
Computer Science/Department of Interactive Systems

1992

I. Herman, F. Arbab

More examples in Manifold

Report CS-R9214 May

CWI is het Centrum voor Wiskunde en lnformatica van de Stichting Mathematisch Centrum
CW/ is the Centre for Mathematics and Computer Science of the Mathematical Centre FoundatiorJ

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 . 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright© Stichting Mathematisch Centrum, Amsterdam

More Examples in Manifold

I. Herman, F. A rbab
CWI

Department of Interactive Systems

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Tel.: +31-20-592.4163, +31-20-592.4058
Fax.: +31-20-592.4199

Email:. ivan@cwi.nl, farhad@cwi.nl

ABSTRACT

This document gives an additional insight into the use of the MANIFOLD system by presenting

a set of non-trivial examples of programming using the MANIFOLD language. The develop­

ment of these examples has been inspired by some general algorithmic patterns arising in the

field of computer graphics and the use of computing farms.

The document presupposes that the reader is familiar with the syntax and the semantics of

MANIFOLD.

1980 Math. Subject Classification: 68Nl5, 68Q05, 68U30

1987 CR Categories: C.1.2, C .1.3, C.2.m, D.1.3, D.3.2, F.1.2, 1.1.3

Keywords and Phrases: Parallel computing, MIMD, Models of computation, coordination

languages, computing and processing farms.

1 Introduction

The development of the MANIFOLD system ([1, 2, 3, 4)), which started in spring 1990, has always been

motivated by_ practical considerations. While developing a new computing model and a language which

is describable and analyzable by theoretical means as well ([5]), we were always influenced by practical

issues, by implementability and ease of use. It is not a coincidence that, at a very early stage of the

development, we already tried to describe and formalize programs which had also a practical "touch"

((2, 6]). Working on practical examples has been a continuing activity in conjunction with the effective

implementation work ([7, 8]). The most complex example of a MANIFOLD application which has been

published up to now is the formalization of the GKS1 input model (see [7]). It is worthwhile to note

that for computer graphics experts, who are also involved with concurrency issues, the GKS input model

has become a kind of test case for the applicability of a given concurrency model for the purposes of

interaction in computer graphics (see [9, 10, 11, 12]). In this respect , our approach to the GKS model has

already contributed to an ongoing research activity in computer graphics. In view of these, it is a quite

natural step for us to look at more complex examples, now that the first experimental implementation

of the MANIFOLD system is also operational ([3, 4, 13]). The present report is the <>utcome of our latest

activities in this respect.
As a first result of our recent activities in this direction, this report presents two highly non-trivial

examples of MANIFOLD programming. In §3 we describe a class of adaptive recursive algorithms. These

algorithms are in widespread use in computer graphics as well as in other fields of computer science; the

MANIFOLD language has proven to be very appropriate for describing this class of algorithms.

lGraphical Kernel System - An ISO Graphics Sta.udard

Report. CS-R9214 1
ISSN 0169-11 SX
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In §4 we deal with what is usually called a "computing farm", which bas become extremely important
lately in relation to high performance computing. This example is undeniably the largest and most
complex program developed in MANIFOLD as of today.

2 An Assessment of the Manifold Model

One of our reasons for developing more complex programs in MANIPOLD is to test our own ideas con­
cerning the MANIFOLD model and language against real practical problems. It was therefore very encour­
aging for us to see that the computing model advocated by MANIPOLD bas proven to be extremely well
adapted for our problems. We did not really face any significant difficulties in describing our problems
using MANIFOLD. In fact, the main problem was with us rather than on the side of the MANIFOLD
model: in spite of the fact that we developed the model ourselves, our own training and overwhelm­
ingly "sequentially oriented" programming experience made it sometimes difficult for us to find the best
possible solution at once. Programming using a "coordination language" like MANJI>OLD does need an
alternative way of thinking and hence an appropriate training. We feel, however, that it pays off to go
through such and intellectual exercise which, by the way, is very challenging and exciting itself.

As far as the MANIFOLD language is concerned we did find some clumsiness here and there which
lead us to some slight modifications or, to be more precise, to the definition of some new constructs to
be added to the language as described in [l]. In the remaining part of this section, we describe t hese
new constructs to make our examples fully understandable. We must stress, however, that the language
extensions defined here are not really fundamental; they just make programming in MANIFOLD easier
or more effective. In fact, looking at these extensions more closely, one may realize that all the examples
described later can be described in the original version of the language at the expense of some clumsiness
or 1088 of run-time efficiency.

