
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

A channel-based coordination model for components

F. Arbab, F.S. de Boer, M.M. Bonsangue,
J.V. Guillen Scholten

REPORT SEN-R0127 DECEMBER 31, 2001

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A Channel-based Coordination

Model for Components

Farhad Arbab1

Frank S. de Boer1

Marcello M. Bonsangue2

Juan V. Guillen Scholten1

1CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

E-mails: farhad@cwi.nl, frb@cwi.nl, and juan@cwi.nl

2LIACS, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

E-mail: marcello@liacs.nl

ABSTRACT

In this paper we present a coordination model for component-based software systems based
on the notion of mobile channels, and describe its implementation in the Java language.
Channels allow anonymous, and point-to-point communication among components, while
mobility allows dynamic recon�guration of channel connections in a system. This model
supports dynamic distributed systems where components can be mobile. It provides an
eÆcient way of interaction among components. Furthermore, our model provides a clear
separation between the computational part and the coordination part of a system, allowing
the development and description of the coordination structure of a system to be done in a
transparent way. Our description of the Java implementation of this coordination model
demonstrates that it is self-contained enough for developing component-based systems.
However, if desired, our model can be used as a basis to extend other models that focus
on other aspects of components that are less related to composition and coordination
concerns.

2000 ACM Computing Classi�cation: C.2.4, D.1.3, D.1.5, D.3.2, D.3.3, F.1.2
Keywords and Phrases: Channels, components, component-based software, coordination model, dy-
namic distributed systems, Java implementation of coordination model, mobility, mobile agents
Note: Work carried out under the project SEN3.2 "Component-based models and software architec-
tures"

2 CONTENTS

Contents

1 Introduction 3

2 Components and their Composition 3
2.1 Components and Object-Oriented Technology . 4
2.2 Components and their Interfaces . 4
2.3 Coordination Among Components . 4

3 Mobile Channels 5
3.1 MoCha . 7

4 Implementation in Java 8
4.1 Components in Java . 9
4.2 Implementation Overview . 9
4.3 The Interface of a Component . 10
4.4 The Coordination Operations . 11
4.5 A Small Example . 13

5 Related Work and Conclusion 13

3

1 Introduction

In the last decade, structured software development has emerged as the means to control the com-
plexity of systems. However, concepts like modularity and encapsulation alone have shown to be
insuÆcient to support easy development of large software systems. Ideally, large software systems
should be built through a planned integration of perhaps pre-existing components. This means not
only that components must be pluggable, but also that there must be a suitable composition mecha-
nism enabling their integration.

Component-based software describes a system in terms of components and their connections. Com-
ponents are black boxes, whose internal implementation is hidden from the outside world. Instead,
the composition of components is de�ned in terms of their (logical) interfaces which describe their
externally observable behavior. By hiding all system computation in the components, a system can
be described in terms of the observable behavior of its components and their interactions. As such,
component-based software provides a high-level abstract description of a system that allows a clear
separation of concerns for the coordination and the computational aspects of a system. The im-
portance of such high level logical descriptions of systems is growing in the Software Engineering
community. Traditionally, the description of a system is limited to the physical layout of its software.
For example, this is the case in the standard OO modeling language UML [6]. However, extensions
of UML are now emerging to support logical entities as components, their interfaces, and connectors,
which allow a logical decomposition and description of the system. An example of such an extension is
UML-RT[17], which is an integration of the architectural description language ROOM[18] into UML.

In this paper we present and advocate a coordination model for component-based software that is
based on mobile channels, and describe its implementation in the Java language. A mobile channel is a
coordination primitive that allows anonymous point-to-point communication between two components,
and enables dynamic recon�guration of channel connections in a system. It also supports dynamic
distributed systems where components can be mobile.

From a software development point of view, mobile channels provide a highly expressive data-
ow
architecture for the construction of complex coordination schemes, independent of the computation
parts of components. This enhances the re-usability of systems: components developed for one system
can easily be reused in other systems with di�erent (or the same) coordination schemes. Also, a system
becomes easier to update: we can replace a component with another version without having to change
any other component or the coordination scheme in the system. Moreover, a coordination scheme that
is independent of the computation parts of components can also be updated without the necessity to
change the components in the system.

