
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Modeling component connectors in Reo by constraint
automata

F. Arbab, C. Baier, J.J.M.M. Rutten, M. Sirjani

REPORT SEN-R0304 JULY 31, 2003

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Modeling Component Connectors in Reo by
Constraint Automata

Farhad Arbaba, Christel Baierb, Jan Ruttena, Marjan Sirjania,c

a Centrum voor Wiskunde en Informatica, Department of Software Engineering

Kruislaan 413, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

{Farhad.Arbab,Jan.Rutten,Marjan.Sirjani}@cwi.nl

bInstitut für Informatik I, University of Bonn

Römerstraße 164, D-53117 Bonn, Germany

baier@cs.uni-bonn.de

c Sharif University of Technology

Azadi Ave., Tehran, Iran

Abstract

Reo is an exogenous coordination language for compositional construction of component connectors
based on a calculus of channels. Building automated tools to address such concerns as equivalence or
containment of the behavior of two given connectors, verification of the behavior of a connector, etc.
requires an operational semantic model suitable for model checking. In this paper we introduce constraint
automata and propose them as a semantic model for Reo.

2000 ACM Computing Classification: C.2.4, D.1.3, D.1.m, D.3.2, D.3.3, F.1.2, F.3
Keywords and Phrases: Coordination, Components, Composition, Constraint Automata, Reo, Coalge-
braic semantics, Streams

1 Introduction

Reo is a channel-based exogenous coordination model wherein complex coordinators, called connectors,
are compositionally built out of simpler ones. The simplest connectors in Reo are a set of channels with
well-defined behavior supplied by users [Arb03]. The emphasis in Reo is on connectors, their behavior,
and their composition, not on the entities that connect, communicate, and cooperate through them. The
behavior of every connector in Reo imposes a specific coordination pattern on the entities that perform
normal I/O operations through that connector, without the knowledge of those entities. This makes Reo a
powerful “glue language” for compositional construction of connectors to combine component instances
into a software system and exogenously orchestrate their mutual interactions.
A coalgebraic formal semantics for Reo is developed in [AR02] in terms of relations on infinite timed data
streams. With this semantics as our starting point, in this paper we introduce constraint automata and
use them to present an operational model for the behavior of connectors in Reo. Constraint automata can
be thought of as conceptual generalizations of probabilistic automata where simple constraints, instead of
probabilities, influence applicable state transitions. The single most important composition operator in Reo,
join, amounts to a product of automata in this model.
Our notion of constraint automata is in the spirit of I/O-automata and timed port automata [LT89, GR95]. In
contrast to these, we do not distinguish between input and output ports (and hence, we do not require input
enabledness) and use constraints rather than specific data values. Unlike I/O- or timed port automata, we
do not follow a strictly time-synchronous approach, which becomes important when we compose constraint
automata. Instead, the composition of constraint automata A1 and A2 allows transitions when data occur
at the input/output ports that the resulting automaton inherits from only one of the automata Ai, without
involving the transitions or states that it inherits from the other automaton (because at that point in time,

1

there is no data on any of its corresponding ports). Such transitions do not exist in the “one-to-many-
composition” of timed port automata.
The rest of this paper is organized as follows. Section 2 is a brief overview of Reo. In Section 3, we
define constraint automata and show their utility through describing the behavior of a number of simple
Reo channels as examples. The product of constraint automata and hiding, which are necessary to model
Reo’s join operator, are defined and applied to a few examples in Section 4. In Section 5 we study various
notions of equivalence, forming a foundation for algorithms and tools for verification and derivation of
properties of Reo connectors. We conclude in Section 6, hinting at our current and future work on model
checking and automated tools for reasoning about Reo connectors.

2 A Reo primer

Reo defines a number of operations for components to (dynamically) compose, connect to, and perform I/O
through connectors. Atomic connectors are channels. The notion of channel in Reo is far more general than
its common interpretation.
A channel is a primitive communication medium with exactly two ends, each with its own unique identity.
There are two types of channel ends: source end through which data enters and sink end through which
data leaves a channel. A channel must support a certain set of primitive operations, such as I/O, on its
ends; beyond that, Reo places no restriction on the behavior of a channel. This allows an open-ended
set of different channel types to be used simultaneously together in Reo, each with its own policy for
synchronization, buffering, ordering, computation, data retention/loss, etc.
A connector is a set of channel ends organized in a graph of nodes and edges such that:

• Zero or more channel ends coincide on every node.

• Every channel end coincides on exactly one node.

• There is an edge between two (not necessarily distinct) nodes iff there is a channel one end of which
coincides on each of those nodes.

A node is an important concept in Reo. Not to be confused with a location or a component, a node is a
logical construct representing the fundamental topological property of coincidence of a set of channel ends,
which has specific implications on the flow of data among and through those channel ends.

a c d eb

Figure 1: Nodes in Reo

The set of channel ends coincident on a node N is disjointly partitioned into the sets Src(N) and Snk(N),
denoting the sets of source and sink channel ends that coincide on N, respectively. A node is called a source
node if Src(N) 6= /0∧Snk(N) = /0. Analogously, N is called a sink node if Src(N) = /0∧Snk(N) 6= /0. A node
N is called a mixed node if Src(N) 6= /0∧Snk(N) 6= /0. Figures 1.a and b show sink nodes with, respectively,
two and three coincident channel ends. Figures 1.c and d show source nodes with, respectively, two and
three coincident channel ends. Figure 1.e shows a mixed node where three sink and two source channel
ends coincide.
Reo provides operations that enable components to connect to and perform I/O on source and sink nodes
only; components cannot connect to, read from, or write to mixed nodes. At most one component can be
connected to a (source or sink) node at a time. A component can write data items to a source node that it is
connected to. The write operation succeeds only if all (source) channel ends coincident on the node accept
the data item, in which case the data item is transparently written to every source end coincident on the
node. A source node, thus, acts as a replicator. A component can obtain data items from a sink node that
it is connected to through destructive (take) and non-destructive (read) input operations. A take operation