2.1 Inline Manners

The introduction of inline manners is barely more t han a convenient shorthand: it makes the program
much more readable. It also highlights the real potentials of using manners; one tends to use them much
more frequently than with the "traditional" syntax.

Inline manners resemble the block structure of C++ (not to be mixed with blocka in M.A.N1PC>Lo!).
This means that a MANIPOLD block may now look like:

label:
{

block.a
}.

Semantically, this i.a equivalent to having the blocks within the "{" and "}" signs as a separate manner,
which is then called from this block. In other words, inline manners are exactly like manners, except
that their body appears within the outer scope (and hence t hey are not reWJable). This also means that
declarations, dereference statements, etc. may appear within an inline manner; their meaning is identical
to the situation when they appear within a "real" manner.

Note that the use of inline man.ners make the circular search obeolete. We can therefore impoee a rule
which says that within a given scope, i .e ., within a IQanifold or a (traditional or inline) manner there may
be at moet one block for a given label.

It is somewhat awkward to use the keyword start and return within inline. manners. We use therefore
the keywords begin and end as synonyms for atart and return respectively.

2.2 Permanent Groups

It is sometimes nece:S11ary in a MANIFOLD program to have certain connections persist over state transi­
tions. The only clean way of achieving this in the present version of the ·MANIPOLD language is to define
a separate manifold process to set up the requind pipeline(s) and activate this process when necessary. AB
long as this process is active, the corresponding streams will be alive. (Note that repeating the pipelines

2

in each block of the manifold is not an equivalent solution: state transitions result in connected and
disconnected events which can alter the behavior of the processes appearing in the pipelines.)

In order to improve efficiency, the concept of permanent pipelines is introduced. One can now add a
declaration of the form:

nobreak groups.

The meaning of this construction is as follows: th.e pipelines listed in the declaration are set up at
initialization time when entering the manifold or th.e manner. The pipelines may break, following their
usual breaking rules (i .e., when one of their component~ is deactivated) but the manifold processor does
not break the connection on state transition, as long as it is within the same scope. This means that the
pipelines will be broken when the processor leaves the current (traditional or inline) manner.

The pipelines in a no break declaration may contain symbols which are to be dereferenced; the manifold
processor makes sure that all symbols are dereferenced before they are used to build up connections
properly.

2.3 Port Identification

In the present version of the MANIFOLD language, if a process reference is passed either as an argument
or is dereferenced, there is no way for the receiving process or manner to use any of its ports other than
input, output and error (these ports are always available by default). This is sometimes a disagreeable
restriction; we therefore extend the syntax to allow a more elaborate access to ports.

Much like the signature of a process, one can now use what we might call the port signature of a
process.. This means that the declarat ion of the process takes the fo:rm of:

process P[port1,port2lport3,port4](signature).

or, equivalently

process P[port1,port2lport3,port4]() deref some_port.

The meaning of this declaration is to say that not only P is a process (with possibly a given signature)
but it also must have at least two in ports named port1 and port2 and at least two out ports called
port3 and port4. The MANIFOLD runtime checks the validity of these assertions (just as for signatures).
As a result, one can now refer to the ports P. port1, P .port3 etc. Of course, just as in the case of process
signatures, the port signature may be missing, in which case we fall back to the "traditional" case.

It must be emphasized that the declaration does n ot say that port1, port2, port3 and port4 are the
only ports of process P; it merely states that the process does have ports with these symbols (it may have
more). ·

3 Adaptive R ecursive Algorithms in Manifold

In this section, a well-known class of algorithms in the field of computer graphics and image processing
is described using the MANIFOLD formalism. It is not the purpose of this section to analyze these
methods from a strictly algorithmic point of view, nor do we intend to devise new versions of already
existing algorithms. We simply intend to show the descriptive power of MANIFOLD using well-established
algorithms.

It is beyond the scope of this paper to give all the specific details of each algorithm. The interested
reader can consult one of the standard textbooks on computer graphics and/or image processing (e.g., [14)
for computer graphics and [15] for image processing) or refer to the literature given in the references
(e.g., [16, 17, 18, 19, 20] or others).

