
e (ontrum '"' w;sk"'d'" lnlor~
~PORT RAPPORT

Reusability of coordination programs

F. Arbab, C.L. Blom, F.J. Burger, C.T.H. Everaars

Computer Science/Deportment of Interactive Systems

Report CS-R9621 June 1996

CWI is the Notional Research Institute for Mathematics and Computer Science. CWI is port of the
Stichting Mothemotisch Centrum ISMCJ, the Dutch foundation for promotion of mathematics and
computer science and their applications.
SMC is sponsored by the Netherlands Organization for Scientific Research INWO). CWI is a
member of ERCIM, the European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mothemotisch Centrum
P.O. Box 94079, l 090 GB Amsterdam (NL)
Kruisloon 413, l 098 SJ Amsterdam INL)
Telephone +31 20 592 9333
T elefox +31 20 592 41 99

ISSN 0169-1 1 BX

Reusability of Coordination Programs

F. Arbab, C.L. Blom, F.J. Burger and C.T.H. Everaars

CW/

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Isolating computation and commun ication concerns into separate pure computation and pure coordina tion

modules enhances modularity, understandability, and reuubility of paral lei and/or distributed software. This

can be achieved by moving communication primitives (such a SendMessage and ReceiveMessage), which are

now commonly scattered in application codes, into separate modules written in a language dedicated to the

coordination of processes and the flow of information a mong them.

MANIFOLD is a pure coordination language that encourages the se paration of communication and com

putation concerns, We use real, concrete, running MANIFOLD programs to demonstrate the concept of pure

coordination modules and the advantage of their reuse in applications of different nature.

CR Subject Classification (1991}: 03.3, D.1.3, D.3.2, F.l.2, 1.1.3.

AMS Subject Classification (1991): 68Nl5, 68Ql0.
Keywords and Phrases: software reusability, distributed computing, pa ra llel computing, coordination lan

guages, models of communication.

1. I NTRODUCTION

Some of the shortcomings of the common approaches to the design and development of parallel and
distributed applications stem from the fundamental properties of the various models of communica
tion used to construct this software[SJ. Without a proper programming paradigm for expressing the

coordination of the cooperation of various active components that comprise a single concurrent appli
cation, programmers are forced to use low-level communication constructs, such as message passing,

directly in their code. Because these primitives are generally scattered throughout the source code of

the application and are typically in termixed with non-communication application code, the protocols
of coordination generally never manifest themselves in a tangible form as easily identifiable pieces of

source code. Thus, in spite of the fact that the coordination protocols are often the most complex and
expensive-to-develop part of a non-trivial parallel or distributed application, they a re not treated as a

separate commodity that can be designed, developed, debugged, maintained, and reused, in isolation

from the rest of the application code.

Intermixing communication concerns with computation decreases the comprehensibility, maintain
ability, and reusability of software modules. Moreover, the t argeted send primitives used in message

passing models of communication strengthen the dependence of individual processes on their envi

ronment. This too diminishes the reusability and maintainability of processes. It also complicates
debugging and pro·ving the correctness of programs because a process that depends on the existence

and certain expected "valid" behavior of some other processes for its own correctness, by itself is not
a well encapsulated concept.

Coordination languages[!] ameliorate these problems to some extent, but existing coordination

languages, such as Linda, still do not go all the way to support reusable, pure coordination program
modules. The goal of this paper is to demonstrate the concept of pure coordination modules and their
reusa.bility in different applications through real, concrete, running examples using the coordination

language MANIFOLD, which is based on the IWIM model of communication developed at CWI. A

2. Two Models of Communication 2

summary of the IWIM model is presented here in §2. An introduction to the MANIFOLD language
which is based on that model appears in §3 in this paper. A more detailed description of IWIM and
MANIFOLD appear [5J, which also contains a review of some related work and a comparison with other
coordination models and systems. An overview of an earlier version of the MANIFOLD language and its
implementation was published in [2], which contains a series of other examples. The complete syntax
and semantics of the current version of the MANIFOLD coordination language can be found in [4].
For our purpose in this paper, some of the relevant language constructs in MANIFOLD are introduced
in §4 through a trivial example program. In §5, we discuss a quite non-trivial example of sorting and
show how MANIFOLD encourages isolating communication and computation concerns into separate
modules. The reusability of the pure coordination module developed for sorting is then demonstrated
in §6, where the same MANIFOLD program is applied to coordinate a parallel/distributed numerical
optimization application using a domain decomposition algorithm. All examples presented in this
paper run, without any change to any source code, on a variety of parallel and/or heterogeneous
distributed computing platforms. We close this paper with a short conclusion in §7.

2. Two MODELS OF COMMUNICATION

In this section we recapitulate the argument for having the Idealized Worker Idealized Manager (IWIM),
Model of Communication, in contrast with t he Targeted-Send/Receive Model (TSR), which describes
the essentials of many commonly used communication models[5].

2.1 The TSR Model of Communication
In many models of communication, two active parties can be distinguished: the Sender and the
Receiver. In general, a sender s sends a message m to a receiver r. The roles played by s and
r a.re significantly different. For example, consider two cooperating processes p and q, which must
communicate with each other. At some point, the process p produces two values to be passed on to q.
The process q, in turn, after performing some additional computation using the input it receives from
p, passes the results of its computation back to p. The source code for this concurrent application
may look like the following:

process p:

compute ml
send ml to q
compute m2
send m2 to q
do other things
receive m
do other computation using m

process q:

receive ml
let z be the sender of ml
receive m2
compute m using ml and m2
send m to z

We make a few important observations in this example:

• The source code of both p and q contains not only the computations performed by these pro
cesses, but also a description of how they must cooperate with each other: computation code is
intermixed with communication code.

