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Abstract. The novel field of quantum technology is being promoted by
academia, governments and industry. Quantum technologies offer new
means for carrying out fast computation as well as secure communi-
cation, using primitives that exploit peculiar characteristics of quantum
physics. While building quantum computing devices remains a challenge,
the area of quantum communication and cryptography has been success-
ful in reaching industrial applications. In particular, recently, plans for
building quantum internet have been put into action and expected to
be launched by 2020 in the Netherlands. Quantum internet uses quan-
tum communication as well as quantum entanglement along with clas-
sical communication. This makes design of software platform for quan-
tum networks very challenging and a daunting task. Seamless design and
testing of platforms for quantum software, thus, becomes a necessity to
develop complex simulators for this kind of networks. In this short paper,
we argue that using coordination models such as Reo can significantly
simplify the development of software applications for quantum internet.
Moreover, formal verification of such quantum software becomes possible,
thanks to the separation of concerns, compositionality, and reusability
of Reo models. This paper introduces an extension of a recently devel-
oped simulator for quantum internet (SimulaQron) by incorporating Reo
models extended with quantum data and operations, along with classical
data. We explain the main concepts and our plan for implementing this
extension as a new tool: SimulaQ(reo)n.
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1 Introduction

As quantum technologies emerge rapidly, designing reliable hardware and soft-
ware for hybrid quantum/classical systems poses significant challenges both the-
oretically and experimentally. Nevertheless, specific quantum networks have been
built in various cities around the world and already a satellite has been launched
to provide secure quantum communication. Using such networks demands rigor-
ous analysis and verification before they can be trusted in safety- and security-
critical applications. One way to achieve this goal is to develop a dedicated sim-
ulation toolset before actual quantum devices get deployed. SimulaQron [2] is
an example of such a tool that is able to model the behaviour of local simulators
or even actual quantum devices in a hybrid quantum/classical network which
is called quantum internet [4]. The tool itself can be thought of as a platform
for developing software applications for quantum internet, and is designed to
offer ease-of-use and clarity in that regard. However, simulating complex inter-
actions in quantum networks needs incorporation of coordination models for
the same reasons as in the case of classical networks (e.g., compositionality and
reusability), even more strongly so, because in quantum networks, primitives
with non-local (entanglement) effects play a critical role. Currently, the major-
ity of research in quantum programming focuses on sequential programs and
efficient simulation of sequential quantum algorithms (e.g., see [10]).

In this short paper we pursue two objectives: first, to bring the problem of
coordination in quantum internet to the attention of the computer science com-
munity, especially those active in the field of coordination models [15]. Second,
we explain the principles of extending Reo [3,13,14] coordination model and lan-
guage to support modeling of the behaviour of quantum networks. One milestone
toward our second objective consists of automatic generation of executable code
for protocols over quantum internet. To this end, the current Reo compiler has to
be modified in order to support quantum data types, operations and primitives,
as we explain later in this paper. To our knowledge this paper presents the first
work on coordination of quantum software components.

The rest of this paper is organized as follows. In Sect. 2, we present the
necessary background on quantum information processing. In Sect. 3, we review
the Reo coordination concepts. We describe the SimulaQron tool in Sect. 4. In
Sect. 5, we present the principles of extension of Reo to support coordination in
the quantum setting, particularly in connection with SimulaQron. Finally, we
conclude the paper in Sect. 6 with plans for future work.

2 Quantum Information

This section provides a concise introduction to quantum information processing
(QIP). For more details, we refer to [1]. The basic unit of quantum information is
a qubit (quantum bit). A qubit can be in a basis state, represented by |0〉 or |1〉.
These basis states correspond to the classical states 0 and 1. However, a qubit
may be in a superposition of states, described by α|0〉 + β|1〉, with |α|2 + |β|2 =
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1 where α and β are complex numbers called amplitudes. More generally, we
consider a state of n qubits, whose general form is |ψ〉 = α0|00 . . . 0〉 + . . . +
α2n−1|11 . . . 1〉 with Σi|αi|2 = 1.

The state of a single qubit is an element of a two-dimensional complex vector
space, called Hilbert space. Multi-qubit state spaces can be constructed by tensor
products, e.g., |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 defines an n-qubit basis state |00 . . . 0〉.