3.1 Warnock's Algorithm

One of the very well known problems in computer graphics is what is usually referred to as H idden
Surface Removal. The problem is as follows. When a three-dimensional scene, usually modeled using a
large number of planar polygons in space, is visualized on a screen, all of its polygons must be projected

3

TeatAndColor() atomic.
Dividd.reaO
port out firth_ area.
port out aecond_area.
port out third_area.
port out fourth_ area.
atomic.

export llarnockO
{

}

event subdivide, vait_to_die, done, filiiah.
process test_and_color is Teat.lndColor.
process divide_area
process v
process n
start:

is Divide!rea.
is variable.
is variable.

(activate v() ,activate nO
activate test_and_color(),
input-> (-> test_an~_color,-> v),
void

) .
subdivide:

{

begi n:
(activate divide_area,
v -> divide_area,
divide_area.firat_area ->Warnock(),
divide_area. second_area -> Warnock(),
divide_area. third_area - ·> Warnock(),
divide_area.fourth_area -> Warnock(),
n • 4

) ;

do wait_to_die.
terminate:

save.
}.

vait_to_die :
void.

terminate:
n • n - 1;
it(n • 0, do finish, do vait_to_die).

done:
do finish.

finish:
deactivate parent.

Listing 1: Manifold Program for Warnock's Algorithm.

4

onto a plane (i.e., the plane of the display screen) from a given viewpoint. Mathematically, this projection
is well understood, but there is an additional problem to solve: those polygons, or parts of poiygons, that
are occluded by another one, as seen from the selected viewpoint , must be eliminated. The removal of
these (sub-)polygons is what is called the removal of hidden surfaces.

There are several well-known and widely applied solutions to this problem. One of the earliest is
Warnock's algorithm which is described in detail in the literature, e.g., in [14]. A short description of this
algorithm is as follows.

This algorithm is based on a recursive area-subdivision of the computer screen. At each stage in the
recursive subdivision process, the projection of each polygon has one of four relationships to the area of
interest (which is, at the beginning, the full screen of the display):

1. surrounding polygons completely contain the area of interest;

2. intersecting polygons intersect the area;

3. contained polygons are completely inside the area;

4. disjoint polygons are completely outside the area.

Based on these tests, there are certain cases where the exact color(s) for rendering the area of interest
can be determined very easily. Obvious cases include when all polygons are disjoint from the area (and
hence the background color can be used), when there is only one polygon which either intersects the area
or is contained in it, or when there is one and only one polygon which completely surrounds the area.
There are also some less obvious but still easily decidable cases which the original version of the algorithm
takes into account.

There are, however, cases where there is no easy way to color the area. In these cases, Warnock's
algorithm subdivides the area into four equal sub-areas to simplify the problem and then the same
method is applied recursively for each of the four sub-areas. The recursion stops when the dimension of
the sub-area has reached the size of one pixel on the screen; some additional calculations are then done
to determine the color of this single pixel.

9.1.1 A Manifold Program for Warnock's Algorithms

Before commenting further on the algorithm, let us see how its skeleton can be described using MANIFOLD.
The complete listing of the program appears as Listing 1.

The program uses of two atomic processes which implement its truly algorithm specific and numerically
oriented details. These atomic processes are "imported" , which means that they are external to the present
MANIFOLD source file and will be made available at link-time. TestAndColor is supposed to receive the
description of an area on its standard input (as far as MANIFOLD is concerned, this description is just
a.n abstract unit to be forwarded; we refer to it as "area handle" in what follows). It then performs the
test on all polygons in the scene, following the scheme described in the previous section. The result of
this step is either:

• the area can be filled without ambiguities, in which case TestAndColor raises the event done, fills
the area with the calculated color(s) and terminates; or

• the area cannot be filled without ambiguities, in which case TestAndColor raises the event subdivide
and terminates.

The atomic process DivideArea receives an area handle on its standard input; it has, apart from the
standard ports, four publicly declared output ports, onto which it places the four area handles after it
performs a subdivision. Once these units are produced, DivideArea terminates.

It is the manifold process Warnock that embodies the skeleton of Warnock's algorithm. It is important
to understand the details of this program to gain a real insight into the descriptive power of M ANIFOLD;
this is why a. more detailed description of this process is given in what follows.

In the decla.ra.tion part of Warnock, two instances of the atomic processes described above are declared.
This means that t he manifold Warnock now has a reference for these processes and can, therefore, involve
them into several parallel pipelines, if necessary. The additional two declarations concern two "utility"

5

processes (part of the standard environment of the MANIFOLD system) which are able to store some
units and, if the type of the units permit, to perform some elementary arithmetic on them.

