
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

Modelling coordination in biological systems

D.G. Clarke, D.F. de Oliveira Costa, F. Arbab 

REPORT SEN-R0415 SEPTEMBER 2004

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Modelling coordination in biological systems

ABSTRACT
We present an application of the Reo coordination paradigm to provide a compositional formal
model for describing and reasoning about the behaviour of biological systems, such as
regulatory gene networks. Reo governs the interaction and flow of data between components by
allowing the construction of connector circuits which have a precise formal semantics. When
applied to systems biology, the result is a graphical model, which is comprehensible,
mathematically precise, and flexible.
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Abstract

We present an application of the Reo coordination paradigm to provide a compositional

formal model for describing and reasoning about the behaviour of biological systems, such as

regulatory gene networks. Reo governs the interaction and flow of data between components

by allowing the construction of connector circuits which have a precise formal semantics.

When applied to systems biology, the result is a graphical model, which is comprehensible,

mathematically precise, and flexible.

1 Introduction

Within a biological system, complex biological pathways, the interconnection between genes and
proteins and other chemical reactions within organisms, form the basic fabric of life. Systems
biology aims to integrate information about biological entities and their relationships with the aim
of understanding the complex metabolic networks and the role of genes within them. Beginning
with incomplete information about a system, biologists produce a mathematical model of their
system, which is ultimately used to predict the behaviour of their system. By testing their model
against experimental data, biologists can produce successively more accurate models. But as
biologists study larger systems, their modelling technology is proving to be insufficient. What
systems biologists need are formal techniques to describe reaction networks, giving, for example,
their algebraic behaviour, enabling abstraction from molecular actions, if desired. The models
should enable composition of larger models from smaller ones, and tools should be provided for
analysing the behaviour of these models under a variety of boundary conditions [15]. A number
of models have recently been proposed to fill this gap. Frequently, these models stem from the
study of concurrency theory, which traditionally provide theoretical foundations for concurrent and
distributed computer systems. Some models are based on process calculi [27, 10, 11, 12, 7, 26, 20],
whereas others adopt circuit or network-based models [28, 19, 22, 23]. An immediate advantage of
this approach to modelling is that the extensive theory that exists for reasoning about concurrency
can be applied to biological systems [6, for example]. Furthermore, by providing formally precise,
executable models of biological systems, these approaches represent a promising path toward
understanding highly complex biological systems.

An alternative approach is to use a framework which abstracts away from the behaviour of
agents and focus on their interaction both at a primitive level and across the entire system.
Understanding biological systems requires understanding, for example, the gene networks which
regulate protein production through the activation and suppression of various enzymes and other
genes. Often mere competition for molecules is the means by which nature achieves organisation
through distributed control [15]. In their most general setting, regulation, activation, suppression,
competition, and control are studied within the inter-disciplinary field Coordination Theory [21].
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The Reo coordination model for coordinating software components [2] falls within this general
theory. Rather than focusing on what components (or processes) do in isolation, coordination
models, including Reo, focus on the composition of components and their interaction, generally by
governing the flow of data between components. The coordination layer prescribes/describes the
interaction between the components. This change of focus enables one to understand a system at
a higher level of abstraction, focusing on the interaction and control aspects rather than on the
entities being controlled. It is from this perspective that we endevour to contruct models for use
in systems biology. Reo coordinates components using connectors composed of primitive channels.
These connectors can be seen as circuits that capture the interaction, data flow, synchronisation,
and feedback among components. Circuits have a graphical representation and precise seman-
tics [1, 4], and allow the composition of models of large systems out of smaller ones. This paper
applies Reo to modelling biological systems.

2 Evidence of Coordination in Biological Systems

In biological systems the presence of coordination mechanisms is evident at different levels and in
different ways [31, 21, 30, 14]. In general, coordination takes place in a highly distributed manner,
but we can break it down into a number of categories: inter-cellular coordination, boundary
coordination, intra-cellular coordination, and gene coordination.