The Java implementation presented in this paper provides a general framework that integrates a
highly expressive data-
ow architecture for the construction of coordination schemes with the object-
oriented architecture for the description of the internal data-processing aspects of components.

The rest of this paper is organized as follows. In section 2 we discuss components and several coor-
dination mechanisms for their composition, and present our rationale for a model based on channels.
In section 3, we introduce and show the advantages of the notion of mobility for channels. In section
4 we describe an implementation of our model in the Java language [12]. We conclude in section 5,
where we brie
y discuss some related work.

2 Components and their Composition

In this section we brie
y discuss the general notion of a component and coordination mechanisms for
composing components.

4 2 COMPONENTS AND THEIR COMPOSITION

2.1 Components and Object-Oriented Technology

Components adhere to the fundamental principles that are the underpinnings of object-oriented tech-
nology:

- systemwide unique identity;

- bundling of data and functions manipulating those data;

- encapsulation for hiding detailed information that is irrelevant to its environment and other
components.

However, components extend these principles by adhering to a stronger notion of encapsulation.
Whereas the interface of an object involves only a one-way
ow of dependencies from the object
providing a service to its clients, an interface of a component involves a two-way reciprocal interaction
between the component and its environment. This stronger notion of encapsulation accommodates
a more general notion of re-usability because mutual dependencies are now more explicit through
component interfaces. Furthermore, it allows components to be independently developed, without
any knowledge of each other.

Components are self contained "binary" packages. All services provided by a component, as
described in its interfaces, must be produced in the component itself. If objects are used to implement
a component, implementation inheritance should not cross the component boundaries. No other
restrictions are imposed on a component implementation.

2.2 Components and their Interfaces

We de�ne a component as an entity that can be used (composed) by means of its interface only. Such
an interface describes the input, output, and the observable behavior of the component. For example,
the interface of a component may tell us that, given a speci�c input, a window with a message will
appear on the screen. However, how this is implemented in the component is hidden from the outside
world, i.e., a component is viewed as a black box. An interface of a component, therefore, provides
an abstraction of the component which encapsulates its internal implementation details that are not
relevant for its use.

In our channel-based coordination model a component interface consists of a set of mobile channels
through which the component sends and receives values. This set can be static, dynamic, or a
combination of both. The observable behavior can be expressed by using, for example, predicates,
comments, or some graphical notation.

2.3 Coordination Among Components

Besides components, a system also needs connections among them. There are several coordination
mechanisms for composing components. Because components must be pluggable, it is important that
these mechanisms do not require a component to know anything about the structure of the system
they are plugged into. We discuss four important types of coordination mechanisms: messaging,
events, shared data spaces, and channels [1].

Messaging. With this type of connection, components send messages to each other. These messages
need not be explicitly targeted; a component can send a message meant for any component having
some kind of speci�c service (publish-and-subscribe model), instead of sending it to a particular
component (point-to-point model). However, messaging is not really suitable for component-based
software because it requires the components to know something about the structure of the system:
even if they do not directly know their service providers, they must know the services provided in the
system. An implementation example of this type of connection is the Java Message Queue (JMQ)
[20], a package based on the Java Message Service (JMS) [21] open standard.

5

Events. With the event mechanism a component, called the producer or event source, can create
and �re events, the events are then received by other components, called consumers or event listeners,
that listen to this particular kind of events. JavaBeans [13], which are seen as the components in
Java, use the events mechanism.

Shared data spaces. In a shared data space, all components read and write values, usually tuples
like in Linda [7], from and to a shared space. The tuples contain data, together with some conditions.
Any component satisfying these conditions can read a tuple; tuples are not explicitly targeted. The
JavaSpaces technology [8], a powerful Jini service from Sun, is an example of a shared data space that
is being used for components.

Channels. A channel, see �gure 1, is a one-to-one connection that o�ers two ends, its source
and its sink, to components. A component can write by inserting values to the source-end, and
read by removing values from the sink-end of a channel; the data-
ow is locally one way: from a
component into a channel or from a a channel into a component. The communication is anonymous:
the components do not know each other, just the channel-ends they have access to. Channels can be
synchronous or asynchronous, mobile, with conditions, etc. Examples of systems based on channels
include: Communicating Threads for Java [10], CSP for Java [22], both based on the CSP model [11],
and Pict [16], a concurrent programming language based on the �-calculus. However, these systems
either do not support distributed environments, or their channels are not mobile. MoCha (see section
3.1) implements distributed mobile channels.

