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Parallel, Distributed-Memory Implementation of a
Sparse-Grid Method for Time-Dependent Advection-
Diffusion Problems

ABSTRACT

A workable approach for modernizing existing software into parallel/distributed applications is
through coarse-grain restructuring. If, for instance, entire subroutines of legacy code can be
plugged into a new structure, the investment required for the re-discovery of the details of what
they do can be spared. The resulting renovated software can then take advantage of the
improved performance offered by modern parallel/distributed computing environments, without
rethinking or rewriting the bulk of their existing code. Our approach is simple and is in fact a cut-
and-paste method. First, we try to identify and isolate components in the legacy source code
(the cut). Second, we glue them together by writing coordinator modules (glue modules) with
the help of a coordination language (the paste). We have used Manifold as the glue language.
Manifold is a general purpose coordination language developed at CWI (Centrum voor
Wiskunde en Informatica) in the Netherlands and is specially designed to express cooperation
protocols among components in component based systems. Our point of departure is an
existing sequential C code for computational fluid dynamics (CFD). This C source code deals
with a time-dependent advection-diffusion problem solved with a sparse-grid technique.
Applying our cut-and-paste method to this program results in a generally applicable coordinator
module that can restructure our sequential programs into a parallel application (i.e. it can run on
a shared memory machine) as well as a distributed application (i.e. it can run on a cluster of
workstations). We also give some performance results.
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ABSTRACT

A workable approach for modernizing existing software into parallel /distributed applications is through
coarse-grain restructuring. If, for instance, entire subroutines of legacy code can be plugged into a new
structure, the investment required for the re-discovery of the details of what they do can be spared. The
resulting renovated software can then take advantage of the improved performance offered by modern
parallel /distributed computing environments, without rethinking or rewriting the bulk of their existing
code. Our approach is simple and is in fact a cut-and-paste method. First, we try to identify and isolate
components in the legacy source code (the cut). Second, we glue them together by writing coordinator
modules (glue modules) with the help of a coordination language (the paste). We have used Manifold as
the glue language. Manifold is a general purpose coordination language developed at CWI (Centrum voor
Wiskunde en Informatica) in the Netherlands and is specially designed to express cooperation protocols
among components in component based systems.

Our point of departure is an existing sequential C code for computational fluid dynamics (CFD).
This C source code deals with a time-dependent advection-diffusion problem solved with a sparse-grid
technique.

Applying our cut-and-paste method to this program results in a generally applicable coordinator
module that can restructure our sequential programs into a parallel application (i.e. it can run on a
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1 Introduction

A key area in software modernization is renovating aging software systems to take advantage of today’s
parallel and distributed computing environments. Interestingly, not all “aging software” consists of the
dusty decks of the so-called legacy systems inherited from the programming projects of the previous
decades. A good deal of such software is still being produced today in on-going programming projects
that, for one reason or another, prefer to use a tried and true language like ANSI C with which they have
gained some expertise, rather than to struggle their way through uncharted territories of parallel and
distributed programming tools and languages such as PVM, PARMACS, MPI, or even High-Performance
C. A good deal of both categories of such software can benefit from a restructuring that allows them
to take advantage of the increased throughput offered by the modern parallel or distributed computing
platforms.

A workable approach for modernizing such existing software into parallel/distributed applications is
through coarse-grain restructuring. If, for instance, entire subroutines of legacy code can be plugged
into a new structure, the investment required for the re-discovery of the details of what they do can be
spared. The resulting renovated software can then take advantage of the improved performance offered by
modern parallel/distributed computing environments, without rethinking or rewriting the bulk of their
existing code. Our approach is simple and is in fact a cut-and-paste method. First, we try to identify
and isolate components in the legacy source code (the cut). Second, we glue them together by writing
coordinator modules (glue modules) in a coordination language (the paste). We have used Manifold as
the glue language. Manifold is a general purpose coordination language especially designed to express
cooperation protocols among components in component based systems.

Our point of departure is an existing sequential C code for computational fluid dynamics (CFD).
This C source code deals with a time-dependent advection-diffusion problem solved with a sparse-grid
technique and was developed at CWI by a group of researchers in the department of Modeling Analysis
and Simulation, within the framework of the NWO-funded project “Sparse Grid Methods for Transport
Problems”.

The developers of the program found their algorithms to be effective (good convergence rates) but
inefficient (long computing times). As a remedy, they looked for methods to restructure their code to
run on multi-processor machines and/or to distribute their computation over clusters of workstations.

Applying our cut-and-paste method to the program results in one generally applicable coordinator
module that can restructure the sequential program into a parallel application (which can run on a shared
memory machine) as well as a distributed application (which can run on a cluster of workstations).

The rest of this paper is organized as follows. In §2 we describe the sparse-grid method for a time-
dependent advection-diffusion model problem. This section can be read independently from the rest and
can be skimmed (or skipped) without problems. In §3 we give a brief introduction to the MANIFOLD
language. In §4 we present the simplified pseudo-program as distilled from the original ANSI C program,
explore its structure and try to identify and isolate its software components. This leads us to a new
concurrent scheme for the simplified pseudo-program. In §5, we describe the paste phase in the software
renovation process and present our generic gluing modules written in the MANIFOLD coordination lan-
guage. The actual restructuring of the original sequential program can be found in §6. In §7 we compare
the performance results before and after the restructuring. Finally, the conclusion of the paper is in §8.



2 Introduction to the Problem

2.1 Sparse-Grid Techniques

Systems of partial differential equations of advection-diffusion-type play a prominent role in, e.g., the
mathematical modeling of pollution of the atmospheric air, surface water and ground water. The nature
of these equations and the necessity of modeling transport over long time spans, require very efficient
algorithms. In the past, much research has been done on developing efficient solvers, tailored integrators
for stiff systems of ordinary differential equations and other time stepping techniques. This has already
led to significant progress. However, for realistic modeling, computer capacity (computing time and
memory) is still a severe limiting factor. This limitation is felt particularly in the area of global air and
water pollution modeling with its huge numbers of grid points at each of which many calculations must
be carried out. To greatly reduce the number of grid points, of course without loss of accuracy and in
combination with an appropriate, efficient time-stepping process, a so-called sparse-grid technique may
be applied. A derivation of the complexity and accuracy estimates of sparse-grid methods is given in [1].

2.2 Sparse-Grid Combination Techniques

In [2], Griebel, Schneider and Zenger show that the sparse-grid complexity and representation error can
also be achieved by the so-called sparse-grid combination technique. This technique combines solutions on
conventional grids of different mesh widths in different directions into a representation on the conventional,
full grid. The coeflicients of the combination are chosen such that there is a canceling in leading-order
error terms. The combination technique is attractive because, asymptotically, it can yield a smaller
spatial error for a given complexity than a single-grid approach can [3, 1]. Consider a problem of spatial
dimension d that is solved on a single grid with spatial discretization of order p, i.e., on a single grid
with mesh width h the spatial error is O(hP). The single-grid problem has a complexity O(h~%). With
the combination technique, a spatial error of order O(h?(logh)?~!) can be obtained with a complexity
O(h~t(log h)?~1), i.e., an asymptotically first-order complexity with only a slightly larger error than
for the single-grid approach. An advantage of the combination technique relative to the sparse-grid
technique, as introduced in [1], is that the former involves a straightforward discretization and solution of
the partial differential equations on conventional grids while the latter requires discretization through a set
of hierarchical basis functions, leading to a linear algebra problem with nearly full matrix. Convergence
proofs of the combination technique for elliptic problems are given in [3, 4], error analyses can be found
in [5]. In [6], a pointwise error analysis is given for the representation error that is inherent in the
combination technique.

In the combination technique, problems are solved on conventional grids. These problems are all
independent of each other. Therefore, the combination technique is inherently parallelizable. For a
successful parallelization, see [7]. Examples of other publications on distributed computing for sparse-
grid-type methods are [8, 9, 10, 11, 12, 13, 14, 15, 16].

2.3 The Current Sparse-Grid Combination Technique

In sparse-grid combination techniques, several solutions on different grids are combined to obtain a solu-
tion which has the accuracy corresponding to a much finer grid. The current two-dimensional combination
technique is based on a family of grids as shown in Figure 1. Grids in the family of grids are denoted by
Qb™ where superscripts label the level of refinement relative to the root grid Q%°. The mesh-widths in



z- and y-direction of Q4™ are h, = 27'H and h, = 2~™H, where H is the mesh width of the uniform
root grid Q%9 We denote the mesh width of the finest grid Q" by h. The mesh sizes h, and h, are
dependent on the particular grid Q5™ in the family of grids, A is not. In the time-dependent combination

level = 0 1 2 N=3 Notation Description
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finest grid of mesh width £ =2_NH

semi-coarsened grid, of mesh widths
h=2"H and hy=2"" H

continuous, exact solution

restriction operator that maps onto Qhm

prolongation operator that maps onto QNN

o . . l,m
semi-discrete approximate solution on 2

W

Figure 1: Grid of grids.

technique the initial profile u(x,y, 0) is restricted, by injection, to the grids Q¥-0, QN-L1 ... Q0N and
to QN-LO QN=21 ... Q0N=1 Then, independent of each other, these rather coarse representations are
all integrated in time. Next, at a chosen point in time, the coarse approximations are prolongated with
g-th order interpolation onto the finest grid Q" where the integrated solutions are combined to obtain
a more accurate solution. The notation is summarized in Figure 1.

Starting from the exact solution u, the combination technique as introduced in [2] constructs a grid

function #¥" on the finest grid Q™" in the following manner:
av N = " pNNRbmy N pNNREmy, (1)
l+m=N I+m=N—-1
The corresponding so-called representation error vV is
PN =g N _ pN.Ny, (2)

Analogously, assuming exact time integration and semi-discrete solutions U™ resulting from a spatial
discretization, the combination technique constructs an approximate solution U™'" on the finest grid
QNN from the coarse-grid approximate solutions according to

ﬁ'N,N _ Z PN7NUl7m . Z PN7NUl’m. (3)
l+m=N l+m=N-1

Let d"™ denote the discretization error on grid Q5™ i.e.,

dbm = yhm — Rbmy, (4)



Then the total error eV = UNN — RN:Ny in NN ig written as

NN NN JN,N, (5)

IN,N _ ij,N —_aV

where the combined discretization error d N is given by

(’17V,N _ Z PN’Ndl’m . Z PN,Ndl7m' (6)
l+m=N l+m=N-1

N,N

In [6] the representation error r is analyzed. In [17], a detailed derivation is given of the combined

discretization error d¥-N for pure advection problems, and in [18] for advection-diffusion problems.