Inter-cellular coordination. A cell is coordinated via interaction with its environment. This can
include interaction with other cells. All cells receive and respond to signals from their surroundings.
The simplest bacteria sense and swim toward high concentrations of nutrients, such as glucose or
amino-acids. Many unicellular eukaryotes also respond to signalling molecules secreted by other
cells, allowing cell-cell communication. It is, however, in multi-cellular organisms where cell-cell
communication reaches its highest level of sophistication. The behaviour of each individual cell in
multi-cellular plants and animals must be carefully regulated to meet the needs of the organism
as a whole. The function of the many individual cells in a multi-cellular organism is integrated
and coordinated via a variety of signalling molecules that are secreted on the surface of one cell
and bound to a receptor present on another cell.

Boundary coordination. A cell’s internal behaviour is stimulated or, more generally, regulated
via interaction on its boundary. Most cell surface receptors stimulate target enzymes which may
be either directly linked or indirectly coupled to receptors. A chain of reactions transmits signals
from the cell surface to a variety of intra-cellular targets. The targets of such signalling path-
ways frequently include factors that regulate gene expression. Intra-cellular signalling pathways
thus connect the cell surface to the nucleus, leading to changes in gene expression—the internal
coordinator of cell behaviour—in response to extra-cellular stimuli. Changes in expression lead to
different metabolic pathways.

Intra-cellular coordination. Intra-cellular reactions regulate all aspects of cell behaviour in-
cluding metabolism, movement, proliferation, survival and differentiation. Metabolism is a highly
integrated process. It includes catabolism, in which the cell breaks down complex molecules to
produce energy, anabolism, where the cell uses energy to construct complex molecules and perform
other biological functions, and more general metabolic pathways consisting of a series of nested
and cascaded feedback loops which accommodate flexibility and adaptation to changing environ-
mental conditions and demands. Metabolism is regulated through competition for resources, and
by positive and negative feedback. Negative feedback (usually by end-product inhibition) prevents
the over-accumulation of intermediate metabolites and contributes to maintaining homeostasis—a
system’s natural desire for equilibrium.

Gene coordination. Gene behaviour plays the most significant coodination rôle, ultimately
being the central coordination mechanism within the entire cell. Gene Regulatory Networks are a
model which represents and emphasizes the genes’ rôle in all activities within a cell. Genes regulate
and orchestrate the different phases that comprise a metabolic pathway. A gene regulatory network
can be interpreted as a complex signalling network in which all coordination between different cell
entities is dictated dynamically by the genes directly, or indirectly through coordination mech-
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anisms such as suppression/negative regulation and activation/positive regulation. Furthermore,
gene behaviour is itself regulated via the products of metabolism and via self-regulation/feedback.

3 Coordination in Reo

Coordination models and languages enable the control of the interaction behaviour of mutually
anonymous components (or processes) from outside of those components. Rather than allowing
components to communicate directly, a coordination model intervenes to regulate, inhibit, and
direct the communication and cooperation of independent components. Reo is a powerful channel-
based coordination model wherein complex coordinators, called connectors, are compositionally
built out of smaller ones. Every connector in Reo imposes a specific coordination pattern on the
entities that interact via the connector [2].

The most primitive connectors in Reo are channels. A channel has exactly two ends, each of
which may be an input end, through which data enter, or an output end, through which data
leave the channel. Channels may have an input end and an output end, or two input ends, or even
two output ends. Reo places no restriction on their behaviour, so long as they support certain
primitive operations such as I/O. This allows an open set of different channel types to be used
simultaneously together in Reo, each with its own policy for synchronisation, buffering, ordering,
computation, data retention/loss, etc. A number of basic channels are [2]:

Sync A synchronous channel is denoted . A data item is transmitted through this channel
when both a write on its input end and a take on its output end are pending.

LossySync A lossy synchronous channel is denoted . This channel behaves like a syn-
chronous channel whenever a take on the output end is pending. However, if a write is
performed to its input end and no take is pending, the input is performed, but data is lost
and thus not transfered.

SyncDrain A synchronous drain is denoted . A data item flows only when writes are
pending on each of its two input ends. The effect is to synchronise the two writers. The
data is lost.

SyncSpout A synchronous spout is denoted . A data item flows only when takes are pending
on each of its two output ends. The effect is to synchronise the two readers.

