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A Component-Based Parallel Constraint Solver

ABSTRACT
As a case study that illustrates our view on coordination and component-based software
engineering, we present the design and implementation of a parallel constraint solver. The
parallel solver coordinates autonomous instances of a sequential constraint solver, which is
used as a software component. The component solvers achieve load balancing of tree search
through a time-out mechanism. Experiments show that the purely exogenous mode of
coordination employed here yields a viable parallel solver that effectively reduces turn-around
time for constraint solving on a broad range of hardware platforms.
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Abstract. As a case study that illustrates our view on coordination and
component-based software engineering, we present the design and imple-
mentation of a parallel constraint solver. The parallel solver coordinates
autonomous instances of a sequential constraint solver, which is used as
a software component. The component solvers achieve load balancing of
tree search through a time-out mechanism. Experiments show that the
purely exogenous mode of coordination employed here yields a viable
parallel solver that effectively reduces turn-around time for constraint
solving on a broad range of hardware platforms.
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1 Introduction

Over the past years, constraint solving has been a useful test case for coordi-
nation techniques. [3, 8, 9, 14]. One of the reasons is that because of the general
nature of the constraint programming paradigm, any constraint solver inevitably
supports only a specific class of constraint satisfaction problems (CSP’s). By
having different solvers, supporting different classes of specialized problems co-
operate to solve a more general problem, a broader range of problems can be
addressed. The goal of having stand-alone constraint solvers cooperate in a uni-
form and structured way brings solver cooperation into the area of coordination
programming and component-based software engineering.

Constraint solving is an NP-complete problem. Efficient algorithms exist for
some classes of CSP’s, and when completeness is not important we may be able
to find a solution to a CSP quickly by using local search techniques. Nevertheless,
generally constraint solving comes down to tree search. In this paper, we deal
with a specific mode of solver cooperation that aims at reducing the turn-around
time of constraint solving through parallelization of tree search. Contrary to
other modes of solver cooperation, parallel constraint solving has received little
attention from a coordination point of view.

The primary aspect of our approach is to equip a tree search based constraint
solver with a time-out mechanism. When a CSP can be solved before the elapse
of a given time-out, such a solver simply produces all solutions that it has found
� Supported by NWO, the Netherlands Organization for Scientific Research, under

project number 612.069.003.



(or the solution that it has found, if we are not interested in all solutions).
Otherwise it also produces some representation of the work that still needs to
be done. For tree search, this is a collection of (disjunct) subproblems that must
still be explored: the search frontier. These subproblems are then re-distributed
among a set of identical solvers that run in parallel. The initial solver is part of
this set, and each solver in the set may split its input into further subproblems,
when its time-out elapses. The aim of the time-out mechanism is to provide
an implicit load balancing: when a solver is idle, and there are currently no
subproblems available for it to work on, another solver is likely to produce new
subproblems when its time-out elapses. We expect to be able to tune the time-out
value such that it is both sufficiently small to ensure that enough subproblems
are available to keep all solvers busy, and sufficiently large to ensure that the
overhead of communicating the subproblems is negligible. The idea of using time-
outs is quite intuitive, but to our knowledge, its application to parallel search is
novel.

Rather than a parallel algorithm, we present this scheme as a pattern for
constructing a parallel constraint solver from component solvers. The only re-
quirement is that these components can publish their search frontiers. We believe
that this requirement is modest compared to building a parallel constraint solver
from scratch. Our presentation of the scheme in Section 3 uses the notion of ab-
stract behavior types, and the Reo coordination model. These, and the relevant
aspects of constraint solving are introduced in Section 2. To test the concept, we
equipped a constraint solver with the time-out mechanism, and implemented the
coordination pattern as a stand-alone distributed program. In Section 4 we give
an account of this implementation, and in Section 5 we describe the experiments
that were performed to test the parallel solver. Compared to parallelizing an
existing constraint solver, the component-based approach has further benefits.
These are discussed in Section 6, together with related work and directions for
future research.

2 Preliminaries

To make the paper self-contained, in this section we provide the necessary back-
ground on constraint solving (2.1), abstract behavior types, and Reo (2.2).

