
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Distributed Splitting of Constraint Satisfaction Problems

F. Arbab, E.B.G. Monfroy

Software Engineering (SEN)

SEN-R0027 October 31, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0027
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Distributed Splitting
of

Constraint Satisfaction Problems

Farhad Arbab and Eric Monfroy

CWI

P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands

fFarhad.Arbab,Eric.Monfroyg@cwi.nl

ABSTRACT

Constraint propagation aims to reduce a constraint satisfaction problem into an equivalent but simpler one.

However, constraint propagation must be interleaved with a splitting mechanism in order to compose a complete

solver. In [13] a framework for constraint propagation based on a control-driven coordination model was

presented.

In this paper we extend this framework in order to integrate a distributed splitting mechanism. This technique

has three main advantages: 1) in a single distributed and generic framework, propagation and splitting can be

interleaved in order to realize complete distributed solvers, 2) by changing only one agent, we can perform

di�erent kinds of search, and 3) splitting of variables can be dynamically triggered before the �xed point of a

propagation is reached.

2000 ACM Computing Classi�cation System: D.1.3, D.1.m (Cooperative Constraint Solving), D.2.13, D.3.2,

D.3.m (Constraint Programming), I.1.3

Keywords and Phrases: Constraint solving, domain splitting, solver collaboration, coordination models and

languages.

1. Introduction

Constraint propagation aims to reduce a constraint satisfaction problem (CSP) into an equivalent but
simpler one by narrowing domains of variables until a �xed-point is reached. However, constraint
propagation must be interleaved with a splitting mechanism in order to compose a complete solver.
This mechanism works by splitting the domain of a variable (i.e., the values the variable can assume)
into (sub)domains, creating in this way sub-CSP's. After several splittings, we obtain a tree of sub-
CSP's.
In [13] a framework for constraint propagation based on a control-driven coordination model was

presented. In this paper we extend this framework in order to integrate a distributed splitting mech-
anism.
Intuitively, with every split, we would like to duplicate the entire network of agents in a CSP, one

replica dedicated to each resulting sub-CSP. However, this idea is not conceivable in practice because
the resulting network replicas quickly exhaust any reasonable amount of resources. Thus, by correctly
indexing domains of variables in sub-CSP's, and by adding some more control agents, we perform
a distributed splitting, preserving the same original network of agents, their connections, and their
control for propagation.
At every moment in time, each variable agent has several domains corresponding to several sub-

CSP's, and each function agent can compute in several domains, reducing several sub-CSP's. Using
domain indices, we can associate variable values in each domain with its respective sub-CSP, and thus
we are able to select which sub-CSP is reduced. The search agent aims to coordinate function and
variable agents in order to guide the search in the search space: if variables send both domains after a

2

split and functions compute with all the domains they receive, then we obtain a breadth �rst search;
if variables and functions focus on certain indexed domains coordinated by the search agent, then we
perform a depth �rst search in the branch selected by the search agent.
In our framework, communication (for constraint propagation, splitting, and search) is totally asyn-

chronous. Contrary to other methods, the split of a variable is not broadcast to all variables, but only
to the concerned variable. Subsequently, the result of this split is propagated to other agents through
computation of domain reduction functions.
This technique has three main advantages. First, in a single distributed and generic framework,

propagation and splitting can be interleaved, and thus, complete distributed solvers can be realized.
Second, by changing only the search agent, we can perform di�erent kinds of search. Finally, splitting
of variables can be dynamically triggered before the �xed point of a propagation is reached, and thus,
in many cases (e.g., when reductions are not strong enough) computation of solutions can be more
e�cient.

2. Constraint solving and coordination languages

2.1 Constraint solving
As claimed in [1], many algorithms for constraint solving can be described using a simple component-
based framework based on two main interleaving processes: constraint propagation and splitting (i.e.,
a kind of enumeration mechanism).
Constraint propagation is one of the most important techniques for solving constraint satisfaction

problems (CSP's). It attempts to reduce a CSP into an equivalent but simpler one, i.e., the solution
space is preserved while the search space is reduced. A CSP is given as a set of constraints, and for
each variable that occurs in each constraint, a domain of values that the variable can assume, e.g.,
hfX + Y = Z;Z < 5g; fX 2 [0::10]; Y 2 [2::8]; Z 2 [1::17]gi is a CSP.
Constraint propagation algorithms usually aim at computing some form of \local consistency"

described as a common �xed point of some domain reduction functions. These algorithms are instances
of a more general mathematical framework: the framework of chaotic iterations (CI) [2]. CI is a basic
technique used for computing limits of iterations of �nite sets of functions. By \feeding" domain
reduction functions into a chaotic iteration algorithm, we generate an algorithm that enforces a local
consistency.
Domain reduction functions (drf's) are related to domains of constraints (see Section 5 for examples

of drf's for the and and not Boolean constraints), and they have been widely studied for standard
domains (e.g., Boolean constraints [9], integers, interval arithmetic [8, 12]). When considering less
usual domains, these functions must either be hand-crafted, or, for �nite domains, techniques such as
in [4] can automate generation of the reduction functions.
However, constraint propagation is generally not strong enough to provide the user with convenient