FIFO1 A FIFO1 channel has buffer of size one. A write to its input end can succeed only if the
buffer is empty, after which the written value is stored in the buffer. Otherwise the writer
blocks. A take from its output end only succeeds if the buffer is full. A FIFO1 which is
initially empty is denoted , and one which is initially full is denoted 0 .

A Reo connector is a set of channel ends and their connecting channels organized in a graph of
nodes and edges such that: zero or more channel ends coincide on every node; every end coincides
on exactly one node; and there is an edge between two (not necessarily distinct) nodes if and only
if there is a channel whose two ends coincides on each of the nodes. The coincidence of channel
ends at a node has specific implications on the data flow among and through those ends. There
are three kinds of node, depending upon the kinds of coincident ends. Input nodes have only
input ends, output nodes have only output ends, and mixed nodes have at least one of each. A
component connected to an input node may write to that node, which then acts as a replicator,
copying the data item to all ends coincident on the node. Similarly, a component connected to an
output node can take data if data is available on any one of the output ends coincident on the node.
Thus the node acts as a non-deterministic merger of the coincident output ends. A mixed node
acts like a self-contained pumping station, combining the behaviour of an output node (merger)
and an input node (replicator), by non-deterministically taking a suitable data item offered by
any one of its coincident output ends and replicating it to all of its coincident input ends. This
operation succeeds only when all the output ends attached to the node are able to accept the data.
Graphically nodes are represented using “•”.
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Figure 1: (a) Exclusive Router connector and (b) the Mnemonic for its instances

The last feature of Reo we mention is encapsulation. This enables abstraction of the details of
a connector. It it representated as a box enclosing a circuit.

We now present an example of a Reo connector to illustrate the complex behaviour which can
emerge through composition of simple channels. An exclusive router is depicted in Figure 1, along
with the shorthand mnemonic “◦” which we will use subsequently to represent the instances of
this connector. Each data item entering via node A will be synchronously passed to either node B
or node C, but not both, depending upon which of B and C first makes a request for data. Ties
are broken non-deterministically [1]. This behaviour emerges in an non-obvious manner simply by
composing together a few simple channels. More examples are included in an appendix.

4 Case Study: Galactose Utilization in Yeast

When a biologist wants to understand a system, such as the role of various genes in regulating
a metabolic pathway, they construct a model of the system. Initially, the model is a black box.
Through successive refinements, based on experimental data, more accurate models are developed.
The ultimate goal of this process is to find models which are accurate enough to be used in
a predictive manner, giving an indication of how the system being modelled will behave under
conditions outside those covered by existing experimental data.

In this section, we outline an approach to developing models using Reo, and apply it in a
case study, the biological system Galactose Utilization in Yeast [18]. In particular, we focus on
the process of metabolizing Galatose to Glucose-6-P (Figure 2). The system’s behaviour can be
described as following [18]:

Yeast metabolizes galactose through a series of steps involving the GAL2 transporter
and enzymes produced by GAL1, 7, 10, and 5. These genes are transcriptionally
regulated by a mechansim consisting primarily of GAL4, 80, and 3. GAL6 produces
another regulatory factor thought to repress the GAL enzymes in a manner similar to
GAL80.

In order to produce a model, we need to determine the level of abstraction at which the model
will work. We require a definition:

Definition 4.1 The finite set of biological entities (or just entity) that play a role in a biological
system (or process) is called its Domain.

Entities can be any cell organelle (e.g., mitochondrion, ribossome), suborganelle constituent
(e.g., gene), cell component (e.g., membrane), chemical, etc.

The first step then is to determine the domain. For the present case study, the domain
consists of seven chemical substances (Gal-out, Gal-in, Gal-1-P, UDP-Glu, UDP-Gal, Glu-1-P,
Glu-6-P), five chemical reactions (Gal-out→Gal-in (actually a membrane crossing), Gal-in→Gal-
1-P, Gal-1-P+UDP-Glu→Glu-1-P+UDP-Gal, UDP-Gal→UDP-Glu, Glu-1-P→Glu-6-P) and nine
genes (Gal1, Gal2, Gal3, Gal4, Gal5, Gal6, Gal7, Gal10, Gal80).