2.1 Constraint Solving

Constraint solving deals with finding solutions to constraint satisfaction prob-
lems. A CSP consists of a number of variables and their associated domains (sets
of possible values), and a set of constraints. A constraint is defined on a subset
of the variables, and restricts the combinations of values that these variables
may assume. A solution to a CSP is an assignment of values to variables that
satisfies all constraints. Tree search in constraint solving performs a systematic
exploration of assignments of values to variables: at every node of the search



tree, the descendant nodes are generated by assigning different subdomains to
some variable.

The search tree is expanded as a part of the traversal of the tree, but be-
fore generating a next level of nodes, we try to limit the number of possible
alternatives. This is called pruning the search tree, and for constraint solving,
this is done by constraint propagation. The purpose of constraint propagation
is to remove from the variable domains the values that do not contribute to
any solution. For example if two integer variables x, y ∈ [0..10] are constrained
by x < y, we may remove 10 from the domain of x, and 0 from the domain
of y. Constraint propagation is usually implemented by computing the fixpoint
of a number of reduction operators [1]. These operators are functions (domain
reduction functions, DRF’s) that apply to the variable domains, and enforce the
constraints. If the domains of one or more variables become empty as a result
of constraint propagation, the node of the search tree for which this happens
is a failure. If, on the other hand, after constraint propagation all domains are
singleton sets, these domains constitute a solution to the CSP. In all other cases,
the node of the search tree is an internal node, and constraint solving proceeds
by branching.

Important concerns in this branch-and-prune approach to constraint solving
are the choice of the variable for branching, and how to construct the subdomains
for that variable. In this paper we assume a fail-first variable selection strategy,
where a variable is selected for which the number of possible assignments is
minimal. Subdomains are constructed by enumeration: they are singleton sets,
one for every value in the original domain.

Branching adds new nodes of the search tree to the set of nodes where search
may continue. This set is called the search frontier [10]. Managing the search
frontier as a stack effectively implements a depth-first traversal. Other traver-
sal strategies exist, but depth-first keeps the search frontier small. Apart from
memory requirements this is especially important for our application, because
the size of the search frontier determines the communication volume of the par-
allel solver.

2.2 Coordination and Abstract Behavior Types

In our view, coordination programming deals with building complex software
systems from largely autonomous component systems. The more autonomous
these components are, the more it becomes justified to refer to their composition
as coordination. Contrary to modules and objects, which are the counterparts
of components in the classical software engineering paradigms of modular and
object-oriented programming, an instance of a prospective software component
has at least one thread of control. For the purpose of composition, the component
is a black box, that communicates with its environment through a set of ports.
Coordination programming involves writing the “glue code” to actually make the
component instances cooperate. Depending on the complexity of the interaction,
it may make sense to use a dedicated coordination language. For example if the



population of processes is highly dynamic, the Manifold coordination language [2]
may be a logical choice.

A software system that complies with the above notion of a component can
be specified conveniently by an abstract behavior type (ABT) [4]. ABT’s are
the coordination counterpart of abstract data types, as used in classical software
engineering. Before we can introduce ABT’s we first need to recall the definition
of timed data streams from [5].

A stream over some set A is an infinite sequence of elements of A. Zero-
based indices are used to denote the individual elements of a stream, e.g., α(0),
α(1), α(2), ... denote the first, second, third, etc. elements of the stream α. Also
α(k) denotes the stream that is obtained by removing the first k values from
stream α (so α(0) is the head of the stream, and α(1) is its tail). Relational
operators on streams apply pairwise to their respective elements, e.g., α < β
means α(0) < β(0), α(1) < β(1), α(2) < β(2), ...

A timed data stream over some set D is a pair of streams 〈α, a〉, consisting
of a data stream α over D, and a time stream a over the set of positive real
numbers, and having a(i) < a(j), for 0 ≤ i < j. The interpretation of a timed
data stream 〈α, a〉 is that for all i ≥ 0, the input/output of data item α(i) occurs
at “time moment” a(i).