SinkSource

Component Component

BA
Writes Reads

Channel

Figure 1: A Channel.

We base our coordination model on (mobile) channels. The last three coordination mechanisms
allow true separation of coordination and computation concerns in a system. Like shared data spaces,
channels support anonymous communication. However, channels have other advantages over events
and shared data spaces for the systems that we are interested in.

First, like messaging and in contrast with shared data spaces, point-to-point channels can be
implemented more eÆciently in distributed systems. Second, like messaging and events, point-to-
point channels support a more private means of communication that prevents third parties from
accidentally or intentionally interfering with the private communication between two components.
In contrast, shared data spaces are in principle \public forums" that allow any component to read
any data they contain. Accommodating private communications within the public forum of a shared
data space, places an extra burden on many applications that require it. Third involves architectural
expressiveness. Like messaging, using channels to express the communication carried out within a
system is architecturally much more expressive than using shared data spaces. With a shared data
space, it is diÆcult to see which components exchange data with each other, and thus depend on or are
related to each other, because in principle, any component connected to the data space can exchange
data with any or all other components in the system. The point-to point channels that inter-connect
the components of a system, express signi�cant facts about the inter-dependencies among components.
Finally, in contrast to events, channels allow several di�erent types of connections among components,
e.g., synchronous, FIFO, etc.

3 Mobile Channels

In our coordination model, components interact with each other through mobile channels. A channel
is called mobile when the identities of its channel-ends can be passed on through channels to other

6 3 MOBILE CHANNELS

components in the system. Furthermore, in distributed systems the ends of a mobile channel can
physically move from one location to another, where location is a logical address space where compo-
nents execute. Because the communication via channels is anonymous, when a channel-end moves,
the component at its other end is not a�ected.

Mobility allows dynamic recon�guration of channel connections among the components in a system,
a property that is very useful and even crucial in systems where the components themselves are mobile.

A component is called mobile when, in a distributed system, it can move from one location (where
its code is executing) to another. Laptops, mobile phones, and mobile Internet agents are examples of
mobile components. The structure of a system with mobile components changes dynamically during
its lifetime. Mobile channels give the crucial advantage of moving a channel-end together with its
component, instead of deleting a channel and creating a new one.

In our model, a component must perform a successful Connect operation on a speci�c channel-end
before it can use it, and it must perform a Disconnect operation to release it (see section 4.4). At every
moment in time, at most one component can be connected to a particular channel-end. Therefore,
although many components may know the identity of a speci�c channel-end, the communication via
mobile channels is still one-to-one. This ensures the soundness and completeness properties that
are the prerequisites for compositionality [4]. Our one-to-one channels can still be composed into
many-to-many connectors, while preserving these prerequisites for compositionality [2, 3].

As a concrete example of the utility of mobile channels suppose we want to use agents to search for
speci�c information, e.g. co�ee prices, on the Internet. Agents consult di�erent XML[23] information
sources, like databases and Internet pages. Each information source has a channel where requests
can be issued, and an agent knows the identity of the source end of this channel plus the location of
the information source. The agents may have a list made at their creation, or this information may
be passed to them through channels. In our example, we use a mobile agent that moves among the
di�erent locations of the information sources. An alternative that we will consider later is to create
an agent at every location.

Source Sink

SourceSink

So
ur

ce

Si
nk

Si
nk

So
ur

ce

Source Sink

XML
Information

Source

B

Agent

XML
Information

Source

A

Component

U

Figure 2: An Example: a Hopping Agent.

A component U has two channel connections for interaction with a mobile agent, one to send
instructions and the other to receive results. At some point in time, U asks the agent to search for
MoCha-beans prices. Figure 2 shows the situation after the agent moves to the information source A
which is in a di�erent Internet location, as expressed by the dashed lines in the �gure. Right after the
move, the agent creates a channel meant for reading information from the information source, and
sends a request to A together with the identity of the source channel-end of the created channel.