The start state of Warnock activates the two variable processes and the local instance ofTestAndColor.
A pipeline is then set up, which involves a group as well. This pipeline describes the following relationships:

• a unit (i.e., an area handle) arriving on the input of Warnock is redirected to the local instance of
TestAndColor, and

• a copy of the same unit is "stored" in the variable v.

The use of the special process void in the same group ensures that the manifold is suspended in
this block and must receive an external event to change its state (the process void never terminates and, therefore, the group of the state will never terminate; it can only be preempted). According to our
specifications, these external events may be either subdivide or done, depending on the result of the test performed on the local area. (Note that although many instances of TestAndColor may be active
and raise the events subdivide and/or done, the only instance of TestAndColor visible to an instance of Warnock is its locally declared one. This is why the other events raised by other instances cause no
confusion.)

The state labeled subdivide is obviously the essential part of the manifold Warnock. The corresponding
block contains, in fact , two statements, joined by the connective ";",which can be though of a.s a delimiter 'for sequential execution. In the first statement, the local instance of the atomic process Di videArea is activated and, also, four independent instances of the manifold Warnock are implicitly created and
activated (using a process specification name in a statement, instead of declaring an instance in the
declaration section, means the implicit creation and activation of an instance of that process). The pipelines defined in the group are fairly straight-forward:

• the content of the variable v is transferred to the area divider, and

• the four handles for the generated sub-areas are forwarded, respectively, to the four (recursive)
instances of Warnock 2•

This series of pipelines are the ones which realize the recursive step.
The rest of the manifold Warnock makes sure that the processes are terminated properly. A separate

variable (n) is used to store the (constant) value of 4. The top-level instance of Warnock waits for all of its "children" to deactivate before it deactivates itself. This is done by the combination of the
states labeled wai t _to_die and terminate. The basic idea is that each instance of the Warnock manifold sends a deactivation request to its parent before its own deactivation (see the state labeled end). This
deactivation request is turned by the MANIFOLD system into a system event called terminate on the receiver's side; the particularity of this event is that it can always be caught in a manifold, irrespective of the visibility of its originator. This is exactly what the manifold Warnock does: it catches the event
and checks against its counter to see if all of its children processes are deactivated before it terminates itself. The if statement used for this purpose is, in fact, a manner, with the obvious meaning and is part of the "standard" MANIFOLD environment.

Note that subdivide is, in fact, a label for an inline manner, which contains, apart from the subdivision
procedure described above, a save action for the event terminate. The reason is to avoid a race condition which can happen in the block for subdivide. Indeed, it is perfectly possible that divide_area is still
busy calculating, e.g. , the fourth sub-area while the Warnock instance for, say, the first sub-area already terminates. Obviously, Warnock must not (yet) change state but it must not ignore the event either (otherwise a non-termination will occur). By using an inline manner we make sure that the event is
neither lost nor prematurely preempts the state subdivide.

If no subdivision is necessary, Warnock makes a state transition to the block labeled done, which does an immediate state transition again. This, finally, leads to the termination of the manifold. Strictly speaking,

2The use of the term recursive is perhaps somewhat misleading here. Contrary to its common connotations in other programming languages, there is no implied "wa.it for return or death of your child" process in MANIFOLD. This means that a parent process can term.inate (and have its resources deallocated) as soon a.s it spins off its (recursively created) children, if there is no functional requirement for it to wa.it for their results.

6

it is not necessary to have a separate i.ntermediary s t a l e in this case (a block may have mult ~ ple labels).
However, when our example is extended further in t he next sections, having a separate stat<' will prove
to be beneficial.

3.2 Analysis of the Program

Warnock's algorithm is an example of the image space algorithms in computer graphics. These algorithms
are primarily concerned with images and compute t he attributes of each pixel on the screen. Resolution
of the relationships among objects in a scene becomes a secondary concern. On the other hand, object
space algorithms are concerned with the properties of and relationships among the objects in a scene and
compute an image only after these relationships are determined. Warnock's algorithm is not very much in
use today. Indeed, if the hidden surface removal is to be performed in image space, availability of powerful
hardware makes other methods (primarily, the so called Z-buffer method) more attractive. Whether or
not this preference will persist in the future is a matter of debate and its details are far beyond the scope
of this paper.