An abstract behavior type is a (maximal) relation over timed data streams.
Every timed data stream involved in an ABT is tagged either as its input or
output. For an ABT R with one input timed data stream I and one output
timed data stream O we use the infix notation I R O. Also for two such ABT’s
R1 and R2, let the composition R1 ◦ R2 denote the relation {〈〈α, a〉, 〈β, b〉〉 |
∃〈γ, c〉 · 〈α, a〉R1〈γ, c〉 ∧ 〈γ, c〉R2〈β, b〉}.

ABT’s specify only the black box behavior of components. For a model of
their implementation, other specification methods are likely to be more appro-
priate, but that information is irrelevant from a coordination point of view.

Reo [4, 6] is a channel-based exogenous coordination model wherein complex
coordinators, called connectors are compositionally built out of simpler ones. The
simplest connectors in Reo are a set of channels with well defined behavior. In
Section 3.2 we use Reo connectors to specify the coordination of our component
solvers.

3 Specification

3.1 Component Solver

In this section we define an ABT for a constraint solver with the time-out mech-
anism. First we need some formal notion of a CSP:

Let P be a finite set of problems and let (P ∪{
},�) be a partial order such
that for all p ∈ P , 
 �� p. For a problem p ∈ P , we define the sets sub(p) = {q ∈
P ∪ {
} | p � q} and sol(p) = {s ∈ sub(p) | ∀q ∈ sub(p) \ {s} · s �� q} \ {
}.
Intuitively, sub(p) represents the set of subproblems of a problem p, possibly
including 
, which represents the deduction of a failure. The set of maximal
subproblems excluding 
, sol(p), represents the set of solutions of p.



Next we specify that a constraint solver transforms a problem into a set of
mutually disjunct problems. Let D denote the data domain P ∪ 2P ∪{τ}, where
τ /∈ P is an arbitrary data element that serves as a token. In the following, let
〈α, a〉 and 〈β, b〉 be timed data streams over D. Now the behavior of a basic
solver is captured by the BSol ABT, defined as

〈α, a〉 BSol 〈β, b〉 ≡ a < b ∧ S(α, β)

where S is a relation on P and 2P , such that for all p ∈ P and R ∈ 2P , S(p, R)
iff

– ∀r ∈ R, p � r,
– ∀r, s ∈ R, r � s implies r = s, and
– sol(p) = ∪r∈Rsol(r)

The Str (streamer) ABT specifies that stream of sets of problems, as produced
by a basic solver, is transformed into a stream of problems, where the sequence
of problems for each input set is delimited by a token:

〈α, a〉 Str 〈β, b〉 ≡ a(0) = b(0)
∧ β(k) = τ
∧ α(0) = {β(0), . . . , β(k − 1)}
∧ 〈α(1), a(1)〉 Str 〈β(k+1), b(k+1)〉

where for all i ∈ IN, α(i) ∈ 2P and β(i) ∈ P ∪ {τ}, and k denotes |α(0)|, the
cardinality of the set of problems at the head of stream α. Now the behavior of
a constraint solver component is captured by the Sol ABT, defined as

Sol = BSol ◦ Str

Our top-level model of a solver component is the composition of a basic solver
and a streamer. The token τ can be thought of as the notification “no” that a
PROLOG interpreter would produce to indicate that no (more) solutions have
been found. If we model a typical constraint solver as a basic solver, then for
any given input problem the output set corresponds to the set of solutions for
that problem, i.e. β(i) = sol(α(i)), and there is no upper bound on the time
b(i) − a(i) needed to produce this set.