At some point in time the agent �nishes searching the information source A and writes all relevant
information it �nds for the component U into the proper source channel-end. Regardless of whether
or not this information has already been read by U, the agent moves to the location of the next

3.1 MoCha 7

Source Sink

SourceSink

Source Sink

XML
Information

Source

B

Si
nk

So
ur

ce

Agent

So
ur

ce

Si
nk

XML
Information

Source

A

Component

U

Figure 3: Moving to Another Location.

information source (see �gure 3). Together with the agent, the two ends of the channels connecting it
to U also move with it to this new location. However, the component U is not a�ected by this. It can
still write to and read from its channel-ends, even during the move; all data in a mobile channel are
preserved while its ends move. For the agent the advantages of moving the channel-ends along with it
is that it avoids all kinds of problems that arise if it were to delete the channels and create new ones
after the move, e.g., checking if the channels are empty, notifying U that it cannot use them anymore,
perhaps some locking issues to accomplish the latter, etc.

In our alternative version, we have a di�erent non-mobile agent at each location, instead of one
mobile agent, and there are only two channels for interaction with the component U. The channel-ends
meant for the agents then move from one agent to the other. From the point of view of the component
U there is no di�erence between the two alternatives in our example.

In our example, the two channel-ends used by U do not move, but it is possible to have mobility at
both ends of a channel, if desired, and extend the example by passing these channel-ends on to other
components in the system.

3.1 MoCha

MoCha, is an implementation model for mobile channels in distributed environments that supports
mobility as described above. More details can be found in [9] and in our future work.

A

Channel End
Source Component

B

Channel End
SinkComponent

sink_rf source_rf

Buffer

Figure 4: A mobile Channel in MoCha.

In �gure 4, we show how a channel is realized in MoCha. For components, a channel consists of
two data-structures, the source and the sink channel-ends, which they (separately) refer to through
interface references. An interface reference is a reference from a component to a channel-end, restrict-
ing the access of the component to only the pre-de�ned operations on the channel. These operations
include: create, read, write, move, and delete. The ends of a channel must internally know each

8 4 IMPLEMENTATION IN JAVA

other to keep the identity of the channel and control communication. For this purpose, the ends have
references to each other: the sink rf- and source rf-�elds in the �gure. If the type of a channel is
asynchronous then its channel-ends also have references to a bu�er. The implementation of this bu�er
depends on the asynchronous channel type.

Component

C2’

Component

Cm’

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Component

Component

C2

Cn

Component
Channel End

Source Component
Channel End

Sink

C1 C1’
buffer_rf

sink_rf source_rf
buffer_rf

Buffer

Buffer

Buffer

Buffer

Buffer

Bufferlink_rf

link_rf

link_rf

link_rf

link_rf

link_rf

Figure 5: A FIFO mobile Channel in MoCha.

Figure 5 shows the implementation of an asynchronous FIFO mobile channel in MoCha. The bu�er
is implemented by a chain of unbounded FIFO bu�ers, each pointing to its next bu�er through its
link rf reference. A local bu�er is created by the source channel-end each time a component performs
the operation write and no local bu�er yet exists. This bu�er is then added to the existing chain of
bu�ers. Bu�ers get destroyed when they get empty due to a read operation on the sink channel-end.
Both channel-ends have references, bu�er rf, to a bu�er. If this reference is local and the channel-end
moves to another location, then the local bu�er it refers to does not move with it, instead, the bu�er rf
reference is changed from local to non-local. With this implementation each write operation is always
local. A read operation is either local or non-local depending on the amount of elements needed. move
operations do not involve data-transfer of elements at all [9].

MoCha has been implemented in Java using the Remote Method Invocation, RMI, package[14].
We use MoCha for the Java implementation of our coordination model (see section 4.2).

4 Implementation in Java

The coordination model we present in this paper can be implemented in any modern programming
language that supports distributed environments, like Java[12], or C++[19]. In this section we describe
an implementation of our model in the Java language.

The implementation consists of a framework that provides (a) a precompiler tool for writing compo-
nents, (b) mobile channels, and (c) operations on these channels. All the component source �les have
the extension .cmp, and the precompiler transforms them into normal Java �les. We do not de�ne a
new language: the .cmp �les contain Java code and the precompiler just veri�es certain restrictions we

4.1 Components in Java 9

need to impose to have components in Java. We explain these restrictions gradually while describing
the implementation.

