
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Coordination of a Heterogeneous Coastal Hydrodynamics Application
in Manifold

C.L. Blom, F.Arbab, S. Hummel, I.J.P. Elshof

Software Engineering (SEN)

SEN-R9833 December 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9833
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Coordination of a Heterogeneous Coastal Hydrodynamics Application in
Manifold

C.L. Blom

F.Arbab
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

S. Hummel

I.J.P. Elshof
WL | delft hydraulics

P.O. Box 177, 2600 MH Delft, The Netherlands

ABSTRACT

In this paper we show how the coordination language Manifold can be used to control the interactions of

multiple heterogeneous application programs. We use a concrete example from Delft Hydaulics, a consulting

and research company which develops models of natural hydraulic systems (e.g., river flows, tidal currents, wave

penetrations in harbours, etc.). These simulation programs accurately model water flow phenomena and are

used for many places in the world. Often, however, a number of these programs need to be used in conjunction

with each other to address more comprehensive problems. For example, the water level in the Rotterdam harbour

is determined both by the behaviour of the North Sea and by the discharge of the rivers Rhine and Meuse.

Instead of creating Unix shell scripts for each particular configuration of application programs, an executive

program has been developed and implemented in Manifold that reads a configuration file and subsequently

starts, interconnects and controls all relevant component programs.

1991 Mathematics Subject Classification: 65Cxx

1991 Computing Reviews Classification System: C.2.4, D.1.3, G.1.8, I.6.3

Keywords and Phrases: coordination, reusability, parallellism, heterogeneous applications, distributed compu-

tation, hydraulic modelling, industrial applications

1. Introduction

Shallow water hydrodynamics is a computation intensive application where a combination of various
modeling techniques and algorithms are used to study the real life consequences of a number of natural
phenomena. Such studies are of vital importance in various planning and decision making processes
in many parts of the world and are required by the regulatory and policy making agencies in many
countries. For example, consider the problem of deciding whether or not a factory should be allowed to
drain its waste water in a river. Adding the factory outlet to the river has consequences for the river:
thermal, chemical, morphological, biological, hydrodynamical, etc. There exist various models for the
study of the different aspects of the consequent natural phenomena. However, these different aspects
are not independent and they influence each other: thermal changes affect viscosity and thus the
nature of the flow; the flow changes the morphology of the river bed by displacing sediments; changes
in chemistry and morphology affect (plant and animal) biology of the river; biological changes in turn
affect chemistry, morphology, and thermal properties of the river; etc.

1. Introduction 2

An application of this type is heterogeneous in the sense that it employs a number of inherently
different mathematical models and algorithms. Furthermore, in principle, the decision on the applica-
bility of a particular model or algorithm may depend on the fluctuations of certain computed values,
and may have to be made dynamically. In and near coastal areas, the effects of coastal waves, tides,
and their seasonal changes must also be accounted for. This adds another form of heterogeneity to the
application in the domain of time: the scale of relevant phenomena (i.e., the time step in modeling)
ranges from fractions of a second (e.g., for flow, thermal, and chemical transport) to decades (e.g.,
the long term effects of tidal waves on the coastal and the river beds).

Founded in 1927 as an independent research and consulting organization, Delft Hydraulics has be-
come well known for its experimental modelling facilities. Throughout the decades Delft Hydraulics
has developed and and otherwise acquired a large number of numerical hydraulic modelling programs
for various aspects of flow modelling. However, many of these programs have their own input specifi-
cations and internal (sometimes hidden) assumptions on their input data consistency.

North Sea

Rotterdam Harbour

Meuse

Rhine

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Figure 1: Domain Decomposition of the Rhine-Meuse Estuary.