• The ope,rations "Send" and "Receive" are asymmetric: eac.h "Send" needs to know the identity
of its destination, whereas "Receive" can receive a message from any anonymous source.

Especially because of the "Targeted Send", the resulting code is not as flexible as one may want
it to be. Ror instance, in a different application environment, the result of q may be needed
by another process x instead of the sending process z (whose identity was provided with the

2. Two Models of Communication 3

messages ml and m2). Then we have no choice but t o modify the source code for q, thereby
hampering the reusability of q.

2.2 The JWJM Model of Communication
The basic concepts in the IWIM model are processes, events, ports, and channels. A process is a black
box with well defined ports which are openings in the bounding walls of the black box.

Channels connect ports and their existence enables processes to exchange units of information
through their ports with other processes in their environment.

We use the notation p.i to refer to the port i of the process instance p. The IWIM model supports
anonymous communication: in general, a process does not, and need not, know the identity of the
processes with which it exchanges information. This concept reduces the dependence of a process on
its environment and makes processes more reusable.

Independent of the channels, there is an event mechanism for information exchange in IWIM. Events
are broadcast by their sources in their environment, yielding an event occurrence in specific proce.sses:
those processes which are tuned in to certain event sources may pick up these event occurrences and
then perform actions, such as creating or destroying processes, establishing channe ls between ports of
processes, and generating more event occurences.

A process in IWIM can be regarded as a worker process or a manager (or coordinator) process. The
responsibility of a worker process is to perform a certain (computational) task. A worker process is
not responsible for the communication that is necessary for it to obtain the proper input it requires
to perform its task, nor is it responsible for the communication tha t is necessary to deliver the results
it produces to their proper recipients. In general, no process in IWIM is responsible for its own
communication with other processes. It is a lways the responsibility of a manager process to arrange
for and to coordinate the necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, in an application. In the
IWIM model, an application is built as a (dynamic) hierarchy of (worker and manager) processes on
top of this layer. A manager process may itself be considered as a worker process by another manager
process. In this model, the example above can be formulated as follows:

process p:

compute ml
Yrite ml to output port o1
compute m2
Yrite m2 to output port o2
do other things
read m from input port il
do other computation using m

process

read ml
read m2
compute
'lilrite m

q:

from input port i 1
from input port i2
m using ml and m2
to output port o1

process c:

create the channel p.o1 -+q. i1
create t he channel p.o2 -+q. i2
create the channel q.o1 -+p. i1

Now the processes p and q are "ideal" workers. They do not know and do not care where their
input comes from, nor where their output goes to. They always do their job provided that they receive
the right input at the right time. Under these provisions, they can trivially be reused in any other
application.

The process c is an "ideal" manager. It knows nothing about the details of the tasks performed by
p and q. Its only concern is to ensure that they are created at the right time, receive the right input
from the right sources, and deliver their results to the right sinks.

3. The Manifold Coordination Language 4

It is likely that some of such ideal manager processes may be used in other applications, coordinating
very different worker processes, producing very different results; as long as their cooperation follows
the sa.me protocol, the same coordinator processes can be reused in very different applications.

The purpose of this paper is to demonstrate how the latter type of reusability (of coordinator
modules) can be ut ilized in practice.

3. THE MANIFOLD COORDI NATION LANGUAGE
In t his section, we briefly introduce MANIFOLD: a coordination language for managing complex, dy
namically changing interconnections among sets of independent, concurrent, cooperating processes[2),
which is based on the IWIM model, described in §2.

A MANIFOLD application consists of a (potentially very large} number of (light- and/or heavy
weight) processes rnnning on a network of heterogeneous hosts, some of which may be parallel sys tems.
Processes in the same application may be written in different programming languages. Some of them
may not know anything about MANIFOLD, nor the fact that they are cooperating with other processes
through MANIFOLD in a concurrent application.

The MANIFOLD system consists of a compiler, a run-time system library, a number of utility
programs, libraries of builtin and predefined processes[4), a link file generator called MLINK and a
run-time configurator called CONFIG. T he system has been ported to several different platforms (e.g.,
SGI 5.3, SUN 4, Solaris 5 .2, IBM SP / 1). MLINK uses the object files produced by the (MANIFOLD
and other language) compilers to produce link files needed to compose the application executable files
for each required platform. At run time of an application, CONFIG determines the actual host(s)
where the processes which are created in the MANIFOLD application will run.

The library routines that comprise the interface between MANIFOLD and processes written in other
languages (e.g. C), automatically perform the necessary data format conve rsions when data is routed
between various different machines.

3.1 Processes
In MANIFOLD, the atomic workers of the IWIM model are called atomic processes. Any operating
system-level process can be used as an atomic process in MANIFOLD. However , MANIFOLD also
provides a library of functions that can be called from a regular C function running as an atomic
process, to support a more appropriate interface between the atomic processes and the MANIFOLD
world. Atomic processes can only produce and consume units through their ports, generate and receive
events, and compute. In this way, the desired separation of computation and coordination is achieved.