Nevertheless, Warnock's algorithms is still of interest, because it is a very simple example of a general
principle which seems to be extremely popular both in computer graphics and in image processing.
This principle is what we might call recursive subdivision. The idea is the extremely simple, albeit very
powerful, concept of divide and concur: if a problem cannot be solved at a given level, the underlying
model is somehow divided and the same algorithm is used recursively on the results of the division. If the
subdivision of the problem is chosen appropriately, the problem becomes more easily solvable for each of
the results of the subdivision. Interestingly, with a properly chosen subdivision scheme, such algorithms
are sometimes readily adaptable for parallel hardware.

Although, obviously, the principle of recursive subdivision is not .restricted to computer graphics, its
popularity within the computer graphics community seems to be related to the special nature of the field.
Indeed, the geometric nature of the underlying problems often gives very clear clues for how to perform
the subdivisions and how to control its recursion in an optimal way. Thus, the application of recursive
subdivision is very natural in working with synthetic or digital images. Apart from Warnock's algorithm
for removal of hidden surfaces, similar or more elaborate approaches can be used in calculating and/ or
displaying spline curves or surfaces (17], perform calculations on CSG3 objects using quadtrees (16],
digital filtering of images, global histogramming of digital images [21], parallelizing such time consuming
rendering procedures as ray tracing [19] especially on CSG objects, performing the calculations necessary
to visualize volumes (22], for NC tool path generation (23], etc.

What is the role of MANIFOLD in this respect? Looking at the program on Listing 1, it is clear that
MANIFOLD has a real expressive power in describing the skeleton of a recursive subdivision algorithm.
Note that the atomic processes used by the program are defined in a fairly abstract way; any atomic
process, abiding to these specifications, can be "plugged in" the same MANIFOLD program to serve a
different application. Although most of the algorithms listed above require a more sophisticated version
of the algorithm (and we will elaborate on these improvements in the following sections), we believe the
listing commented in detail in §3.1.1 makes the essential point: that using MANIFOLD it is possible to
describe in a very concise and declarative form, the primary communication skeleton of a certain class of
systems or algorithms without bothering with their computational details.

These examples also reveal another general and more important characteristic: most of the algorithms
cited above were, originally, not meant for parallel hardware. Instead, the recursive subdivision approach
made the problems at hand just (more) easily solvable and manageable; it was the expressive power of
"parallelism" and not performance gains per se, that was important here. It is almost a "by-product"
that some of these algorithms are good candidates for true parallelism. We use the term "some" because
it is no even certain that all these algorithms run much more efficiently on a true, massively parallel
hardware, t han on a conventional sequential machine. There may be a trade-off between the obvious
gains of parallelism and other considerations (e.g., bulk data access) .

Nevertheless, MANIFOLD is useful for expressing the communications and control structure of these
algorithms, even if the actual implementation of a MANIFOLD system may run only on a conventional
single-processor computer supporting simulated parallelism only (as in the case of our first experimental

3 Constructive Solid Geometry

7

implementation based on Concurrent C++ , see [3, 4]). This seems to be a clear case of a more general
principle : it may be extremely beneficial to use mental models which use concurrency, communication, and
coordination, as natural paradigms t o grasp the essence of a problem and/or of an algorithm. Concurrency
need not be considered a "necessary curse," as perceived by a large number of practitioners. On the
contrary, it is often very helpful in conceptual simplificat ion of the problem at hand. In t heir recent paper
on coordinat ion languages ([24]), Gelernter and Carriero, t he authors of LINDA, st ress t hat:

... in principle you can use t he same coordination language that you rely on for parallel
applications programming when you develop distributed systems. You can use the same model
in building ... a file system.

We agree both with t his st at ement, and with their implied position that the same language can also be
used to describe systems and problems at large, that will not necessarily end up running in a parallel or
distributed environment . We believe that as a coord ination language, MANIFOLD is useful towards these
ends.

3.3 Improvements to the Program

In this section we present enhancements to the MANIFOLD program described in §3. l and evolve a better
framework for expressing different version of the adaptive recursive algorithms mentioned above. The
improvement t o t he program is done in t wo steps. First, the restriction of a fixed number of subdivisions
is relaxed. Second, we allow the possibility of backward control in the recursive processes; i.e., allow a
parent to wait for and use the results produced by its children.