solutions. Thus, a CSP can be split into sub-CSP's (whose union contains all the solutions of the
original CSP) by splitting the domain d of a variable X into several (sub)domains d1; : : : ; dn such thatS
i di = d. Thus, instead of searching for solutions in the initial CSP with d as the domain of X , we

now search in n CSP's, each with its respective sub-domain for X . Since in each sub-CSP the domain
of X is smaller, propagation is generally applicable again. Each of these sub-CSP's is then reduced
again using propagation, split again, and so on, until convenient solutions are found. Di�erent splitting
techniques exist, such as splitting into domains of similar sizes, or labeling (i.e., enumeration) which
splits the domain into a singleton, and the rest of the domain. Consider the abovementioned CSP. We
can split it into the two following CSP's: hfX + Y = Z;Z < 5g; fX 2 [0::10]; Y 2 [2::5]; Z 2 [1::17]gi
and hfX + Y = Z;Z < 5g; fX 2 [0::10]; Y 2 [6::8]; Z 2 [1::17]gi
As soon as a CSP is split, the issue of search arises, i.e., how to explore the resulting search sub-

spaces (or branches). Standard methods either explore one branch at a time (depth-�rst search), or
all branches (breadth-�rst search).
Thus, by combining constraint propagation and splitting, one obtains a complete solver. In [13],

a distributed version of the CDa algorithm (i.e., one algorithm for computing chaotic iterations [3])

3. The Framework 3

is presented. We now extend this framework in order to integrate a distributed splitting mechanism
into it.

2.2 Coordination model and language
To realize constraint propagation using a data-driven coordination model, we can consider a shared
data-space (representing the variables and their values) used by agents (the reduction functions) that
asynchronously post and retrieve values until they reach a �xed-point. However, we have chosen
a control-driven coordination model to realize chaotic iteration techniques. Here, variables become
coordinators that request computing agents to perform reductions. The reasons are quite simple.
First, this allows us to easily change strategies by just changing coordinators. Second, splitting and
search will become just two extra agents coordinating the variables. For more details about this choice,
see [14].
Hence, we have chosen the IWIM (Ideal Worker Ideal Manager) model [5, 6] to realize our framework.

The IWIM model is based on a complete symmetry between and decoupling of producers and con-
sumers, as well as a clear distinction between the computational and the coordination/communication
work performed by each process. A direct realization of the IWIM model in terms of a concrete
coordination language, namely MANIFOLD [7], already exists.
MANIFOLD is a language for managing complex, dynamically changing interconnections among sets

of independent, concurrent, cooperative processes [5]. The basics concepts in the IWIM model (thus
also in MANIFOLD) are processes, events, ports, and channels. A MANIFOLD application consists of
a (potentially very large) number of processes running on a network of heterogeneous hosts, some
of which may be parallel systems. Processes in the same application may be written in di�erent
programming languages. MANIFOLD has been successfully used in a number of applications.

3. The Framework

We now explain constraint propagation, splitting mechanisms, and search techniques as coordination
of cooperative agents. In this section, we thus map the main components of constraint propagation to
speci�c IWIM processes (see [13] for more details). Splitting mechanisms and search techniques are
realized by certain speci�c agents that either observe computation, or are queried by agents involved
in propagation. The task of these two agents is thus to coordinate global computation, and to manage
exploration of the search space.

3.1 Overview
We consider two types of agents and a special agent to perform constraint propagation: variables, drf's,
and a Master agent. The general skeleton of the coordination-based constraint propagation framework
is as follows. Each variable of the CDa algorithm is represented by one coordination variable, and
each drf is represented by one worker. The Master agent builds the network of variables and drf's, and
collects solutions. We do not detail the termination agent in this paper: we assume that termination
of a set of agents is detected by using a standard coordination pattern of MANIFOLD.
The splitting mechanism is embodied in one agent which observes the states of variables (using an

inquiry protocol). This agent decides which variable must be split, and how. It then communicates to
the splitting variable all of its new sub-domains. Contrary to [13], a variable now has several domains,
corresponding to several sub-CSP's.
In order to guide the search for solution, we consider a Search agent. Its task is to select the order

for exploring sub-CSP's. An example of a network is illustrated in Figure 3.

3.2 Behavior of the network
Let us detail the process. A variable X is modi�ed when it receives a new value for a given sub-CSP
P whose intersection with its current domain in P (or in a compatible sub-CSP) is smaller than the
current domain in P . Each time a variable X is modi�ed, it requests the drf's F1, : : : , Fn (all the
drf's containing x in their input) to work with its new domain value. F1, : : : , Fn have thus new tasks

4

to perform. When done, they send their results to each of the variables X1 : : : ; Xm of their output.
X1; : : : ; Xm can eventually be modi�ed by these values, and this will iterate the process.
In parallel, the Split agent observes the computation by observing the states of the variables, and may

split one or more variables. In this case, a split variable is informed of its new domains corresponding
to the new sub-CSP's. It is not necessary to broadcast these new CSP's to all agents in the network:
the split is propagated through all the network by successive applications of drf's and modi�cations
of variables.
When a variable X gets a value for a new sub-CSP (i.e., either X was split, or another variable was

split and the split was subsequently propagated to X), it requests the Search agent to de�ne which
sub-domains must be explored �rst.
The process terminates when all solutions have been extracted.