2.4 The Current Time Integration Method

Here, time integration is done implicitly, with the Rosenbrock solver ROS3. This scheme is a variation
to the ROS2 scheme presented in [19] and belongs to a family of schemes discussed on p. 233 of [20].
The ROS3-scheme is third-order accurate and A-stable. Because our spatially discrete problems are stiff
due to the diffusion term, A-stability is a desirable property. The ROS3-scheme is factorized such that
the third-order accuracy is preserved. In the current work we use directional factorization, separating
the horizontal and vertical coupling. This leads to attractive savings in the required computational work
since it reduces the two-dimensional linear algebra to one-dimensional linear algebra. The step size of
the ROS3-scheme is controlled such that the solution error is fixed at some tolerance during the time
integration. For further details about the scheme we refer to [18] and also to [21].

2.5 The Model Problem

We consider the constant-coefficient advection-diffusion equation
U + Uy — € (Ugz + Uyy) =0 (7a)

on the spatial domain [—1,1] x [-1,1] and take u(x,y,0) = 0 as initial solution. As boundary conditions
we impose

0, y<o0
u(-Ly,t) =< 2, y=0, wuy(z,£1,¢)=0, u(l,y,t)=0. (7b)
1, y>0
For ¢ = 1072 the solution at t = 1 is shown in Figure 2. It possesses a horizontal and a vertical

grid-aligned solution layer. The thickness of both layers is proportional to 1/ as € — 0.

3 The Manifold Coordination Language

3.1 An Overview

In this section, we give a brief overview of MANIFOLD'. MANIFOLD is used to develop concurrent

software, regardless of whether it runs on a parallel or a distributed platforms. MANIFOLD is not a

1For more information, refer to our html pages located at
http://www.cwi.nl/projects/manifold /manifold.html.
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Figure 2: Solution of model problem 1 at ¢t = 1 for € = 0.01.

parallel programming language; it is a coordination language as opposed to a computation language [22].
MANIFOLD is a complete language (as opposed to a language extension, like Linda [23]) for programming
the cooperation protocols of concurrent systems. These protocols describe the routing of the information
between various processes that comprise a concurrent application, and the dynamic changes that take
place in such routing network in reaction to events.

MANIFOLD is based on the IWIM (Idealized Worker Idealized Manager) model of communication [24].
The basic concepts in the IWIM model (and thus also in MANIFOLD) are processes, events, ports, and
channels (in MANTFOLD called streams). In IWIM, a process can be regarded as a worker process or
a manager (or coordinator) process. An application is built as a (dynamic) hierarchy of worker and
manager processes. Lowest in the hierarchy are pure worker processes that do not do any coordinating
activities. Highest in the hierarchy are pure coordinators. A process between the lowest and highest level
may consider itself a worker doing a task for a manager higher in the hierarchy, or a manager coordinating
processes lower in the hierarchy.

Programming in MANIFOLD is a game of dynamically creating process instances and (re)connecting
the ports of some processes via streams (asynchronous channels), in reaction to observed event occur-
rences. Its style reflects the way one programmer might discuss his interprocess communication appli-
cation with another programmer on a telephone (let process a connect process b with process ¢ so that
c can get its input; when process b receives event e, broadcast by process ¢, react to that by doing this
and that; etc.). As in this telephone call, processes in MANIFOLD (in this case b and ¢) do not explicitly
send or receive messages to or from other processes. Processes in MANIFOLD are treated as black-boxes
that can only read or write through the openings (called ports) in their own bounding walls. It is the
responsibility of a worker process to perform a (computational) task. A worker process is not responsible
for the communication that is necessary for it to obtain the proper input it requires to perform its task (it
simply reads this information from its own input port), nor is it responsible for the communication that
is necessary to deliver the results it produces to their proper recipients (it simply writes this information



to its own output port). In general, no process in IWIM is responsible for its own communication with
other processes. It is always the responsibility of a third party—a coordinator process or manager—to
arrange for and to coordinate the necessary communications among a set of worker processes. This third
party sets up the communication channel between the output port of one process and the input port of
another process, so that data can flow through it. This setting up of the communication links from the
outside (exogenous coordination) is very typical in MANIFOLD and has several advantages. One impor-
tant advantage is that it results in a clear separation of the modules responsible for computation (the
workers) from the modules responsible for coordination (the managers). This strengthens the modularity
and enhances the re-usability of both types of modules (see [25, 24, 26]).

A MANIFOLD application consists of a (potentially very large) number of processes that run as threads
bundled up (automatically or under user control) in one or more operating-system-level processes (called
task instances in MANIFOLD). The different task instances in a MANIFOLD application can run on a
network of heterogeneous hosts, some of which may be parallel systems. Processes in the same application
may be written in different programming languages. Some of them (the so-called non-compliant atomic
processes) may not know anything about MANIFOLD, nor the fact that they are cooperating with other
processes through MANIFOLD in a concurrent application.

The MANIFOLD system consists of a compiler called Mc, a runtime system library, a number of
utility programs, libraries of built-in and predefined processes [27], a link file generator called MLINK
and a runtime configurator called CONFIG. MLINK uses the object files produced by the (MANIFOLD
and other language) compilers to produce link files needed to compose the application-executable files for
each required platform. At the runtime of an application, CONFIG determines the actual host(s) where
the processes that are created in the MANIFOLD application will run.

The system has been ported to several different platforms (e.g., IBM RS60000 AIX, IBM SP1/2,
Solaris, Linux, Cray, and SGI). The system was developed with emphasis on portability and support for
heterogeneity of the execution environment. It can be ported with little or no effort to any platform
that supports a thread facility functionally equivalent to a small subset of the Posix threads, plus an
inter-process communication facility roughly equivalent to a small subset of PVM [28].

The MANIFOLD system automatically takes care of the data conversion necessary for communication
in a heterogeneous environment. These conversions are only done when the receiving process really
attempts to use the data. When data are simply to be passed on to another process on another machine,
conversion is not necessary and does not take place.

The MANIFOLD terminology is given in the next section. It is beyond the scope of this paper to
present all the details of the syntax and semantics of the MANIFOLD language. For that we refer to [27].

3.2 The Terminology

Coordination processes are always written in the MANIFOLD language and are called manifolds. A
manifold definition is a process type, a template from which we can make process instances (i.e., manifold
processes). It consists of a header and a body.

The header of a manifold begins with keyword manifold, followed by its name, the number and types
of its parameters, and the names of its input and output ports that are used for information exchange
with other process instances.

The body of a manifold definition can be written in the MANIFOLD language (in which case the body
is a block), or as an ordinary C function. A manifold whose body is a block is called a regular manifold.
When its body is written as a C function it is called an atomic manifold. Atomic manifolds interface
with the MANIFOLD world through a special ANSI C interface library.



The inner logic of a block is always expressed in terms of an event driven finite state machine. In
this machine, a finite number of states are defined, each defining a sequence of actions. An event in
MANIFOLD is considered as an atomic message, broadcast by a manifold process in its environment
or internally posted within the manifold process itself. Occurrences of broadcast events can be picked
up by MANIFOLD processes in this environment (i.e., by all running processes in the same MANIFOLD
application) in which case they are stored in their private event memories. Based on the events found in
its event memory and some other conditions (see below) the finite state machine of the manifold process
jumps from one state to another and performs its associated actions. Because, initially, there is a high
priority event, named begin, available in the event memory of a process instance, the first state visited
in a state machine (thus in a block) is the so-called begin state, and its actions are performed. This
event driven jumping from one state to another goes on and on until the state machine arrives in some
termination state.

Syntactic Structure of a Block

Syntactically a block consists of an optional local declaration part followed by a finite number of states
(at least the begin state should be present). It is easy to recognize a block because it is always placed
between a pair of curly braces (the symbols { and }).

In the local declaration part of a block, we can declare events (we want to use in that block), we can cre-
ate (and activate) process instances from manifolds by using the syntactic construct process process_name
is manifold name, and we can use declarative statements like save, hold, ignore, and priority (we
explain their meaning later as we need them) and more.

Each state has a state label and state body separated by a colon. The label of a state defines the
necessary condition under which a transition to that state is possible. It is an expression that can match
observed event occurrences in the event memory of the manifold instance. The simplest state label is the
name of an event. If we have an event with name x in the event memory of the executing manifold and
we have a state with the state label x, then the necessary condition for a state transition to the x state
(i.e., the state with the state label x) is fulfilled. Whether or not the state transition really takes place
depends also on two other conditions as we will see below. The body of a state can be:

a) a block
b) a control structure

¢) a pipeline

Transition to a state whose body is a block causes the running process instance to enter the block and
make a transition to its begin state. Because we are already in a block, this action results in a nested
block. Blocks can be nested arbitrarily deep. Note that with the possibility of nested blocks we can set
up our state machine in a modular way as a set of substate machines (as we will do), each with its own
scope rules (indicated by its braces of the blocks). Because of the possibility to use nested blocks, states
to which we jump are not necessarily always found in the current block. State transition to states in
ancestor blocks of the current block are also allowed. All state transition rules in MANIFOLD are well
defined and are intuitive as we will see later when we explain the source code.

All familiar control constructs like conditional “if” constructs, loop constructs, and the “this after that”
operator “;” are available in the MANIFOLD language. All these constructs are constructed out of the



standard block and event handling mechanisms of the MANIFOLD language. Syntactically a control
construct is equivalent to a block.

A pipeline is syntactically one of the following four constructs
1) an expression
2) a primitive action
3) a connection specification of processes
)

4) a number of pipelines separates by commas and enclosed in a pair of parentheses forming a so called
group.

An expression is a sequence of actions that, optionally, yields a single value. The value of an expression,
if any, is a process, a port of a process, a manifold, an event, or a manner call (see below).

The primitive actions are the basic operations in MANIFOLD. The most important (primitive) actions
we can perform in pipelines are (1) creating and activating process instances, (2) broadcasting events
(with the action raise) or putting them in a process’ own event memory (with the action post), (3)
connecting processes to each other by setting up streams among their ports (by the action denoted by
the arrow —>) (see below).

In its most simple form a connection specification of processes looks like a -> b, where a and b are
process names. With this notation we denote that the (the output port) of process a is connected to the
(input port of) process b by the primitive action denoted by the arrow, so that data produced by process
a can flow to the consumer process b.

Manners

A manner is a parameterized subprogram that optionally can return a value. Just like a manifold, a
manner also consists of a header and a body. As for the subprograms in other languages, the header of
a manner essentially defines, after the keyword manner, its name and the types and the number of its
parameters. In the same way as with a manifold body, a manner body can also be written as a block
or as an ordinary C function. A manner whose body is a block is called a regular manner. When its
body is written as a C function, it is called an atomic manner. The atomic manners interface with the
MANIFOLD world through the same ANSI C interface library used by atomic manifolds. Upon transition
to a state whose body is a manner, a running manifold process creates a new invocation of the manner
and enters the block that constitutes the body of the manner. When this body is a block its sub-state
machine takes over the control. When this body is a C function this function executes and returns.