There are two kinds of operations on quantum states: unitary operations
and measurements. A unitary transformation is an invertible linear operation on
the Hilbert space. In a two dimensional Hilbert space, measurement randomly
projects the state onto one of a pair of orthogonal subspaces, with a probability
determined by the amplitudes. A measurement, thus, produces classical informa-
tion as a result. For example, if the state α|0〉+β|1〉 is measured in the standard
basis, then the classical result is 0 with probability |α|2 or 1 with probability |β|2.
Moreover, measurement of a quantum state (in the standard basis) permanently
changes it to |0〉 or |1〉, respectively.

An important phenomenon in quantum physics is entanglement. A multi-
qubit state is entangled if it cannot be decomposed as a tensor product of simpler
states. An example is the two-qubit state 1√

2
(|00〉 + |11〉), which is known as an

EPR pair. This pair is one of a set of four important two-qubit entangled states,
termed Bell states. In this state, if the first qubit is measured in the standard
basis, then the overall state collapses to either |00〉 or |11〉, which also determines
the state of the second qubit. Therefore, there is a correlation between the two
entangled qubits even when they are separated by a distance.

3 Reo Coordination Model

Reo [3] is a language for exogenous coordination of software components, wherein
protocols are defined as graphs of primitives called channels. In Reo, graphs of
channels, called connectors, are defined compositionally. Recently, a new textual
syntax together with a versatile compiler for this syntax have been added to the
set of Reo tools [9]. The simplest form of connectors are channels that connect
two ends by defining a relation on the observable data exchanged at those ends.
This relation imposes a constraint on the flow of data between those end points.
Channels constitute the edges of Reo connector graphs on whose nodes channel
ends coincide. Reo allows arbitrary user-defined channel types, but only two
types of channel ends can exist: a source end through which data enters into a
channel, and a sink end through which data leaves a channel. Compositions of
these two types of channel ends yields only three types of nodes: source, sink,
and mixed. A source node consists of one or more source channel ends; a sink
node consists of one or more sink channel ends; and a mixed node consists of one
or more source and one or more sink channel ends. Components can perform I/O
operations on only source and sink (but not mixed) nodes of a connector. A data
item written to a source node gets replicated to every source channel end of the
node, only when all of them are able to accept; a source node, thus, performs a
form of synchronous broadcast of its incoming data-flow stream onto its outgoing
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data-flow streams. A take operation on a sink node non-deterministically selects
a data item available at one of the sink channel ends of the node and leaves
the others intact; a sink node, thus, performs a non-deterministic merge of its
incoming data-flow streams onto its outgoing data-flow stream. A mixed node
repeatedly performs an atomic operation that combines the behaviour of a sink
and a source node: in each iteration, it non-deterministically selects a data item
from one of its sink channel ends and replicates it onto all of its source channel
ends, all in one atomic operation.

We now informally explain the behaviour of some of the channels in terms
of constraints that they impose on data-flow. For formal definition of constraint
automata as operational semantics of Reo language, see [3]. The Sync(a, b) chan-
nel, gets data items trough its end a and synchronously (i.e., atomically) outputs
them through its end b. Similarly, the LossySync(a, b), accepts data through its
end a and atomically, either loses the data or outputs them through its end b.
A FIFO(a, b) channel synchronously accepts a data item, d, through its channel
end a and stores it in its internal buffer, which has the capacity to hold a single
data item. The channel then offers the data item in its buffer through its chan-
nel end b and clears its buffer when b dispenses the data item. A Filter [P ](a, b)
channel behaves almost exactly as a Sync(a, b) channel, except that it passes
only those data items from a to b that match its pattern parameter, P . The
channel accepts any data item that it receives through a, and either loses the
data item if it does not match P , or passes it through b if it does match P . A
Transformer [f ](a, b) channel behaves like a Sync channel, except that it applies
the unary function f to every data item that it passes from a to b. The channel
silently loses all data items taken from a that are not in the domain of f .

We use two specific variants of the Transformer channel to express quantum
computing protocols, where instead of the function f we use either a unitary
operation Uf that operates on qubits, or a projective measurement operator.
In the latter case, we get a classical bit as an outcome, and a distorted qubit
(depending on the outcome). Thus, evaluating a function by a unitary operator
is a reversible action, whereas measuring qubits, is irreversible.