Coordination processes are written in the MANlFOLD language and are called manifolds. The
MANIFOLD language is a block-structured, declarative, event driven language. A manifold definition
consists of a header and a body. The header of a manifold gives its name, t he number and types of
its p arameters, and the names of its input and output ports. The body of a manifold definition is a
block. A block consists of a finite number of states. Each state ha.s a label and a body. T he label of a
state defines the condition under which a transition to that state is possible. It is an expression that
can match observed event occurrences in the event memory of the manifold. The body of a simple
state defines the set of actions that are to be performed upon transition to that state. The body
of a compound state is either a (nested) block , or a call to a parameterized subprogram known a.s a
manner in MANIFOLD. A manner consists of a header and a body. As for the subprograrns in other
languages, the header of a manner essentially defines its name and the types and the number of its
parameters. A manner is either atomic or regular. The body of a regular man.ner is a block. The
body of an atomic manner is a C function that can int erface with the MAN IFOLD world through the
same interface library as for the compliant atomic processes.

4. Ht!llo World! 5

3.2 Streams
All communication in MANIFOLD is asynchronous. In MANIFOLD, the asynchronous IWIM channels
are called streams. A stream is a communication link that transports a sequence of bits, grouped into
(variable length) units.

A stream represents a reliable and directed flow of information from its source to its sink. Once a
stream is established between a producer process and a consumer process, it operates autonomously
and transfers the units from its source to its sink. The sink of a stream requiring a unit is suspended
only if no units are available in the stream. The suspended sink is resumed as soon as the next unit
becomes available for its consumption. The source of a stream is never suspended because the infinite
buffer capacity of a stream is never filled.

There are four basic stream types designated as BB, BK, KB, and KK, each behaving according to a
slightly different protocol with regards to its automatic disconnection from its source or sink. Fur
thermore, in MANIFOLD, the BK and KB type streams can be declared to be reconnectable. See [4] or
[5] for details.

Note that as in the IWIM model, the constructor of a stream between two processes is, in general,
a third process. Stream definitions in MANIFOLD are generally additive. This means that a port can
simll!ltaneously be connected to many different ports t hrough different streams.

3.3 Events
In MANIFOLD, once an event is raised by a process, it continues with its processing, while the event
occurrence propagates through the environment independently. Any receiver process that is interested
in such an event occurrence will automatically receive it in its event memory. The observed event
occurrences in the event memory of a process can be examined and reacted on by this process at its
own leisure. The event memory of a process behaves as a set: there can be at most one copy of t he
occll!rrence of the same event genel!'ated by the same source in an event memory.

3.4 State Transitions
The only control structure in the MANIFOLD language is an event-driven state transition mechanism.
More familiar control structures, such as the sequential flow of control represented by the connective
";" (as in Pascal and C), conditional (i.e., "if") constructs, and loop constructs can be built out of
this event mechanism, and are also available in the MANIFOLD language as convenience features.

Upon transition to a state, the primitive actions specified in its body are performed atomically in
some non-deterministic order. Then, the state becomes preemptable: if the conditions for transition
to another state are satisfied, the current state is preempted, meaning that all streams that have
been constructed a.re dismantled and a transition to a new state takes place. The most important
primitive actions in a simple state body are (1) creating and activating processes, (2) generating event
occurrences, and (3) connecting streams to the ports of various processes.

4. HELLO WORLD!

For our first example, consider a simple program to print a message such as "Hello World!" on the
standard output. The MANIFOLD source file for this program contains the following:

L manifold print:uni t& irrQ<>rt .
2:
~ auto process print is princunits
4.

S mani :fold Main
6 (
7 l>egin: •Hello World! • - > p.-i n t.
8)

4. Hello World! 6

The first line of this code defines a manifold named printuni ts that takes no arguments, and
states (through the keyword import) that the real definition of its body is contained in another
source file. This definC's the "interface" to a process type definition, whose actual "implementation"
is given elsewhere. \\'hC'ther the actual implementation of this process is an atomic process (e.g., a
C function) or it is itself another manifold is indeed irrelevant in this source file. We assume that
printunits waits to rccC'i\·e units through its standard input port and prints them. When printunits
Jetccts that there arc no incoming streams left connected to its input port and it is done printing the
units it has recei\"ed, it terminates.

The second line of code defines a new instance of the manifold printunits, calls it print, and
states (through the keyword auto) that this process instance is to be automatically activated upon
creation, and deactivated upon departure from the scope wherein it is defined; in this case, this is the
end of the application. Because the declaration of the process instance print appears outside of any
blocks in this source file, it is a global process, known by every instance of every manifold whose body
is defined in this source file.

The last lines of this code define a manifold named Main that takes no parameters. Every manifold
definition (and therefore every process instance) always has at least three default ports: input, out·put,
and error. The definition of these ports are not shown in this example, but the ports are defined for
Main by default.

The body of this manifold is a block (enclosed in a pair of braces) and contains only a single s tat e.
The name Main is indeed special in MANIFOLD: there must be a manifold with that name in every
MANIFOLD application and an automatically created instance of this manifold, called main, is the
first process that is started up in an application. Activation of a manifold instance automatically
posts an occurrence of the special event begin in the event memory of that process instance; in this
case, main. This makes the initial state transition possible: main enters its only state - the begin
state.

The begin state contains only a single primitive action, represented by the stream construction
symbol, "-+". Entering this state, main creates a stream instance (with the default BK-type) and
connects the output port of the process instance on the left-hand side of the -+ to the input port of
the process instance on its right-hand side. The process instance on the right-hand side of the - is,
of course, print. What appears to be a character string constant on the left-hand side of the - is
also a process instance: in MANIFOLD, a constant is just a process that produces its value as a unit
on its output port and then terminates. 1 •

Having made the stream connection between the two processes, main now waits for all stream
connection made in this state to break up (on at least one of their ends). The stream breaks up, in
this case, on its source end as soon as the string constant delivers its unit to the stream and dies.
Since there are no other event occurrences in the event memory of main, the default transition for a
state reaching its end (i.e., falling over its terminator period) now terminates the process main.