Semantics of a Pipeline

A pipeline is a construct that defines:
e a set of manner calls to be executed upon a transition to the state that contains it;
e a set of primitive actions to be performed in that state;

e a set of processes as the ones whose events can pre-empt the pipeline (pre—emptive sources, see
below); and

10



e the termination condition for the pipeline (see below).

Transition to a state whose body is a pipeline causes the running process instance to construct the
pipeline. The construction of a pipeline means that all actions specified therein are performed to their
completion. When a particular primitive action is considered as being done (complete), then this is
clearly given in its description in the reference manual [27]. A pipeline is constructed upon transition
to its corresponding state. The construction of a pipeline is considered to be an atomic activity (i.e., it
cannot be interrupted or interleaved). Because all values used in a pipeline must be evaluated before it
can be constructed, all manner calls (with or without a return value) in a pipeline are performed during
its construction.

A pipeline (and the state that contains it) becomes pre-emptable once it is fully constructed. This
means that occurrences of events can cause a transition out of the current state (that contains the
pipeline), into another state. When this happens, the current state is said to have been pre-empted (i.e.,
we are kicked out of it). An event occurrence can cause a transition out of the current state only when
the following three conditions are satisfied.

e The pipeline must be pre-emptable (thus it must be fully constructed).
e The event occurrence must match with one of the labels of other states.

e The events must come from a source that belongs to the so-called set of the pre-emptive sources
of the pipeline. The pre-emptive sources of the pipeline are the processes used in some way in
the pipeline (e.g., processes mentioned in its expressions, or processes used as parameters in its
primitive actions).

Termination of a pipeline (see below) is a special case of pre-emption and thus can happen only after
it becomes pre-emptable.

Units can flow through the stream connections made in a pipeline only after it is constructed. Specifi-
cally, all streams defined in a pipeline must be created and/or connected before any units can flow through
any one of the new connections made in the pipeline.

By definition, a pipeline terminates (1) when all streams it constructs or connects are broken (on
at least, one end; see [27] for the details about when a stream connection breaks) and (2) all processes
mentioned as parameters of the primitive action named terminated, have been terminated.

Pre-emptability and termination of a state whose body is a pipeline is determined by the pre-
emptability and termination of its pipeline. Thus saying “the pipeline of state x is pre-empted” is
the same as saying “state x is pre-empted”. The same goes for termination.

Pre-emption of a pipeline pre-empts all of its streams (i.e., the streams are dismantled in some way
depending on their types).

Sequential Composition of State Bodies

In MANIFOLD we can use the semicolon to separate different state bodies to construct a single composite
state body. We do this frequently in our source code. The syntax of such a state is

“state_label: body-1; body-2; ... etc.”

and its semantics is “switch to this state (and dismantle the previous one) when the conditions for
transition are satisfied and execute the state bodies one after the other”. However, this sequential
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composition is done in a special way. Once the first body is complete the whole state becomes pre-
emptable. Thus, when the conditions for transition to another state are satisfied, we do not perform the
second state body, but instead jump to that other state.

4 The Cut

In this section we explore the structure of the ANSI C program. The program consists of a data definition
section, a main program and some 33 subroutines with a total length of some 3500 lines. Instead of its full
source code, we give only the relevant part of the C code for the sparse-grid method, viz., a schematized
version of the main program, and the subroutine subsolve. With this small part of the C code we can
explain the essential implementation aspects of the sparse-grid method, as well as its actual restructuring
into a concurrent application.

/* SeqSourceCode.c */

int root, level;
double le_tol;

/* Declaration of the huge global data structure (arrays) */

/***************‘k*****************‘k*****************/
int main (int argc, char *argv[])
{

int i, j, 1m, 1;

1
2
3
4
5
6
7
8
9
10
11
12
13 /* Root level (i.e. refinement level of coarsest grid) */
14 root = atoi(argv([l]);

15 /* Additional refinement above the root level */

16 level = atoi(argv[2]);

17 /* The tolerance of the integrator. */

18 le_tol = atof(argv([3]);

19

20

/* Initialization data structure and some initial computations */

22 /* The heavy computational work */
23 for (lm = level - 1; 1lm <= level; lm++) { /* loop over the grid level */

24 for (1 = 0; 1 <= 1lm; 1++) { /* loop over the grids belonging to a certain grid level */
25 subsolve(l, 1lm-1);

26 }

27}

29 /* Prolongation work */

37, cen

R A Y
34 void subsolve (int 1, int m)

{
36 /* Heavy computational work on grid (1, m) */

39 /* The results are stored in the global data structure */

On lines 3-6, some global variables are declared followed on line 6 with the actual global data structure
that contains the grid data. On lines 13-18 the global variables declared on lines 3-6 are set with values
read from the command line at the time the program is executed. After that, the program continues with
initializing the data structure and with some initial computation (line 20).

After this a nested iteration starts (the nested for-loop on lines 22-27) in which the subroutine
subsolve is called. In this nested loop the grids on the main diagonal Q™0 QN-11 ... Q0N and
the grids on the subdiagonal QN—10 QN=21 ... QON—1 of Figure 1 are all visited and on each of
these grids (a grid is specified by two integers; see the two integer arguments of subsolve on line 25)
the subroutine subsolve is performed. subsolve is a very computing intensive routine. In this routine
a linear system of equations (Ax = b) is solved for every time step. Moreover, this A matrix must be
built up in the program which takes a long time. Also the adaptive time step in the time integrator (the
Rosenbrock solver) is something that must be computed again and again.
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After the nested loop, the coarse approximations on the grids laying on the above mentioned main
diagonal and subdiagonal are known and are prolongated on line 29 onto the finest grid QN (i.e. the
lower right corner of Figure 1) to obtain a more accurate solution for it. With this the program comes
to an end.

Because it is our aim to restructure this ANSI C program into a concurrent (parallel or distributed)
structure we have special interest in the subroutines which possess concurrent properties. In general, we
can say that every grid subroutine with the property that it reads and writes data only from and to its
own grid, can be restructured to run concurrently. In our program it turns out that subsolve has this
property and because it is also very computing-intensive, it is a good candidate to run concurrently on
all the grids to be visited in the nested for-loop.

A simple way to restructure our sequential ANSI C program into a concurrent one is to introduce a
workers-pool (containing a number of workers) when we arrive at the heavy computations that can be
done concurrently. Each worker in the workers-pool performs the same operation subsolve on a different
data segment of the global data structure independently of the others. In a program built according to
this scheme, none of the computational processes actually runs concurrently until it reaches a concurrent
region. Then the multiple workers (i.e., the parallel or distributed threads) in the workers-pool begin,
and the program runs concurrently. When the program exits the concurrent region, only one single
computational process continues (now we run sequentially) in which the prolongation work is performed.

In the next section we explain how we have organized the restructuring of the sequential program into a
parallel /distributed program by a master/worker protocol and discuss its implementation in MANIFOLD.

5 The Paste

As explained in §4, the crux of our restructuring is to allow the computations done in subsolve on every
single grid visited in the nested loop, to be carried out in a separate process. These processes can then
run concurrently in MANIFOLD as separate threads executed by different processors on a multi-processor
hardware (e.g., a multi-processor SGI machine), or in different tasks on a distributed platform (e.g., a
network of workstations), or a combination of the two.

We have organized the restructuring according to a master/worker protocol in which the master
performs all the computations in the sequential source code except the work embodied in subsolve,
which is done by the workers. In MANIFOLD, we can easily realize this master/worker protocol in
a generic way, where the master and the worker are parameters of the protocol. In this protocol we
describe only how instances of master and worker process definitions should communicate with each
other. For the protocol, it is irrelevant to know what kind of computation is performed in the master or
the worker. What is indeed important for the protocol is that the input/output and the event behavior
of the master and the worker comply with the protocol. E.g., the master should write the data needed
by the worker to its own output port and the worker, connected by a third party (a manager) to this
port, should read this information from its own input port. Furthermore, according to this protocol, the
coordinator can create a worker only when the master raises an event to request for its creation.

We give an informal description of this Master/Worker protocol in §5.1 followed by its actual imple-
mentation in §5.2. In §5.3 we give a stepwise description of the behavior interface of the master and
worker.
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5.1 The Glue

The master/worker protocol we use can be described as follows. In a coordinator process we create and
activate a master process that performs all computations in the main C program of the sequential version,
except the computation to be carried out by subsolve.

Each time the master arrives at the point where it has to do the subsolve work, it delegates this work
to a worker in a workers-pool. The master makes its wish known to the coordinator by raising an event
(create_pool)?. The coordinator reacts to this event by jumping to a state where it waits for requests
coming from the master to create a worker for the workers-pool. Each time the master needs another
worker for the workers-pool it raises an event (create worker) to signal the coordinator to create one.
Because the master wants to use the worker, it needs to know its identity. The coordinator makes this
identity available to the master by sending its reference via a stream. The master waiting for its workers,
receives a worker reference, activates it and takes care that the worker receives all necessary information
so that it can do its job. The master writes this information on its output port which is connected by
the coordinator to the input port of the worker, so that the latter can read it from this port. In this way,
a pool of workers, created by the coordinator, is set to work by the master, each worker performing a
relaxation computation. Before the master can continue its work, it must wait until all the workers are
done with their relaxations and are ready to die, which they signal by raising an event (dead_worker).
The master does not want to count those events by itself, but delegates the organization of this rendezvous
(i-e., a synchronization point) by raising an event (rendezvous) to signal the coordinator to make the
proper arrangements. In the meantime, the master takes a nap and waits for the event (a_rendezvous)
raised by the coordinator (which is now responsible for counting the dead _worker events) to acknowledge
the successful rendezvous. After this rendezvous, the master reads from its input port the computational
results of the workers. This is made possible by the coordinator which has set up a stream between
the output port of each worker and the input port of the master. Hereafter, the master proceeds with
prolongation work and is done.

5.2 The Implementation of the Gluing Modules

The MANIFOLD source code of our master/worker protocol is given below.

1 // protocolMW.m

g #include "MBL.h"

é #include "rdid.h"

g #include "protocolMwW.h"

g #define IDLE terminated(void)

11 /********************************‘k**************************************/
12 manner Create_Worker_Pool(progess master <input, dataport | output, error>,

13 manifold Worker(event) )

15 save *.
16 ignore death.

18 auto process now is variable(0).
19 auto process t is variable(0).

21 event death_ worker.
23 priority create_worker > rendezvous.
25 begin: (MES("begin"), preemptall, IDLE).

27 create _worker: {
28 hold Worker.

2We give the names of the events as used in the MANIFOLD source code (see §5.2) in parentheses.
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process worker is Worker(death_worker).
stream KK worker -> master.dataport.
begin: now = now + 1;
(MES ("create_worker: begin"),
&worker -> master -> worker -> master.dataport, IDLE).