3.3 Worlds and MCSP
Contrary to [13], at a given moment in time, the network of agents represents and solves several CSP's
that are sub-CSP's of the initial CSP. Thus, we now solve a Multiple Constraint Satisfaction Problem
(MCSP), i.e., a union of CSP's derived by splitting and constraint propagation from the original CSP
that was to be solved. Note that the set of solutions of the union of such CSP's is equal to the
solutions of the original CSP. Intuitively, we change the domain of computation. Previously, we had a
single domain for each variable. Now we have a set of indexed domains for each variable. An indexed
domain (domain, world) for a variable represents the domain of the variable in the sub-CSP denoted
world.
The notion of world is equivalent to the notion of sub-CSP. The name of a world is a string of

symbols. We denote by > the initial world, i.e., the initial CSP (before any splitting). Consider
a world w. When a variable x is split into n sub-domains, w gives rise to n sub-worlds denoted
respectively as w:x1, : : : , w:xn. Furthermore, we can compare such worlds in order to perform
correct reductions. Consider the world w, and the worlds w:x1; : : : ; w:xn derived from w after the
split of the variable x. We say that w is compatible with each w:xi, and we denote it as w:xi � w.
The relation � is a partial order: w:xi:yj � w since w:xi:yj is derived from w:xi after the split of y,
but we cannot compare w:xi with w:xj , nor w:xi with w:yj . We can thus easily compare worlds:

w0 � w i� w0 = w:w00

In a world w such that w0 � w, the domain of a variable X is larger than or equal to the domain
of X in the world w0. This is obvious: the di�erence between w and w0, if any, is because at least
either X or some other variable has been split, and this may have resulted in a reduction of X in the
sub-CSP w0.
Since we do not require domain reduction functions to be contracting, and that we do not enforce

synchronization of reductions (a drf can send a new domain to a variable which is larger than the
current domain already reduced by another function), a variable must always intersect its current
domain with the new domain it receives from a drf. For this reason, two cases can arise:

- The received domain is in a world w not yet known by the variable X (the set of worlds X
knows about is denoted as Worlds). Then, X intersects this new domain with a domain in the
smallest world w0 greater than w known to X , i.e., w0 = min�fw00 2 Worlds j w � w00g. The
intersection is then the domain of X in the world w.

- The received domain is in a world w already known to the variable X . Then, for each worlds w0

such that w0 � w, X must intersect this new domain with the domain in w0. Hence, we update
the domain in each w0 with the intersection of the domain in w and the domain in w0.

This computation is correct, because we always update a domain in a world w by intersecting it
with a domain in a world w0 such that w � w0. Thus, we can be sure that we do not lose a solution.
In this way, some computation may be useless (e.g., if the Search agent directs variables to di�erent

4. The agents 5

branches), but this is the price we pay to avoid a costly synchronization of all reductions performed
by drf's (which would also lead to sequential reduction of the CSP). Moreover, considering a correct
Search agent, all variables will work on the same world, and such useless work will not happen.

4. The agents

We now describe the di�erent agents, their connections, their tasks, and their coordination. Tasks of
agents are guarded actions of the following form:

name: guard

actions 1, ..., action n.

where a guard is an event, such as the reception of a message on an input port, or a noti�cation
by another agent. When the agent is in its waiting state (i.e., not executing a task), as soon as the
guard guard is satis�ed, the guarded action name is triggered and action 1, : : : , action n are executed
sequentially to the end without interruption. The process then returns to its waiting state.

4.1 Variables
Each variable in a CSP is implemented by a generalized variable of MANIFOLD (i.e., extensions of
variables with call back functions) whose possible domains in each world are updated via an assignment
operation, i.e., one of its call back functions.
Assume a CSP P over a set of variables X , and a set F of r domain reduction functions f1; : : : ; fr.

Consider x a variable in X . Hence, the generalized variable X implementing x has the following
features and connections (see Figure 1):

Split

... ...

Search

Master

X

i 1

i 2
F

FFo1

Fo2

Fim
Fol

Figure 1: A variable agent

- one output port Out connected via channels to the implementations Fi1 ; : : : ; Fim of fi1 ; : : : ; fim ,
i.e., the drf's that accept x as an input variable;

- one input port In connected via channels to the implementations Fo1 ; : : : ; Fol of fo1 ; : : : ; fol
(i.e., the drf's that accept x as an output variable), and connected to the Split agent;

- one output port OutSplit connected via a channel to the Split agent in order to send it the
current state of the variable;

- an output port OutMaster for forwarding to the Master agent the indexed domains of the
variable when a solution is computed;

- an output port OutSearch to query the Search agent to select which current worlds (i.e., branches
of the search space) must be explored;

6

- a set Domains of indexed domains to keep current domains and the worlds they are associated
with;

- a set Worlds to store the worlds known by X . This set is used by the Search agent to select on
which world X must concentrate;

- a set Splits to store the worlds known by X , and resulting after a split of X . This store is used
for detecting when all solutions have been computed;

- a set SearchWorlds to store the worlds that are currently being explored (i.e., worlds that have
been selected by the Search agent); and

- three call back functions: a domain intersection function, a domain comparison function, and
an assignment function.