2

succeeds only if at least one of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel ends offer suitable data items, one is selected nondeterministically. A sink
node, thus, acts as a (fair) nondeterministic merger. A mixed node is a self-contained “pumping station”
that combines the behavior of a sink node (merger) and a source node (replicator) in an atomic iteration of
an endless loop: in every iteration a mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its coincident source channel
ends. A data item is suitable for selection in an iteration only if it can be accepted by all source channel
ends that coincide on the mixed node.
It follows that every channel represents a (simple) connector with two nodes. More complex connectors are
constructed in Reo out of simpler ones using its join operation. Joining two nodes destroys both nodes and
produces a new node on which all of their coincident channel ends coincide. This single operation allows
construction of arbitrarily complex connectors involving any combination of channels picked from an open-
ended assortment of user-defined channel types. The semantics of a connector is defined as a composition
of the semantics of its (1) constituent channels, and (2) nodes. The semantics of channels are defined by the
users who provide them. Reo defines the semantics of its three types of nodes, mentioned above.

E

D B

A

C

in

out

F

o

FIFO2

Router
Exclusive

F

E B

Y
X

M
N U

W
Z

ba

Figure 2: Exclusive router and shift-lossy FIFO1

Figures 2.a and b show two Reo connectors. We consider these connectors in more detail in Examples 4.0.7
and 4.0.8, respectively, in Section 4. Here, we use them to introduce our visual syntax for presenting Reo
connector graphs and some frequently useful channel types. The enclosing thick boxes in these figures
represent hiding: the topologies of the nodes (and their edges) inside the box are hidden and cannot be
modified, yielding a connector with a number of input/output ports, represented as nodes on the border
of the bounding box, which can be used by other entities outside the box to interact with and through the
connector.
The simplest channels used in these connectors are synchronous (Sync) channels, represented as simple
solid arrows. A Sync channel has a source and a sink end, and no buffer. It accepts a data item through its
source end iff it can simultaneously dispense it through its sink. A lossy synchronous (LossySync) channel is
similar to a Sync channel, except that it always accepts all data items through its source end. If it is possible
for it to simultaneously dispense the data item through its sink (e.g., there is a take operation pending on its
sink) the channel transfers the data item; otherwise the data item is lost. LossySync channels are depicted as
dashed arrows, e.g., in Figure 2.a. The edge BD in Figure 2.b represents an asynchronous channel with the
bounded capacity of 1 (FIFO1), with the small box in the middle of the arrow representing its buffer. This
channel can have an initially empty buffer, or as in Figure 2.b, contain an initial data value (in this case, the
“o” in the box representing its buffer). Analogously, the edge AF in Figure 2.b represents an asynchronous
FIFO channel with the bounded capacity of 2 (FIFO2), with its obvious semantics.
An example of more exotic channels permitted in Reo is the synchronous drain channel (SyncDrain), whose

3

visual symbol appears as the edges YZ and AC in Figures 2.a and b, respectively. A SyncDrain channel
has two source ends. Because it has no sink end, no data value can ever be obtained from this channel. It
accepts a data item through one of its ends iff a data item is also available for it to simultaneously accept
through its other end as well. All data accepted by this channel are lost. A close kin of SyncDrain is the
asynchronous drain (AsyncDrain) channel (not shown in Figure 2): it has two source ends through which it
accepts and loses data items, but never simultaneously.

3 Modeling connectors by constraint automata

The semantics of Reo connectors can be defined in terms of relations on timed data streams (TDSs) as
presented in [AR02]. In this section we introduce the notion of constraint automata and show how they can
serve as operational models for the behavior of Reo connectors by relating the languages of these automata
with timed data streams.
Let V be any set. We define the set V ω of all streams (infinite sequences) over V as V ω = {α | α :
{0,1,2, . . .} → V }. For convenience, we consider only infinite streams (which will correspond to infi-
nite “runs” of our automata), but finite streams can easily be included as well (at no extra cost other than
some additional case distinctions in Section 3.2). We denote individual streams as α = (α0,α1,α2, . . .) (or
a = (a0,a1,a2, . . .)). We call α0 the initial value of α. The (stream) derivative α′ of a stream α is defined
as α′ = (α1,α2,α3, . . .). Note that (α′)n = αn+1, for all n ≥ 0. We also recall the definition of timed data
streams from [AR02]:

TDS =
{

〈α,a〉 ∈ Dataω × IRω
+ | ∀n ≥ 0 : an <an+1 and lim

n→∞
an = ∞

}

A timed data stream 〈α,a〉 consists of a data stream α ∈ Dataω and a time stream a ∈ IRω
+ consisting of

increasing positive real numbers. The time stream a indicates for each data item αn the moment an at which
it is being input or output.
Constraint automata can be viewed as acceptors for tuples (〈α1,a1〉, . . . ,〈αn,an〉) of timed data streams
that are observed at certain input/output ports A1, . . . ,An of components. The rough idea is that such an
automaton observes the data occurring at A1, . . . ,An and either changes its state according to the observed
data or rejects it if there is no corresponding transition in the automaton. We use constraint automata as a
semantic model to describe the TDS-language induced by Reo connector networks.

