possible, given an upper bound on the energy capacity that the drone
can not reach a packet to deliver it. This is a design flaw that could hopefully be discov-
ered by formal modeling. This is a topic for future investigation.

5 Conclusions and Future Directions

We have presented a framework for modeling fractionated cyber-physical systems called
Soft Agents, and a prototype using the Maude rewriting logic system. Three key fea-
tures of the framework are the partially ordered knowledge model of communication;
soft constraint problems for specifying robust, adaptive agent behavior; and explicit rep-
resentation of the physical state of an agent as well as its knowledge state. Use of the
framework was illustrated with a simple drones and packets case study, showing how
soft constraints can be used, and the use of partial ordering on knowledge to keep the
knowledge state relevant and simple.

The soft agents framework supports, but does not enforce, liveness as discussed in
section 2. Agents can control how often to check whether some action is needed, and
agents can be notified about change in their local state. It is up to the system designer
to use these capabilities to achieve the desired/necessary liveness.

The present work is just a first step. It lays a foundation for further exploration and
experimentation to understand the tradeoffs and the nature of emerging behavior. One
point of being able to experiment is to guide attempts to prove general properties.

The drones and packets case study can be complicated in many ways to explore
principles for defining soft constraints. For example, packets can have different weights,
require special accommodation such as refrigeration, and drones can have different load
capacity (with/without refrigeration), speed, energy consumption, etc. New packets can
appear as the system evolves. Packets can post ratings of their ride — giving other
packets a reason to refuse a ride from a low rated drone, and giving drones motivation
to provide better service. In addition, one can also consider local clocks, rather than a
global clock, to study different forms of synchronization.

In the presented case study, drones just planned one step ahead and didn’t try to ac-
count for actions of other drones. A next challenge is to consider multistep planning

Soft Agents: Exploring Soft Constraints 289

both independently and with knowledge of what other agents are planning. An agent
would make a plan (a set of reasonable plans) to achieve some objective, and start exe-
cuting a plan that it (locally) deems best. It would re-evaluate under certain conditions,
for example at every step, or when the next step is not possible. One possible approach
would be the reflecting planning approach that was used in a disruption tolerant net-
working project [27]. The idea is to reflect a model of the system based on the local
knowledge base to the meta-level, search for paths to a goal or subgoal, and use re-
sults as the space of solutions for soft constraint solving. This would not generally be
efficient but might lead to useful insights.

In our simple example with one variable, finding the maximal solutions to a con-
straint problem is simple. With multi-step plans and consideration of multiple agents
methods for efficient solution will be needed. There are some suggestions in [2]. Meth-
ods to reuse partial plans could also be useful.

As indicated by the number of states to be searched to find a solution for both packets
being delivered starting from the initial state, AS2, with 2 drones and 2 packets, work
is needed to scale the analysis. Interestingly, simple rewriting finds a solution, although
it may not be the best one, and it is very fast even for AS2. Methods to reduce the
interleaving need to be investigated. Another direction is to move to a probabilistic
model and use Monte-Carlo like simulation and statistical model checking.

The Fractionated CPS model assumes honest, non-malicious agents and provides
only weak guarantees about knowledge dissemination. The latter is to provide a general
and realistic model. Furthermore agents are anonymous, identities are not revealed by
by the system. A challenging problem is to identify primitives that, under suitable condi-
tions, support stronger communication guarantees, and primitives that support building
of trust both in the knowledge posted by other agents and in the capabilities and stated
intents of other agents. It is important to have a balance between strong guarantees and
the robustness enabled by weaker guarantees.