We now describe the guarded actions of X . Note that when sending a message on a port with
multiple connections, the message is replicated into each connected channel.

Updating domains When the variable X gets an indexed domain (v0; w0) from one of the DRF's
Fo1 ; : : : ; Fol , the world w

0 may be unknown for X . This happens if the indexed domain (v0; w0) for X
was computed in a DRF using other variables known in w0 (i.e., w0 results from the split of variables
other than X).
When X encounters w0 for the �rst time, it adds w0 in its set Worlds of known worlds, and requests

the Search agent to select which set of worlds (i.e., branches of the search space) must be explored.
Note that X does not wait for the new decision of the Search agent before continuing. This can lead
to useless work, e.g., when looking for a single solution. Nevertheless, this scheme avoids a costly
synchronization with the Search agent (we can however consider this synchronization when looking for
a single solution). Then, the new indexed domain must be integrated in the set of indexed domains
of X after intersecting the domain with the domain of the \smallest" world \bigger" than w0.
When w0 is already known, the domain of each world that is \smaller" than or \equal" to w0 must

be updated. For each such world w, X intersects the current domain with v0. When the result is
di�erent than the current domain, the current domain in the world w is updated, and consequently,
X requests all the DRF's Fi1 ; : : : ; Fim to execute again.
These tasks are realized by the following guarded action:

update: (v0,w0) on input port Inp
if w0 62 Worlds

% the world w0 is unknown to X

then Worlds := Worlds [fw0g
% request Search to de�ne the search
send Worlds on output port OutSearch
% intersects the domain v0 in w0 with the domain of the
% \smallest" world known by X strictly \greater" than w0

(v; w) s.t. w = min�fw00 2Worlds j w0 � w00g
Domains := Domains [f (v0 \ v,w0) g

% the world w0 is already known by X
else % eventually modi�es domains of worlds known by X \smaller"

% than or \equal" to w0 using new domain in w0

foreach (v,w) 2 Domains s.t. w 2 Worlds and w � w0

do v00 := v \ v0

% updates the domain of X in w if modi�ed
if v00 6= v

4. The agents 7

then Domains := Domains n f(v; w)g
v = v00

Domains := Domains [f(v; w)g
% requests associated DRF's if search is set for w
if w 2 SearchWorlds

then send (v; w) on port Out
�

�

od

�

Note that updating domains of a world \smaller" than or \equal" to w0 can be optimized by
considering worlds in decreasing order: if a world is not modi�ed, smaller worlds cannot be modi�ed.

Splitting When the Split agent decides to split the variable X , it sends to X a set V of new indexed
domains. X must then update the set of worlds it knows about, its set of indexed domains, and its
set of splits.

split: V on input port InpSplit
Domains := Domains [V

Worlds := Worlds [fw0 j (v0; w0) 2 V g
Splits := Splits [fw0 j (v0; w0) 2 V g

Since splitting and reductions are asynchronous, we keep in Domains the domain of X in the world
that has just been split. If we don't keep this information, the following problem can arise: consider
x the domain of X in >, x0 the domain of X in > after reduction by the drf d1, and x01, x

0
2 domains

of X after a split on x0. Then, consider y the domain of Y in >, and y1 a domain of Y after a split of
Y from >. Then, a drf d2 computing with x and y1 can compute a domain x00 larger than x0 for X
in the world of y1. If we don't keep x0, we cannot intersect x00 with any domain, and thus we obtain
the domain x00 for X in the world of y1. If we consider that domain reduction functions are always
contracting domains, this is not a real problem: x is larger than or equal to x00, some reductions may
be lost, but they will be computed again from x00, and we will not loop. But if we don't require any
special properties for domain reduction functions (and this is the case in our framework), then we
cannot ensure termination anymore, because x00 can be larger than x.

Orienting the search The next guarded action collects a set of worlds W sent by the Search agent.
W represents the worlds on which a variable will focus in its next steps:

search: W on input port InpSearch
SearchWorlds := W

Jumping to another sub-space of the search When the solutions in the worlds de�ned by the Search
agent are found, the Termination agent (see Section 4.5) raises the \solution ack" event to inform all
the variables. Then, the variable X sends its domains for the current worlds to the Master agent,
updates its own structures (especially Splits that is used for termination detection), and requests the
Search agent to change its set of worlds to concentrate on:

solution: solution ack
foreach w 2 SearchWorlds

do �nd (v,w) in Domains
send (v,w) on output port OutMaster

Domains := Domains n f(v,w)g
SearchWorlds := SearchWorlds n fwg

8

Worlds := Worlds n fwg
Splits := Splits n fwg

od

% asks for some new worlds to search in
send Worlds on output port OutSearch

Reporting state The Split agent observes the variables and their domains in order to decide which
variable to split, and when. For this purpose, it needs to be informed of the state of the variables,
i.e., their domains, and their SearchWorlds , in order to work in cooperation with the Search agent:

state requested: domain? on input port InSplit
send Domains on output port OutSplit
send SearchWorlds on output port OutSplit

4.2 Domain reduction functions
A DRF implements a domain reduction function given as input to the CDa algorithm. Thus, as many
DRF's as drf's fed in the CDa algorithm are created by the Master agent.