3 . 3.1 Variable Number of Subdivisions

The program in §3.1 has an obvious restriction that may make it inappropriate for general use in ot her
applications. This program has a "hardwired" subdivision feature: each area must be subdivided into ex­
actly four sub-areas. Although this is natural in the case of Warnock 's algorithm, and it is trivial to change
the number four, imposing any fixed number by itself is a constraint that hinders more general usability of
this program for other applications. In particular, a more general class of recursive subdivision algorithms
use an adaptive subdivision scheme wherein the number of subdivisions at each level of recursion, as well
as the subdivision boundaries, may depend on the data and thus cannot be predetermined.

In this section, we present an improvement to the MANIFOLD program of §3.l that allows the number
of subdivisions to be determined dynamically at each level. To put our revised MANIFOLD program in
the right perspective, we remark that a later version of Warnock's algorithm, called the Weiler-Atherton
algorithm (see [14]), subdivides the screen along polygon boundaries, rather than along the two mid-lines
of the screen. Clearly, the Weiler-Atherton algorithm requires a. variable number of subdivisions.

The revised MANIFOLD program now consists of two parts: the one in Listing 2 and the one in Listing 3.
The first part is, in fact , a somewhat simplified version of the program in Listing 1. We have changed
the specification of the DivideArea process: what we require now is that when DivideArea receives an
area handle, it produces a series of area handles (one for each sub-area) on its standard output and then
terminates.

The recursive step is now hidden into a separate manifold process, called Distribute. This program
appears in Listing 3 and will be explained later. As far as the manifold Warnock4 is concerned, Distribute
receives the area handles for this level's sub-areas on its standard input and, somehow, takes care of the
recursion. A separate pipeline is set up in the block labeled subdivide to send these handles to a local
instance of Distribute. Note that now it is Distribute that is responsible for proper termination;
consequently, the counter n has dis.appeared from Warnock.

As a commentary on MANIFOLD programming, note the difference between th·e two pipelines:

v -> divide_area, divide_area -> distribute

4By now "Warnock" is a misnomer for this program and "Weiler ..Atherton" is probably a. better name. However,
we prefer to keep the name "Warnock" to preserve the similarity with the previous MANIFOLD prog:ra.m, for
pedagogical reasons.

8

TestlndColor() atomic.
DivideArea()
Distribute()

atomic.
import.

Warnock()
{

}

event subdivide , done, finish.
process test_and_color is TestAndColor.
process v
process divide_area
process distribute

start:
(activate v,

is variable.
is DivideArea.
is Distribute.

activate test_and_color,
input-> (-> test_and_color,-> v),
void

) .
subdivide:

(activate divide_area,
activate distribute,
v -> divide_area,
divide_area -> distribute

) ;

do finish.
done:

do finish.
finish:

deactivate parent.

Listing 2: Program with variable area subdivision; part L

that appear as separate group members in the state subdivide, and the somewhat similar single pipeline:

v -> divide_area -> distribute

that may be mistaken as their equivalent. While the two a lternatives work the same as long as the flow
of units are concerned , they indeed behave quite differently on termination. In MANIFOLD, a pipeline
breaks up as soon as any one of its processes terminates or raises a special event break. In case of our
single pipeline, this can happen as soon as the process v has delivered its value, which can result in the
breakup of the connection between divide_area and distribute, if they are all in the same pipeline.
Having them in two separate pipelines in a group, as in the state subdivide in Listing 2, ensures that
such premature breakups will not happen. (In MANIFOLD, a group terminates when all of its members
are broken up.)

A number of constructs used in the original Warnock program (Listing 1) now appear in Distribute
{see Listing 3). Using the counter n to count the number of activated child processes, as well as handling
of their deactivations, are exactly the same as before. The primary difference is, of course, in the handling
of a variable number of incoming units.

The Distribute manifold uses the built-in pseudo-process5 getunit which acts as follows:

• it is suspended on a port of t he caller, as long as there is no unit available for delivery on the port;

• when a unit is or becomes available, this unit is sent out onto the output port of getuni t and the
pseudo-process terminates (i.e., the pipelines in which it is involved are broken};

5By pseudo-process we mean one of the primitive actions of MANIFOLD that behave like a real process in a
pipeline, although they are not truly separate processes.