3.1 Definition of constraint automata

In the sequel, Data is a fixed and finite set of data that can be sent (and received) via channels. Constraint
automata are augmented with a finite set of names, e.g., A1, . . . ,An where Ai stands for the i-th input/output
port of a connector or component. A name-data-assignment denotes a function δ : N → Data where N ⊆ N .
We use notations like δ =

[

data(A) = dA : A ∈ N
]

to describe the name-data-assignment that assigns to any
TDS-name A ∈ N the value dA ∈ Data. The transitions of the automata are labeled with pairs consisting of
a subset N of {A1, . . . ,An} and a data constraint g. Data constraints are defined by the following grammar:

g ::= false

∣

∣

∣
true

∣

∣

∣
data(A) = d

∣

∣

∣
g1 ∨g2

∣

∣

∣
g1 ∧g2

Here, A, B are names and d ∈Data.1 Data constraints (DCs) can be viewed as sets of name-data-assignments.
In the sequel, we write DC(N ,Data) to denote the set of data constraints. We often use derived DCs such
as data(A) 6= d or data(A) = data(B) which stand for the DCs

∨

d′∈Data\{d}

(data(A) = d′) and
∨

d∈Data

(

(data(A) = d) ∧ (data(B) = d)
)

,

respectively. The symbol |= stands for the obvious satisfaction relation which results from interpreting DCs
over name-data-assignments. For instance,

[

data(A) = d1,data(B) = d2,data(C) = d1
]

|= data(A) = data(C),
[

data(A) = d1,data(B) = d2,data(C) = d1
]

6|= data(A) = data(B)
1We assume a global data domain Data for all names. Alternatively, we can assign a data domain DataA to every name A and

require type-consistency in the definition of data constraints.

4

if d1 6= d2. Satisfiability and validity, logical equivalence ≡ and logical implication ≤ of DCs are defined as
usual; e.g.:

g1 ≡ g2 iff for all name-data-assignments δ: δ |= g1 ⇐⇒ δ |= g2

g1 ≤ g2 iff for all name-data-assignments δ: δ |= g1 =⇒ δ |= g2

Definition 3.1.1 [Constraint automata] A constraint automaton (over the data domain Data) is a tuple
A = (Q,N ,−→,Q0) where

• Q is a finite set of states,

• N is a finite set of names,

• −→ is a finite subset of Q×2N ×DC×Q, called the transition relation of A ,

• Q0 ⊆ Q is the set of initial states.

We write q
N,g
−→ p instead of (q,N,g, p) ∈−→. We call N the name set and g the guard of the transition. For

every transition

q
N,g
−→ p

we require that (1) N 6= /0 and (2) g ∈ DC(N,Data). �

The intuitive operational behavior of a constraint automaton is as follows. It starts in its initial state q0. If
the current state is q, then A waits until data items occur at some of the input/output ports Ai ∈ N . Suppose
data item d1 occurs at A1 and data item d2 at A2 while (at this moment) no data is observed at the other ports
A3, . . . ,An. This triggers the automaton to check the data constraints of the outgoing {A1,A2}-transitions of
state q to choose a transition

q
{A1,A2},g
−→ p

where
[

data(A1) = d1,data(A2) = d2
]

|= g and move to state p. If there is no {A1,A2}-transition from q
whose data constraint is fulfilled then A rejects.
Having this behavior in mind, the intuitive meaning of conditions (1) and (2) in Definition 3.1.1 is as
follows. Condition (1) stands for the requirement that automata-transitions can fire only if some data occur
at A1, . . . ,An while condition (2) formalizes the notion that the behavior of an automaton may depend only
on its observed data (and not on data that will occur sometime in the future).
Figure 3 shows the constraint automata for some of the basic Reo connectors. The merger automaton in this
figure models the merge behavior inherent in sink and mixed nodes in Reo.
Definition 3.1.1 allows for nondeterministic constraint automata since for a fixed state q, a nonempty subset
N of N , and a given name-data-assignment δ, there may be several transitions2

q
N,g1−→ q1, q

N,g2−→ q2, . . . with δ |= gi, i = 1,2,

However, for modeling the TDS-languages induced by Reo connector networks, deterministic constraint
automata are sufficient, because all nondeterministic choices in Reo are internal, and hence, can be assumed
to be resolved at the level of constraint automata.3 A constraint automaton A is called deterministic iff (1)
it has a unique initial state and (2) for every state q, every N, and every name-data-assignment δ there is at
most one transition

q
N,g
−→ q′

such that δ |= g. In fact, all automata in Figure 3.1.1 are deterministic.
2Observe that if N ′ is a proper subset of N and data occur exactly at the input/output ports Ai ∈ N′ then only N ′-transitions (but no

N-transitions) can fire.
3For instance, if data simultaneously occur on both input ports A and B of the merger in Figure 3.1.1, then an internal choice decides

which one to take for output. Thus, this constraint automaton must reject any TDS-tuple where data on A and B occur simultaneously,
since the Reo merger (i.e., a sink or mixed node) can never observe more than one input at a time. This explains why the merger
constraint automaton in this figure has no transition for the name set {A,B} or {A,B,C}.