The next step in the modelling process is to instantiate each domain element with a suitable
Reo connector. This may be as simple as selecting the appropriate connector from a library, or it
may require new models to be developed.
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Figure 2: The Galactose System. The top gray section depicts the chemical reactions involved.
The bottom part depicts the gene regulatory network coordinating the reactions. From [18].

Genes as Signallers The first step in modelling the behaviour of a gene as a Reo connector is to
extract the relevant characteristics and behavioural properties that genes express in the biological
system. Once this behaviour has been determined, up to the chosen level of abstraction, a Reo
connector can be constructed to match that behaviour.

Genes are segments of DNA within chromosomes which cells transcribe into RNAs and trans-
late, at least in part, into proteins. Genes affect behaviour within the cell through the proteins
which are produced. Some of the resulting proteins will become enzymes which may regulate gene
behaviour—though for modelling purposes, this indirection is a secondary issue.

We can abstract this behaviour using a Reo connector which we call a signaller. A signaller,
see below, can alternate between two different states, On or Off . When the signaller is in the
On state, an output can be emitted on the Signal channel end. In the Off state, no output is
emitted on the Signal channel end. The state of a signaller is dictated by inputs on the channel
ends labelled On and Off. An input on On switches the signaller to the On state, if the state of
the signaller is Off , or is otherwise ignored. Similarly, an input on Off switches the signaller to
the state Off, or is ignored. A signaller, with intial state Off , is represented using the following
mnemonic:

On Off

Signal

Signaller

If the connection to either the On or Off end of a signaller is not known, we omit the end from
the diagram. A full Reo circuit implementing the signaller is given in an appendix.

The nine genes can thus be modelled by signaller connectors.1

Chemicals The five chemical substances that either act as reactants or products of reaction are
modelled as Reo nodes. More precisely, we introduce a node into a connector and associate “data
flowing through the node” with “the presence of the chemical.” As we outline in Section 5, such
nodes can be used to make observations about these entities within the system.

Modelling Chemical Reactions A chemical reaction can either be the synthesis of a substance
from two or more individual molecules coming together, or the decomposition of a molecule into
smaller molecules. A reaction may have multiple reactants and multiple products, and may require
the presence of an enzyme.

1An enzyme is a protein whose presence can activate or suppress chemical reactions without being itself con-

sumed. It can be modelled using a signaller. For simplicity, we have folded enzyme behaviour into that of the gene

which produces it.
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ProductsReactants

Enzyme

Enzyme

ProductsReactants

Figure 3: (a) Connector for Complex Reactions with Enzyme and (b) its Mnemonic

A chemical reaction can be modelled simply as a number of input channel ends (one for each
reactant), a number of output channel ends (one for each product) and an input for the enzyme
signal required to enable the reaction. A signal on one of the reactants channel ends signals the
availablitiy of a reactant. The reaction proceeds whenever a signal is available on all reactants
channel ends and the enzyme channel end. This simultaneous availability is imposed using a
SynchDrain channel. A FIFO1 channel is placed in the circuit after the reaction has occured to
model the delay present in a chemical reaction.

Four chemical reactions (Gal-out→Gal-in, Gal-in→Gal-1-P, UDP-Gal→UDP-Glu, Glu-1-P→
Glu-6-P) need one reactant and output one product. The remaining reaction (Gal-1-P+UDP-
Glu→Glu-1-P+UDP-Gal) needs two reactants and outputs two products. These are both modelled
using the connector in Figure 3.

Now that we have a domain, D, and the behaviour of the entities which constitute it, we can
start to build a Reo model. To do so, we must ask a second question: how de we construct models
of complex systems which comprise multiple biological entities? To answer this question, we first
define what a system is.

Definition 4.2 A system is a tuple S = (D, ρ,B), where D is a domain, entity relation ρ is a
subset of (D×D), and B is a subset of D called the boundary entities. The set of internal entities
is defined to be the set I = (D −B).