When these programs are to be used in conjunction with one another in a single application, we
can recognize a coordination problem, compounded by their inherent heterogeneity: sometimes the
output of one program cannot easily be used as input for another. Another more serious form of this
heterogeneity is the grid-boundary consistency problem. Programs that use domain decomposition
models often use different grid sizes, orientations, and/or origins. At the common boundaries of their
respective regions, then, we observe a mismatch of their grids. In Figure 1, for instance, a possible
decomposition for the modelling of the flow phenomena in the Rhine-Meuse estuary is sketched. A
promising approach to overcome such heterogeneity is to use special mapper modules to convert from
one domain to the other over their common boundary. In the case of the grid inconsistency problem,
for example, such mappers ensure that certain parameters such as water levels and discharges (of heat,
chemicals, sediments, etc.) remain consistent across the common boundary of two domains, according
to the preservation of matter and energy equations.

To facilitate coupling across different domains, Delft Hydaulics has constructed a set of Mappers
whose task it is to map the output of one program into suitable input of another [3, 5, 4]. Because each
mapper is bidirectional, for n programs there are be at most 1

2n(n−1) mapper programs, although not
all combinations are sufficiently meaningfull to be supported by their own individual mappers each.
The number of participating programs and their respective mappers is still increasing. Furthermore,
such programs are generally developed as separate ”black box” pieces of code, perhaps by independent

2. Overview of the executive program HYMAN 3

groups, with no regards for their potential coupling in some future application. Thus, the concept of
coordination from outside becomes relevant in practice here.

The IWIM model [1], which offers a paradigm for exogenous control-oriented process coordination,
seemes ideally suited for the situation described above. In IWIM, a clear distinction is made between
two classes of processes: workers and managers. Worker processes are considered as black boxes with
regulated openings called ports through which information units can flow in and out. Furthermore,
every process has a virtual antenna through which it can broadcast (or receive) occurrences of events
to be received (or broadcast) by other processes. Worker processes are supposed to do the job for
which they are designed: e.g., do numerical computation, sort or maintain large datasets, etc.

Manager processes on the other hand are supposed to coordinate and control pools of worker pro-
cesses. Beside the facilities that worker processes possess to communicate with other processes, they
also have facilities to create new processes and set-up communication channels among them. In this
way, they can set up and break down arbitrary complex networks of communicating processes.

MANIFOLD is a pure coordination programming language that is a realization of the IWIM model.
All processes described above (hydraulic modelling processes as well as data mapper processes) can
conveniently be regarded as black boxes, and thus used as worker processes in IWIM and MANIFOLD.
A new executive program called HYMAN (HYdra in MANinfold) was written in MANIFOLD. The
task of this program is to start all necessary processes (for computation and data-mapping), and to
interconnect and coordinate them for a particular application run.

In the rest of this paper we describe the most notable elements of this executive program, using
excerpts of the MANIFOLD source code. Since an introduction to MANIFOLD is presented elsewhere
(see, e.g., reference [2]), only some additional language elements will be informally explained in this
paper.

The remainder of this paper is organized as follows. First, we give an overview of the executive
program HYMAN describing the layout of the process table, how this table is constructed, and how it is
used during an application run. Then we give an overview of the methods used to hook on the various
existing Atomic Processes with minimal effort. Finally, section 4 is the conclusion of the paper.

2. Overview of the executive program HYMAN
A typical hydraulic modelling example is depicted in Figure 2.

topflow

bottomflow

Figure 2: Cross section of a river model with 2 different flow layers.

Here, the flow of a river is modelled using 2 layers (called topflow and bottomflow) where each is
represented by a different finite element grid. For each small element, a number of physical quantities
(e.g., velocity, concentrations of chemicals, temperature) can be computed by solving partial differen-
tial equations subject to some initial conditions. The results of these computations are valid for some
limited time period and will determine the initial conditions for the next time-step. By repeating this
procedure, one obtains a series of values for these physical quantities, representing the flow of a river.

For each of these layers, the numerical computations are routinely done by executing existing
FORTRAN programs from UNIX shell scripts. Typically, these programs read and write a number of
disc files for each time-step.