...

F

...

channel to an output variable

channel from an input variable

Xo Xo XoXi Xi Xi21 m 1 2 l

Figure 2: a DRF agent

Assume a CSP over a set X of variables, and a drf f such that:

f : xi1; :::; xim �! xo1; : : : ; xol

where xi1; :::; xim; xo1; : : : ; xol are variables in X . Then, the DRF F implementing the function f has
the following structure (see Figure 2):

- m input ports Inp Xi1; : : : ; Inp Xim connected respectively to the m variable processes
Xi1; : : : ; Xim implementing xi1; : : : ; xim;

- l output ports Out Xo1; : : : ; Out Xol connected, respectively, to the l variable processes
Xo1; : : : ; Xol implementing xo1; : : : ; xol;

- m sets Domains Xi1, : : : ,Domains Xim of indexed variables for each input variable. These
stores are initialized with the initial domains (i.e., in the > initial world) of input variables
during the creation of F by the Master agent;

- m sets Worlds Xi1, : : : ,Worlds Xim of worlds known for the input variables;

- the code of the function f ,

We now present the guarded actions a DRF can execute.

4. The agents 9

Reduction request When a DRF receives a reduction request from Xi, one of its input variables
(i.e., it receives a new indexed domain (v; w) for this variable), it updates the domain of Xi: either the
new indexed domain is added to the set DomainsXi

(when the DRF does not know yet the world w

for Xi), or the indexed domain is replaced in the set DomainsXi
. The DRF then selects the smallest

w compatible domains of each other input variables. Then, it reduces its output variables using the
drf it represents. Finally, it sends their new indexed domains to each of its output variables. For the
DRF F , mentioned above, we obtain the following guarded action for each of its input variables:

reduction request: (v; w) on input port Inp Xij
% Update of the indexed domains of Xij
if w 2 Worlds Xij

then �nd (v0; w0) in Domains Xij s.t. w0 = w

Domains Xij := Domains Xij n f(v0; w0)g
else Worlds Xij := Worlds Xij [fwg

�

Domains Xij := Domains Xij [f(v; w)g

% Find the smallest compatible domains for each input variable
Ij = v

foreach k 2 [1::m] s.t. k 6= j

do w00 = min�fw 2Worlds Xik j w � w0g
�nd (v00; w00) in Domains Xik
Ik = v00

od

% Compute new domains for output variables using drf
(O1; : : : ; Ol) = drf(I1; : : : ; Im)

% send new indexed (by w) domains of output variables
foreach k 2 [1::l] sends (Ok; w) on output port Out Xok

Note that we can optimize this guarded action by 1) directly updating the set Domains Xi and
reducing again new domains when the output variable Xi is also an input variable and the drf is
not idempotent, and 2) sending new indexed domains only to variables that have e�ectively been
modi�ed.

Initializing the propagation process Each function must be applied at least once, i.e., in the CDa
algorithm the set G of functions still to be applied is initialized with the set F of drf's. We consider
the start event raised by the Master agent when the network is installed. We can start reduction with
the initial domains (i.e., domains indexed by the initial world >) of Xi1; : : : ; Xim given at creation
time with the following guarded action:

starting: start
% �nd initial domains of input variables
foreach j 2 [1::m]

do �nd (v00;>) in Domains Xij
Ij = v00

od

% compute and send new indexed domains to output variables
(O1; : : : ; Ol) = drf(I1; : : : ; Im)
foreach j 2 [1::l] sends (Oj ;>) on output port Out Xoj

4.3 The Split agent
This agents aims to dynamically (i.e., depending on the progress of constraint propagation) split the
domain d of a variable into several (sub)domains such that their union is equal to d. In terms of

10

constraint solving, this means that a CSP P is split into several sub-CSP's such that their union is
equivalent to (i.e., correctness and completeness of the set of solutions) P .
This agent observes all the variables (by periodically inquiring their states), analyzes the evolution

of the propagation, and decides which variable must be split, and splits the variable. Thus, this agent
needs a local memory in order to store pieces of global information involved in its decision making.
The Split agent is connected to each variable with two streams: one to receive the states of variables,

the other, to request states, and to send the split domains. Moreover, this agent is linked to the
Termination agent that detects its termination, and informs it when constraint propagation for some
branch of the search-space is �nished. Hence, the Split agent is able to establish one of its strategies:
either wait for the end of propagation before splitting, or split as soon as domain reduction becomes
tedious and slow.
We consider the Split agent as a coordinator, not as a simple worker. By this we mean that the

termination of the network of agents depends on a correct and sensible agent, i.e., an agent able to
take bene�cial decisions, e.g., not to split numerous variables simultaneously, not to split again the
same variable before noticing the e�ect of the previous split, etc.
We don't give the details of this agent because, depending on the desired splitting strategies (see

Section 6), numerous algorithms are possible.