5

 {A,B}
data(A) = data(B)

synchronous channel

 {A,B}

synchronous drain

 FIFO1 channel
(where Data = {d1,d2})

{A}
data(A)=d1

{B}
data(B) =d1

{A}
data(A) =d2

{B}
data(B) =d2

 {A,B}
data(A) = data(B)

lossy synchronous channel

{A}

 asynchronous drain

{A} {B}

 {A,C}
data(A) = data(C)

 merger

 {B,C}
data(B) = data(C)

Figure 3: Deterministic constraint automata for some basic connectors

3.2 From automata to streams

In this section we show how to define a language of the so-called timed runs for a constraint automaton.
Rather than being fully general (which is not more difficult but would require a bit more text), we look at a
simple yet representative example. We consider a constraint automaton A = (Q,N ,→,Q0) that models the
behavior of a Reo channel through which data elements flow from input port A to output port B. Thus, we
set N = {A,B} and we associate with A and B timed data streams 〈α,a〉 and 〈β,b〉 in TDS. We define the
language accepted by A as follows:

LTDS(A) =
⋃

q0∈Q0

LTDS(A ,q0)

where LTDS(A ,q) denotes the language accepted by the state q of automaton A :

LTDS(A ,q) =
{

(〈α,a〉,〈β,b〉) ∈ TDS×TDS | (〈α,a〉,〈β,b〉) is a timed run for (A ,q)
}

and (〈α,a〉,〈β,b〉) is a timed run for (A ,q) iff there exists a transition q
N,g
−→ q̄ such that

a0 <b0 ∧ N = {A}∧ [data(A) = α0] |= g∧ (〈α′,a′〉,〈β,b〉) ∈ LTDS(A , q̄),
or b0 <a0 ∧ N = {B}∧ [data(B) = β0] |= g∧ (〈α,a〉,〈β′,b′〉) ∈ LTDS(A , q̄),
or a0 = b0 ∧ N = {A,B}∧ [data(A) = α0,data(B) = β0] |= g∧

(〈α′,a′〉,〈β′,b′〉) ∈ LTDS(A , q̄)

Note that although this definition of LTDS(A ,q) is circular (i.e., q̄ may be equal to q) it can be formally
defined by means of the greatest fixed point of a suitably chosen monotone operator. The data streams α

6

and β in a timed run (〈α,a〉,〈β,b〉) contain the data elements that are being input and output by the channel
ends A and B. The time streams a and b contain for each of them the times at which these input and output
actions take place. The relevance of this timing information is restricted to the particular connector, in this
case the channel, at hand: what matters is only the relative order of the initial values a0 and b0, which
determines which channel ends will be active next. A pair of timed data streams is a timed run for a state
q ∈ Q of the automaton A if at any moment both the set of names of active channel ends and the values of
the incoming and outgoing data items ‘match’ the name sets and constraints of the subsequent transitions
of q.
There is more to be said about the relation between the automata model of Reo and the model based on
timed data streams than we have space for here. For instance, one can prove that the language accepted by
the constraint automaton for a 1-bounded FIFO channel equals the set

{

(〈α,a〉,〈β,b〉) ∈ TDS×TDS | α = β ∧ a<b<a′
}

In the present paper, we concentrate on the automata model only, and defer such observations to another
occasion.
For the operators on constraint automata, the names used in the automata play an important role. For this
reason, we consider LTDS(A) as a set of functions N → TDS (or as a subset of TDSN) rather than just an
n-ary relation of TDS.

Notation 3.2.1 For a constraint automaton A as before, q a state in A , N ⊆ N and P ⊆ Q, we define

dcA(q,N,P) =
∨

{

g : q
N,g
−→ p for some p ∈ P

}

.

If A is understood from the context, we simply write dc(q,N,P). Intuitively, dc(q,N,P) is the weakest DC
that ensures there is an N-transition from state q to P. Note that dc(q,N,P) = false if there is no N-transition
from q to a P-state. We use dc(q,N) as an abbreviation for dc(q,N,Q). �

Remark 3.2.2 [Deriving deterministic constraint automata] As for standard finite automata, deterministic
constraint automata are as powerful as their nondeterministic variants, if we are interested only in their ac-
cepted stream-languages.4 More precisely, given a nondeterministic constraint automaton A = (Q,N ,−→
,Q0), one can use the standard powerset construction to obtain a deterministic constraint automaton

det(A) =
(

2Q \{ /0},N ,−→det,Q0
)

where the transition relation −→det is defined as follows.5 For P, P′ ⊆ 2Q with P 6= /0 and P′ 6= /0 and N ⊆N :

P
N,g
−→det P′ iff g =

∨

p∈P

dc(p,N,P′)

It can be shown that LTDS(A) = LTDS(det(A)). �

4 Product and hiding

The composition of TDS relations is defined to be similar to the join operator in relational data bases. For
instance, given two binary TDS relations R1(A,B) and R2(B,C)6 the binary relation (R1 ./ R2)(A,B,C) is
given by

R1 ./ R2 =
{

(〈α,a〉,〈β,b〉,〈γ,c〉) : (〈α,a〉,〈β,b〉) ∈ R1 and (〈β,b〉,〈γ,c〉) ∈ R2
}

.

4Nevertheless, as for ordinary finite automata, using nondeterministic automata has the advantage that they may be exponentially
smaller than their deterministic equivalents.

5Of course, we can use the same ideas as for standard finite automata and apply an on-the-fly construction of the reachable part of
det(A). This may lead to a smaller state space, but cannot avoid the exponential blowup in the worst-case.

6We assume that an n-ary TDS relation is a function {A1, . . . ,An} → TDS rather than just a subset of TDSn. The notation R1(A,B)
suggests that R1 is a binary relation that uses name A for its first argument and B for its second.