4.1 Components in Java

Usually, JavaBeans [13] are used to implement components in Java. However, they do not comply
with our de�nition of components (see section 2.2) for two reasons. First, a JavaBean consists of just
one class, and this puts a serious restriction on the internal implementation of components. Second,
JavaBeans communicate with each other through events, while we want to use channels (see section
2.3).

Instead of using JavaBeans to implement components, we use the package feature of Java. How-
ever, a package is too broad and does not provide the hard boundaries we need for components.
Therefore, we must impose some restrictions that must be veri�ed by the precompiler. These restric-
tions are (1) a component must have at least one class that represents the component's interface,
through which all coordination and access to channels takes place; (2) these interface classes are the
only public classes in a package; and (3) only interface classes can have methods and variables that
are public. For simplicity, in the sequel we assume that the interface of a component consists of just
one class.

Implementing a component as a package plus the restrictions explained in the last paragraph has
two major advantages. One advantage is that access to a component is possible only through its
interface. This combined with the fact that internal references cannot be sent through a channel (see
section 4.4) makes it possible to protect the internal implementation of a component.

The second advantage is that restrictions (1),(2) and (3) are so minimal that they do not impose
any real restrictions concerning the internal implementation of a component. A component may have
one or more objects, one or more active entities, its implementation may be distributed, or it may be
a channel-based component system itself, etc.

4.2 Implementation Overview

Figure 6 shows a general overview of the structure of our implementation. A component is a package
that contains (a) a class which describes its interface, and (b) internal entities (objects) created by
the component's programmer(s), which may also be active (threads). This package is created by the
precompiler from its .cmp �les.

Uses Uses

BasicComponent MoChaComponent

Package Package Package

High level

Mobile Channels Mobile Channels

Low level
Interface

Figure 6: Implementation Overview

The component package uses, with the import feature of Java, our BasicComponent package.
The BasicComponent package is an extra layer, between the component and the low level mobile
channels of MoCha, needed in order to avoid dangling local references to channel-ends that result
from mobility. The BasicComponent package provides channel-end variables that only indirectly
refer to MoCha channel-ends.

A component can have Sink and Source channel-end variables. However, it can perform oper-
ations on these variables only through the coordination methods of its interface (see section 4.4).
To accomplish this, the package BasicComponent provides methods that are protected and which

10 4 IMPLEMENTATION IN JAVA

only the coordination methods of the interface can use. The package also provides a Location for
the components. This data-structure is used to identify both the location of the component in the
network, the IP-address, and the speci�c virtual machine where it is running.

Observe that instead of MoCha, we can use any other implementation of mobile channels, if desired.

4.3 The Interface of a Component

The interface of a component has two parts, a package private part accessible only to the internal
entitie(s) of the component, and a public part accessible to all the entities in the system. A component
interface is a normal Java class and should not be confused with the Interface feature of this
language. Figure 7 shows the skeleton of a .cmp �le for the interface. There is some syntactic sugar
in this �le that the precompiler translates into legitimate Java code:

� Component CompName, must appear as the header of each .cmp �le of a component. This line is
translated into package CompName; import BasicComponent.*;.

� ComponentInterface IntName is translated into
public class IntName extends BasicInterface.

The interface class inherits from BasicInterface, a class that contains basic methods for both
the public and the package private parts of the interface (see �gure 8). The precompiler adds this
class to the component's package, which precludes the possibility of change by the programmers.

Component CompName;

/* add import list here */

ComponentInterface [IntName] // default is CompNameInterface

f
public IntName()

f
super(loc); // call super class constructor

/* Create and initialize here all the

entities of the component */

g
public void finalize()

f
/* Method is optional, perform cleanup

actions before the object is garbage collected */

g
/* Put your optional public variables of type ChannelEnd here */

g

Figure 7: The .cmp Skeleton File for the Interface of a Component

The public part of the interface consists of four parts (see �gure 7 and 8): one or more constructors,
a getLocation method, a finalize method, and variables of type ChannelEnd. The precompiler
checks if these items are the only public ones in the interface.

The interface can have one or more public constructors. The class has a super class (see �gure
8) that needs a Location as a parameter for its constructor. This way we enforce that each constructor
of the interface class must provide a Location, which is either created in the constructor or passed
through as a parameter. In the constructor(s) all internal entities of the component must be created
and initialized. Thus, in order to create a component, it is enough to import the component's package
and make an instance of it's interface class.