Meanwhile, print reads the unit and prints it. The stream type BK ensures that the connect ion
between the stream and its sink is preserved even after a preemption, or its disconnection from its
source. Once the stream is empty and it is disconnected from its source, it automatically disconnects
from its sink. Now, print senses that it has no more incoming streams and dies. At this point, there
are no other process instances left and the application terminates.

Nole that our simple example, here, consists of three process instances: two worker processes, a
character string constant and print, and a coordinator process, main. Figure 1 shows the relationship
between the constant and print , as established by main. Note also that the coordinator process main
only establishes the connection between the two worker processes. It does not transfer the units

1Conceptually, constants are full- fledged process instances in MANIFOLD . However, in reality, they are implemented as only a block of memory.

5. Bucket Sort 7

"Hello World!" print

~----~

Figure l: The "Hello World" example in Manifold

through the stream(s) it creates, nor does it interfere with the activities of the worker processes in
other ways.

5. BUCKET SOR"f

The example in the previous section was simple enough to require only a static pattern of commu
nication. In this section, we illustrate the dynamic capabilities of MANIFOLD through a program
for sorting an unspecified number of input units. The particular algorithm used in this example is
not necessarily the most effective one. However, it is simple to describe, and ser ves our purpose of
demonstrating the dynamic aspects of the MANIFOLD language well. The sort algorithm is as follows.

There is a sufficiently large (theoretically, infinite) number of atomic sorters available, each of which
is able to sort a bucket of n > 0 units very efficiently. (The number n may even vary from one atomic
sorter to the next.) Each atomic sorter receives its input through its input port; raises a specific
event it receives as a parameter to inform other processes that it has filled up its input bucket; sorts
its un its; produces the sorted sequence of the units through its output port; and terminates.

The parallel bucket sort program is supposed to feed as much of its own input units to an atomic
sorter as the latter can take; feed the rest of its own input as the input to another copy of itself; merge
the two output sequences (of the atomic sorter and its new copy); and produce the resulting sequence
through its own output port. Merging of the two sorted sequences can be done by a separate merger
process, or by a subprograrn (i.e., a manner) called by the sorter.

We assume our application consists of several source files. The first source file contains our Main
manifold, as shown b elow. We assume that the merger is a separate process. The merger and the
atomic sorter can be written in the MANIFOLD language, but they will be more efficient if they arc
written in a computation language, such as C. We do not concern ourselves here with the details of
the merger and the atomic sorter, and assume that each is defined in a separate source file.

The main manifold in this application creates read, sort, and print as instances of manifold
definitions ReadFile, Sorter, and printuni ts, respectively. It then connects the output port of
read to the input port of sort, and the output port o f sort to the input port of print. The process
main terminates when both of these connections arc broken.

The process read is expected to read the contents of the file unsorted and produce a unit. for
every sort item in this file through its output port. When it is through with producing its units,
read simply terminates. The process sort is an ins tance of the manifold definition Sorter, which is
expected to sort the units it receives through its input port. This process terminates when its input
is disconnected and all of its output units are delivered through its output port.

The manifold definition Sorter, shown below, is our main interest. In its begin state, an instance
of Sorter connects its own input to an instance of the AtomicSorter, it calls atomsort. It also
installs two guards, one on each of its input and output ports. The guard on the input port posts
the event finished if it has an empty stream connected to its departure side, after the arrival side
of this port has no more stream connections, following a first connection. This means that the event
finished is posted in an instance of Sorter after a first connection to the arrival side of its input is
made, then all connections to the arrival side of its input are severed, and all units passed through
this port are consumed. The guard on the output port posts the event flushed after there is no
stream connected to the arrival side of this port following its first connection. This means that the

5. B ucket Sort 8

input Sorter

merge output
(a)

atomson ~ output) 11omson

(b) (c)

Figure 2: Bucket sort

event flushed is posted in an instance of Sor ter after a connection is made to its arrival side, and all
units arriving at this port have passed through. The connections in this state are shown in Figure 2.a.

1 export CM.nifold sorter()
2 (
) event filled. fluah.ed. tiniahed .
4 process atomsort- i• Atoaiesorter(filled).
S stream reconnect. xa input •>

6 priority filled < fini• hed.

begin: (
activate (atom.Ort), input - > atomsort,

10 guard(input. a_everdiaconneeted!empt.y , finisbed) // no more i n.put
11) .
12
13 finished:
14 ignore filled. //pcaaible eve nt form a tom.sort
15
16 begin: atomsort ·> output //your output is only that o f atoinsort
17 } .
18

21 stre1JJD KK • - > l rneroe . a , meroe.b) .
22 strea.m KK mero• •> output .
23
24 begin: (
25 activate<mero•>.
26 input -> Sorter -> mer9e . a.
27 a.tomsort -> me roe. b ,
28 meroe -> outpuc
29) .

30
31 end I finished:.
32 }.
33
3 4 end:
35 begin o (

36 guard(output . ._diaconnected. f lushed) . 11 e n.sure flu•hi ,no
37 t,erminat.ed(void) //v a it !or W'\it.s t.o f lush through out put
38).