}.

rendezvous: {
begin: (preemptall, IDLE).

death_worker: t = t + 1;
if (t < now) then (
post (begin)
) else (
post(end)
}.

end: (MES('"rendezvous acknowledged"), raise(a_rendezvous)).
/**************‘k*****************‘k**************************************/
export manner ProtocolMW(process master <input, dataport | output, error>,

manifold Worker(event) )

{

save *.

begin: terminated(master).

create_pool: Create Worker_Pool(master, Worker); post(begin).

finished: halt.

First we make some remarks about the syntax of the code in §5.2.1 and in §5.2.2 we describe how it

runs.

5.2.1 Syntax of the Gluing Code

Looking syntactically at the source code and using the MANIFOLD terminology explained in §3.2 we
observe the following:

e The source code describes two regular manners named respectively Create Worker Pool (lines 11-

51) and ProtocolMW (lines 53-64). There are no manifolds defined in this source file.

In the header of Create Worker Pool (lines 12-13) we see that it has two parameters. The first
parameter is a process named master which has besides the normal standard ports (input, output,
error) also a port named dataport. The second parameter is a manifold named Master (note the
capital) and has an event parameter.

In the header of ProtocolMW (lines 54-55) we also see these two parameters.
The body of Create_Worker_Pool (lines 14-51) consists of a local declaration part (lines 15-23) and

four states (lines 25-50) namely the begin state (line 25), the create_worker state (lines 27-37),
the rendezvous state (lines 39-48) and the end state (line 50).

In the local declaration part, we see the two declarative statements save and ignore on lines 15
and 16, and the creation of process instances now and t (lines 18-19) using the syntactic construct
process process_name is manifold name. Further, we see an event declaration (line 21) and an
event priority declaration (line 23).

The body of the begin state is a pipeline.

The body of the create worker state is a block that has its own local declaration part with three
declarations on lines 28, 30 and 32. The block has only a begin state (lines 34-36), whose body
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consists of two pipelines to be constructed sequentially (see the semicolon on line 34). The first
pipeline is after the colon on line 34 and the second one is on lines 35-36.

The body of the rendezvous state is also a block but it does not have a local declaration part.
This block has two states, namely the begin state (line 40) and the death worker state (lines
42-47). The body of this begin state is a pipeline. The body of the death_worker state consists of
a pipeline (specified after the colon on line 42), followed by an “if” construct (lines 43-47).

The body of the end state consists of a pipeline.

The body of ProtocolMW (lines 56-66) consists of a local declaration part (lines 57-59) (with two
declarations) and has three states (lines 61-65), namely the begin state (line 61), the create pool
state (line 63), and the finished state (line 65). The bodies of all these states are pipelines.

Note that in the create_pool state (line 63) the Create_Worker_Pool manner is called.

e The text on line 1, starting with // and denoting the name of the MANIFOLD source file, is a
comment and is ignored by the MANIFOLD compiler.

e In the MANIFOLD language we can group all commonly used definitions of manifolds, manners,
events, etc., inside a so called header file and simply include this file, in the same syntax as that of
the ANSI C pre-processor, in any program that needs to use those definitions.

On line 3 we include the file MBL.h which contains the definitions of MANIFOLD built-in library.

On line 5 we include the file rdid.h which contains the definitions of some manners we use to print
messages from independent running processes on the computer screen in an ordered way.
On line 7 we include the header file ProtocolMW.h (see its contents below) which contains the

definitions of our protocol manner ProtocolMW (lines 3-4) and some global events (line 5) we use
in the file ProtocolMW.m.

1 // protocolMW.h

2

3 manner ProtocolMW(process master <input, dataport | output, error>, manifold Worker(event) ) elsewhere.
4

5

extern event create_pool, create_worker, rendezvous, a_rendezvous, finished.

e Line 9 defines a pre-processor macro in the same syntax as that of the ANSI C pre-processor.

e The keyword export in front of the manner ProtocolMW (line 54) states that this manner can be
used in other source files which import this MANIFOLD definition.

5.2.2 The Gluing Code at Work

In this section we explain the internal working of the state machines of the master /worker protocol. From
the informal description of the master/worker protocol in §5.1 we already known that the master and
the worker communicate via the events defined in the header file protocolMW.h. Because the master and
worker manifolds are implemented as C functions and the fact that the events defined in the header file
are meaningful only in the MANIFOLD world, we must make them available in the C world as well. In the
task instance of the master we do this using a routine defined in the MANIFOLD application programmers
interface library. For the worker we do it via its parameter list, because a worker must be able to run as
a remote worker. We make the events available under the same names as used in the header file.
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To clarify the way they co-operate with each other following the master /worker protocol protocolMw,
in this section we provide cross-references to the source code lines of the master and the worker within
parentheses.

We first discuss the manner ProtocolMW (lines 54-64) followed by the manner Create Worker Pool
(lines 12-51) which is used by the former.

The actual manifold (named Main) that does the restructuring of the sequential source code invokes
(as we see in §6.2) the ProtocolMW manner in its begin state. As a result, we enter the block of this
manner (lines 56-64). Upon entering a block, the statements in its local declaration part are performed.
In this case the only statement in this part is the save which states that we can switch only to states in
this block (i.e., the begin, create pool or finished states respectively on lines 59, 61 and 63). Other
possible event occurrences are saved and can be handled (if necessary) outside this block.

After performing the local declaration part of the entered block the MANIFOLD run-time system
automatically posts an occurrence of the predefined high-priority event begin in the event memory of the
caller (as we will see this is main in §6.2) which causes a transition to the begin state. There must always
be a begin state (i.e., a state with a single begin as its label) in every block. This insures that upon
entering a block, at least this one state can be visited (i.e., the actions in its state body are performed),
regardless of any other event occurrences that may or may not be present in the event memory.

In the begin state (line 61) we wait until the already active process instance master (received as
parameter on line 54) terminates. Because we have mentioned master (as an argument of the terminate
primitive) in the state body, we also make this state sensitive to events that are raised by master. Because
master does not terminate, the net result of the action in the begin state is that we wait there until there
is an event occurrence for which we have a matching event label. Because master, which is a process
wrapper around the C code (excluding the subsolve work), arrives after some sequential computational
work (initialization) at the point where it has to do the work embodied in subsolve, it raises an event
named create_pool to signal that it needs a workers-pool to delegate that work to (master: 4(a)). This
event pre-empts the begin state and causes a transition to the create pool state (line 61). In this
state the manner Create Worker Pool (lines 11-51) is called with the process instance master, and the
manifold Worker (which the protocol manner ProtocolMW itself has received as a parameter on lines
54-55) as its actual parameters.

The manner Create_Worker_Pool conducts the workers in the pool and takes care that they can do
their computations properly. When the workers in the pool are done, they die and the manner returns.
Afterwards (denoted by the semicolon on line 61) we post the begin event so that we jump again to the
begin state (line 61) where we wait for events. Another event will arrive soon because the master raises
the event finished (master: 5) to denote that it does not need workers anymore. This causes a jump
to the finished state (line 63), where the primitive action halt effectively returns the flow of control
from the manner to its caller. The master is still running and is also done after performing the final
prolongation computations.

The manner Create Worker_Pool (lines 11-51) called on line 61 works as follows. Upon entering its
block, first the statements in its local declaration part are performed (lines 15-23).

Line 15 is a declarative statement which states that we can switch only to states specified in this block
(lines 14-51).

Line 16 is another declarative statement which states that death events can be removed from the
event memory of the executing manifold instance, upon departure from the block (at line 51).

On lines 18-19 we create and activate two process instances, respectively named now and t, of the
predefined manifold variable (defined in the MANIFOLD built-in library), and initialize them with 0.
We use these variables respectively for counting the number of created instances of the Worker manifold
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(we count them on line 34 with now which is a mnemonic for Number Of Workers) and for counting
the number of dead workers (by counting their death_worker events on line 42). Note that, MANIFOLD
obviously knows only processes; there are no data structures in MANIFOLD, not even the simplest kind,
a variable.

On line 21, a local event named death worker is declared.

Because it can happen that both events create_worker and rendezvous are available in the event
memory of the executing manifold instance that calls this manner, we state with the priority declarative
statement that jumping to the create_worker state has a higher priority than jumping to the rendezvous
state.

The first state we visit in this manner is the begin state (line 25). There, we do the following: we
print the message "begin" on the screen to indicate that we are in this state; we state by the primitive
action preemptall that all events for which we have a handling state label can pre-empt the begin state;
and we wait (due to the word IDLE) for the termination of the special pre-defined process void. In the
MANIFOLD language we express this by terminated(void) as can be seen from the meaning (line 9) of
the IDLE macro (line 25). Because the special process void never terminates, this effectively causes a
hang in the begin state until it detects an event in the event memory of the process instance where this
manner is invoked and for which it has a state label. An event will come soon, because master is expected
to raise the event create_worker every time it wants another worker in the workers-pool (master: 3(b)).
This event pre-empts the begin state and causes a state transition to the create_worker state.

In the create_worker state (lines 27-37) a number of workers are set to work in a workers-pool. The
body of this state is a block. In its local declaration, we use the hold statement on line 28 so that we can
handle events coming from Worker instances outside the scope in which those instances are known (we
intend to count their death_worker events in the rendezvous state on line 42); otherwise, the instances
of Worker are known only in the block in which they are defined (lines 27-37). On line 30, we create a
process named worker and pass it to the local event death_worker declared on line 21.

The death worker event is an event the worker must raise to inform the manner Create Worker Pool,
that it finished its job and is going to die (worker: 4).

The declarative statement on line 32 states that all stream connections between the output port of
worker and the input port of the master (this input port is named dataport) must be of type KK (i.e.,
Keep-Keep). When streams of this type are used in a state they are not dismantled (i.e., disconnected
from their sources and sinks) once the state is pre-empted. Normally, streams are BK (i.e., Break-Keep)
streams which means that the stream is disconnected from its producer automatically, as soon as it is
disconnected from its consumer, but disconnection from its producer does not disconnect the stream from
its consumer.

In the begin state of the state create_worker, the stream configuration on line 36 is constructed
and we wait for events (due to the word IDLE) from the master (create_worker and rendezvous are
possible events). In the stream configuration we see that the process identification of worker (denoted
by &worker) is sent through a stream (the first — on line 36) to the already active master. The master
receives this reference to worker and sends all the information worker requests through a stream (the
second — on line 36) to worker. The worker process promptly reads the information it receives from
master (worker: 1), does its job (worker: 2), and sends its computed results (worker: 3) through a stream
(the third — on line 36) to the dataport port of master (denoted by master.dataport). The master
process reads this and stores the results in the global master space (master: 3(f)). Due to the word IDLE
(line 36) we stay in the state on line 34 until master again raises a create_worker event. This event
pre-empts this begin state (line 34) which dismantles the streams in this state and causes a transition
to the create_worker state where the whole sequence starts again. Dismantling of the streams means,
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in this case, that all the streams on line 36 are broken at their sources (because they have the default
type BK) with the exception of the stream for which the worker is the source; this stream is KK (see line
32) and must stay intact because when the worker is a remote worker this stream is used to transport its
computed results to the master. This is how all workers are created and set to work in the pool.