7

Definition 4.0.3 [Product-automaton (join)] The product-automaton of the two constraint automata A1 =
(Q1,N1, −→1, Q0,1) and A2 = (Q2,N2,−→2,Q0,2), is:

A1 ./ A2 = (Q1 ×Q2,N1 ∪N2,−→,Q0,1 ×Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1 ∩N2 = N2 ∩N1

〈q1,q2〉
N1∪N2,g1∧g2−→ 〈p1, p2〉

and
q1

N,g
−→1 p1, N ∩N2 = /0

〈q1,q2〉
N,g
−→ 〈p1,q2〉

and latter’s symmetric rule. �

Hiding of a name C in a TDS-relation R(A1, . . . ,C, . . . ,An) means existential quantification over the C-
component. Formally, e.g. for a ternary relation R = R(A,B,C):

∃C[R(A,B,C)] =
{

(α,a〉,〈β,b〉) : ∃ TDS 〈γ,c〉 with (α,a〉,〈β,b〉,〈γ,c〉) ∈ R
}

In constraint automata, the hiding operator removes all information about C.

Definition 4.0.4 [Hiding on constraint automata] Let A = (Q,N ,−→,Q′
0) be a constraint automaton

and C ∈ N . The constraint automaton

∃C[A] =
(

Q,N \{C},−→C,Q0,C
)

is defined as follows. Let ∗ be the (transition) relation such that q ∗ p iff there exists a finite path

q
{C},g1
−→ q1

{C},g2
−→ q2

{C},g3
−→ . . .

{C},gn
−→ qn

where qn = p and g1, . . . ,gn are satisfiable (i.e., gi 6≡ false). (Note that the gi’s depend only on C.) The set
Q′

0 of initial states is Q0 ∪
{

p ∈ Q : q0
∗ p for some q0 ∈ Q0

}

. The transition relation −→C is given by:

q ∗ p, p
N,g
−→ r, N ′ = N \{C} 6= /0, g′ = ∃C[g]

q
N′,g′
−→C r

where ∃C[g] =
∨

d∈Data
g[data(C)/d].7 �

For instance, if Amerger denotes the merger automaton in Figure 3, then ∃C
[

Amerger
]

is the same as the
automaton for the asynchronous drain.
Note that the product of two deterministic constraint automata is always a deterministic automaton, while
hiding can turn a deterministic constraint automaton into a nondeterministic one. However, when modeling
Reo networks with constraint automata, one can derive from ∃C[A] a det(∃C[A]); see Remark 3.2.2.

Example 4.0.5 [Composition of two FIFO1 channels] Figure 4 shows how a FIFO2 channel can be ob-
tained from two FIFO1 channels AFIFO1(A,C) and AFIFO1(C,B) via product and hiding:

AFIFO2(A,B) = ∃C
[

AFIFO1(A,C) ./ AFIFO1(C,B)
]

For simplicity, we deal with a singleton data domain Data = {d} which allows us to skip the DCs of the
transitions. Note that the state 〈q1, p2〉 is not reachable in AFIFO2(A,B). The reason is that 〈q1, p2〉 is
entered through C when the data element moves from the buffer of the first channel to that of the second. As
we abstract away from the activities of C, state 〈q1, p2〉 can be skipped in AFIFO2(A,B) (or alternatively, it
can be identified with the state 〈p1,q2〉). �

7g[data(C)/d] denotes the DC obtained by syntactically replacing all occurrences of data(C) in g with d. More precisely, we
replace the atoms data(C) = d ′ with true if d = d′ and with false if d 6= d ′.

8

q1 p1 q2 p2

{A}

{C}

{C}

{B}

q1 q2 p1 q2

q1 p2 p1 p2

product automata

hiding

{B} {B}

{A}

{A}

{A,B}

q1 q2 p1 q2

q1 p2 p1 p2

{B} {B}

{A}

{A}

{B}

{A,B}

{C}

{A}

{A,B}

Figure 4: Composition of two FIFO1 channels

Lemma 4.0.6 [Correctness of join] Let A1 and A2 be two constraint automata as above. Then:

(a) LTDS(A1 ./ A2) = LTDS(A1) ./ LTDS(A2).

(b) If N1 = N2 then LTDS(A1 ×A2) = LTDS(A1)∩LTDS(A2). �

The equality LTDS(∃C[A]) = ∃C[LTDS(A)] does not hold in general. For instance, hiding B in the merger
automaton in Figure 3 yields a constraint automaton with a single state q, one {A,C}-transition, and one
{C}-transition. Hence, any TDS-pair (〈α,a〉,〈γ,c〉) with α = γ and a = c belongs to the accepted language
of ∃B[Amerger]. On the other hand, none of the pairs (〈α,a〉,〈γ,c〉) with a = c is contained in the language
∃B[LTDS(Amerger)] because in every timed run of Amerger data occur infinitely often on B and C but not on
A. To remedy the situation we need to add fairness conditions that declare which automata-transitions must
be taken infinitely often (similar to Büchi automata, see e.g. [Tho90]). To keep this extended abstract short,
we skip this detail in the sequel.

Example 4.0.7 [Exclusive router] Figure 2.a shows the Reo network for an exclusive router connector. A
data item arriving at the input port F flows through to only one of the output ports B or E, depending on
which one is ready to consume it. If both output ports are prepared to consume a data item, then one is
selected nondeterministically. The input data is never replicated to more than one of the output ports.8

Figure 2.a shows that the exclusive router is obtained by composing two LossySync channels, a SyncDrain
(YZ) channel, a merger (inherent in the mixed node of Z), and six Sync channels:

8The behavior of this connector is the counterpart of the primitive nondeterministic selection inherent in the merge that a Reo (sink
or mixed) node performs on its multiple input, modeled by the merger in Figure 3.