In contrast, the load-balancing solver component that we propose here stops
searching for solutions after the elapse of a time-out t. At that moment, it gen-
erates a subproblem for every solution that it has found, plus one for every node
of the search tree that must still be explored. For t ∈ IR+, the Sol t ABT defines
this behavior:

〈α, a〉 BSol t 〈β, b〉 ≡ 〈α, a〉 BSol 〈β, b〉
∧ ∀i ∈ IN · b(i) − a(i) < t

Sol t = BSol t ◦ Str



3.2 Parallel Solver

Figure 1 shows a channel-based design for a (3-way) parallel solver. All chan-
nels in this design are synchronous: read and write operations block until a
matching operation is performed on the opposite channel end. The “resistors”
depict Reo filters: synchronous channels that accept data items that match a
certain pattern (set of allowable data items) and discard data items that do
not match this pattern. At node b in Figure 1, all output of the solvers is
replicated onto two filters. Channel bc filters out solutions. Its pattern (p) is
Filter({p ∈ P | sol(p) = {p}}). The channel from b to T discards all solutions.
Its pattern (q) is Filter({p ∈ P | sol(p) �= {p}} ∪ {τ}). The ABT’s of the
channels are specified in [4].

Solt

Solt

Solt

Store R3T
c

ba

p

q

Fig. 1. 3-way parallel solver

Apart from the channels and the three load-balancing solvers Sol t, there are
three elements of the design that require further clarification: the special-purpose
connector T, the 3-ary exclusive router R3, and the Store. We do not give full
ABT’s, but an intuitive description.

The special purpose connector T implements termination detection. Initially,
it reads a problem from its left-hand side input port. All problem descriptions
entering T, through either input port, are forwarded immediately through its
right-hand side output port to the Store. Also T counts the number of problems
forwarded to the Store, and the number of tokens τ received through its bottom
port (from node b). While these numbers do not match, the parallel solver is busy,
and T will accept new (sub)problems from its bottom input port (connected to
node b) only. As soon as the number of problems is canceled out by the number
of tokens, T sends a token τ through its top port (to node c), indicating that the
parallel solver has finished working on its current problem. Then it will return
to its initial state, and accept a new problem from its left-hand side input port.

Connector R3 is a general-purpose 3-ary exclusive router. It operates syn-
chronously, and every data item on its input port is forwarded on exactly one of
its output ports. If none of the channels connected to the output ports is able to
forward a data item, the router blocks. If a data item item can be forwarded on



more than one output port, a non-deterministic choice is made. Construction of
the exclusive router from Reo primitives is shown in [6].

The Store is a channel-like connector that is specific to this application.
Its operation is asynchronous: it buffers incoming problems, and interprets these
problems to determine the level of the corresponding node of the search tree. This
information can be used to enforce a global traversal strategy. When R3 is ready
to accept data (i.e., when one of the load-balancing solvers has become idle) it
forwards a problem according to this strategy. For example, it may forward a
node of the deepest available level in an attempt to implement depth-first search
globally. This effectively drains the Store. Forwarding a node of the shallowest
available level implements breadth-first search, filling up the Store with more
subproblems.

4 Implementation

To test the proposed implementation of parallel search, we equipped our Open-
Solver constraint solver with the time-out mechanism, and developed a dis-
tributed program to combine several such solvers into a parallel constraint solver.

4.1 Component Solver

OpenSolver is an experimental constraint solver that implements a branch-and-
prune tree search algorithm. This algorithm is abstract in the sense that its
actual functionality is determined by software plug-ins in a number of prede-
fined categories, corresponding to different aspects of the model of constraint
solving outlined in Section 2.1. For example, there are categories for variable
domain types and domain reduction functions. OpenSolver has been developed
with coordination in mind: a special category of plug-ins covers the coordination
layer of the solver (Figure 2). Through a plug-in in this category, the execution
of the solving algorithm can be controlled, and data can be shared with the
environment. In addition to the coordination layer plug-in described below, a
plug-in exists that implements a simple user interface, and a plug-in is being
developed that will allow an OpenSolver to participate in a general framework
for distributed constraint solving [15].

OpenSolver

Constraint solving plug−ins

Coordination layer

Fig. 2. Plug-ins determine the actual functionality of the OpenSolver



The plug-in mechanism is implemented by inheriting from C++ abstract
classes for each of the categories. It is explained in more detail in [14]. The co-
ordination layer is implemented by having the solver execute a command loop,
where it continually asks the coordination layer plug-in what to do next. Exam-
ples of commands that can be given by the coordination layer plug-in are:

– from the search frontier, select a set of nodes for further exploration,
– perform constraint propagation in the nodes of the search tree that have

been selected for further exploration,
– apply the branching strategy plug-in to the nodes where constraint propa-

gation has finished, in order to expand the search tree,
– flush the nodes of the search tree: this generates a textual representation of

the search frontier and of all solutions that are available. The data structures
for these nodes are then deallocated.