The next event to be handled is the rendezvous event. This event is raised by master (master: 3(g))
after it reads the computed results of the remote workers (master: 3(f)) and causes a transition to the
rendezvous state which has two (sub)states: the begin state (line 40) and the death_worker state (line
42). In its begin state, we wait for the death_worker events. Each time a death_worker is detected, it
is counted (line 42). As long as we have fewer death_worker events than the number of created workers
(i-e., the value of now on line 34) we post the begin event (line 44) which causes a transition back to the
begin state (line 40) where we wait for other death worker events. Otherwise, we post end (line 46)
which causes a state switch to the end state (line 50). In this state we print a message on the screen,
raise the event a_rendezvous, and the Create_Worker _Pool manner returns.

Note that the coordination scheme in ProtocolMW can also handle a more demanding master. Just
imagine that we a have master that instead of raising finished wants to introduce another workers-pool
to delegate some work to. It could easily raise the event create_pool to denote that, in which case we
jump again to the create_pool state and another pool is created. In [8] we have exploited this facility
in a slightly different master/worker protocol.

5.3 Behavior of Master and Worker

The behavior of the master is given below. The line numbers between parentheses in this section refer
to the MANIFOLD source code protocolMW.m in §5.2.2. Moreover, we refer to the process instance that
invokes the protocolMW manner, as the coordinator (i.e., the instance of the manifold Main (line 13) in
§6.2).

1. Make the extern events defined in the header file protocolMW.h available to the master so that it
can communicate with protocolMW in protocolMW.m.

2. Perform some initialization work (optional).

3. Perform some work concurrently by creating a pool of workers and charge each with a computational
job. Do this as follows:

(a) Request a coordinator process to create an empty pool of workers by raising the create_pool
event (line 63).

(b) Request this coordinator process to create a worker in this pool by raising the event
create_worker (line 27).

(c) Read a unit containing the process reference (identification) of a created worker from your
own input port and activate it. (This unit, &worker, is sent through the first stream (->) on
line 36 in protocolMW.m to the master).

(d) Write the information, which the worker needs to do its job, on your own output port.

(e) Repeat steps a, b, ¢ and d for each worker as needed. (In this way a pool of workers is created
and set to work.)

(f) Collect the computational results from the workers (read those results from your own input
port)
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4.

o.

(g) Raise the event rendezvous to request the coordinator to organize a rendezvous (line 39).

(h) Wait for the event a_rendezvous raised by the coordinator to acknowledge a successful ren-
dezvous (line 50).

Repeat step 3 as many times as needed and raise at the end of this repetition the event finished
(line 63) to inform the coordinator process that the master does not need workers anymore.

Perform some final sequential computations (optional).

The behavior of the worker is described below. Here, the death_worker event is introduced via the
first argument of the worker.

1.
2.

6
6.1

Read the information you need to do your job, from your own input port.
Do the computational job.
Write the computed results to your own output (master: 3(f)).

Raise the event death_worker to signal to the coordinator that you are done and are going to die
(line 42).

The Restructuring
The Actual Master and Worker Manifolds

From the description of the master/worker protocol it is clear that we have to adapt the main routine
and the subsolve routine of the sequential source code (line 9 and line 34 in §4) in such a way that they
comply with the behavior of respectively the master and the worker as described in §5.3. In fact, this is
all we have to do. All the other subroutines (31 in total) in the sequential source code are left untouched.
The adapted routines can run as atomic processes, i.e., as separate threads (light-weight processes [29])
within operating-system level processes. The master and worker manifolds (written as atomic processes)
are in fact C wrappers around the original C subroutines of the sequential version. In the source code
below we give the new versions of main and subsolve.

/* ResSourceCode.c */
#include "adid.h"

#include "AP_interface.h"
#include "ResSourceCode.h"

int root, level;
double le_tol;

/* Declaration of the huge global data structure (arrays) */
AP_Event create_pool, create_worker, rendezvous, a_rendezvous, finished;

[k o ok ok ko ok ok ok ok ok ok ke ok ok ok ok ke ko ko ko ko ko ko ko ke ko ko ke /
void global_init_stuff(void)

int err;

create_pool = AP_AllocateEvent(); P(create_pool)
err = AP_InitHeaderEvent(create_pool, "create pool"); I(err)
create_worker = AP_AllocateEvent(); P(create_worker)
err = AP_InitHeaderEvent(create_worker, "create_worker"); I(err)
rendezvous = AP_AllocateEvent(); P(rendezvous)
err = AP_InitHeaderEvent(rendezvous, "rendezvous"); I(err)
a_rendezvous = AP_AllocateEvent(); P(a_rendezvous)
err = AP_InitHeaderEvent(a_rendezvous, "a_rendezvous"); I(err)
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finished = AP_AllocateEvent();
err = AP_InitHeaderEvent(finished, "finished");

}

P(finished)
I(err)

T T T ey

void Master (AP_Port port)
{

int i, j, 1m, 1, err, ar[3];
AP_Unit u, ua[2];

AP_Tuple tup;

char buf[200];

AP_Process p = AP_AllocateProcess();

AP_Event r = AP_AllocateEvent();

AP_EventPatternSet eps = AP_AllocateEventPatternSet();
AP_Process q = AP_AllocateProcess();

int dataport = AP_LocalPortId("dataport");
char mesg[300];

/* Step 1 */
global_init_stuff();

err = AP_PortGetUnit(port, &u, NULL);

err = AP_FetchTuple (u, &tup);

err = AP_DeallocateUnit(u);

/* Root level (i.e. refinement level of coarsest grid)
err = AP_FetchString(tup.vec[1l], buf, sizeof(buf) - 1)

root = atoi(buf);

/* Additional refinement above the root level) */
err = AP_FetchString(tup.vec[2], buf, sizeof(buf) - 1)
level = atoi(buf);

/* The tolerance of the integrator */
err = AP_FetchString(tup.vec[3], buf, sizeof(buf) - 1)
le_tol = atof(buf);

/* Step 2 */

/* Step 3(a) */

/* Serve out the subsolve routines */
err = AP_Raise(create_pool);

for (1m = level; 1lm >= level - 1; 1lm--)

{
for (1 = 1m; 1 >= 0; 1--) { // The loop is now reversed

/* step 3(b) */
err = AP_Raise(create_worker);

/* Step 3(c) */
err = AP_PortRemoveUnit (AP_INPUT, &u, NULL);

err
err

AP_DerefProcess(p, u, NULL, NULL);
AP_Activate(p);

/* Step 3(d) */
1:

ar[0] = 1;

ar[1l] = 1Im - 1;

ar[2] = root;

ua[0] = AP_FrameIntegerArray((int *) ar, 3);

ua[l] = AP_FrameDouble(le_tol);

tup.size = 2;
tup.vec = ua;

// Frame this tuple
u = AP_FrameTuple(&tup);

err = AP_PortPlaceUnit(AP_OUTPUT, u, NULL);
err = AP_DeallocateUnit(u);

}
}

/* Step 3(e) is the nested loop on lines 79-80 */

/* Step 3(f) */
// Collect the computational results from the workers
for (Im = level - 1; 1lm <= level; 1lm++) {
for (1 = 0; 1 <= 1m; 1+4+) {
err = AP_PortRemoveUnit(dataport, &u, NULL);
/* Stored the unit in the global data structure */
u2gds(u);

*/

i

7

H

/* Initialization data structure and some initial computation
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M("Welcome")

I(err) P(u)
I(err)

I(err)

*/

I(err)

I(err)

I(err) P(u)

I(err)
I(err)

I(err)

I(err)



122 err = AP_DeallocateUnit(u); I(err)
123 }

124}

125

126 /* Step 3(g) */

127 /* Request the coordinator to start its rendezvous */

128 err = AP_Raise(rendezvous); I(err)

129

130 /* Step 3(h) */

131 /* Make a mask over the EM to pick out the "a_rv" event

132 and wait for the acknowledge from a Create_Worker_ Pool manner

133 to signal a succesfull rendezvous */

134 err = AP_EventPatternSetInsert(eps, a_rendezvous, NULL); I(err)
135 err = AP_DeleteWaitEvent(eps, r, p); I(err)
136

137 err = AP_DeallocateProcess(p); I(err)
138 err = AP_DeallocateProcess(q); I(err)
139 err = AP DeallocateEvent(r); I(err)
140 err = AP_DeallocateEventPatternSet(eps); I(err)
141

142 /* Step 4 */

143 err = AP_Raise(finished);

144

145 /% Step 5 */

146 /* Prolongation work */

147 - M("Bye")
148 }

149
AR Y
151 void Worker (AP_Event e)

152 {

153 int root;

154 double le_tol;

155

156 AP_Unit u;

157 int ar[(3], 1, m, err;

158 AP_Tuple tupIn;

159

160 /* Step 1 */ M("Welcome")
161 /* Receive 1, m, root, and le_tol */

162 err = AP_PortRemoveUnit (AP_INPUT, &u, NULL); I(err) P(u)
163 err = AP_FetchTuple(u, &tupIn);

164 err = AP_FetchIntegerArray(tupIn.vec[0], ar, 3); I(err)

165 1 = ar[0]; m = ar[1l]; root = ar[2];

166 err = AP_FetchDouble(tupIn.vec[l], &le_tol);

167 err = AP_DeallocateUnit(u); I(err)

168

169 /* Step 2 */
170 u = subsolve(l, m, root, le_tol);

171

172 /* Step 3 */

173 err = AP_PortPlaceUnit (AP_OUTPUT, u, NULL); I(err)

174 err = AP_DeallocateUnit(u); I(err)

175

176 /* Step 4 */

177 err = AP_Raise(e); I(err) M("Bye")
178 }

179

MR A Ty
181 AP_Unit subsolve (int 1, int m, int root, double le_tol)

182 {
183 AP_Unit u;
184
185 /* Heavy computational work on grid (1, m) */
186 e
187
188 /* Results are stored in unit "u" which is returned */
189 ces
190 return u;
191 }

The master manifold named Master (lines 35-148) is a rewriting of the routine main of the sequential
version. We have changed the name of main into Master because the concurrent version of our sequential
program has its own main. Master follows exactly the steps 1-5 of the behavior of the master (see §5.3).

The worker manifold named Worker (lines 150-178) is a wrapper around a new version of the routine
subsolve (lines 180-191). It follows exactly the steps 1-4 of the behavior of the worker (see §5.3).