9

AXRouter(F,E,D) = ∃M,N,U,W,X ,Y,Z
[

ALossySync(X ,M)×ALossySync(X ,N)×
ASyncDrain(Y,Z)×Amerger(U,W,Z)×
ASync(F,X)×ASync(X ,Y)×ASync(N,U)×
ASync(M,W)×ASync(M,E)×ASync(N,B)

]

Figure 5 shows how the constraint automaton for our exclusive router is obtained as the product of the
constraint automata of its constituent channels followed by hiding of its internal transitions. �

{X,M}

product automata

hiding

{X,N} {Y,Z} {U,Z} {W,Z}

{F,E} {F,B}

{F,X,Y,Z,M,W,E} {F,X,Y,Z,N,U,B}

{F,X} {X,Y} {N,U} {M,W} {M,E} {N,B}

lossy sync lossy sync sync drain merger

sync sync sync sync sync sync

exclusive router

{X} {X}

data(X)=data(Y) data(N)=data(U) data(M)=data(W) data(N)=data(B)

data(Z)=data(W)data(Z)=data(U)data(X)=data(N)

data(F)=data(E) data(F)=data(B)

data(F)=data(X)
data(X)=data(Y)
data(X)=data(M)
data(M)=data(W)
data(M)=data(E)
data(Z)=data(W)

data(M)=data(E)

data(N)=data(B)
data(Z)=data(U)

data(N)=data(U)
data(X)=data(N)
data(X)=data(Y)
data(F)=data(X)

data(X)=data(M)

data(F)=data(X)

Figure 5: Exclusive router obtained through composition of other Reo channels

Example 4.0.8 [Shift-lossy FIFO1 channel] Figure 2.b shows a Reo network for a connector that behaves
as a lossy FIFO1 channel with a shift loss-policy. This a channel is called shift-lossy FIFO1 (ShiftFIFO1).
It behaves as a normal FIFO1 channel, except that if its buffer is full then the arrival of a new data item
deletes the existing data item in its buffer, making room for the new arrival. As such, this channel implements
a “shift loss-policy” losing the oldest contents in its buffer in favor of the latest arrivals. This is in contrast
to the behavior of an overflow-lossy FIFO1 channel, whose “overflow loss-policy” loses the new arrivals
when its buffer is full.
The connector in Figure 2.b is composed of an exclusive router (shown in Figure 2.a and explained in Ex-
ample 4.0.7), a merger (inherent in the mixed node of C), a SyncDrain (AC), an initially full FIFO1 channel
(BD), an initially empty FIFO2 channel (AF), and four Sync channels. Figure 6 shows how the constraint
automaton for our ShiftFIFO1 channel is obtained from the constraint automata of its constituents through
product and hiding:

10

AShiftFIFO1(A,B) = ∃C,D,E,F
[

AXRouter(F,E,B)×Amerger(E,D,C)×ASyncDrain(A,C)
×AFIFO1(B,D)×AFIFO2(A,F)

]

As in our other examples, for simplicity we assume a singleton data domain Data = {d} which allows us to
skip the DCs of the transitions. �

product automata

hiding

{F,E} {F,B}

{B} {A,C}

{F}

{A}

{A,C,E,F}

{A}

{F,B}

{A}

ex−router

syncdrain

shift lossy FIFO1 channel

{D,C}{E,C}

merger

data(F)=data(E) data(F)=data(B)
{A,F}

data(A)=d

FIFO2

data(A)=d
{A}

{F}
data(F)=d

data(F)=d

data(A)=d
data(F)=d

{A,C,D}data(D)=data(C)

data(F)=data(B)

data(A)=d

data(A)=d

data(C)=data(E)
data(F)=data(E)
data(F)=d

data(A)=d
{B}

data(B)=d

data(A)=d

data(B)=d

FIFO1 {D}
data(D)=d

data(D)=data(C)data(E)=data(C)

Figure 6: Shift-lossy FIFO1 channel obtained through composition of other Reo channels

Our product operator relies on the standard construction for building finite automata for intersection and
has similarities with composition operators for similar models, e.g., the one-to-many composition of port
automata [GR95]. On the other hand, the hiding operator for timed port automata is totally different from
our construction. The former does not change the structure of the automata but makes certain output ports
invisible. In contrast, our construction removes all information about the hidden names (similar to the
deletion of ε-transitions in ordinary nondeterministic finite automata).

5 Bisimulation and simulation

As for standard labeled transition systems, branching time relations like bisimulation and simulation can be
defined for constraint automata. In the context of Reo, we are interested only in the languages induced by
Reo networks (or constraint automata) rather than their branching behavior. Nevertheless, branching time
relations are important because they yield an alternative characterization of language equivalence/inclusion,

11

and a simple way to verify if two automata are language equivalent, or if the language of one is contained
in the language of the other.

Definition 5.0.9 [Bisimulation] Let A = (Q,N ,−→,Q0) be a constraint automaton and R an equivalence
relation on Q. R is called a bisimulation for A if for all pairs (q1,q2) ∈ R , all R -equivalence classes
C ∈ Q/R , and every N ⊆ N :

dc(q1,N,C) ≡ dc(q2,N,C).