4.4 The Coordination Operations 11

Optionally, a finalize method can be present to perform cleanup operations before a component
instance is garbage collected. An interface can also have public channel-end variables if desired, or
data-structures built using them (for example, arrays of channel-end variables).

The package private part of the interface includes the coordination methods provided by the
class BasicInterface (see �gure 8) and all the other methods and variables in the interface that are
not public. We explain the coordination methods in section 4.4.

package CompName;

import MoCha.*;

import BasicComponent.*;

class BasicInterface

f
BasicInterface(Location loc)

public Location getLocation()

Object[] CreateChannel(ChannelType type)

boleaan Connect(ChannelEnd ce, int timeout) throws Exception

boleaan Disconnect(ChannelEnd ce) throws Exception

boleaan Write(Source ce, Object var, int timeout) throws Exception

Object Read(Sink ce, int timeout) throws Exception

Object Take(Sink ce, int timeout) throws Exception

boleaan Wait(String conds, int timeout) throws Exception

g

Figure 8: The BasicInterface Class

For simplicity, we assumed that the interface of a component consists of just one class. However,
we do allow components to have more than one ComponentInterface class. Therefore, a component
can provide several interfaces to its users with di�erent views and/or functionality.

4.4 The Coordination Operations

The interface of a component provides coordination methods for the active internal objects (i.e.
threads) in a instance of that component for operations on channels. These methods are listed in �gure
8. The threads cannot perform any operation directly on the channel-ends, because the channel-ends
do not provide any methods for them, not even a constructor. Therefore, the only way to perform an
operation on a channel is to use the coordination methods in the component interface. The coordina-
tion operations are divided in three groups: the topological operations, the input/output operations,
and the inquiry operations.

These operations are basic operations and more complex operations can be created by composition
of these basic ones. It is, also, the responsibility of the component to ensure proper synchronization
for its internal threads, if they refer to the same channel-ends. Our basic coordination primitives can
be wrapped in component de�ned methods to enforce such internal protocols.

For every method containing a timeout parameter, there is also a version without the time-out
(not listed in the �gure). When no time-out is given the thread performing the method suspends
inde�nitely until the operation succeeds or the method throws an exception. For uniformity of
explanation, we assume that the time-out parameter can also have the special value of in�nity. This
way we need not de�ne two versions of each operation.

Topological Operations

CreateChannel creates a new channel of the speci�ed type. The value of this parameter can be
synchronous or asynchronous channels like FIFO, bag, set, etc. The channel-ends, source and sink,

12 4 IMPLEMENTATION IN JAVA

are created at the same location as the component and their references are returned as an array of type
Object: Object[0] = Source and Object[1] = Sink. We return this array, instead of some Channel
data-structure containing the channel-end references, in order to avoid introducing new unnecessary
data types. If desired, this method can be wrapped to return such a Channel class but this is not
necessary.

Connect connects the speci�ed channel-end ce to the component instance that contains the thread that
performs this operation. If the channel-end is currently connected to another component instance, then
the active entity suspends and waits in a queue until the channel-end is connected to this component
instance or, its time-out expires. The method returns true to indicate success, or false to indicate
that it timed-out. When a connect operation is succesfull and other threads in the same component
instance are waiting to connect to the same channel-end, they all succeed. If a thread tries to connect
to a channel-end already connected to the component instance, it also immediately succeeds.

When the Connect operation succeeds the channel-end physically moves to the location of the
component instance in the network. All channel-ends connected to the component move along with
it while remaining connected.
Disconnect disconnects the speci�ed channel-end ce from the component instance that contains the
thread performing this operation. This method always succeeds on a valid channel-end. It returns
true if the channel-end was actually connected to the component instance and false otherwise. If
ce is invalid, e.g. null, then the method throws an exception.

Input/Output Operations

Write suspends the thread that performs this operation until either the Object var is written into
the channel-end ce, or its speci�ed time-out expires. Only Serializable objects, channel-end iden-
tities, and component locations can be written into a channel. The Serializable objects are copied
before inserted into the channel, therefore no references to the internal objects of a component can be
sent through channels. The method returns the value true if the operation succeeds, and the value
false if its time-out expires. The method throws an exception if either ce is not valid, the component
instance is not connected to the channel-end, the Object var is not Serializable, or it contains a
reference to a non-Serializable object.