The latter command is important for implementing the time-out mechanism. A
special coordination layer plug-in StreamingIO has been developed, that turns
an OpenSolver into a load-balancing solver, as specified in Section 3. When it
is equipped with this plug-in, an OpenSolver instance keeps reading problem
descriptions from its standard input. These problem descriptions are coded as
sequences of ASCII characters where the individual problem descriptions are
delimited by brackets. An example of a problem description is shown in Figure 3.

VARIABLE q1 IS DiscreteDomain {1..4};

VARIABLE q2 IS DiscreteDomain {1..4};

VARIABLE q3 IS DiscreteDomain {1..4};

VARIABLE q4 IS DiscreteDomain {1..4};

DRF DDNEQ { q1-q2 <> 0 }; DRF DDNEQ { q1-q2 <>-1 };

DRF DDNEQ { q1-q2 <> 1 };

DRF DDNEQ { q1-q3 <> 0 }; DRF DDNEQ { q1-q3 <>-2 };

DRF DDNEQ { q1-q3 <> 2 };

...

DRF DDNEQ { q3-q4 <> 0 }; DRF DDNEQ { q3-q4 <>-1 };

DRF DDNEQ { q3-q4 <> 1 };

Fig. 3. Part of a problem description for the 4-queens puzzle

The problem descriptions themselves contain instructions for the solver to
activate plug-ins for variables, DRF’s, etc. When a problem description has been
read from standard input, the coordination layer plug-in instructs the solver to
parse it, and subsequently starts the search for solutions. When the time-out
elapses, or when the search frontier becomes empty, the StreamingIO plug-in
stops issuing commands that drive the search for solutions. Instead it issues
the command to flush the nodes of the search tree. Our implementation is an



approximation of the Solt ABT of Section 3.1 in the sense that the subproblems
appear on the output stream just after the time-out elapses. In theory this could
take unacceptably long, for example if suddenly the workload of the system
increases. In practice the approximation is realistic.

Every plug-in implements a method to write itself into a character string.
When executing the command to flush the search tree, this method is called for
all plug-ins that define a particular node of the search tree, notably the vari-
able domains and the DRF’s. These strings are then passed to the coordination
layer. Normally this mechanism is used to produce the solutions of a CSP, but
because we don’t perform an exhaustive search, in this case it also produces
the search frontier. This information is used by the StreamingIO coordination
layer plug-in to construct new problem descriptions, that are written to standard
output. After the flushing operation is complete, the coordination layer plug-in
generates a character-encoded token τ , and proceeds by reading a new problem
specification from standard input. Except for the token, the output of this co-
ordination layer plug-in can be directly fed into another solver as a stream of
problem descriptions.

The component solvers are configured to perform a depth-first traversal of
the search tree, but through a special category of plug-ins, problem descriptions
are annotated with the level of the corresponding node in the search tree. This
allows the master process, implementing the Store of Section 3.2, to impose a
high-level traversal strategy on top of the depth-first traversal of the solvers.

An important aspect of a constraint solver implementation is the construction
of the data structures, notably the variable domains, that define the node of the
search tree where search continues. While hybrid methods have been studied,
the main options are [11]:

Copying When the search tree is expanded by branching, the data structures
that define the current node are copied for all new nodes. These copies
are then modified to construct subproblems. At potentially high memory
costs, every node of the search frontier is immediately available for further
exploration.

Trailing Only the current node of the traversal is maintained, but all changes
(deletions of values) to the domains of variables leading up to this node
are registered. Backtracking is implemented by undoing changes to reach
an internal node of the search tree, from which search can progress along
an alternative branch. Trailing is the predominant method used in current
constraint solvers.