States q1 and q2 are called bisimulation equivalent (denoted q1 ∼ q2) iff there exists a bisimulation R with
(q1,q2) ∈ R . �

As usual, two constraint automata A1 and A2 with the same set of names are called bisimulation equivalent
(denoted A1 ∼ A2) iff for every initial state q0,1 of A1 there is an initial state q0,2 of A2 such that q0,1

and q0,2 are bisimulation equivalent, and vice versa. Here, A1 and A2 must be combined into a “large”
automaton obtained through the disjoint union of (the state spaces of) A1 and A2.

{A} {A}

q1

p1 r1

{B}
{C}

{A}
{A}

q2

p2 r2

{B}
{C}

data(A)=d

p2’

{B}

{A}

data(A)<>d

{A}

q3

u3

{B} {C}

Figure 7: Similarity and bisimilarity

Example 5.0.10 In the constraint automata of Figure 7, states q1 and q2 are bisimilar while q1,q2 6∼ q3.
To see why q1 and q2 are bisimilar it suffices to establish a bisimulation which contains (q1,q2). In fact, the
equivalence R induced by the partition

Q/R =
{

{q1,q2},{q3},{p1, p2, p′2},{r1,r2},{u3}
}

can be shown to be a bisimulation. Note that, for instance,

dc(q1,{A},{p1, p2, p′2}) = true ≡ dc(q2,{A},{p1, p2, p′2}).

On the other hand, q1 and q2 are not bisimilar to q3. The reason is that there is no state reachable from q1

or q2 which is bisimilar to u3 because dc(u3,{B}) = dc(u3,{C}) = true, while dc(r1,{B}) = dc(r2,{B}) =
false and dc(p1,{C}) = dc(p2,{C}) = false. �

In the example of Figure 7, states q1, q2, and q3 are language equivalent (i.e., we have LTDS(A ,q1) =
LTDS(A ,q2) = LTDS(A ,q3)) but bisimulation distinguishes them as non-equivalent. For nondeterministic
constraint automata bisimulation is strictly finer than language equivalence. However, for deterministic
constraint automata, bisimulation and language equivalence coincide.

Theorem 5.0.11 [Bisimulation versus language equivalence] Let A1 and A2 be two constraint automata
with the same name set N .

(a) If A1 ∼ A2 then LTDS(A1) = LTDS(A2).

(b) If A1 and A2 are deterministic then A1 ∼ A2 iff LTDS(A1) = LTDS(A2).

Proof 1 (a) is an easy verification. The proof for (b) can be established by showing that given a determin-
istic constraint automaton A = (Q,N ,−→,Q0), the relation

R =
{

(q1,q2) ∈ Q×Q : LTDS(A ,q1) = LTDS(A ,q2])
}

is a bisimulation. �

12

We now provide an alternative characterization of language inclusion by means of the simulation preorder
which can be viewed as a uni-directional version of bisimulation:

Definition 5.0.12 [Simulation] Let A = (Q,N ,−→,Q0) be a constraint automaton and R a binary relation
on Q. R is called a simulation for A if for all pairs (q1,q2)∈ R , all R -upward closed sets P ⊆ Q, and every
N ⊆ N :

dc(q1,N,P) ≤ dc(q2,N,P).

P is called R -upward closed iff for all states p∈P and (p, p′)∈R we have p′ ∈P. A state q1 is simulated by
another state q2 (and q2 simulates q1), denoted as q1 � q2, iff there exists a simulation R with (q1,q2)∈R .
A constraint automaton A2 simulates another constraint automaton A1 (denoted as A1 � A2) iff every initial
state of A1 is simulated by an initial state of A2.9 �

As the logical or (∨) is idempotent, we have that R is a simulation iff dc(q1,N, p) ≤ dc(q2,N, p ↑R) for
all pairs (q1,q2) ∈ R , states p ∈ Q, and N ⊆ N . Here, p ↑R denotes the R -upward closure of {p}, i.e., the
set {p′ ∈ Q : (p, p′) ∈ R }.

Example 5.0.13 State q3 in Figure 7 simulates states q1 and q2 in the same figure. Other examples include,
in Figure 3:

• the automaton for the synchronous drain which simulates the automaton for the synchronous channel,

• the automaton for the asynchronous drain which simulates the automaton for the FIFO1 channel, and

• the automaton for the synchronous channel which is simulated by the automaton for the lossy syn-
chronous channel. �

Analogous to Theorem 5.0.11, we obtain:

Theorem 5.0.14 [Simulation versus language inclusion] Let A1 and A2 be two constraint automata with
the same name set N .

(a) If A1 � A2 then LTDS(A1) ⊆ LTDS(A2).

(b) If A1 and A2 are deterministic then A1 � A2 iff LTDS(A1) ⊆ LTDS(A2). �

As for ordinary labeled transition systems, bisimulation equivalence is finer than simulation equivalence
� ∩�−1.

Lemma 5.0.15 [Bisimulation versus simulation] For all constraint automata A1 and A2:

(a) If A1 ∼ A2 then A1 � A2 (and A2 � A1).

(b) If A1 and A2 are deterministic and A1 � A2, A2 � A1 then A1 ∼ A2.

Proof 2 (a) follows from the fact that any bisimulation is a simulation. (b) follows by observing that for
deterministic automata, simulation equivalence is a bisimulation. �

Lemma 5.0.16 [Compositionality of join and hiding]

(a) If A1 � A ′
1 and A2 � A ′

2 then A1 ./ A2 � A ′
1 ./ A ′

2.