Although modelling a river by dividing it in layers is a reasonable first approximation, these layers
are not completely independent of each other. Therefore, after each step, the input for one layer must
be updated with the output of the other by another program called mapper which is responsible to
ensure that data from one program can be used as suitable for another. For example, it must take
into account the difference in grid sizes so that a downwards movement of salt in a grid element of

2. Overview of the executive program HYMAN 4

topflow will be proportionally divided over the adjacent grid elements of bottomflow.
Further, with the advent of parallel computers, it is advantageous to let these programs run simul-

taneously as communicating parallel processes. To realize this, synchronization points were added in
the exiting FORTRAN programs so that these processes can exchange control messages and data sets.

Next an executive program called hyman was written in the MANIFOLD coordination language to
set up and control a static network of interconnected processes. We now focus on the structure of this
executive program. To realize the example above, a configuration of interconnected processes must
be set up as shown in Fig. 3.

Data

hyman

flow2flow

Executive

topflow

Numerical model 1

bottomflow

Numerical model 2

mapping

Figure 3: Process Configuration for a 2-layer numerical modelling of flow in a river.

The executive reads the desired process configuration from a file, which contains all specifications
for the numerical processes (process names, class names and start-up arguments), followed by all
mapper process specifications, and by a list of all bi-directional connections among these processes
(called joins), e.g:

Example hydra topology file

process topflow flow top.mdf 1 2000

process bottomflow flow bot.mdf 34 500

mapper topbot flow2flow top.mdf bot.mdf

join topflow topbot

join topbot bottomflow

In this example, two computation process instances are defined, with instance names topflow and
bottomflow, both of class flow. Furher, one mapper process is defined with the instance name topbot
of class flow2flow. Both computation processes are to be connected with this mapper process. Having
read this file, the executive now proceeds to built up the specified network in a number of steps.

First, the computation processes are created and activated while the executive waits for all compu-
tation processes to complete their own initialization procedures using barrier synchronization. Subse-
quently, all mapper processes are created and activated; each of them sends a message to its neighbors
(computation processes) and waits for replies. After collecting all replies the mapper checks for con-
vergence and when this happens, it reports that fact to the executive program by calling the barrier
synchronization function. Otherwise, it converts datasets from one neighbor to equivalent datasets
suitable for another neighbor, while the neighbors in turn wait for their new input.

Meanwhile, the executive program waits for the convergence results of all mappers, again using
barrier synchronization. When this happens, final results are reported and all processes are terminated.

We now look more closely at some details of the implementation of the executive program HYMAN.
When parsing the process configuration file, a process table is constructed that contains an entry for
each process with information fields for process name, status, type, class names, arguments, run-time
references, joins and mappings (which joins are connected to which processes).

With this information, the MANIFOLD Main program can now be understood:

2. Overview of the executive program HYMAN 5

467 manifold Main(process args) {

468

469 auto process i is variable().

470 auto process err is integer(noevent,0).

471 auto process processtable is variable(0)[MAX_PROCESSES+1].

472 auto process joins is variable(0)[MAX_JOINS+1].

473 event setup_complete, error_occurred, wait.

474 begin:

475 Message ("Hyman: start reading process configuration file\n");

476 err = ReadConfigurationfile(tuplepick(args,2),processtable,joins);

477 if err < 0

478 then post(error_occurred);

479 CreateProcesses(processtable);

480 CreateJoins(joins,processtable);

481 post(setup_complete).

482 setup_complete: {

483 process numericprocesses homonym

484 ConstructProcessset (processtable, "process").

485 process mappers homonym

486 ConstructProcessset (processtable, "mapper").

487 begin:

488 ActivateProcessset (numericprocesses);

489 WaitProcessset (initdone, numericprocesses);

490 ActivateProcessset (mappers);

491 post(wait).

492 wait: Message ("Hyman: waiting for barrier.mappers\n");

493 WaitProcessset (barrier, mappers);

494 Message("All mappers reached barrier, checking votes...\n");

495 raise (barrier); /* request mappers to vote */

496 if CheckMappervotes (mappers) == 0 then {

497 begin: Message("Hyman: at least one mapper voted NO");

498 post(wait).