Recomputation Internal nodes are represented by the branching choices that
were made in order to arrive at that node. Instead of unwinding a trail of
changes, the internal nodes are reconstructed from a shallower internal node
by repeating a part of the traversal of the search tree.

OpenSolver is based on copying, so the search frontier is maintained explicitly
(but plug-ins in the variable domain type category can implement a copy-on-
write policy). Admittedly, this is a great convenience for publishing the search



frontier, but we are convinced that our method extends to solvers that use trail-
ing or recomputation. Especially when searching for all solutions, every node of
the search tree must be generated eventually, so no extra work is involved if this
is done for the current search frontier when the time-out elapses.

4.2 Glue Code

We implemented the coordination protocol of Section 3.2 as a master-slave dis-
tributed program coded in C using the MPI message passing interface. Without
the facilities for gathering statistics, the size of this glue code is just a little
more than 600 lines. The slave processes fork a new UNIX process to start the
component solvers, and a pair of pipes is connected to the standard input and
output of these processes to facilitate the character-based implementation of the
timed data streams.

The channels of the coordination model are implemented by directed send
and receive MPI calls. Upon reception of a token τ , a new subproblem is sent
to the solver that generated the token. For this purpose, the character-based
encoding of the token contains the identity of this solver. Also the number of
solutions counted for each subproblem is piggybacked on the token.

When reading from the pipe that is connected to the standard output of a
solver, the slave processes perform some parsing to recognize the beginning of a
new problem description. At this point, an entire problem is sent to the master
process as a character string. The master process implements the distribution
and gathering of the problems. Figure 4 illustrates this software architecture.

����
����
����
����

����
����
����
����

����
����
����
����

UNIX
pipes

 C/MPI

slave slave slave

master

Fig. 4. Software architecture of the parallel solver

Note that the component solvers are still stand-alone applications that rely
on character-based standard I/O only. Our primary goal was a performance
evaluation of the time-out mechanism, and from that perspective, a master-slave
implementation is acceptable. However, the channel-based design of section 3.2
has many advantages over this rigid scheme. In particular, the decision where to
send the next subproblem is now taken on the basis of solver output, whereas
a true implementation of the exclusive router would be able to detect that a



solver is idle when the channel connecting to that solver is ready to accept new
data. This has the benefit of a better separation of concerns and of a reusable
solution.

5 Experiments

The parallel solver was tested on three combinatorial problems:

Queens An instance of the n-queens problem, where n queens must be placed on
an n×n chess board, such that no two queens attack each other. Figure 3 shows
a problems description for n = 4. The results reported here are for n = 15, for
which there are 2279184 solutions.

Sat The problem is to find an assignment of truth values to propositional vari-
ables such that a given propositional formula in conjunctive normal form is
satisfied. Such a formula is a conjunction of clauses, where a clause is a disjunc-
tion of literals (a propositional variable or its negation). In our model for this
problem we use a constraint for every clause of the formula, which states that at
least one of the literals of that clause must be true. A special-purpose DRF plug-
in has been developed, which is initialized by a sequence of positive literals and
a sequence of negative literals. When all except one literal have been assigned
the value false, this DRF plug-in removes the value that would render the last
literal false from the domain of that literal’s variable. For these experiments we
used formula par16-2-c from the dimacs test set1. This formula has 1392 clauses
on 349 variables.

Coloring This is a graph coloring problem. In general, the problem is to find an
assignment of colors to the vertices of a graph, such that two vertices that are
connected by an edge have different colors. Here we verify that no 9 coloring
exists for graph DSJC125.52 from the dimacs test set, having 125 nodes and
3891 edges. In our model we use a variable for every node, and a disequality
constraint for every edge. The disequalities are implemented using the DDNEQ
DRF plug-in of Figure 3.