4 SimulaQron

Motivated by the plan to establish a prototype for quantum internet, researchers
have proposed SimulaQron [2] as a platform for developing quantum internet
software. With SimulaQron it is possible to simulate the behaviour of a quantum
network, where each node may have a share of a quantum entanglement as well
as the ability to perform quantum operations on qubits. The back-end of the
SimulaQron at each node of the network consists of two main entities: a virtual
node and a CQC (classical and quantum combiner) interface. The virtualization
of nodes allows us to use different quantum simulators on the network. A virtual
node a quantum register, simulated qubits and virtual qubits. A quantum register
interacts with the local simulator. Simulated qubits are objects that enable us to
manipulate qubits without interacting with quantum registers directly. Finally,
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virtual qubits are objects with pointers to simulated qubits, some of which may
be owned by other virtual nodes, i.e., their pointers may refer to simulated qubits
in other virtual nodes. To model entanglement, which excludes the possibility to
simulate qubits separately, SimulaQron allows merging virtual nodes in such a
way as to place all simulated qubits that are entangled together, in one virtual
node. The quantum registers of the merged virtual nodes must be merged as
well.

The CQC back-end is an interface for specification of interaction with a
quantum network. It enables simulation of sending and receiving qubits to/from
a quantum network, command type messages, and information for entanglement
management. Figure 1, illustrates the position of the CQC interface in the overall
architecture of SimulaQron. For more details see reference [2].

Fig. 1. CQC interface

5 Extension: SimulaQ(reo)n

Since quantum entanglement cannot be simulated locally, interdependence of
qubits becomes implicit in current models and languages used to express quan-
tum computing. Reo connectors can serve as a middleware that explicitly
expresses entanglement, quantum and classical communications, and the pro-
tocol for their coordination, all in one structure. Extending Reo with quantum
computing primitives can offer a high-level tool for simulating complex interac-
tions among nodes in the quantum networks introduced in the previous section.

In this work we propose the design of a special coordination layer for quantum
components, which relates Reo type connectors with the CQC back-end. To
realize this coordination layer, we must extend Reo to support quantum data and
operations. However, quantum extension seems incompatible with the semantics
of some primitives in classical Reo. For example, Fig. 2 shows two instances of
a simple Reo connector, called replicator. A replicator consists of three Sync
channels and its behaviour in the classical data domain is to replicate data that
arrive on node C atomically through nodes A and B. However, the no-cloning
theorem [1] in quantum mechanics states that no physical process can duplicate
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a quantum state. Therefore, when qubits arrive at C, two cases need carefull
consideration.

Consider a replicator with a fan-out of 2, (similar to the replicators in Fig. 2),
we describe the behaviour of this replicator in terms of a quantum operation
that is called controlled-NOT (CNOT ).1 For d ∈ {0, 1}, when a qubit in the
state |d〉 arrives at the source node of this replicator, the replicator creates a
qubit in the initial state |0〉, and subsequently performs the controlled-NOT
operation CNOT (|d〉|0 〉). This results in a two qubit system in the state |dd〉,
which is a separable state. Thus, each of the channel ends A and B in the
Fig. 2(a), receives a qubit in the state |d〉, which allows the local “downstream”
simulators to manipulate their corresponding qubits separately. On the other
hand, if the incoming qubit is in a superposition state, e.g., |d〉 = 1√

2
(|0〉 ± |1〉),

the CNOT operation creates an entangled state, e.g., the EPR state 1√
2
(|00〉 ±

|11〉). Entangled states are not separable, meaning that we cannot assign local
states to the qubits arriving at channel ends A and B, in Fig. 2(b). Instead, if
at later stage, one measures either of the qubits coming out of nodes A and
B, the observed outcome of either |00〉 or |11〉 will be the same (correlated) at
both ends. This instance of replication demonstrates that local “downstream”
quantum simulators cannot always operate on quantum states in a distributed
manner: such cases require an entanglement/virtualization management layer.

The idea of using the CNOT operation is taken from the work of
Altenkirch [5] in quantum functional programming. To implement the replicator
of Fig. 2 in Reo, we place a filter channel before every source node in order to dis-
tinguish between classical and quantum data. For every quantum data item, we
create a qubit in the initial state |0〉 and add a transformer channel to perform
the CNOT .