The entity relation ρ is a relation over D×D with the interpretation that for all pair of entities
(i1, i2), the entity i1 regulates the behaviour of entity i2. This also includes basic connections
between chemical reactions where the product of one is a reactant of another. A boundary entity
in S is an entity whose behaviour does not depend on and which is not regulated by any other
entities in S. For our example, the boundary entities include two elements Gal-out and Glu-6-P.
An internal entity typically depends on or is regulated by the activity of other entities in S.

The entity relation ρ identifies the interactions between various entities in a system. Each of
these interactions must be modelled in Reo. Usually, this consists simply of composing the con-
nectors involved in the right manner. The relation ρ between the entities of D can be determined
from Figure 2.

Composition: Activation, Suppression The action of a gene is to provide the proteins vital
to a cell. An enzyme activates or suppresses chemical reactions, or, in some cases, plays a role in
regulating (activating or suppressing) gene activity. The behavior of activation and suppression
can be modelled by composing the signaller connector which models the gene or enzyme with
the circuit modelling the entity which it regulates. To model activation (or suppresion) by one
signaller on some target signaller, the Signal channel end of the first signaller is connected to
the On (or Off) channel end of the target signaller, as depicted in Figure 4(a). Multiple sources
of activation or suppression present in a system can simply be modelled by merging signals from
various sources via a Reo node.

Composition: Self-regulation Self-regulation means that a biological entity directly or in-
directly is regulated by itself. Products of the biological process influence, either positively or
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Figure 5: Galactose Metabolism modelled using Reo

negatively, the process which created those products. To model self-regulation, we use feedback
in a Reo circuit. A simple example is presented in Figure 4(b). This figure models a gene whose
products (the signal) cause it to turn itself off. For more complex situations where the regulation
depends upon time, reaction rates, or concentration, may require timed Reo circuits to be more
accurately modelled [3].

Composition: Reaction Pathways, Reversible Reactions Composition permits the build-
ing of chains of chemical reactions, in which the product of one reaction is the reactant of another.
Reaction chains are the fundamental elements of biological pathways, as we discussed in Section 2.
Reversible reactions can also be modelled by suitably composing the forward and reverse reactions
together. The reactants involved can either become reactants in the reaction going in the other
direction, or be used by another reaction in the pathway.

The Composed System We can now compose all of our entities together. Figure 2 informs
whether the regulation from a gene is positive or negative. This information is used to determine
how to connect genes together, as outlined above. Finally, the appropriate gene action is connected
to each chemical reaction, and these reactions are chained together. The result is the circuit in
Figure 5.

5 Reasoning About Reo Models

Having constructed a Reo model, we need techniques for reasoning about its behaviour. This
will include checking whether the model fits the experimental data, and determining more general
properties, such as the presence of stable states or cycles of states [16] within the model, and
understanding the relationship (both causal and cooperation) between various entities. Our model
permits reasoning about the relationship between the input and output behaviour of boundary
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entities. Various behaviours can be determined by perturbing the boundary—by setting up different
boundary conditions, the behaviour at the remainder of the boundary can be determined. The
idea can easily be extended to model internal behaviour also, simply by exposing the internal
entities on the boundary.

Reo semantics have been defined in terms of two different formalisms: (timed) constraint
automata and abstract behaviour types (not used here) [1, 4]. In addition, a number of modal
logics and model checking algorithms have been developed for specifying and checking properties
of Reo circuits. This machinery can be readily applied to biological models.

Constraint automata A constraint automaton [4] is an automaton which describes the se-
quence of possible observations on the boundary nodes of a Reo connector. Such an automaton is
defined over a set of names N = {A1, . . . , An}, which correspond to the input/output nodes. We
present only “data-insensitive” automata. A constraint automaton is a tuple A = (Q,N ,−→,Q0),
where Q is a finite set of states; N is a finite set of names; −→ is a finite subset of Q× 2N ×Q,

called the transition relation of A, written q
N
→ p, with the constraint that N 6= ∅; and Q0 ⊆ Q is

the set of initial states.
An automaton starts in an initial state q0 ∈ Q0. If the current state is q, then the automaton

waits until signals occur on some of the nodes Ai ∈ N . If signals are observed at nodes A1 and A2,
for example, and at no other nodes at the same time, then the automaton may take a transition

q
{A1,A2}
−→ p. A run of an automaton is a sequence of non-empty subsets of N , (N0, N1, N2, . . .)

which corresponds to a series of signals occuring simultaneously at the nodes of the Reo connector
which the automaton models.