In all cases, we used a fail-first variable selection strategy, selecting a variable
with the smallest number of alternative values. As a second criterion for Coloring,
variables are ordered according to the degree of their corresponding nodes of
the graph. The component solvers perform a depth-first traversal, but using
the level annotation of the problem descriptions generated by the solvers, the
master switches between breadth-first and depth-first traversal, depending on
the number of available subproblems. If this number is below a certain threshold
value (512, for these experiments) priority is given to the shallowest available
1 available from e.g. http://www.lri.fr/∼simon/satex (the Sat-Ex website).
2 available from e.g. http://mat.gsia.cmu.edu/ (Michael Trick’s Operations Re-

search Page.)



nodes. These are least likely to complete within the time-out, and can thus be
expected to increase the number of problems available to the master, making
it easier to keep all solvers busy. Also, when the full problem is first submitted
to the first solver, this solver uses a very small time-out in order to generate
work for the other solvers quickly. Finally it should be mentioned that in our
test runs, solutions are only counted, not stored or communicated.

Table 1 shows the sequential and parallel runtimes (elapsed time) for our
test problems, as well as the parallel efficiency, which is the actual speedup di-
vided by the number of processors. As an indication that our solver is a realistic
implementation, depending on the search strategy, the standard example for 15-
queens in ECLiPSe 3 5.5 completes in 900 - 1500 sec. on the same hardware. The
speedup figures (sequential runtime divided by parallel runtime) are shown in
Figure 5. All elapsed times shown are averages of 10 repeated runs on a Beowulf
cluster built from 1200 MHz Athlon nodes. The entries for parallel runs on 1 pro-
cessor are an indication of the overhead of the time-out mechanism. For Queens
and Sat we used a time-out value of 3200ms. For Coloring we used 9600ms. The
master process always runs on the same node as one of the component solvers.

Fig. 5. Speedup figures

As can be seen from Figure 5, our parallel solver scales well. For Queens and
Coloring, the parallel efficiency remains practically constant for the numbers
of processors that we have tested with, and the scalability can be expected to
extend to higher numbers of processors. The difference in efficiency for these
two series of runs, and for the Sat runs on lower numbers of processors can

3 ECLiPSe Constraint Logic Programming System. See
http://www-icparc.doc.ic.ac.uk/eclipse



Seq 1 2 3 4 5 6 8 12 16

Queens 734.16 760.79 380.85 253.41 190.04 152.01 126.67 95.18 63.32 47.86
eff. 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.96

Sat 1541.12 1842.55 931.26 619.65 466.08 378.14 313.91 240.91 171.43 140.02
eff. 0.84 0.83 0.83 0.83 0.82 0.82 0.80 0.75 0.69

Coloring 419.29 475.92 236.50 156.47 117.70 94.31 78.11 58.23 38.92 30.56
eff. 0.88 0.89 0.89 0.89 0.89 0.89 0.90 0.90 0.86

Table 1. Elapsed times (sec.) and parallel efficiency

be explained by the different sizes of the problem representations, and their
associated communication costs.

For Sat, parallel efficiency drops after 8 processors. The reason is that because
the variable domains are binary, the search frontiers are smaller than for the
other two problems, and the master has difficulty keeping all solvers busy. Also
the problem seems to have a less balanced search space: submitting a shallow
subproblem to one of the solvers is less likely to generate new nodes than for
Queens and Coloring. We hope to remedy the problem of the binary search trees
by using a special-purpose branching strategy plug-in, which instantiates several
variables at the same time, thus generating larger search frontiers. However, this
strategy will also generate assignments that would otherwise have been prevented
by constraint propagation, so it is hard to predict the overall effect.

The Queens experiments have also been run overnight on several (mostly
idle) workstations connected by a local area network. While a detailed analysis
of these experiments has not been made, here too we saw good speedup and
scalability. Our approach seems well suited for such an environment: because no
solver will work longer than the specified time-out before sharing work with other
solvers, the proposed implementation of parallel search will likely be insensitive
to the existing load and heterogeneity of the hardware. Because good results
were obtained on a cluster (distributed memory), the parallel solver can also be
expected to perform well on shared memory machines.

6 Discussion and Directions for Future Work

In [14] we described a constraint solver based on the coordination protocols of [8,
3]. This solver implements distributed constraint propagation using channel-
based communication. In [15] we presented a design for extending this system to
support a large variety of solver cooperation schemes, including parallel search
for which we suggested the time-out mechanism that is evaluated in the present
paper. OpenSolver is intended to play the role of the main component solver in
this extended system. In addition to the coordination protocol of [8], [9] describes
an IWIM implementation of a system for the coordination of heterogeneous
solvers.