4.4 The Search agent
The task of this agent is to dynamically determine how the search space must be explored. When
variables encounter a new world, they ask the Search agent to decide which branches (worlds) must be
exploited �rst. Since this agent collects information from variables, the Split agent, and the Termination

agent, it can also lead the search without being queried by any variable.
The behavior of this agent depends not only on the evolution of the computation in the network of

agents, but also on the needs of the end user: should only one solution be computed, several, all, or
only some with speci�c given properties? Depending on these strategies and requirements, the Search
agent then decides whether functions and variables must use all their domains in di�erent worlds (this
implements a breadth �rst search), one single domain at a time (this implements a depth �rst search),
or several domains simultaneously (i.e., a mixed search).
In order to manage the search of solutions, and the exploration of the search space, the Search

agent is connected to every variable to receive the set of worlds they know about, and to inform them
which branches to explore. This coordinator is not linked to the Termination agent, since as soon
as a branch is completely explored the Termination agent will be warned indirectly by the variables
involved through a decision request. However, we can imagine connecting it to the termination agent
in order to avoid some intermediary data exchange, and to the Split agent in order to work in tighter
collaboration with it. But then, the decoupling of propagation, termination, splitting, and search
becomes less obvious.
We assume that this agent takes correct and compatible decisions for each variable, i.e., its decisions

are global and not only local. An agent that forces a variable to explore a world, and another variable
to concentrate on another (non-compatible) world can lead to non-termination: some solutions can
be computed, but we can never be sure to compute all solutions of the initial CSP.

4.5 The Termination agent
This agent is responsible to detect four types of termination. Note that the framework we present is
very generic and allows numerous strategies, explorations of the search space, and splitting techniques.
Thus, detection of termination in such a case assumes that the Split agent and the Search agent are
mutually correct, i.e., they do not loop, and they give compatible information (such as SearchWorlds)
to every variable.

Termination of propagation Constraint propagation terminates when 1) no domain reduction func-
tion is busy anymore, 2) no variable is busy anymore with domains associated with worlds they must

5. An example 11

currently concentrate on (i.e., worlds of SearchWorlds as determined by the Search agent), and 3) no
message is pending in a stream between a variable and a domain reduction function. When constraint
propagation is �nished, the Termination agent signals it to the Split agent, because the latter may need
this information to fully realize its strategies.

Current branches totally explored This case happens when the solutions in one/several branches
have been found. This means that propagation for these branches is �nished, and the Split agent can
no longer split their corresponding domains of variables. This termination is thus detected when both
propagation and the Split agent terminate.

The whole search space has been explored In this case, all solutions of the initial CSP have been
computed. The Termination agent detects this state when current branches are totally explored and
the Splits set of every variable (worlds directly derived from a split of the variable itself) is empty.

Termination required by the Master agent When a user is not interested in all solutions, the Master

agent can decide to stop resolution as soon as a/several satisfying solution(s) have been collected.
In this case, the Master agent can request the Termination agent to stop all activity in the network
of agents. Note that this feature can be used for optimization when computing a \good" solution
(not necessarily the best) within a given time, or when the ratio of solution quality over elapsed time
becomes su�cient.
We do not give here the details of the mechanism used by this agent. Informally, using features of

MANIFOLD, we can easily implement a generic termination protocol scanning activities of agents, and
the presence of messages pending in streams. We just require this agent to be connected to variables,
drf's, the Split agent, and to be able to observe streams inbetween these agents.

4.6 The Master agent
The task of this agent is rather static. The Master agent is mainly concerned with initialization
and creation of the network of agents, and collecting solutions. Given a CSP, a set of \meta" domain
reduction functions, a search algorithm, and a split algorithm, theMaster agent derives the drf's needed
for the resolution of the CSP, and establishes the network of agents with their connecting streams.
Moreover, the Master agent is connected to each variable (to receive its values when necessary), and
to the termination agent (to stop the resolution when su�cently many solutions or su�ciently good
solutions have been computed).

5. An example

We now illustrate our framework by solving an example of Boolean constraints. We assume three
types of constraints: 1) and(x; y; z) with the usual meaning z = x^ z, 2)not(x; y) meaning x = y, and
3) the standard equality \=". We now consider solving the CSP:

hfand(x; y; z); not(x; z); y = tg; fx 2 f0; 1g; y 2 f0; 1g; z 2 f0; 1g; t 2 f0; 1ggi

The Master agent creates 4 generalized variables X;Y; Z, and T implementing x; y; z, and t, with
initial domains f0; 1g. Assume that, using some meta domain reduction functions, the Master agent
identi�es 5 drf's f1, f2, f3, f4, and f5

1:

1To simplify the example, we consider here only 5 functions, a subset of the complete set of functions that can be
automatically generated using algorithms such as in [4]. Constraint propagation based on these four functions, together
with the Split agent, are su�cient for solving our example CSP.