We mention the different steps of the behavior of the master and the worker in §5.3 as comment in
the source code of the master and worker to facilitate its comprehension of it. Therefore, we do not give a
long description of this source code but only some remarks and a short general description of how events
are raised (broadcast), how they are read from the event memory, and how units (data) are read and

written from and to ports.
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Atomic manifolds interface with the MANIFOLD world through a special ANSI C interface library.
The routines of this interface are recognized by the AP_ prefix. In this interface we find the routines
for raising events and reading and writing data units from and to ports.

We have written a separate routine named global_init_stuff (lines 14-33) which is called on
line 53 in the master in order to make available the external events defined in the header file
protocolMW.h (step 1 in the master).

In the main routine of the sequential version we read some command line arguments from argv
(lines 13-18 of SeqSourceCode.c.v in §4). Master, which will run as a separate process, now reads
these arguments during runtime from its port parameter (line 36). It turns out that this parameter
port is the argv of the main in the MANIFOLD world (line 15 in mainprog.m below). On line 55 we
read a unit u from this port. This unit has a special form. It is a so-called tuple (a C struct). This
tuple contains the values of root, level, and le_tol. On lines 57-71 we see how these variables
are assigned to the different tuple fields.

Events in atomic manifolds (i.e., manifolds written in a conventional programming language) are
raised with the C routine AP_Raise (e.g., 127). To handle events, we first must insert them in a
so-called event pattern set (with AP_EventPatternSetInsert; e.g., line 134). After this, we can
search, with AP DeleteWaitEvent ( e.g., 135) in a blocking way through the event memory of the
calling process instance to find out if one of the events contained in the event pattern set is available
there. When an event is found it is deleted.

Reading and writing units from and to ports are done, respectively, with AP_PortRemoveUnit (e.g.,
line 86) and AP_PortPlaceUnit (e.g., line 106). Other routines used in ResSourceCode.c reveal
their purposes by their names or are not discussed because they are not critical for the understanding
of the main activities in the source code. For the details we refer to [27].

In the ANSI C source code, we use a number of macros for error checking (see e.g., the macro I
on line 20) or for printing to the screen in an ordered fashion (e.g., the macro P on line 19). Their
definitions are given in the header file adid.h which is included in ResSourceCode.c on line 3.

The file with the prototypes of the master and the worker is below.

1 // ResSourceCode.h

§ #include "AP_interface.h"

é extern void Master(AP_Port p);
g extern void Worker (AP_Event e);

Because this file is included both in the file (line 5) ResSourceCode.c as well as in the manifold
source file where we instantiate the master and the worker (line 3 in the file mainprog.m below),
we are sure that a mismatch between their formal and actual parameters results in syntax errors
issued by the C compiler.

6.2 The Concurrent Version

Using the manifold ProtocolMW together with the two actual master and worker parameters just de-
scribed, we can construct the following small MANIFOLD program which finally changes our original
sequential application into a concurrent version.

23



// mainprog.m

//pragma include "ResSourceCode.h"
#include "protocolMw.h"

manifold Worker(event) atomic.

manifold Master(port in p) port in input. port in dataport. port out output. port out error.
atomic {internal. event create_pool, create_worker, rendezvous, a_rendezvous, finished}.

[k ok ok o ok ok ok ok K ok ok ok ok ok ok ok Rk ko Rk ko Rk Rk ko
manifold Main(process argv)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 begin: ProtocolMW(Master(argv), Worker).

16

We briefly explain this source code.

On line 3 we include the header file ResSourceCode.h to insure that a parameter mismatch will result
in syntax errors.

On line 5 we include the header file protocolMW.h which contains the definitions of our protocol
manner protocolMW and the external global events (see §5.2.1). Note that we also use this header file in
ProtocolMW.m (see §5.2) to insure that a compilation error will be generated by the MANIFOLD compiler
if there is a mismatch between the definition of ProtocolMW and the way it is called (on line 15).

Line 7 defines the worker manifold named Worker, which takes an event argument, and states (through
the keyword atomic) that it is not implemented in the MANIFOLD language, but in another program-
ming language such as ANSI C, C*+, or Fortran. The keyword internal states that the function that
constitutes the body of this manifold is to run as a thread within an operating system level process.
Because we do not explicitly specify the ports of the manifold, it has the default set (i.e., the input,
output and error ports).

The same holds for the master manifold Master (lines 9-10), except that it has an input port argument
(port in) (through which the command line arguments are read into the application) and its ports are
explicitly specified (the default set plus an additional input port named dataport). Because the external
global events defined in protocolMW.h are to be exchanged between the master and the rest of the
MANIFOLD application, we also specify those events between brackets on line 10.

Lines 12-16 define the manifold named Main, which has only one state: the begin state. In this state,
the ProtocolMW manner is called with the master and the worker manifold as actual arguments (line
15). Because ProtocolMw expects as its first argument a process type argument, the manifold Master
is automatically converted to an active process which reads from its argument argv the command line
arguments. argv itself is received as an argument of the main manifold (line 13) which is automatically
instantiated and activated by the MANIFOLD runtime system.

After this, the instance of Main, the instance of the master Master, and all the necessary instances of
the worker Worker, run concurrently.

6.3 Running the Concurrent Version

The source files that contain the MANIFOLD program (i.e., mainprog.m and protocol.m) must be com-
piled with the MANIFOLD compiler, named Mc. This compiler generates from each MANIFOLD source
code a C source file which is subsequently compiled by a normal C compiler to an object file. These
object files are linked with the object files obtained from the ANSI C files of the master and worker
(i.e., ResSourceCode.c), the object files of the original sequential source code excluding the main and
subsolve routines, and with some other C source files necessary to provide the inter-task information
(these latter files are generated by the MANIFOLD linker named MLINK). In order to facilitate this whole
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procedure, the linker in the MANIFOLD system generates a makefile, which is meant to be used as a black-
box by recursive make commands in programmer-defined makefiles that finally create the executable files
suitable for the appropriate platforms.

Process instances in a MANIFOLD application always run as separate threads (light-weight pro-
cesses [29]) within an operating-system level process. This latter heavy-weight process is called a task
instance in MANIFOLD. Process instances are bundled in task instances either automatically or under
user control. When all process instances of a MANIFOLD application run as threads in the same task
instance, the application executes in parallel (i.e., not distributed). We can, however, also bundle the
process instances in such a way that each worker is housed in a separate task instance. This mapping of
process instances in task instances, which can be fully specified by the user, is considered to be a separate
stage in the application construction and is described in a file which is input for the MANIFOLD linker
MLINK. In the example below, we arrange it such that each worker is housed in a separate task instance
(line numbers have been added).

1 # mainprog.mlink

2

3 {task *

4 {perpetual}

5 {load 1}

6 {weight Master 1}
7 {weight Worker 1}
8

9 {task mainprog

10 {include mainprog.o}
11 {include protocolMwW.o}
12 }

In this file, we specify that a task instance is considered to be “full” when its load exceeds 1 (line 5)
and that the weight of an instance of Worker or Master is also 1 (lines 6-7). The net result of this is
that each task instance will house only one Worker or Master instance and thus instances of Worker or
Master end up in different instances of the task named mainprog (line 9).

After this task composition stage the final stage in application construction can start: this is the
runtime configuration stage. In that stage we define the mapping of tasks to hosts. This mapping too, is
described in a file and is the input for the MANIFOLD runtime configurator named CONFIG. Suppose we
need in our application in addition to the master, five workers; then we expect, with the above input file
for MLINK, that at most (as we will see) six task instances come into existence during the run. Each of
these task instances houses either a master or a worker instance. However, it can happen that a worker
is already done before another worker is introduced by the master. In that case, the task instance (which
is a heavy weight process) that has housed the freshly expired worker does not have a load of 1 anymore
and is in principle ready to welcome a new worker. However, the standard behavior of a MANIFOLD task
instance is that it dies when there are no thread processes running in it. To inhibit this task instance
termination behavior, and to keep an empty task (i.e., task with load zero) alive for new workers, we
use the keyword perpetual in the input file for the MANIFOLD linker MLINK (line 4). With this task
termination behavior it can happen that we need less than six machines to run an application with five
workers, which is more efficient. Therefore, when we start up the first task instance on the machine
we are sitting behind (this so-called “start-up” machine is in our case bumpa.sen.cwi.nl), we have to
organize five other machines for the possible other five task instances that are forked during the run. In
the file below these additional machines are specified.

{host hostl diplice.sen.cwi.nl}
{host host2 alboka.sen.cwi.nl}
{host host3 altfluit.sen.cwi.nl}
{host host4 arghul.sen.cwi.nl}

{host host5 basfluit.sen.cwi.nl}
{locus mainprog $hostl $host2 $host3 $host4 S$host5}

Here, we define five variables host1, host2, up to host5, which we set to, respectively, diplice.sen.cwi.nl,
alboka.sen.cwi.nl up to basfluit.sen.cwi.nl. These are the names of computers located at different
places and connected via a network. The last line in the file states that the instances of the task named
mainprog can be started on any of these machines.
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Running the restructured program, using the task composition stage and run-time configuration
described above, the application executes in a distributed fashion and produces the following chronological
output.
bumpa.sen.cwi.nl 262146 140 1048087412 175834 mainprog Master(port in) ResSourceCode.c 136 -> Welcome
basfluit.sen.cwi.nl 1572865 79 1048087412 275851 mainprog Worker (event) ResSourceCode.c 351 -> Welcome
basfluit.sen.cwi.nl 1572865 79 1048087412 366117 mainprog Worker(event) ResSourceCode.c 370 -> Bye
arghul.sen.cwi.nl 1310721 79 1048087412 385644 mainprog Worker (event) ResSourceCode.c 351 -> Welcome
basfluit.sen.cwi.nl 1572865 90 1048087412 414473 mainprog Worker(event) ResSourceCode.c 351 -> Welcome
arghul.sen.cwi.nl 1310721 79 1048087412 483301 mainprog Worker(event) ResSourceCode.c 370 -> Bye
basfluit.sen.cwi.nl 1572865 90 1048087412 511798 mainprog Worker(event) ResSourceCode.c 370 -> Bye
altfluit.sen.cwi.nl 1048577 79 1048087412 520315 mainprog Worker(event) ResSourceCode.c 351 -> Welcome
arghul.sen.cwi.nl 1310721 90 1048087412 552362 mainprog Worker (event) ResSourceCode.c 351 -> Welcome
altfluit.sen.cwi.nl 1048577 79 1048087412 600215 mainprog Worker(event) ResSourceCode.c 370 -> Bye
bumpa.sen.cwi.nl 262146 140 1048087412 637649 mainprog Master(port in) ResSourceCode.c 337 -> Bye
arghul.sen.cwi.nl 1310721 90 1048087412 639482 mainprog Worker (event) ResSourceCode.c 370 -> Bye

We show only the ”Welcome” and ”Bye” messages from the master and its workers during the run
(see lines 52, 147, 160, and 177 in §5.2.2). We don’t show the computational results of this distributed
run. These are written to a file and are exactly the same as in the sequential version.