39
40 flushed: bolt.
41 } .
42

Two events can preempt the begin state of an instance of Sorter: (1) if the incoming stream
connected to input is disconnected (no more incoming units) and atomsort reads all units available
in its incoming stream, the guard on input posts the event finishe d; and (2) the process a tomsort
can read its fill and raise the event filled. Normally, only one of these events occurs; however, when
the number of input units is exactly equal to the bucket size, n, of a tomsort, both finished and
filled can occur simultaneously. In this case, the priority statement makes sure that the handling
of finished takes precedence over filled.

Assume that the number of units in the input supplied to an instance of Sorter is indeed less than

5. Bucket Sort 9

or equal to the bucket size n of an atomic sorter. In this case, the event finished will preempt the
begin state and cause a transition to its corresponding state in Sorter. In this state, we ignore the
occurrence of filled that may have been raised by atomsort (if the number of input units is equal to
the bucket size n); and deliver the output of atomsort as the output of the Sorter. The connections
in this state are shown in Figure 2.b.

Now suppose the number of units in the input supplied to an instance of Sorter is greater than
the bucket size n of an atomic sorter. In this case, the event filled will preempt the begin state
and cause a transition to its corresponding state in Sorter. In this state we create an instance of
the merger process, called merge. A new instance of the Sorter is created in the begin state of the
nested block. The rest of the input is passed on as the input to this new Sorter, and its output is
merged with the output of the atomic sorter and the result is passed as the output of the Sorter
itself. The connections in t his state are shown in Figure 2.c. An occurrence off inished in this state
preempts the connected streams and causes a transition to the local finished state in this block. This
preemption is necessary to inform the new instance of Sorter (by breaking the stream that connects
input to it) that it has no more input to receive, so that it can terminate. The empty body of the
finished state means that it causes an exit from its containing block.

The purpose of the end state in Sorter is to make sure it stays alive until all units in the incoming
streams connected to its output are transferred out to some outgoing stream. To see why this is
necessary, consider an extreme case where there is no outgoing stream connected (from the outside)
to the output port of an instance of Sorter. The streams set up in either of the states depicted
in Figures2.b and 2.c can break up, signaling the end of their respective states; i.e., the manifold
instance can "fall off the edge" over the terminator period of either of these two states. If there is
no end state in the manifold definition, this results in termination of the manifold instance. Should
this happen, (pa.rt of) the output of the Sorter instance will be lQst, since it remains in the incoming
stream connected to its output port as it dies.

In the end state, a Sorter instance waits for the termination of the special predefined process
void, which will never happen (the special process void never terminates). This effectively causes
the Sorter instance to hang indefinitely. The only event that can terminate this indefinite wait is
an occurrence of flushed which indicates there are no more units pending to go through the output
port of the Sorter instance.

An interesting aspect of the Sorter manifold is the dynamic way in which it switches connections
among the process instances it creates. Perhaps more interesting, is the fact that, in spite of its name,
Sorter knows nothing about sorting! If we change its name to X , and systematically change the
names of the identifiers it uses to Y1 through Y1t, we realize that all il knows is to divert its own input
to an instance of some process it creates; when this instance raises a certain event, it is to divert the
rest of its input to a new instance of itself; and to divert the output of these two processes to a third
process, whose output is to be passed out as its own output.

What Sorter embodies is a protocol that describes how instances of two process definitions (e.g.,
AtomicSorter and AtomiclntMerger in our case) should communicate with each other. Our Sorter
manifold can just as happily orchestrate the cooperation of any pair of processes that have the same
input/output and event behavior as AtomicSorter and AtomiclntMerger do, regardless of what
computation they perform. The cooperation protocol defined by Sorter simply doles out chunks of
its input stream to instances of what it knows as AtomicSorter and diverts their output streams to
instances of what it knows as AtomicintMerger. What is called AtomicSorter needs not really sort
its input units, the process called AtomiclntMerger needs not really merge them, and neither has to
produce as many units through its output as it receives through its input port. They can do any
computation they want.

By parameterizing the names of the manifolds used in Sorter and changing its name to ProtocolX,

6. Domain Decomposition

we obtain a more general program:

@xport manitold ProtocolX{manifold Ml<event); moni!old M2<a, b I output>)
2 (

event filled, flushed, fini•hed.
4 proceaa ml i$ Hl {filled) .
5 stream recoN'\ect KB input ... >

6 priority filled < finished.
7

8 begin : I
9 activatecm.1) . i.nput - > ml,

10 guard(input, a._everdiacon.nec:tedl~ty# fini.shedl II no more input
11) .
12
13 finished:
14 i gnore filled. //poa•ibl• event trom ml
15
16 ~gin: ml -> output //your output ia only that of ml
17 I .
18
19 filled :
20 process m2<a, b I output> ia M2.
21 atream)(l(• -> (m2.o. m.2 . b) .
22 stream KX m2 -> output. .
23
24 begin: C
25 activote(m2l.
26 input -> ProtocolXIHl , K2) -> m.2.a#
27 1111 -> 1112.b,

out.put
29) .
30
31 e·nd I finished: .
32).
33
34 end:
35 begin:
36 guardtoutput, a_ di1connected, flushed>. II en.aure flushing
31 ic:•E'ain.at.cd(void) //wai~ for W\its t.o .fl.u• h C.h.t'Ough out.put
38 1.
39
40 flushed : hAlL
41 I .
42

10

The keyword export on line 1 allows other separately compiled MANIFOLD source files to import
and use this coordinator manifold, e.g., from a protocol library. The new version of the bucket sort
program using ProtocolX is:

1 l'IVLni fo\d pri.nt:u..nj,,1;1 ~S'~.