Read suspends the thread that performs this operation until a value is read from the sink channel-end
ce, or its speci�ed time-out expires. In the �rst case the method returns a Serializable Object,
a channel-end identity, or a Location. In the second case the method returns the value null. The
value is not removed from the channel. The method throws an exception if either ce is not valid, or
the component instance is not connected to the channel-end.

Take is the destructive variant of the Read operation. It behaves the same as a Read except that the
read value is also removed from the channel.

Inquiry Operations

Wait is the inquiry operation. It suspends the thread that performs it until either the conditions
speci�ed in conds become true or its time-out expires. In the �rst case the method returns true,
and otherwise it returns false. The channel-ends involved in conds need not be connected to the
component instance in order to perform this operation, but an invalid channel-end reference throws
an exception. The argument conds is a boolean combination of primitive channel conditions such as
connected(ce), disconnected(ce), empty(ce), full(ce), etc.

4.5 A Small Example 13

4.5 A Small Example

We use a simple implementation of the mobile agent component of the example in section 3, to show
the utility of the coordination operations provided by our model. Figure 9 shows the Java pseudo-
code for this agent. AgentInterface is the agent's interface and consists of the basic interface plus
a method Move. This method moves the agent to the speci�ed location including the channel-ends
it is connected to, (readChannelEnd, writeChannelEnd, and channel[1]). The readChannelEnd

and writeChannelEnd channel-ends are, respectively, the sink and the source of the channels for
interaction with the component U. The agent has a list containing the locations of the information
sources together with their source channel-end references where it can issue its requests.

void agentImplementation()

f
AgentInterface.Connect(readChannelEnd);

AgentInterface.Connect(writeChannelEnd);

Object[] channel = CreateChannel(FIFOchannel);

AgentInterface.Connect(channel[1]);

For each entry in informationSourceList do

AgentInterface.Move(List[InformationSource].location, channel[1]);

AgentInterface.Connect(List[InformationSource].sourceEnd);

AgentInterface.Write(List[InformationSource].sourceEnd,

REQUEST + channel[0]);

AgentInterface.Disconnect(List[InformationSource].sourceEnd);

information.add(AgentInterface.Read(channel[1]));

information.transformation();

AgentInterface.Write(writeChannelEnd, information);

String cond ="notEmpty(" + readChannelEnd + ")";

information.clear();

if (AgentInterface.Wait(cond, 0)) then

read an instruction from this channelEnd and process it.

fi

od

AgentInterface.Disconnect(readChannelEnd);

AgentInterface.Disconnect(writeChannelEnd);

g

Figure 9: Simple Implementation of The Mobile Agent

5 Related Work and Conclusion

In this paper we presented a coordination model for component-based software based on mobile
channels. The idea of using (mobile) channels for components has its foundations in the earlier work
of some of the authors of this paper, e.g., in [4] and [5].

Our model provides a clear separation of concerns between the coordination and the computa-
tional aspects of a system. We force a component to have an interface for its interaction with the
outside world, but we do not make any assumptions about its internal implementation. We de�ne the
interface of a component as a dynamic set of channel-ends. Channels provide an anonymous means of
communication, where the communicating components need not know each other, or the structure of
the system. The architectural expressiveness of channels allows our model to easily describe a system
in terms of the interfaces of its components and its channel connections, abstracting away their com-
putational parts. Coordination is expressed merely as operations performed on such channels. The
mobility of channels allows dynamic recon�guration of channel connections within a system.

Certain aspects of and concerns in ROOM[18] and Darwin[15], two architectural description lan-
guages (ADL), are related to our work. In ROOM components are described by declaring the internal

14 REFERENCES

structure, the external interface, and the behavior of all its instances (if it is a composite component).
The interface of a component is a set of ports. A port is the place where components o�er or require
certain services. The communication through these ports is bidirectional and in the form of asyn-
chronous messaging. The components of Darwin are similar to the ones of ROOM, but instead of
ports, Darwin components have portals. These portals specify the input and output of a component in
terms of services, as in ROOM. However, the binding of portals is not speci�ed, leaving it open for all
kinds of possible bindings. Another di�erence between Darwin and Room, is that Darwin can describe
dynamically changing systems, while ROOM can describe only static ones. This makes Darwin more
suitable than ROOM for component-based systems that use our coordination model. Of course, to
model mobile channels or the dynamic set of interfaces of a component, for instance, some extensions
to Darwin would be necessary.