(a) replicator producing
separable states

(b) replicator producing
entangled states

Fig. 2. Replicator connector

Quantum Key Distribution (QKD) is an example of an industrialized quan-
tum protocol, which can be integrated into a classical network. We now analyze
a version, introduced by Ekert [11], where Alice and Bob share classical keys

1 This two qubits operation consists of a control and a target qubit. If the control
gate is set in the state |1〉, a quantum flip operation (also known as the Pauli X) is
applied to target qubit. [1].
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using entanglement. In this protocol Alice and Bob share pairs of entangled
qubits. Then each party randomly decides on applying quantum measurement
in standard basis (S) or X basis (where bases are entangled EPR states) on
its share. For those bases that both parties agree, measurement outcomes are in
fact shared keys. We illustrate this protocol using Reo connectors in Fig. 3. These
connectors use quantum channels (depicted as double line arrows) to produce
entangled pairs. The symbol

⊗
represents Reo’s standard exclusive router. Two

kinds of transformers, X and S represent quantum measurements in different
bases. If we are interested only in sharing keys without external observation,
Fig. 3(a), specifies the necessary interaction between parties. However, we often
need to know the statistics of cases of agreement between Alice and Bob. To
obtain this information, we compose the connector in Fig. 3(a) with a simple
circuit that “taps” the flow of data in the protocol circuit and diverts it to a
monitor, as in Fig. 3(b). Here

⊕
represents a component that merely monitors

the number of agreements between Alice and Bob. This composition of an exter-
nal monitor is a desirable feature in the sense that components (Alice and Bob)
do not need to be modified while exogenously, we are able to count the number
of times they agree on their choices of quantum measurement.

(a) QKD (b) QKD with monitor

Fig. 3. Connectors in Reo

It is also possible to consider local quantum simulations as web services pro-
vided to the network, by adopting Reo based orchestration techniques introduced
in [6], in the quantum setting. Here the goal would be to develop and implement
proxies between Reo connectors (e.g., Fig. 3(b)) and network nodes (e.g., CQC
back-end).

Similar to classical Reo, the formal semantics of quantum primitives may
be described by (an extension of) constraint automata, where the data domain
is extended to include a quantum data type (qubits). The set of states in this
case, may include description of quantum states. This is in particular important
in the case of FIFO channels. The constraint on the data-flow in this channel
type is specified by the value in its memory, which may be a quantum state.
However, in the generalization of this channel, e.g., FIFOn , where the memory
has n cells, we may have both quantum and classical data types. We leave the
exact definition of quantum constraint automata and its composition for future
work.
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There are several case studies at the frontline of implementation of a dis-
tributed quantum networks such as quantum leader election, quantum byzan-
tine agreement, and quantum dining philosophers. These are examples where
quantum solutions are often faster and simpler (e.g., deterministic) compared
with their classical counterparts. For instance, dining philosophers (DP) is a
classic problem in distributed system [8] where the effectiveness of exogenous
coordination can be neatly demonstrated (see Sect. 7 of [7]). In the quantum
version of the DP problem [12], an entangled state |0n〉 + |1n〉 gets distributed
among n parties (this can be done by each philosopher sending an EPR pair
to its neighbours). Then each party needs to do internal quantum operations
and measurements to (I) run a fair leader election, and (II) form two groups
for breaking symmetry. We envisage that adding a Reo connector to generate a
coordination layer, separating it from internal actions of each party, simplifies
the implementation of quantum DP on quantum internet infrastructure.

6 Future Work and Conclusion

In this short paper we argued that using a coordination model to implement
quantum internet software can play an important role in realizing such tech-
nology in near future. We explained how Reo coordination concepts can be
extended to the setting of the so-called quantum internet. The main line for
future work is to formally define the coordination layers for quantum compo-
nents, and to express its (operational) semantics in an extended version of con-
straint automata. This must be followed by automatic code generation using an
extension of the current Reo compiler [9] to generate executable code for the
CQC back-end of the SimulaQron tool. Generating code for this back-end raises
the question of existence of specific optimization methods for the Reo compiler,
given the non-locality of quantum primitives in a distributed system.

It is also crucial to collaborate with experimental teams to accurately incor-
porate their requirements and levels of abstractions needed for coordination of
quantum software components.

Using formal verification schemes developed for coordination formalisms such
as Reo in distributed quantum programming presents an important line for
future work. Full implementation of quantum algorithms for dining philosophers
and Byzantine agreement on SimulaQron using the extension presented in this
paper is an interesting line of future work.
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