There are two important constructions on constraint automaton. The first construction, prod-
uct, denoted A ./ B, takes two constraint automata and produces an automaton which is the
result of “joining” the actions on names shared between the two automata. This captures the
composition of Reo circuits, though the details are too involved to go into here. The semantics of
this operation is similar to the join operation in relational databases.

The second construction, hiding, denoted ∃[C]A, takes a name, C, and a constraint automaton,
A, and produces an automaton where all behaviour at node C is internalised. Observations about
C are no longer possible. Paths involving just label {C} are compressed to avoid empty paths in
the resulting automaton. The resulting automaton has the same behaviour on the other nodes.

Projection to Subsystem of Interest The first step when reasoning about a Reo circuit is to
construct a constraint automaton for it by constructing the product of the automata which model
its channels and nodes. Assume now that the resulting automaton, A, has nodes {A,B,C,D,E},
where, {A,B,C} are on the boundary and {D,E} are internal. At this stage, the constraint
automaton contains all the information which occurs on every node. Normally, hiding would be
used to produce an automaton which models the behaviour on the boundary of the connector,
i.e., ∃[D,E]A. However, the fact that the automaton resulting from a product alone keeps the
behaviour of the internal nodes exposed means that we can use the automaton to reason about
the internal behaviour, simply by not hiding them. Thus if a different set of nodes is of interest to
the reasoner, an different automaton can be produced containing only those nodes. For example,
the automaton ∃[A,B,E]A can be used to understand the relationship between boundary node
C and internal node D.

Causality and Cooperation Analysis A temporal logic called Time Scheduled-Data-Stream
Logic (TSDSL) has been defined, along with model checking algorithms, for the timed version of
constraint automata [3]. Scheduled-stream logic (SSL) is the obvious simplification of TSDSL,
removing references to time and data. Its formulae over a node set N are given by the grammar:

φ ::= true | φ1 ∧ φ2 | ¬ψ | 〈〈α〉〉ψ | ψ1 Uψ2

α ::= N | α1 ∨ α2 | α1 ∧ α2 | α1;α2 | α∗
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N is a nonempty subset of N . α is a so-called schedule expression, giving a regular expression for
finite sequences of subsets of N , corresponding to a sequence of “events”. Thus 〈〈α〉〉ψ states that
each run has a prefix in the set described by α, with the suffix of the run satisfying ψ. Lastly,
ψ1 Uψ2 is the until modality from Linear Temporal Logic [9], stating that ψ1 must hold up until
the particular point which ψ2 holds. This logic can express properties of runs of an automaton.

Biologists wish to pose a number of questions about a model. These often take the general
form, what happens if I press this button? More concretely, they ask: what is the cause of gene
Gal80 being on? Does Gal80 affect product Galactose-1-P? Do Gal10 and Gal7 cooperate to pro-
duce Glucose-1-P? Is this cooperation necessary? Can other entities produce Glucose-1-P? Can
Glucose-1-P be produced without Gal10? Given a constraint automata at the appropriate level of
abstraction, with nodes hidden to avoid “noise”, such questions can be expressed in SSL as asser-
tions over the visible node set. The validity of the assertions can be determined using model check-
ing. Now if, [[α]]ψ ≡ ¬〈〈α〉〉¬ψ, false ≡ ¬true, and 〈〈¬Gal4〉〉ψ ≡ 〈〈N1∨N2∨· · ·〉〉ψ, whereN1∨N2∨· · ·
is the set of nodes apart from Gal4, we can readily make assertions such as: 〈〈Gal4〉〉true – Gal4
must signal; [[Gal4]]false – Gal4 cannot signal; [[Gal80]]([[Gal4]]false U〈〈Gal-out〉〉true) – after Gal80
has signalled, it is not possible for Gal4 to signal until Galactose has been detected on the outside
of the cell; [[Gal4]]〈〈Gal80〉〉true — Gal4 turns Gal80 on; [[Gal80]]false ⇒ 〈〈¬Gal4〉〉[[Gal80]]false —
only Gal4 turns Gal80 on; [[Gal-in ∧ Gal1]]〈〈Gal-1-P〉〉true — Galactose detected inside the cell
and the signalling of Gal1 are required to produce Galactose-1-P ; and [[Gal6 ∨Gal80]][[Gal4]]false
— the presence of either Gal6 or Gal80 can stop Gal4 from signalling. Many other questions
regarding the states of a system and the pathways therein can be posed [6].