Other models for component-based software can bene�t from the coordination model presented in
this paper, because ours is a basic model that focuses only on the coordination of components. Our
model can extend other models that are concerned with other aspects of components, for example,
their internal implementation, their evolution, etc.

Our coordination model opens the possibility to apply more powerful coordination paradigms that
are based on the notion of mobile channels to component-based software. One such paradigm, is
P�![2]. P�! supports composition of channels into complex connectors whose semantics are inde-
pendent of the components they connect to. We are currently extending our coordination model for
component based systems in order to support all the features of P�!.

References

[1] G. Andrews, Paradigms for process interaction in distributed programs, ACM Computing Surveys,
23(1):49-90, 1991.

[2] F. Arbab,Coordination of Mobile Components, Electronic Notes in Theoretical Computer Science
Vol 54, Elsevier Science B.V., 2001.

[3] F. Arbab, A channel-Based Coordination Model for Component Composition, Tech. Re-
port, Centrum voor Wiskunde en Informatica, Amsterdam, 2001. Available on-line
http://www.cwi.nl/ farhad/RewTechReport.ps.

[4] F. Arbab, F. S. de Boer, and M. M. Bonsangue. A Logical Interface Description Language for
Components. , Proceedings of Coordination 2000, Lecture Notes in Computer Science, Springer,
2000.

[5] F. Arbab, M. M. Bonsangue, and F. S. de Boer. A Coordination Language for Mobile Compo-
nents., Proceedings of the 2000 ACM Symposium on Applied Computing (SAC 2000), pp 166-173,
ACM, 2000.

[6] G. Booch, J. Rumbaugh, and I. Jacobson, The Uni�ed Modeling Language User Guide , Addison-
Wesley, Reading, Mass. USA, 1999.

[7] N. Carriero, D. Gelernter. How to Write Parallel Programs: a First Course, MIT press, 1990.

[8] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces TM Principles, Patterns, and Practice, Chap-
ter 1 of book, Addison-Wesley, September 1999.

[9] J.V. Guillen Scholten, MoCha, a Model for Distributed Mobile Channels, Internal Report 01-07,
Master's Thesis, LIACS, Leiden University, May 2001.

REFERENCES 15

[10] G. Hilderink, J. Broenink, and A. Bakkers. Communicating Threads for Java, Draft version
available at Home Page: http://www.rt.el.utwente.nl/javapp/information/CTJ/main.html, The
Netherlands, 2000.

[11] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, London, UK, 1985.

[12] Home Page of Java, http://java.sun.com.

[13] Home Page of JavaBeans, http://java.sun.com/products/javabeans.

[14] Home Page of RMI documentation, http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html.

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Architectures.
In Proceedings of 5th European Software Engineering Conference, Spain, 1994.

[16] B. C. Pierce, D. N. Turner, Pict: A Programming Language Based on the Pi-calculus, Tech-
nical report, Computer Science Department, Indiana University, 1997. Home Page of Pict,
http://www.cis.upenn.edu/ bcpierce/papers/pict/Html/Pict.html.

[17] B. Rumpe, M. Schoenmakers, A. Radermacher, and A. Sch�urr, UML + ROOM as a Standard
ADL?, Proc. ICECCS'99 Fifth IEEE International Conference on Engineering of Complex Com-
puter Systems, 1999.

[18] B. Selic, G. Gullekson, and P.T. Ward, Real-Time Object-Oriented Modelling, John Wiley and
Sons, Inc., 1994.

[19] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1991.

[20] Sun, Java Message Queue, Quickstart Guide v1.1, Sun Microsystems Inc., Palo Alto (USA), May
2000.

[21] Sun, Java Message Service, Speci�cation Document version 1.0.2 , Sun Microsystems Inc., Palo
Alto (USA), November 1999.

[22] P. Welch, CSP for Java (What, Why, and How Much?), Slides of Seminar, University of Kent at
Canterbury, 2001. Home Page of JCSP, http://www.cs.ukc.ac.uk/projects/ofa/jcsp/.

[23] World Wide Web Consortium, eXtensible Markup Language, http://w3c.org/XML/.