Each of these output lines has the following structure. It starts with a long label followed by a ->
before the actual message. The label shows, respectively, the machine on which the task instance runs,
the identification of the task instance, the identification of the process instance, a time stamp that is
expressed as two numbers (these numbers are the seconds and microseconds past since midnight (0 hour),
January 1, 1970) the name of the task, the name of the manifold, the name of the MANIFOLD source file
and the line number where the message is produced. With such a label in front of an actual message, we
always know who is printing, what, where and when.

When we look at the above output we see that not all the machines specified in the input file for the
configurator are used. This is due to the perpetual termination behavior of a task instance and the fact
that workers die before new ones are introduced in the workers-pool

Because the number of task instances that are forked, varies during the run and each task instance
runs on a separate machine, the number of machines varies in exactly the same way as the number of
task instances does. From the output, given above, we can make a graph that shows the number of
machines needed during the dynamic expansion and shrinking of our application in its short run (about
half a second). It is shown in Figure 3.

To execute our application in parallel such that all workers are in the same task instance, we simply
change the load on line 5 of mainprog.mlink to 5, and do the linking phase again.

Note that the different mappings in the task composition stage and the run-time configuration stage

do not affect the semantics of the MANIFOLD source code.

7 Performance Results

We have carried out a number of experiments. Every run of our sequential or restructured application
needs a number of parameters. These are (see lines 13-18 in §4), the refinement level of the coarsest
grid (we have used 2), the additional refinement level (we have used 0 through 15), the tolerance in
the integrator (we have used 1.0e-3 and 1.0e-4). Hereafter we will called runs with these tolerances
respectively the “1.0e-3 run” and the “1.0e-4 run”.

The relationship between the additional refinement level [ and the number of workers w is w = 2]+ 1
(i.e., the workers on the grids on the main diagonal and subdiagonal to the left in Figure 1). Thus the
total number of workers plus master is 2] + 2. As argued, this latter number is an upper bound for the
number of machines used during a distributed run.

We have run and compared the performance results of the sequential and the concurrent versions of
our application on a cluster of 32 single processor workstations. Such a cluster is big enough to run the
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Figure 3: The ebb & flow during the example run of our restructured application.

application with [ = 15. Unfortunately, in our institute no homogeneous cluster of workstations of that
size is available. All the machines in our cluster have an AMD Athlon Processor and a cache size of
256Kb. However 24 machines have a clock cycle of 1200Hz, 5 machines have a clock cycle of 1400Hz,
and 3 machines have a clock cycle of 1466Hz. Although these machines have different CPU speeds, their
speeds are of the same order of magnitude.

The workstations in the cluster are connected to each other by a switched Ethernet (100 Mbps).

The experiments were done at night. However, even then, we do not have a guarantee that we are
the only user. There are always unpredictable effects such as network traffic and file server delays, etc.
Furthermore some users of the machines in the cluster, run their own job(s) at night, run screen savers
or have runaway Netscape jobs. All this causes differences in performance on identical hardware. These
unknown effects cannot be eliminated and are always reflected in our computational results. To even out
such “random” perturbations, we ran the two versions of the application five times and collected their
elapsed or wall-clock times (i.e., the actual time the application program runs as it would be measured
by a user sitting at the terminal with a stopwatch). The timing measurements were obtained using the
UNIX utility /bin/time. The results for the 1.0e-3 runs are given in Table 1 and those for 1.0e-4 are in
Table 2. Also the average computing time is given. The speedup is given in Table 3 and the weighted
average of numbers of machines used during a run is given in Table 4.
For our analysis of the results, we distinguish the following categories of overhead introduced by our
restructuring;:

e The overhead introduced by the unpredictable effects of working in a multi-user environment. These
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level | result 1 | result 2 | result 3 | result 4 | result 5 | average
0 0.02 0.05 0.05 0.04 0.01 0.03
1 0.04 0.04 0.05 0.03 0.03 0.04
2 0.06 0.07 0.06 0.05 0.06 0.06
3 0.11 0.13 0.10 0.11 0.10 0.11
4 0.20 0.18 0.19 0.22 0.19 0.20
5 0.42 0.40 0.41 0.38 0.40 0.40
6 0.86 0.82 0.78 0.90 0.94 0.86
7 1.87 1.86 1.71 1.71 2.37 1.90
sequential 8 4.10 4.16 3.93 3.83 5.34 4.27
9 9.16 11.69 9.34 9.21 11.98 10.28
10 25.63 26.16 23.19 22.89 22.81 24.14
11 59.91 61.03 57.74 57.68 53.19 57.91
12 147.96 150.45 140.53 159.00 129.42 145.47
13 354.49 356.18 334.64 332.50 310.66 337.69
14 851.78 873.37 815.21 799.96 752.80 818.62
15 2018.08 | 2035.48 | 1920.55 | 2341.51 | 1779.49 | 2019.02
0 10.44 10.48 10.61 4.70 10.11 9.27
1 13.99 14.70 14.18 13.58 13.96 14.08
2 13.33 12.91 13.07 13.21 12.95 13.09
3 15.55 6.56 5.70 5.95 5.54 7.86
4 11.12 11.39 11.57 11.66 11.52 11.45
5 15.28 14.97 17.86 19.17 19.72 17.40
6 20.62 20.85 32.95 31.12 28.99 26.91
7 26.53 24.07 32.49 31.86 29.91 28.97
distributed 8 29.90 29.73 29.94 29.81 30.92 30.06
9 22.10 27.44 22.18 25.81 21.66 23.84
10 20.49 19.62 18.98 19.92 30.07 21.82
11 34.41 33.52 30.30 32.88 36.81 33.58
12 52.05 50.30 49.19 50.47 51.92 50.79
13 96.11 72.34 69.94 70.62 67.41 75.28
14 172.31 121.79 104.28 112.98 109.63 124.20
15 210.39 263.33 236.33 254.88 333.51 259.69

Table 1: The Cluster elapsed times (in seconds) for the 1.0e-3 runs.

effects are totally out of our control in a multi-user environment without dedicated machines.

e The overhead introduced by the concurrency itself (i.e., the overhead of making a sequential program
run as a concurrent program).

e The overhead of the coordination layer (i.e., the actual implementation of the overhead of the
concurrency).

From the tables we conclude the following:

Looking at Table 1 and Table 2 we see that the differences between the five results are not so big.
Probably the effects of working in a multi-user environment are minimal in comparison with the other
overhead.

We also see that for the performances with [ < 10 there is no gain in time for the 1.0e-3 and the 1.0e-4
runs (i.e., the speedup is less than 1.0). Probably the useful computational work done by the workers is
too little in comparison with the overhead of the concurrency plus the overhead of the coordination layer.
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level | result 1 | result 2 | result 3 | result 4 | result 5 | average
0 0.02 0.01 0.02 0.03 0.01 0.02
1 0.03 0.05 0.07 0.05 0.04 0.05
2 0.06 0.08 0.08 0.09 0.06 0.07
3 0.16 0.13 0.15 0.15 0.15 0.15
4 0.29 0.29 0.32 0.32 0.28 0.30
5 0.62 0.69 0.73 0.68 0.69 0.68
6 1.45 1.58 1.69 1.48 1.47 1.53
7 3.32 3.87 3.83 3.31 3.33 3.53
sequential 8 7.71 8.53 8.64 7.60 7.70 8.04
9 18.26 21.03 21.16 18.12 26.43 21.00
10 46.60 54.07 52.73 45.81 58.99 51.64
11 116.61 133.40 131.60 120.78 118.47 124.17
12 289.61 320.81 322.39 283.57 289.45 301.17
13 686.03 7T 781.20 684.02 695.59 724.92
14 1666.30 | 1882.28 | 1868.40 | 1654.06 | 1684.07 | 1751.02
15 3905.65 | 4418.47 | 4410.31 | 3893.35 | 3962.64 | 4118.08
0 10.57 10.48 3.12 10.53 3.69 7.68
1 15.33 14.54 13.85 10.88 10.62 13.04
2 12.94 12.92 13.01 12.99 13.08 12.99
3 14.29 5.71 5.87 5.72 5.60 7.44
4 11.95 11.66 12.46 11.67 12.43 12.03
5 15.44 14.95 20.72 15.18 15.68 16.39
6 20.42 20.34 24.21 20.62 19.77 21.07
7 29.18 30.28 29.96 27.45 26.51 28.68
distributed 8 30.35 30.70 29.96 30.23 30.19 30.29
9 26.01 23.38 26.99 28.75 26.05 26.24
10 35.53 35.84 41.14 44.33 36.48 38.66
11 46.96 46.09 47.68 45.54 45.23 46.30
12 68.77 61.04 62.48 64.04 68.78 65.02
13 180.84 99.49 103.60 94.52 167.93 129.28
14 217.17 213.33 269.71 221.69 214.00 227.18
15 526.54 433.24 560.62 440.87 634.47 519.15

Table 2: The Cluster elapsed times (in seconds) for the 1.0e-4 runs.

In Table 4 we see for the [ > 10 runs a gain in time. For those levels the average speedup for the
levels 10 through 15 ranges from 1.1 to 7.8 for the 1.0e-3 runs and from 1.3 to 7.9 for the 1.0e-4 runs.
However, we also see in Table 4 that this time reduction is accomplished by a growing number of machines.
Their averages range for the 1.0e-3 runs from 5.5 to 12.2 machines and for the 1.0e-4 runs from 5.7 to
13.3. Furthermore, we see that the average speedup in a run always lags behind the average number of
machines.

Looking at Table 3 and Table 4 we notice that for the levels 12 and higher the speedup is about half
of the weighted number of machines used. From this we conclude that for those levels the overhead of
the concurrency plus the overhead of the coordination layer seems to be of the same order of magnitude
as the actual useful computational work.