Generating Experiments from Models An important reason for having accurate models is
to understand the cause and effects of disease and the effects of drugs used to treat them. Models of
biological systems will typically, at least initially, be insufficiently accurate for the desired purpose.
In order to refine a model, a biologist will need hypotheses to test experimentally. To generate
experiments to test the behaviour of disease and drug treatment, in the case where they act at a
genetic level, the behaviour of the faulty gene or drug needs to be modelled.

The first approach is to extract the consequent behaviour from an existing connector. This is
done by first characterising the behaviour of the faulty gene or drug as streams of observations
at some visible node in the model. The constraint automaton can then be reduced to one which
contains only the streams of observations selected by the biologist, and can then be analysed using
the techniques above to generate new hypotheses. This approach, however, is only capable of
producing behaviour which is already present in the model.

The second approach is to modify the Reo model by replacing the connector corresponding to
the entity of interest by a new connector which captures the behaviour of the gene malfunction or
the action of the drug introduced into the system. The result is a new Reo model with the desired
behaviour built-in.

In both cases, biologists can study a model by subjecting it to the reasoning techniques de-
scribed above, and use it to generate new hypotheses. An advantage of using the first technique,
in the event that the experimental data matches the generated hypothesis, is that the behaviour
is already included within the model, thus no change to the model need be made. Otherwise,
if either the experimental data and the model do not match, or the second technique is used,
appropriate refinement of the model will be required.

Unsoundness, Incompleteness and Refinement We see modelling as an iterative process
whereby a model is refined, based on experimental data produced by a biologist, to produce a
more accurate model. A model can be inaccurate in two ways: it can be unsound or incomplete.
Soundness is the requirement that any behaviour which the model exhibits is also exhibited by the
biological system. Completeness is the other way around, namely, that any behaviour observed in
the real system can be reproduced in the model. (These definitions are only relative to the level
of abstraction at which the modeller is operating.) Unsound and incomplete behaviour can be
discovered by both probing the model, and by testing hypotheses experimentally in the biological
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system. When the predictions of the model fail to match the results of the experiment, the model
needs to be refined, that is, to be adapted to preserve all previous sound behaviour and also
capture (or exclude) the new experimental observations. The refinement technique is related to
software evolution in the presence of changing specifications. We do not yet have a clear approach
to using the “evidence” of unsoundness or incompleteness in one model to produce a model which
is more sound and complete.

Simulation The last technique available to biologists is simulation. We are at present developing
a tool for simulating Reo circuits which is applicable here.

6 Related Work

A number of researchers have expressed the need for larger scale models of biological systems [15,
18, 24]. A number of different modelling approaches have emerged to meet this need. Many
depart dramatically from the traditional, small-scale approaches based on differential equations
and Monte Carlo simulation. In the remaining space, we can only give a taste of what these new
approaches are.

A number of biological modeling languages are based on process calculi. The pi-calculus has
been used for modeling general reaction pathways [27], variations of the ambient calculus have
modeled systems involving membrane interactions [26, 5, 12], and special purpose calculi have
been used to model protein-protein interactions [11]. In some cases, a stochastic element is added,
making the models surprisingly accurate [25]. In general, this approach displays a lot of flexibility,
tools for reasoning about the models exist or can be readily adapted from existing tools [6], and
process calculi can be simulated.