2 manifold ProtocolX(manifold Kl (event.). manifold Kl) ~rt..
3 ina.nitold Reo.dPile (proce•• t ilename) atosn.ic (inter-Nl.).
4 ~itold AtOlrlicSorter (ev•nt) •tom.ic (i.nte.r n a1.).
S ma.nitold Atom.icintM.erger port in a. b. atomic (int•rnal.}.
6
7 /_ ... /

8 manHold 114in
9 (

10 •uto process read is Read.Pile(•un.sorced•) .
11 •uto procas~ $Or t is ProtocolX CAtomicsor~er. AtoaicintMerger).
12 o.uto process print ia print.units .
l3

1' begin:
15

read - > sort -> pri.nc.

As a concrete demonstration of the reusability of coordinator modules, in the next section, we
present an example that uses the coordinator ProtocolX in a numerical optimization problem.

6. DOMAIN DECOMPOSITION
Consider the following optimization problem:

6. Domain Decomposition 11

max z = x 2 + y2
- 0.5 * cos(l8 * x) - 0.5 * cos(18 * y) with (x, y) E (-1.0, 1.0j (6.1)

Figure 3 shows the landscape formed by this function on its domain.

Figure 3: The function z = x 2 + y2
- 0.5 * cos(18 * x) - 0.5 * cos(18 * y)

Analytical solutions to such problems are, in general, non-existent and domain decomposition is a
common numerical search technique used to solve t hem. Domain decomposition imposes a grid on t he
domain of the function , splitting it into a number of sub-domains, as determined by the size of the grid.

Next, we obtain a (number of) good rough estimate(s) for the highest value of z in each sub-domain.

Then , we select the sub-domains with the most promising z values and decompose them into smaller
sub-domains. New estimates for the highest value of z in each of these sub-domains, recursively

narrow this search process further and further into smaller and smaller regions th.at (hopefully) tend

towards the area with the real maximum z, while the estimates for the obtained maximum z values
become more and more accurate. In single grid domain decomposition, t he same grid is imposed on all

successive sub-domains. Multi-grid domain decomposition techniques allow a different grid for each

sub-domain, whose granularity and other properties may depend on the attributes of the sub-domain
and t hose of t he function within that region.

For our example, we consider a single grid method. We need four computation modules for this ex

ample: ap_printobjects, Split, AtomicEval, and AtomicObjMerger. An instance of ap-printobjects

simply prints the units it reads from its input , each of which describes a (sub-)domain and the x, y,

and z values for the ·estimated maximum z value in that (sub-)domain. An instance of Split receives

as its parameters the specification of a grid (in our case, 6 x 6). Next, it reads from its input port a
unit that describes a (sub-)domain, produces units on its output port t hat describe the sub-domains

obtained by imposing the grid on this input domain, and terminates. An instance of AtomicEval reads

a bucket of n > 0 sub-domains (for simplicity, let n = 1 once and for all) from its input port and raises
a specific event, which it receives as a parameter, to inform other processes that it has filled up its
input bucket with some sub-domains descriptions. It t hen finds the best estimate for the optimum z

value in each of its sub-domains, producing an ordered sequence of units describing the best solutions

it has found through its output port, and terminates. In our example, we use sampling: we simply

evaluate z for a number of (say 1000) sample points in each sub-domain and consider the sample point

6. Domain Decomposition 12

with the maximum z as the best estimate for that sub-domain. An instance of AtomicObjMerger reads
from its ports a and b two ordered sequences of units describing sub-domains and their best estimates,
and produces a sequence of one or more of its best sub-domains on its output port.

We need a MANIFOLD program, say Eval, to coordinate the cooperation of the instances of
AtomicEval and AtomicObjMerger to solve our optimization problem in a parallel/distributed fash
ion. Eval receives through its input port units describing (sub-)domains. It is supposed to feed as
much of its own input units to an atomic evaluator as the latter can take; feeds t he rest of its own
input as the input to another copy of itself; merge the two output sequences (of th·e atomic evaluator
and its new copy); and produce the resulting sequence through its own output port. The similarity
between the description of Eval and that of Sort in §5 suggests that we can use the same coordination
module for our optimization problem. Indeed, Eval is merely a version of ProtocolX with AtomicEval
and AtomicObjMerger as its parameters. The following MANIFOLD program shows a single iteration
of our domain decomposition application using the separately compiled ProtocolX of §5.

1 manifold a"_printobject:s: atomic (internal.} .
2 manifold l>rotocolX-manitold Hl(event),. manifold Ml} import.
) mani fold Spl it(p ort: in, port. in) a tomi c {internal .).

manifold Atomic:Eval (event) atomic (internal.).
manifold AtoinicObjMerqer port in ~, b ~ atomic {internal.} .

, ... ,
ina.ni fold Ma.in

9
10 auto proct!'s.s split i.s Spl it l6, 6).
11 auto process eva1 is P-rotocolX(Atomi.cEval, AtomicObjMerger) .
12 auto process pri~t i s ap_printobj e ces.