9

Distribute()
{

}

event vait_for_death, main_cycle.
port in internal.
process n is variable.

start:
(activate n, n • O); do main_cycle.

main_cycle:
{

}.

begin:
getunit(input) -> internal; do next_area.

next_area:
(n • n + 1,getunit(internal) ->Warnock);
do begin.

terminate:
save.

disconnected_i.input:
vait_for_death:

void.
terminate:

n•n-1;
if(n • 0, do finish, do vait_for_death).

finish:

Listing 3: Program with variable area subdivision; part II.

• if there is no unit available for delivery on the port and there is no external process connected to that port, getunit is not only suspended, but it also raises the disconnected_i event (with the selected port as the source of the event).

The Distr ibu.t e manifold takes advantage of these features of getunit. In the inline manner la­beled main_cycle (which contains, except for activation of the counter, the effective starting action of Distribute), a pipeline is set up using get unit with its output connected to another (externally non­visible) port of Distribute. The role of this pipeline is twofold:
l. When a unit arrives (actually, an area handle from the DivideArea process, although Distribute does not know the origin of the unit), it is picked and put into the internal port. Next, an internal state transition is made which results in the activation of a new instance of Warnock.
2. When there is no unit in the buffer of the input port of Distribute, and this port is no longer connected to any other port (which means that the connecting DivideArea process has terminated), getunit raises a disconnected_i event (which results in the preemption of the current state).

The rest is relatively clear: the unit stored in the interna1 port is picked by another instance of getunit, which passes it to an (implicitly activated) instance of Warnock, and the manifold returns to its waiting state in main_cycle.
It may not be immediately obvious why we use a separate state (next_area) to activate a new instance of Warnock. Indeed, merging the two states main_cycle and next_area is possible and also alleviates the need for the port internal, since we can use the pipeline

getunit(input) -> Warnock

in the block labeled main_cycle. However, the advantage of having two separate states instead of one is that we avoid an unnecessary activation of yet another instance of Warnock in each recursion. Using two distinct states, we can be sure that Warnock is activated if and only if there is another a.rea handle in the internal port of Distribut~.

10

TestAndColor ()
Di videArea ()
Merge()
Distribute ()

Warnock()
{

atomic.
atomic.
import.
import.

event subdivide, done, finish.
process test_and_color is TestAndColor.
process v
process divide_area
process distribute
port in internal.

start:
(activate v,

is variable.
is DivideArea.
is Distribute.

activate test_and_color,
input - > (-> test_and_color -> ,-> v) -> internal,

}

void
) .

subdivide:
(activate divide_area,
activate distribute,
v -> divide_area,
divide_area -> distribute,
distribute -> output

) ;

do end.
done:

getunit(internal) -> output;
do .finish .

finish:
deactivate parent}.

Listing 4: Program with return values I.

3.3.2 Handling Return Values

The algorithms that can use the MANIFOLD programs in §3.1.1 and §3.3.l are constrained by another
limitation. Once the recursive branches of the algorithm start off, they do not communicate with their
parents any more (or, to be precise, they have no communication expressed by the MANIFOLD program).
This is fine (indeed, desirable) with the original Warnock's algorithm: the sub-areas of a screen can be
filled independently of one another, and a parent has no reason to stay alive and take up resources once
its children are started. However, this is obviously inappropriate in a number of other applications.

Once again, a slight improvement on Warnock's algorithm serves as a good motivating example. In
§3.1.1 we assumed that the recursion stops when the size of an area reaches the size of a pixel. Strictly
speaking, this assumption is true, but it results in a1iasing problems (i.e., the appearance of "staircase"
polygon edges and unpleasant color transitions). One of the anti-aliasing methods which can be easily
used with Warnock's algorithm requires the recursion to go on at least one more step, to the level of
sub-pixels. The color properties computed at sub-pixel levels are then returned to the pixel level routines,
which in turn average them out to calculate the color of their pixels.

To use MANIFOLD for such an algorithm implies that (at least between the pixel and sub-pixel levels)
each recursive branch must compute and return a value to its parent, and each parent must wait for the
returned result of all of its children before it can complete its function and terminate. In this section, we
modify our MANIFOLD programs to accommodate returned values.