References

1. Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A rewriting logic frame-
work for soft constraints. In: Sixth International Workshop on Rewriting Logic and Its Appli-
cations (WRLA 2006). Electronic Notes in Theoretical Computer Science. Elsevier (2006)

2. Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Seventh Inter-
national Workshop on Rewriting Logic and Its Applications (WRLA 2008). Electronic Notes
in Theoretical Computer Science, Elsevier (2008)

3. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic
orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265,
pp. 68–79. Springer, Heidelberg (2013)

4. Interlink project (last accessed November 15, 2014)
5. Bristeau, P.J., Callou, F., Vissiére, D., Petit, N., et al.: The navigation and control technology

inside the ar. drone micro uav. In: 18th IFAC world congress, vol. 18, pp. 1477–1484 (2011)
6. Krajnı́k, T., Vonásek, V., Fišer, D., Faigl, J.: AR-Drone as a Platform for Robotic Research

and Education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161,
pp. 172–186. Springer, Heidelberg (2011)

7. Meng, L., Li, L., Veres, S.: Aerodynamic parameter estimation of an unmanned aerial vehicle
based on extended kalman filter and its higher order approach. In: 2010 2nd International
Conference on Advanced Computer Control (ICACC), vol. 5, pp. 526–531. IEEE (2010)

290 C. Talcott, F. Arbab, and M. Yadav

8. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction
problem: Formalization and algorithms. IEEE Transactions on Formalization and algorithms.
Knowledge and Data Engineering 10(5), 673–685 (1998)

9. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed con-
straint optimization with quality guarantees. Artificial Intelligence 161(1), 149–180 (2005)

10. des Jardins, M.E., Durfee, E.H., Charles, L., Ortiz, J., Wolverton, M.J.: A survey of research
in distributed, continual planning. AI Magazine 20(4), 13 (1999)

11. de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid
Syst. 5(4), 345–355 (2009)

12. Bullo, F., Cortés, J., Martı́nez, S.: Distributed Control of Robotic Networks. Ap-
plied Mathematics Series. Princeton University Press (2009), Electronically available at
http://coordinationbook.info

13. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005,
pp. 266–271. Morgan Kaufmann Publishers Inc, San Francisco (2005)

14. Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio, A.: Frac-
tionated software for networked cyber-physical systems: Research directions and long-term
vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 110–143. Springer, Heidelberg (2011)

15. Stehr, M.-O., Kim, M., Talcott, C.: Partially ordered knowledge sharing and fractionated
systems in the context of other models for distributed computing. In: Iida, S., Meseguer,
J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 402–433.
Springer, Heidelberg (2014)

16. Brown, O., Eremenko, P.: The value proposition for fractionated space architectures. In: Proc.
of AIAA, San Jose, CA (September 2006)

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

18. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: State
of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A.
(eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008)

19. Ascens: Autonomic service-component ensembles (last accessed: November 15, 2014)
20. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O.,

Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS,
vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

21. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of services. In:
Formal Methods (2012)

22. Kim, M., Stehr, M.O., Talcott, C.: A distributed logic for networked cyber-physical systems.
Science of Computer Programming (2012)

23. Choi, J.S., McCarthy, T., Yadav, M., Kim, M., Talcott, C., Gressier-Soudan, E.: Application
patterns for cyber-physical systems. In: Cyber-physical Systems Networks and Applications
(2013)

24. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. Higher-Order
and Symbolic Computation 20(1-2), 161–196 (2007)

25. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S., Salaün, G.
(eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg (2013)

26. Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS,
vol. 8051, pp. 285–303. Springer, Heidelberg (2013)

27. Stehr, M.O., Talcott, C.: Planning and learning algorithms for routing in disruption-tolerant
networks. In: MILCOM 2008. IEEE (2008)

http://coordinationbook.info

	Soft Agents: Exploring Soft Constraintsto Model Robust Adaptive Distributed Cyber-PhysicalAgent Systems
	1 Introduction
	2 Desiderata for Soft Agents
	3 Soft Agent Model Formalized in Maude
	3.1 Networked Cyber-Physical Systems and Partially-Ordered KnowledgeSharing
	3.2 Soft Agents in Maude
	3.3 Rules

	4 A Simple Packet Delivery System
	4.1 The doAction and Handle Functions
	4.2 Experiments

	5 Conclusions and Future Directions
	References