13
14 be.gin: <<l, - 1.0, - 1.0, 1.0, 1.0>> - > zplit ->(!Val-> print.
15

The output of this program, below, shows the result produced by 36 instances of AtomicEval, each
taking in the description of a single sub-domain. The top four lines show the best estimates to be in
the neighborhoods of the four corners of the domain for our symmetric function in Figure 3.

domain z (-1.000, -1.000l C-0.667, -0.6671 point• C-0 .883. · 0 .8801. z = 2.541
domain • I 0.667, 0.667) (l.000, l.0001 point• (0.889, 0.8841, z = 2.540
domain• I 0.667, ·l.000) (l.000, -0 .6671 point= (0 .881, - 0.8891 . z • 2.539
domain • (-1.000, 0.667) (-0.667, 1.0001 point• (-0.878, 0.88tl , z • 2 . 539
domain• (-0 .667, 0.667) (-0 . 333, 1.0001 point (-0 . 528, 0.8841, z • 2.048
domain • I 0.333, -1.0001 (0.667, -0 .6671 point• I 0.533, -0 .8821, 2.048
domain a (0 . 667, -O .Ei61) (1.000, -0.333) point • (0.885 . -0.527), : = 2.048
domain • (-0.66?, -1.0001 c-0.Hl, -0.66?1 point• (·0 .Sl4 , -0 .88Sl. z • 2.047
domain• (-l.000, -0.6671 (-0 .667, -0.333) point • (-0.881, -0.535). z • 2.047
domain• (-l.000, 0 . 333) (- 0.667, 0.6671 point• (- 0.883, 0.536) , 2.046
domain• (0 .667, 0 . 333) (1.000, 0.667) point 0.87', 0.5351, z = 2.043
domain• (0.333, 0.6671 (0.667, 1.0001 p oint I 0.537, 0 .8781. z • 2.043
d.oJl\ain • (0.000, - l.000) (O.JJJ, -0.15671 Point • (0 . 177, -0.885), : • 1.802
domain• <-1.000, 0 . 000 1 (-0 .667, 0 . 3331 p oint• (·0.885, 0 .173). z • l.801
domain • (0.667 , 0.000) (1.000, 0 . 3331 point• (0.881, 0 .181 1 , z • 1.800
domain• (0.000 , 0.6671 (0.3)3,
domain • 1-0.333 , 0 . 6671 (0.000.
domain= 1- 1.000, - 0. 3331 (-0.667,

1.000) point • (0.1'71, 0.8831 . z. • 1.799
1.000) point• (·0.183 , 0.884), 2 1.798
0.0001 point • (-0.876, -0.175). z • 1.798

domain • 1· 0 . 333, - l. 0001 0.000, ·0.6671 point • (-0 .169, -0.885), z • l.797
domain = 0.667, - 0.3331 1 . 000, 0 .0001 point• (0.875, ·0.1741, 1.796
domain• (0.333, 0.333) 0.667 , 0.667 1 point • I 0.530, 0 . 5311, 2 = l.SSS
domain • (0 . 333, -0.6671 0 .667 , -0 .3331 point • (0 . 528, -o.5291, • • 1.555
domain• (-0.667 , 0.333 1 (-0 . 333, 0.6671 point= 1-0.532, 0.5311, < • 1.555
domain• (- 0.667, -0.667) (-0.333, - 0.3331 point• (- 0 . 521, -0.5341. 2 • 1.548
domain• (-0 . 667. - O.J3J) (-0 . 333, 0. 000) p o int• (-0 .533, - 0.179), ~ • 1.307
domain= I 0.333, · -0.3331 (0.667, 0.000) point (0.527, -0 . 1781. z • 1.307
domain• (-0.333 , -0.6671 I 0.000, -0.3331 point• (-0.172, -0.531). : = 1.307
do-.in • <·0 .667, 0 .000) (-0 . 333, 0 . 333) point • 1-0.532, 0.1811, < • 1.307
domo.in • (-0.333 , 0.3331 (0.000, 0 . 667) point• 1-0.180, 0.5341, < • l.306
domain• (0.000 , -0.667) 0.333, -0 . 3331 ,point I 0.177, ·0.5241. z • 1.305
do,...in • C 0 . 333, O.OOOJ 0 . 667, 0.333) point• C 0.537, 0.176), t = 1.304
domain• I 0.000, 0 . 333> 0 . 333, 0 . 667) point• 0 . 164, 0.5281, z • l.295

6. Domain Decomposition
13

ctom.ain • (o.ooo. -o . 333 l (0.333. 0.00D) point . I 0.175. -0.174 ,. l . 061 docnain • (-0.333. -0.333) (0 .ooo. 0.00D> point. . (-0 . 179. -0 . 172>. • . l.OS9 docnain • (•0.333, 0.000> (0. DOD. 0.333> poi n t . 1-0 . 177, 0 . l8J). 1.0S8
domain • (0.000. 0.000) (0. 333. 0 .333) point. . I 0 . 171, 0 .182). . 1.05'1

A straight-forward generalization of this program repea ts t his single step until a termination crit<'
rion (such as a maximum number of iterations, or the diminishing of improvements h<'iow a t lm•shold)

is reached. Each iteration selects a (few of the) best sub-dornain(s) found so fa r as input to auntht>r
instance of Split and Eval. This would be yet another MANIFOLD program that coord inatt's t!w
cooperation of different instances of Eval and Split. The following output is produced by such a
program using a 2 x 2 grid. The first line in this output is our initial input unit re presenting the who!~·
domain. Each succeeding group of four lines then represents one iteration. The best sub-domain found
in each iteration is fed as input to the next iteration. The first line of the last group (representing
the third iteration) shows the best solution found (z = 2.542) which is slightly better than the bt>st
solution we found using our single step 6 x 6 grid (z ::: 2.541).