499 };

500 Message("Hyman: all mappers vote YES, terminating...\n");

501 DeactivateProcessset (numericprocesses);

502 DeactivateProcessset (mappers);

503 deactivate(numericprocesses,mappers);

504 Message ("Hyman: all processes are deactivated now.\n");

505 void.

506 }.

507 end: Message ("Hyman: end.").

508

509 error_occurred:

510 writestr ("Hyman: error %d occurred.\n",err) -> stderr;

511 cancel.

512 }

First, some auxiliary processes are instantiated and auto-matically activated for internal usage.
In particular, on line 471, the processtable and on line 472 the join table (joins) are created
as instances of variable. Both tables will be partially filled with information from the process
configuration file (line 476).

Next (line 479), all processes specified are instantiated (but not activated) and the table processtable
is updated: the run-time process references are now known and must be remembered, and for the
numerical computation processes shared-memory data segments are created to allow fast exchange of
voluminous data. Thereafter (line 480) the joins are created and the join table and the process table
are updated with the appropriate run-time information. All joins are created as streams of type KK,
and the processes that are their sources and sinks are made permanent event sources for each other
and for the executive HYMAN.

Then, the event setup complete is posted and received (481-482) to enter a new block where two
new auxiliary processes are created: numericprocesses and mappers, which are the values returned
by the manner constructprocessset. This manner scans the processtable and delivers a set of

3. Overview of the Application Program Interface 6

process references of the type specified as its second argument. These sets are then used to startup
the whole application in an orderly fashion: first the numericprocesses, allowing them to initilize,
then wait for the event initdone from everyone of them, and then activate the mappers. Since the
joins where already made, information can now flow between all of these processes and the application
is now running.

The coordinating Main process now waits for all mappers to raise the event barrier. If all mappers
agree on having reached convergence, the application will terminate; otherwise the computations must
be resumed, implying for Main resuming its wait state.

It is illustrative to show how this manner waitprocessset is implemented:

399 manner waitprocessset (event e, port in prefs) {

400 save *.

401

402 auto process i is variable (0).

403 begin:

404 if dimension(prefs) <= 0

405 then return;

406 while i < dimension(prefs) step INCR(i) do {

407 process p deref prefs[i].

408 begin: terminated(p).

409 e.p: void.

410 };

411 return.

412 }

The keyword dimension returns the actual number of “elements” in a port array. Since the argu-
ment prefs is the output port array of a variable containing process references, we may dereference
each element to obtain a process identfication p and wait for the specified event e from that process
to occur (line 408: the keyword terminated waits for the termination of the process specified or any
other preemptable event). When this loop terminates, the event e of all processes whose references
are contained in prefs must have been received.

3. Overview of the Application Program Interface

To facilitate the communication between the mapper processes and the numerical modelling processes
an Application Programmers Interface had been defined consisting of the following “C” interface
function specifications:

1 #include "datatypes.h"

2 /*---

3 * Hydra Application Programmers Interface functions

4 */

5 int Hy_Resume (

6 int neighborStep,

7 int numout, /* # of outgoing messages */

8 HyMesg* outMesg [], /* outgoing messages */

9 int * numin, /* max/actual # of incoming msgs */

10 HyMesg *inMesg [] /* incoming messages */

11);

12 int Hy_BarrierMinimum (/* for mapper processes only */

13 int value /* vote (0 => no convergence) */

14);

15 Hy_StartProcessMain (

16 int objID, /* object identifier */

17 char * objName, /* object name */

18 char * configString, /* configuration string */

19 int contextID /* shared memory context ID */

20);

4. Conclusions. 7

21 void Hy_StartMapperMain (

22 int objID, /* object identifier */

23 char * objName, /* object name */

24 char * configString, /* configuration string */

25 int numNeighbors, /* number of neighbor objects */

26 NeighborInfo neighbors[] /* array of neighbor objects */

27);

There is an initialization function that provides an application process (numeric or mapper) with
its own process identification (objID), process name and startup arguments as specified at instanti-
ation by the MANIFOLD coordinating program (last two arguments were originally derived from the
configuration file, as descibed above). In addition, a mapper process gets a description of all other
processes to which it is connected (neighbors) and for which it must be prepared to receive requests
from and send replies to.