12

f1 : y ! z

f1(y) := f0g if y=f0g
f1(y) := f0; 1g otherwise

f2 : z ! x

f2(z) := f1g if z=f0g
f2(z) := f0g if z=f1g
f2(z) := f0; 1g otherwise

f3 : t! y

f2(t) := t

f4 : x; z ! y

f4(x; z) := f0g if x=f1g and z=f0g
f4(x; z) := ; if x=f0g and z=f1g
f4(x; z) := f0; 1g otherwise

f5 : x! z

f5(x) := f1g if x=f0g
f5(x) := f0g if x=f1g
f5(x) := f0; 1g otherwise

Consider now that we want to perform a depth �rst search, and we want to perform a complete

Master

Y Z

F1 F2 F3 F4

PFDFS

T

F5

X

Figure 3: A Boolean Example

constraint propagation before splitting. We thus consider DFS as the Search agent that implements a
depth �rst search, and PF as the Split agent that waits for the termination of propagation before split-
ting. We obtain the network illustrated in Figure 3. The agents F1, F2, F3, F4, and F5 (respectively,
X;Y; Z, and T) implement the functions f1, f2, f3, f4, and f5 (respectively, the variables x; y; z, and
t) as described in the previous section.
As soon as the start event is raised by the Master agent, the reduction process starts. Each function

is applied only once, since none of them is able to modify the domains of the variables. Thus,
propagation terminates without any change of domain.
Assume now that PF decides to split the variable T into f0g in the world of T1 and f1g in the

world of T2. When requested by T , DFS has two possibilities: explore the world T1 or the world T2.
Assume DFS �rst selects T1. Then, T forwards f0g to F3, and the reduction starts again. When
the propagation �nishes, PF also terminates (no other variable can be split), and we obtain the �rst
solution: X = f1g, Y = f0g, Z = f0g, and T = f0g. The Termination agent detects that current
branches have been fully explored, and raises the solution ack event. Variables catch this event, and
thus forward (their respective parts of) this solution to the Master.

6. Comments 13

Next, the variables again query DFS, which can now decide to explore the world T2. After propa-
gation, the domains of T and Y are �xed to f1g. Another splitting is required for, say, X . We obtain
two new worlds: the world of T2:X1 with the X value f0g, and T2:X2 with the X value f1g.
Suppose DFS selects T2:X2. Then, after the �xed point of propagation is reached, and no other

split is possible, we obtain X = f1g, Y = ; (since F4 deduces that Y = f0g, and then the Y agent
intersects f0g with f1g), Z = f0g, and T = f1g. This branch is totally explored, and the domains
are forwarded to the Master, which deduces that this branch leads to an inconsistency (i.e., no valid
solution since Y = ;). DFS then selects T2:X1, which also leads to an inconsistency. At this point,
the entire search space has been explored, and the computation stops.

6. Comments

We now discuss some important advantages of our framework with regards to its generality, its
component-based aspect, and its dynamic behavior.

Interleaving of propagation and splitting In [13], a coordination-based chaotic iteration algorithm is
presented. However, constraint propagation is generally not powerful enough to solve a CSP, i.e., re-
duction alone is not able to narrow domains of variables to singletons. Thus, such a framework cannot
generally extract solutions. In this paper, we extend this framework and integrate splitting mecha-
nisms and search techniques in a distributed environment, without requiring any synchronization, or
any mutual exclusion among tasks. We thus obtain a single distributed and generic framework, in
which propagation and splitting can be interleaved in order to realize complete distributed solvers.
Furthermore, the decoupling of constraint propagation, splitting mechanism, and search technique
is total. Thus, we can envisage designing in our framework most of the usual strategies realized for
sequential computation at low cost: strategies are numerous, but they are all based on a mix of a small
number of di�erent splitting mechanisms and search techniques. We can also tackle new strategies,
such as the ones based on the simultaneous exploration of several sub-spaces (worlds). Finally, we
consider propagation and splitting at the same level, similarly to the sequential framework of [10].

Di�erent types of splitting mechanisms Depending on the Split agent we plug in the network, we
can realize several types of splitting strategies, such as:

- splitting a domain into two (or more) domains of the same size. This is a good strategy when
we consider an even probability of solution containment in each zone of the domain, or when we
want to favour propagation and avoid enumeration.

- splitting a domain into one value and the rest of the domain. This strategy is also known as
\labeling" or enumeration. It is generally useful in search for one solution, when performing a
depth-�rst search, or when one assignment can signi�cantly ease reduction.

- shaving technique: a domain is split into three sub-domains, two narrow ones to include the
bounds, and one for the rest. This is especially e�cient when a domain reduction function is
used that can push the left and the right bounds of the interval, until a local solution is reached.
Then, one can hope that the global solutions are close to the bounds.

Di�erent types of search By changing only one agent, we can perform di�erent kinds of search,
either a usual search such as depth-�rst or breadth-�rst, or unusual searches that our framework
makes possible, such as simultaneously exploring several branches.
To perform a depth-�rst search, the Search agent selects a single world on which variables and

domain reduction functions will focus. Breadth �rst search is realized by letting variables and function
to simultaneously work on every world they know about. Searching in several branches is similar, but
the Search agent selects a subset of all the worlds that are known at a given point in time.