domain . (·l. OOO, -l.0001 (l. OOO, l.0001

dOCl\&in . (0 .OOO, 0.0001 (l. OOO. 1 .000) poin t • (0 . 8 8S. 0 . 8?91. ' . 2.540
domain . c-1 .000. • l. OOO> l o.ooo. 0 . 0001 poi nt. - (-0.88• . -0 . 890). 2 . 539
domain • (0 .ooo. -1.000) 1.000. 0.0001 point . (0 . 890, -0 . 8931. • . 2 . 532
d..,.. in . 1-1.000, 0.000) 0.000. 1.000) point : (-0 . 8 80, 0.'11). t . 2 . 484

"-in . (0.500. 0.500) (1. 000, 1.000) paint . (0.819. 0. 8921. • . 2.S36
domain • 0.000. 0.5001 (0.500. l.000) poin t . (0. 4 '8, 0.866). • . 1 . 9 4 1
do main • o. s oo. 0.0001 l. 000, 0 .5001 point . (0.880. 0. 490). 1 .920
douln • (o.ooo. 0.000> o .soo. 0 . 50 0) point : l 0 .498. 0. <99). • . l.<00

domain • (o. n o. 0.750) l 1.000. l.00 0) point . 0 . 883. 0.883). t • 2 . 5 42

domain • o. soo. o. 7501 l 0. 750. 1 . 000) point . 0. 530 . 0.883). : . :1.04'
domai n • 0 . 7SO. 0 . 50 0) l 1.000. 0 . 7501 pcint . (0. 886. 0 . 5291. t . 2 . 0 4 8
domain • (0 .500. 0 .50 0 1 l 0 . ? SO. 0 . ?501 point . (0. S.Jl . O.S3 01. 1 . SSS

The highly modular structure of this application is remarkable . Its computation modules (C fum:
tions) are simple and have no idea of how they relate to or cooperate with one another. ?-'h.e : oord1-
nation module Eval knows nothing about what these computation modules actually do; 1t 1s Just as
happy coordinating the sorter workers in §5 as it is managing these nu~eri:aI optimization w~rkcrs.
The various processes comprising this application can run on parallel or d1stnbuted platforms without
any change to their source code.

Figure 4: Visualizer snap-shot of 2 x 2 distributed domain decomposition

Th I b' adigm of MANIFOLD makes it easy to divert the flows of units, change the coo~di-
natio: ~t;:t~~=s~:~d dynamically modify the topology of communication links among (computat10n

7. Conclusion 14

as well as coordination) modules to adapt an application to new requirements. We can plug in graph
ics modules to display an on-going computation. Indeed, we have a small computational steering
environment built around this example, using MANIFOLD coordinators and a few generic graphics
interaction modules. The user interface for this program graphically shows the on-going activity of
various atomic evaluators (that may be running on different hosts) and allows the user to interactively
direct the focus of the attention of the program onto one or more areas of interest, simply by drawing
a box to designate a sub-domain. Figure 4 shows a snap-shot of this user interface as our 2 x 2
distributed domain decomposition optimization application moved on (in its third iteration) to the
top-right corner sub-domain in the run that produced the above output.

7. CONCLUSION

IWIM is a model of communication that supports anonymous communication and separation of compu
tation responsibilities from communication and coordination concerns. MANIFOLD is a coordination
language that takes full advantage of these two key concepts of IWIM. Unlike other coordination
languages, MANIFOLD encourages decomposition of a parallel and/or distributed application into a
hierarchy of pure computation and pure coordination modules, none of which contain hard-coded
dependencies on their environment. This leads to highly reusable computation modules, and more
interestingly, also to highly reusable coordination modules.

The examples in this paper show a single coordination module used in two very different applica
tions. We have a lso used MANIFOLD to reorganize existing Fortran 77 sequential code into a parallel
and distributed application[6J. The usefulness of the IWIM model and, in particular, the MANIFOLD

language in these and other applications has been very encouraging. The plumbing paradigm inher
ent in IWIM makes it easy to compose and recompose a MANIFOLD application and adapt it to new
requirements. To enhance the effectiveness of this coordination language, we are presently develop
ing a visual programming environment around MANIFOLD which takes advantage of its underlying
plumbing paradigm.

REFERENCES
1. D. Gelernter and N. Carriere, "Coordination languages and their significance," Communication of

the ACM, vol. 35, pp. 97- 107, February 1992.

2. F. Arbab, I. Herman, and P. Spilling, "An overview of Manifold and its implementation," Concur
rency: Practice and Experience, vol. 5, pp. 23-70, February 1993.

3. F. Arbab, "Coordination of massively concurrent activities," Tech. Rep. CS- R9565, Centrum voor
Wiskunde en lnformatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1995. Available
on-line: http: I /ww,;. cwi . nl/ftp/CWireports/IS/CS-R9565-ps. Z

4. F. Arbab, "Manifold version 2: Language reference manual," Tech. Rep. in preparation, Centrum
voor Wiskunde en lnformatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, 1995.

5. F. Arbab, "The IWIM model for coordination of concurrent activities," in: P. Ciancarini and C.
Hankin (eds.), Coordination '96, Lecture Notes in Computer Science #1061, Springer-Verlag, April
1996.

6. C.T.H. Everaars, F. Arbab, and F.J. Burger, "Restructuring Sequential Fortran Code into a Par
allel/Distributed Application," submitted to: International Conference of Software Maintenance
'96, Monterey, California, November 1996.