Note that the weighted number of machines used during a run can be very different from the actual
number of machines used in the application. E.g., the “result 5”7 run in Table 2 for level [ = 15 has a
weighted average of 11 as shown in Table 3 but from Figure 4 we see that there are moments during the
run when it used 32 machines.
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level | result 1 | result 2 | result 3 | result 4 | result 5 | average
0 1.9 1.9 1.9 1.8 1.9 1.9
1 2.3 2.5 2.3 2.4 2.3 2.4
2 2.8 3.0 2.9 2.7 2.8 2.8
3 2.3 2.8 2.8 3.0 2.7 2.7
4 3.3 3.3 2.7 2.9 2.5 2.9
5 3.3 2.9 3.8 4.0 4.0 3.6
6 3.2 3.1 3.4 3.6 3.4 3.3
7 3.6 3.6 3.6 3.6 3.7 3.6
1.0e-3 run 8 3.7 3.9 3.6 3.7 3.4 3.7
9 4.2 3.7 3.9 4.1 4.5 4.1
10 5.8 5.7 5.5 5.6 4.8 5.5
11 6.1 6.1 6.7 6.2 6.2 6.3
12 7.5 7.7 7.8 7.6 7.6 7.6
13 7.8 10.1 9.9 10.0 11.0 9.8
14 8.7 11.9 13.0 12.2 12.9 11.7
15 15.0 11.7 12.7 12.1 9.7 12.2
0 1.9 1.9 1.7 1.9 1.9 1.9
1 2.4 2.5 2.4 2.4 2.1 2.4
2 2.8 2.9 2.7 2.7 2.8 2.8
3 2.3 2.7 3.2 2.6 2.4 2.6
4 3.6 2.7 3.5 2.4 2.5 2.9
5 3.2 3.5 3.4 3.1 3.1 3.3
6 3.3 3.6 3.6 3.6 3.5 3.5
7 3.6 3.7 3.7 3.9 3.5 3.7
1.0e-4 run 8 3.6 3.8 4.0 3.9 4.0 3.9
9 4.8 4.8 4.9 4.8 4.5 4.8
10 6.0 6.1 5.8 5.0 5.7 5.7
11 7.5 7.6 7.7 7.6 7.6 7.6
12 9.3 10.5 10.5 9.9 9.2 9.9
13 8.0 13.3 13.1 13.9 8.5 114
14 13.5 13.8 11.2 13.3 13.6 13.1
15 12.8 15.2 12.2 15.4 11.0 13.3

Table 3: The weighted average of machines per second for the 1.0e-3 and 1.0e-4 runs.

8 Conclusions

Our cut-and-paste restructuring essentially consists of picking out the computation subroutines in the
original ANSI C code (the cut), and gluing them together with coordination modules written in MANIFOLD
(the paste). No rewriting of, or other changes to, these subroutines is necessary: within the new struc-
ture, they have the same input/output and calling sequence conventions as they had in the old structure.
The MANIFOLD glue modules, representing a master/worker protocol, are separately compiled programs
that have no knowledge of the computation performed by the ANSI C modules — they simply encap-
sulate the protocol necessary to coordinate the cooperation of the computation modules running in a
parallel /distributed computing environment.

It is remarkable that we can realize the master/worker protocol in such a generic way where the
master and the worker manifolds themselves are parameters of the protocol. With the possibility of using
different manifolds as actual values for the formal manifold parameters of another manifold, we can easily
build meta-coordinators in MANIFOLD.

The unique property of MANIFOLD which enables such high degree of modularity is inherited from
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level | result 1 | result 2 | result 3 | result 4 | result 5 | average
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0
7 0.1 0.1 0.1 0.1 0.1 0.1
1.0e-3 run 8 0.1 0.1 0.1 0.1 0.2 0.1
9 0.4 0.4 0.4 0.4 0.6 0.4
10 1.3 1.3 1.2 1.1 0.8 1.1
11 1.7 1.8 1.9 1.8 1.4 1.7
12 2.8 3.0 2.9 3.2 2.5 2.9
13 3.7 4.9 4.8 4.7 4.6 4.5
14 4.9 7.2 7.8 7.1 6.9 6.6
15 9.6 7.7 8.1 9.2 5.3 7.8
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.1 0.1 0.1 0.1 0.1 0.1
7 0.1 0.1 0.1 0.1 0.1 0.1
1.0e-4 run 8 0.3 0.3 0.3 0.3 0.3 0.3
9 0.7 0.9 0.8 0.6 1.0 0.8
10 1.3 1.5 1.3 1.0 1.6 1.3
11 2.5 2.9 2.8 2.7 2.6 2.7
12 4.2 5.3 5.2 4.4 4.2 4.6
13 3.8 7.8 7.5 7.2 4.1 5.6
14 7.7 8.8 6.9 7.5 7.9 7.7
15 7.4 10.2 7.9 8.8 6.2 7.9

Table 4: Speedup of the 1.0e-3 and 1.0e-4 runs.

its underlying IWIM model in which the communication is set up from the outside. The core relevant
concept in the IWIM model of communication is isolation of the computational responsibilities from
communication and coordination concerns, into separate, pure computation modules and pure coordina-
tion modules. This is why the MANIFOLD modules in our example can coordinate the already existing
computational ANSI C subroutines, without any change. The master and worker manifolds used in
the concurrent version just call C functions which are in fact (wrappers around) the C functions of the
sequential program.

It is interesting, as illustrated in our restructuring, that we are able to abstract away the details of the
computation; that it is possible to focus on the invariant (hidden) properties of our programs, and that
we can compile those invariant properties as coordination patterns in MANIFOLD. In fact, we compile
structure. This coordination structure (compiled MANIFOLD coordinators) can transparently run the
same computation modules on parallel shared-memory or distributed clusters of workstation platforms.
The nice thing in this distillation process is that we end up with one tangible piece of code that represents
the common coordination structure. Such glue modules (coordinators) can then be compiled separately
and stored in what we may call a “protocol library”, ready for reuse.
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Elapsed time in seconds (X-axis) versus number of machines (Y-axis)
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Figure 4: The ebb & flow during the “result 5” run of our restructured application for level 15.

References

[1] C. Zenger. Sparse grids. In W. Hackbusch, editor, Notes on Numerical Fluid Mechanics, volume 31,
pages 241-251. Vieweg, Braunschweig, 1991.

[2] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid
problems. In R. Beauwens and P. de Groen, editors, Iterative Methods in Linear Algebra, pages
263-281. North-Holland, Amsterdam, 1992.

[3] H. Bungartz, M. Griebel, D. Roschke, and C. Zenger. Pointwise convergence of the combination
technique for the laplace equation. Fast-West J. Numer. Math., 2:21-45, 1994.

[4] C. Pflaum. Convergence of the combination technique for second-order elliptic differential equations.
SIAM J. Numer. Anal., 34:2431-2455, 1997.

[5] C. Pflaum and A. Zhou. Error analysis of the combination technique. Numerische Mathematik,
84:327-350, 1999.

[6] B. Lastdrager and B. Koren. Error analysis for function representation by the sparse-
grid combination technique. Technical Report MAS-R9823, CWI, 1998. Available on-line
http://db.cwi.nl/rapporten/index.php?jaar=1998&dept=13.

[7] M. Griebel. The combination technique for the sparse grid solution of pde’s on multiprocessor

machines. Parallel Processing Letters, 2:61-70, 1992.

32



8]

[10]

[11]

[16]

[17]

[18]

C.T.H. Everaars, F. Arbab, and B. Koren. Parallel, distributed-memory implementation of sparse-
grid methods for three-dimensional fluid-flow computattions. Technical Report SEN-R0039, CWI,
2000. Available online http://db.cwi.nl/rapporten/index.php?jaar=2000&dept=15.

C.T.H. Everaars, F. Arbab, and B. Koren. Using coordination to restructure sequential source code
into a concurrent program. In Proceedings of the International Conference on Software Maintenance,
Florence, pages 342-351, 2001.

C.T.H. Everaars and B. Koren. Using coordination to parallelize sparse-grid methods for 3D CFD
problems. Parallel Computing, 24(7):1081-1106, 1998. Special issue on coordination languages for
parallel programming.

C.T.H. Everaars, B. Koren, and F. Arbab. Dynamic process composition and communication pat-
terns in irregularly structured applications. In Jose Rolim et al., editor, Parallel and Distributed
Processing, volume 1586 of Lecture Notes in Computer Science, pages 1046-1054. Springer-Verlag,
Berlin, 1999.

C.T.H. Everaars, F. Arbab, and B. Koren. Dynamic process composition and communication pat-
terns in irregularly structured applications. Concurrency: Practice and FExperience, 12:157-174,
2000. Extended version.

M. Griebel. Parallel multigrid methods on sparse grids. In W. Hackbusch and U. Trottenberg,
editors, Multigrid methods III, volume 98 of International Series of Numerical Mathematics, pages
211-221. Birkh&user, Basel, 1991.

M. Griebel. A parallelizable and vectorizable multi-level algorithm on sparse grids. In W. Hackbusch,
editor, Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid
Mechanics, pages 94-100. Vieweg, Braunschweig, 1991.

B. Koren, P.W. Hemker, and C.T.H. Everaars. Multiple semi-coarsened multigrid for 3D CFD.
In Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, Snowmass Village,
CO, 1997, pages 892-902, Reston, VA, 1997. American Institute of Aeronautics and Astronautics.
ATA A-paper 97-2029.

B. Koren, P.W. Hemker, and C.T.H. Everaars. Sparse-grid solution of the steady Euler equations
of gas dynamics. In Proceedings of Fourth European Computational Fluid Dynamics Conference,
volume 2 of Computational Fluid Dynamics, pages 252-257. Wiley, Chichester, 1998.

B. Lastdrager, B. Koren, and J.G. Verwer. The sparse-grid combination technique applied to time-
dependent advection problems. Appl. Numer. Math., 38:377-401, 2001.

B. Lastdrager, B. Koren, and J.G. Verwer. Solution of time-dependent advection-diffusion problems
with the sparse-grid combination technique and a Rosenbrock solver. Comput. Meth. Appl. Math.,
1:86-98, 2001.

J.G. Verwer, E.J. Spee, J.G. Blom, and W. Hundsdorfer. A second-order Rosenbrock method applied
to photochemical dispersion problems. SIAM J. Sci. Comput., 20:1456-1480, 1999.

K. Dekker and J.G. Verwer. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equa-
tions. Elsevier North-Holland, Amsterdam, 1984.

33



[21]

[22]

23]

[24]

D. Lanser, J.G. Blom, and J.G. Verwer. Time integration of the shallow water equations in spherical
geometry. J. Comput. Phys., 171:1-21, 2001.

D. Gelernter and N. Carriero. Coordination languages and their significance. Communication of the
ACM, 35(2):97-107, 1992.

D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages
and Systems, 7(1):80-112, 1985.

F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and C. Hankin,
editors, Coordination Languages and Models, volume 1061 of Lecture Notes in Computer Science,
pages 34-56. Springer-Verlag, April 1996.

Oth

F. Arbab. The influence of coordination on program structure. In Proceedings of the 3 Hawaii

International Conference on System Sciences. IEEE, 1997.

F. Arbab, C.L. Blom, F.J. Burger, and C.T.H. Everaars. Reusable coordinator modules for massively
concurrent applications. Software: Practice and Experience, 28(7):703-735, 1998. Extended version.

F. Arbab. Manifold version 2: Language reference manual. Technical report, CWI, 1996. Available
on-line http://www.cwi.nl/ftp/manifold /refman.ps.Z.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 user’s guide
and reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak
Ridge, Tennessee, 1994.

B. Nicols, D. Buttlar, and J.P. Farrell. Pthreads Programming. O’Reilly & Associates, Inc., Ce-
bastopol, CA, 1996.

34