(b) If A1 ∼ A ′
1 and A2 ∼ A ′

2 then A1 ./ A2 ∼ A ′
1 ./ A ′

2.

(c) If A1 � A2 then ∃C[A1] � ∃C[A2].

(d) If A1 ∼ A2 then ∃C[A1] ∼ ∃C[A2].

9Here, we assume that A1 and A2 rely on the same set of names.

13

Proof 3 To prove (a) and (b), consider the relations

Rsim =
{

(〈q1,q2〉,〈q
′
1,q

′
2〉) : q1 � q′1,q2 � q′2

}

,

Rbis =
{

(〈q1,q2〉,〈q
′
1,q

′
2〉) : q1 ∼ q′1,q2 ∼ q′2

}

.

Then, Rsim is a simulation and Rbis a bisimulation on the product-automata.
We provide the proof for (c) and observe that the proof for (d) is similar. To prove (c) it suffices to show that
given a constraint automaton A = (Q,N ,−→,q0), any simulation R for A is a simulation for ∃C[A]. By
considering the {C}-transitions in A , we obtain:

(q1,q2) ∈ R ∧ q1
∗ q′1 =⇒ q2

∗ q′2 for some state q′2 with (q′1,q
′
2) ∈ R . (*)

Let (q1,q2) ∈ R , N a nonempty subset of N \ {C}, and P an R -upward closed subset of Q. Then, for all
states q ∈ Q:

dc∃C[A](q,N,P) =
∨

q′∈q∗

(

dcA(q′,N,P)∨dcA(q′,N ∪{C},P)
)

where q∗ =
{

q′ ∈ Q : q ∗ q′
}

. From (*), we obtain that for every state q′1 ∈ q∗1 there exists a state q′2 ∈ q∗2
with (q′1,q

′
2) ∈ R . Because

dcA(q′1,N,P) ≤ dcA(q′2,N,P),
dcA(q′1,N ∪{C},P) ≤ dcA(q′2,N ∪{C},P),

we get dc∃C[A](q1,N,P) ≤ dc∃C[A](q2,N,P). �

6 Concluding remarks

Connector construction in Reo is conceptually analogous to the design of asynchronous electronic circuits.
Among other things, this analogy emphasizes the importance of visual environments for design, analysis,
verification, and optimization of Reo connectors, as counterparts of tools and facilities available in mod-
ern electronic CAD systems. In this context, issues such as whether two Reo connectors have the same
observable behavior, or whether one’s behavior is only a refinement of that of the other arise naturally and
frequently. Constraint automata enable us to formally phrase such issues in terms of language equivalence
or language containment and check, e.g., whether LTDS(A1) = LTDS(A2) or LTDS(A1)⊆ LTDS(A2). Known
methods for analysis and model checking with ordinary finite state automata and labeled transition systems
can be adapted to work with our constraint automata.
Given deterministic constraint automata A1 and A2, the simplest way to check language equivalence is to
build the bisimulation quotient of the constraint automaton A = A1]A2, which we obtain by taking the
disjoint union of the state spaces of A1 and A2, and check whether the initial states of A1 and A2 belong
to the same equivalence class. To compute the bisimulation equivalence classes of A , we may apply the
prominent partitioning-splitter technique [KS83, PT87]. Similarly, to check language inclusion for two
deterministic constraint automata A1 and A2, we may check whether A2 simulates A1 by a technique based
on the same idea as for labeled transition systems (e.g. [HHK95]).
Nondeterministic constraint automata offer a useful semantic model for Reo connector networks which,
e.g., avoids the exponential blowup that may result from applying the powerset construction to an automaton
∃C[A]. The algorithms to compute the bisimulation quotient or simulation preorder can be applied here as
a sound (but incomplete) verification method to show language equivalence or inclusion.
Our future work includes the development of temporal logics and model checking algorithms based on
constraint automata.

References

[AR02] F. Arbab, J.J.M.M. Rutten. A Coinductive Calculus of Component Connectors. Report SEN-
R0216, CWI, 2002. Available at URL: www.cwi.nl. To appear in the proceedings of WADT’02.

[Arb03] F. Arbab. Reo: A Channel-based Coordination Model for Component Composition, Mathemati-
cal Structures in Computer Science, Cambridge University Press, to appear in 2003.

14

[GR95] R. Grosu, B. Rumpe. Concurrent Timed Port Automata. Techn. Report Techn. Uni-
versität München TUM-I9533, 1995. http://www4.informatik.tu-muenchen.de/reports/TUM-
I9533.html.

[HHK95] M. Henzinger, T. Henzinger, P. Kopke. Computing Simulations on Finite and Infinite Graphs,
Proc. FOCS’95, pp 453-462, 1995.

[KS83] P. Kannelakis, S. Smolka. CCS Expressions, Finite State Processes and Three Problems of Equiv-
alence, Proc. 2nd ACM Symposium on the Principles of Distributed Computing, pp 228-240,
1983. The full version with the same title has appeared in Information and Computation, Vol. 86,
pp 43-68, 1990.

[LT89] N. Lynch, M.R. Tuttle. An introduction to input/output automata, CWI Quarterly 2(3), pp 219-
246, 1989.

[Mil80] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92,
1980.

[PT87] R. Paige, R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing,
Vol. 16, No. 6, pp 973-989, 1987.

[Tho90] W. Thomas. Automata on Infinite Objects. In J. van Leuwen, editor, handbook of Theoretical
Computer Science, vol. B, chapter 4, pp 135-191. Elsevier Science Publishers, Amsterdam, 1990.

15