14

In depth �rst (or when exploring several branches), we have the possibility of changing the branch,
if desired. For instance, when exploring a branch takes too long (due to slow reduction), then the
Search agent can decide to jump to another branch in order to extract a solution more quickly.

Splitting before termination of propagation It is generally accepted that splitting a CSP before
reaching the termination of propagation can signi�cantly improve the resolution speed (e.g., when
reduction is converging slowly [11], it is generally better to split a variable �rst and then reduce
each sub-CSP). Our framework is generic enough to allow this type of strategy. The Split agent gets
enough information from variables to analyze the convergence, and it is free to act before the end of
propagation. Thus, splitting of variables can be dynamically triggered if necessary before the �xed
point of propagation is reached.

7. Conclusion and future works

In this paper we extend the framework of [13] in order to integrate a distributed splitting mechanism.
This technique has three main advantages: 1) propagation and splitting can be interleaved in order
to realize complete distributed solvers, 2) agents are decoupled, and thus by changing only one agent,
we can perform di�erent kinds of search and split, and 3) splitting of variables can be dynamically
triggered before the �xed point of a propagation is reached.
We plan to establish the minimal properties jointly required of the Search and the Split agents (i.e.,

a kind of mutual agreement) in order to be able to ensure termination. This must ensure termination
even for special cases such as when several branches are simultaneously explored, search sub-spaces to
be explored are changed, variables not currently being explored split, an arbitrary number of search
sub-spaces split, etc.
We also plan to tackle optimization problems by using the dynamic features of MANIFOLD and the

properties of speci�c Search agents. When a solution is extracted, a new constraint (i.e., its reduction
functions) can be added to state that the next solution must be better than the one just extracted.
Finally, we plan to extend this framework to constraint reduction, i.e., adding, changing, and re-

moving constraints, and thus adding, changing and removing drf's. This is crucial when considering
symbolic transformation of constraints (such as simpli�cation of constraints, and addition of redun-
dancies that can speed-up propagation) during propagation. This will open some other forms of
splitting strategies such as partioning the search space with additional constraints (e.g., X < Y or
X � Y).

15

References

1. K. R. Apt. Component-based framework for constraint programming. Manuscript, 1999.

2. K. R. Apt. The Essence of Constraint Propagation. Theoretical Computer Science, 221(1{2):179{
210, 1999.

3. K. R. Apt. The Rough Guide to Constraint Propagation". In J. Ja�ar, editor, Proc. of the 5th
International Conference on Principles and Practi ce of Constraint Programming (CP'99), volume
1713 of Lecture Notes in Computer Science, pages 1{23. Springer-Verlag, 1999. Invited lecture.

4. K. R. Apt and E. Monfroy. Automatic Generation of Constraint Propagation Algorithms for Small
Finite Domains. In J. Ja�ar, editor, Proceedings of Fifth International Conference on Principles
and Practice of Constraint Programming, CP'99, volume 1713 of Lecture Notes in Computer
Science, pages 58{72, Alexandria, Virginia, USA, October 1999.

5. F. Arbab. Coordination of massively concurrent activities. Technical Report CS{
R9565, CWI, Amsterdam, The Netherlands, November 1995. Available on-line
http://www.cwi.nl/ftp/CWIreports/IS/CS-R9565.ps.Z.

6. F. Arbab. The IWIM model for coordination of concurrent activities. In Paolo Ciancarini and
Chris Hankin, editors, Coordination Languages and Models, volume 1061 of Lecture Notes in
Computer Science, pages 34{56. Springer-Verlag, 1996.

7. F. Arbab. Manifold2.0 reference manual. CWI, Amsterdam, The Netherlands, May 1997.

8. F. Benhamou and W. Older. Applying interval arithmetic to real, integer and Boolean constraints.
Journal of Logic Programming, 32(1):1{24, March 1997.

9. P. Codognet and D. Diaz. A simple and e�cient Boolean constraint solver for constraint logic
programming. Journal of Automated Reasoning, 17(1):97{128, 1996.

10. L. Granvilliers. R�esolution approch�ee de contraintes r�eelles par transformations symboliques et
consistance de bloc. Technique et Science Informatiques, 18(2):209{232, 1999.

11. O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic Optimization of Interval Narrowing Algorithms.
Journal of Logic Programming, 37(1{2):165{183, 1998.

12. E. Monfroy. Using \Weaker" Functions for Constraint Propagation over Real Numb ers. In
J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and G. Lamont, editors, Proceedings of The
14th ACM Symposium on Applied Computing, ACM SAC'99, Scienti�c Computing Track, pages
553{559, San Antonio, Texas, USA, March 1999.

16 References

13. E. Monfroy. A Coordination-based Chaotic Iteration Algorithm for Constraint Propagation. In
J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, editors, Proceedings of the 2000 ACM
Symposium on Applied Computing (SAC'2000), pages 262{269, Villa Olmo, Como, Italy, March
2000. ACM Press.

14. E. Monfroy and F. Arbab. Constraints Solving as the Coordination of Inference Engines, chapter
in \Coordination of Internet Agents: Models, Technologies, and Applications". Springer-Verlag,
2000. To appear.