Other approaches to parallel constraint solving often use a scheme where the
parallel solvers exchange nodes of the search tree only when one of them becomes
idle, see for example [10, 12]. For such schemes, solvers can potentially run for a
long time without having to respond to a request for work from other solvers,
but once a solver becomes idle, it may be more difficult to find another solver
that is willing to share part of its search frontier. In contrast, our approach aims
at having a large repository of work, assuming that the time-out can be tuned
such that publishing the search frontier is relatively cheap. From a software
engineering point of view it is simpler, and better suited for a component-based
implementation, but from a user’s point of view, our scheme is more complicated
because it introduces a tuning factor.

In [7] a shared-memory scheme is described where first the original CSP is
split by assigning values to variables in a generate and test phase, in order that
a large set of subproblems is available. These problems are then solved in a
data-parallel way, using either a static or dynamic partitioning. We expect that
scheme to be more sensitive to load imbalance because it is possible that most
of the work is concentrated in only a few of the generated subproblems. For all
alternatives discussed here, a comparison of reported efficiency results is difficult,
because the hardware platforms and the benchmark problems used in each case
are simply too diverse.

As an alternative to implementing the time-out mechanism in the component
solver, we could move this mechanism into the glue code. It would be equally
easy to modify a constraint solver to respond to some interrupt, and somehow
an interrupt mechanism seems less alien to constraint solving than a time-out
mechanism. In both cases the solver must be able to publish the state of its
search algorithm, for which we use a character-based encoding. There are other
advantages to enabling a solver to publish its search frontier. For instance, it
allows user interaction in constraint solving, e.g. for computational steering, and
supports a mechanism for checkpoints. When the set of subproblems held by
the master process is saved to disk at regular intervals, and subproblems are not
discarded until their results have been processed, the solver can restart from the
last saved set of subproblems after, for example, a power failure has occurred.

Constraint solving was used as an example application, but our method can
probably be applied to other problems that involve tree search. This is not
surprising, because for many such problems, there exists a more or less efficient
encoding as a constraint satisfaction problem. However, some problems that
involve tree search have special requirements. For example in optimization we
try to minimize some cost function during search. This can be implemented
as a branch-and-bound algorithm, to prevent the exploration of subtrees that
cannot improve the current best value found for the cost function. Our first
goal is to adopt our method for branch-and-bound. Such an algorithm has been
studied from a coordination point of view in [13], but in our work, the emphasis
is on the component side rather than on the coordination framework, and on
the demonstration of a realistic implementation. We expect that our parallel
solver can be adapted for branch-and-bound by inserting a dedicated solver into



the loop of Figure 1, to record the best value for the cost function found for a
solution, and to filter out any nodes produced by the other solvers that will not
improve on this bound. Some special care should be taken to communicate new
bounds to other solvers.

As a further example, specialized solvers for the propositional satisfiability
problem rely on so called learning search algorithms, that derive new constraints
during the traversal of the search tree. These constraints are redundant, but
when they are made explicit they achieve a stronger pruning of the search tree.
It is not directly clear how our method should be extended to facilitate learning
solvers, and this is a subject for future research.

7 Conclusion

In this paper we proposed an implementation of parallel tree search in constraint
solving based on time-outs. Instead of a parallel algorithm, we presented and
implemented the method as a protocol for the coordination of multiple instances
of a component solver. After equipping a constraint solver with the time-out
mechanism, some 600 lines of C/MPI code were sufficient to coordinate several
of these component solvers to perform parallel search. Experiments showed that
a good speedup is obtained on 2 to 16 CPU’s, which indicates a good load
balance. We conclude that:

– The time-out mechanism is an effective way to implement parallel search in
constraint solving.

– Once a solver is able to publish its search frontier, building a parallel con-
straint solver becomes a matter of component-based software engineering.

– The OpenSolver plug-in mechanism made it very easy to meet this require-
ment.
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