Initially, as part of the startup protocol, each numeric process must call Hy InitializeProcess,
initialize itself, and then call Hy Resume with argument neighborStep set to zero and no output
messages. This is interpreted by Hy Resume to raise the event initdone, which will be picked up
by the MANIFOLD coordinating program. As described in the previous section, the coordinating
program activates the mapper processes when all numeric processes have reached this stage. The
numeric processes now wait in Hy Resume until incoming messages become available from the mapper
to which they are connected (barrier synchronization).

Then, the mapper processes initialize themselves, and in a loop, call Hy Resume to exchange messages
with their neighbors. First, outgoing messages are send to all neighbors, so that the numeric processes
wake up from their wait-states in Hy Resume. Then, the mapper processes in turn wait in Hy Resume
until messages from all neighbors have arrived. The mapper processes have one other essential task:
based on the data that is received from all neighbors they must decide whether or not a convergence
criterion has been reached. If so, a mapper process must call the interface function Hy BarrierMinimum
with its argument set to 1. If it has been established that such a convergence criterion can never been
reached with the current data sets, it must call the same function with its argument set to 0, indicating
that the computation needs to be restarted on a slightly modified data set with a better chance of
reaching convergence.

This function will generate the event barrier to be picked up by the MANIFOLD coordinating
program, which will then take the appropriate action: either terminate the application or restart it
with adapted data.

In the MANIFOLD environment, these functions are implemented using the MANIFOLD Atomic
Process Interface functions where the messages and other relevant information is packed in units that
are sent through the output ports on which the executive has made the appropriate connections.
These units can be picked up through the input ports at the other end of their respective joins.

4. Conclusions.

Using the MANIFOLD coordination language, a process control application has been realized consisting
of a simple static process network. This can serve as a model for other, more complex process control
applications where, e.g., dynamic configuration is required.

The amount of modifications to the existing programs is minimal, partly due to the introduction of
the mapper processes. In the numerical computation processes modifications are needed only during
initialization and whenever data is needed or is produced by calling Hy Resume.

Having realized the application in MANIFOLD, it can now run in parallel, since each process in
MANIFOLD may be run on another machine, or in the case of a multiprocessor machine, as a thread
on a separate processor.

Using MANIFOLD, threaded applications are easier to write and to maintain, because threading is
not to be realized by calling low-level functions. Instead, it is logically implied by the MANIFOLD

language, and is effectively realized by the MANIFOLD compiler and its run-time system.

8

References

1. F. Arbab. The IWIM model for coordination of concurrent activities. In Paolo Ciancarini and Chris
Hankin, editors, Coordination Languages and Models, volume 1061 of Lecture Notes in Computer
Science, pages 34–56. Springer-Verlag, April 1996.

2. F. Arbab, C.L. Blom, F.J. Burger, and C.T.H. Everaars. Reusable coordinator modules for mas-
sively concurrent applications. Software: Practice and Experience, 28(7):703–735, June 1998. Ex-
tended version.

3. I.J.P. Elshoff, K.H. Tan, S. Hummel, and M.J.A. Borsboom. Delft-hydra, an architecture for
coupling concurrent simulators. In Parallel Computational Fluid Dynamics, Recent Developments
and Advances using Parallel Computers, Amsterdam, 1998. Elsevier Science.

4. A.E. Mynett, S.Hummel, I.J.P. Elshoff, and H.H. ten Cate. Distributed computing systems in
environmental hydroinformatics: Applications in engineering and in education. In In Proc. of the
3th Int. Conf. on Hydroinformatics, Rotterdam, 24-26 August 1998. Balkema.

5. S.Hummel, I.J.P. Elshoff, and A.E. Mynett. Distributed engineering systems in coastal zone
management. In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes in Computer Science, pages 133–140.
Springer-Verlag, April 1998.