Boolean Networks are one of the first models of gene regulatory network behaviour [16]. These
consist of a number of boolean states, corresponding to whether genes are active or not, and a tran-
sition function which lock-step determines the next state. This process is iterated, and the network
can be analysed for stable cycles of states, called attractors. These models have the advantages of
simplicity and that they are readily simulated, but they are limited by their discrete nature and
their lock-step evaluation. Some of the limitations have been overcome, by introducing probabil-
ity to the model [29]. More advanced network models break away from the lock-step evaluation
of Boolean networks, by incorporating continuous aspects into models, producing hybrid models
which have both discrete and continuous factors. Such models include the circuits of McAdams
and Shapiro [23] and models based on hybrid petri nets [22], and hybrid automata [8]. These
models capture direct information flow within a biological system, and computational techniques
often exist to determine indirect relationships and effects. Although more flexible than Boolean
networks, computational effort is required to analyse these models.

Coordination is a buzzword commonly used when talking about (systems) biology [31], al-
though, to our knowledge, this paper is the first attempt at applying a coordination model in
this area. We expect to offer significant advantages because coordination, prevalent in Biology,
is foremost in our model. Compared with approaches based on other conconcurrent formalisms,
our model often works at a higher level of abstraction, because the coordination (synchronisa-
tion among multiple entities, for example) needs to be programmed in a process calculus model,
whereas in Reo it comes for free, either directly in primitive channels or in more complex exam-
ples via composition. Indeed, one of our colleagues has demonstrated that it is trivial to embed
an Elementary Petri-net into Reo, whereas the reverse embedding was much more difficult [17].
Although this embedding not been developed for hybrid Petri nets, or other circuit-based models,
its existence indicates that Reo can often express more with less.
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7 Conclusions and Future Work

Fontana and Buss highlighted the need for an algebraic semantics of behaviour suitable for bio-
logical systems [15]. We have proposed that Reo, and the coinductive semantics that underlies it,
could provide a suitable framework. We believe this to be the case, because Reo is open-ended,
enabling channels with arbitrary behaviour to be added, and it permits the compositional descrip-
tion of biological processes by providing a set of connectors modelling the behaviour present in
biological systems. Furthermore, a number of formal tools have been developed to specify and
reason about connector behaviour.

The following brief roadmap will guide our future work. We have a number of goals: developing
a methodology both for building toolkits for modelling classes of biological systems and for their
refinement; extensively studying and validating the approach underlying this methodology in
conjunction with biologists. It would be great if biologists are willing to work with use to develop
more accurate models, so that we can provide better tools. In particular, we would like to further
apply the formal reasoning tools for Reo with time constraints, so that we can provide models
which include metric data such as rates, concentration, delays [3].
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A Constructing a Signaller

We demonstrate that a signaller can be constructed using the primitive channels described in this
paper, giving testament to the expressiveness of Reo. An alternative is to supply a signaller as a
primitive with its behaviour defined directly using constraint automata.

Sequencer The sequencer connector [2] (for 2 elements) is depicted in Figure 6. This connector
is used to alternate the behaviour at nodes A and B, given by the regular expression: (AB)∗.
The implementation of the sequencer consists of a loop of FIFO1 buffers, of which all but one are
empty, which implements a token ring, enabling A and B to input data alternately. The token
is used to indicate which synchronous channels may pass data. After A inputs data, the token
moves to the other FIFO1 buffer, enabling the B to input data. After B inputs, the sequencer
returns to its initial state, accepting A.

SwitchConverter The token passing loop which forms a part of the sequencer can readily
be adapted to act as the core of a switch that enables or inhibits the flow of data, toggled by
alternating values from a third channel end (see the PreValve circuit, below). A more natural
switch consists of two separate channel ends, one corresponding to On, the other corresponding to
Off (repeated inputs in On or Off channel ends have no effect). The SwitchConverter connector
(Figure 6) converts the latter kind of switch into the former (conversion in the other direction is
also possible).

PreValve The PreValve connector is depicted in Figure 6. Its initial state can be either On or
Off . When the connector is in the On state, data can be inputed continually through the Flow

channel end. In the Off state, not data can be inputed. Data on the Toggle channel end toggles
the connector between its On and Off states. Note that, this circuit is the core of the Valve
connector in [1].

Signaller The detailed implementation of this circuit is given in Figure 8. For its description,
see Section 4
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Figure 8: Signaller connector (Initial state is Off)
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