Listings 4 and 5 show the new version of our MANIFOLD program; they correspond to the Listings 2

11

Distribute()
{

}

event wait_for_death, output_arrived, finish, main_cycle.
port in internal.
process n is variable.
process merge is Merger.
nobreak merge .output - > self .output.

start:
(activate n,
guard(self .output,output_arrived),
n = O

) ;

do main_cycle.
main_cycle:

{

begin :
getunit(input) -> internal; do next_area.

next_area:
(n • n + 1,getunit(internal) -> Perm.anent(Warnock,merge));
do main_ cycle.

terminate:
save .

}.
disconnected_i . input:

(activate merge, do wait_for_death) .
wait_for_death:

void.
terminate:

n = n - 1;
if(n = 0 , do f inish, do wait_for_death).

output_arrived:
save .

finish:
{

} .

begin:
void.

output_arrived:

Listing 5: Program with return values II.

and 3, respectively. As in the previous section, we only highlight the differences between the old and the
new versions in this section.

The specification of the atomic process TestAndColor is now slightly different. Representing the "bot­
tom" of the recursion, this atomic process is also required to return a value to be forwarded to the
upper level (e.g., the color value, in the anti-aliasing example). Additionally, a new process, called Merge,
is defined: this process receives "values" on its standard input port and "merges" them into one value
delivered on its output port (in our anti-aliasing example, this process calculates the average of color
values it receives)6

. What Merge does is to read an unknown number of units from its standard input,
compute their "merged" result (e.g., their average), write it out to its standard output, and terminate. It
detects the equivalent of an end-of-file on its standard input (if it is in fact an atomic process), or reacts

6 Note that in Listing 4, the declaration of Merge does not specify whether it is an atomic process or yet
another manifold. It simply states tha.t its declaration is contamed in a 11epar<lot e MANU"OX.t> source file, and will
be ai.vailable at link time.

12

Warnock

Warnock

Merger

Warnock

Figure 1: A pictorial representation of the manifold Distribute.

to a disconnected..i event (if it is another manifold), t o realize that it has received all input units it is
expected to process.

With these definit ions in mind, the differences between the new and the old version of Warnock are
not too difficult to understand. In the start block, the pipeline contains an additional item, which stores
the output of test_and_color in a local port. Also, the new version of Distribute is expected t o have
an output, too, which is redirected to the output port of Warnock. Finally, the state labeled done is no
longer only a state transition; it first reads the value produced previously by the bottom of the recursion
and transfers it to the output port. Apart from these differences, t he new version of the Warnock m anifold
has an identical behavior to the previous one.

The new version of Distribute uses a small manifold called Permanent , which might be part of the
standard MAN IFOLD environment. This manifold is as follows:

Permanent (middle,second)
process middle.
process second.
{

s t art :
input -> middle -> second.

}

The meaning of this manifold is clear : it sets up a pipeline which remains unbroken as long as members of
the pipeline are active. Remember that, according to the specification of MANIFOLD, if a manifold leaves
a sta te, all pipelines set up in that state are broken before leaving. The use of the Permanent manifold
is to avoid t h is breakup.

Distribute now sets up a slightly more complicated network of connections. Figure 1 is a pictorial
representation of these connections. At the initialization of Distri bute, a. permanent connection (using
the nobreak declaration) is set up from the output port of merge (a.n instance of Merge) to the output port
of the running instance of Distribute. Note that this is a perfectly legitimate setup: ports of a process

13

instance (e.g., merge) can be connected in pipelines even before the process is act ivated. Additionally,
another pseudo-process, guard, is activated. The role of this pseudo-process is to raise an event (named
in its argument) if a unit appears on its designated port.

The pipelines set up in the state next_area are slightly different: the connection between ea.eh new
instance of Warnock and merge is set up using Permanent described above, to prevent its breakup in case
of a state transition.

The t wo events disconnected_i. input and wait_;for _death are now handled by two distinct states.
The sta.te labeled wait_for _death is the same as before: it is used to wait to receive the right number
of terminate events before dying. The new state for disconnected_'i . input activates merge and then
makes a. transition to wait_;for_death.

There is a subtlety a.bout merge that needs more explanation here. Our specification of Merge states
that it receives an unknown number of input units, and detects the equivalent of an end-of-file to know
they have been exhausted. Thus, we must make sure that at least all connections between merge and its
suppliers are established before it is activated. This is why we connect all instances of Warnock to merge
before a.rriving at disconnected_i. input where we activate it.

Before terminating, Distribute must not only wait for all of its local instances of Warnock to terminate,
but it must also make sure that the output value of merge has actually arrived and is transferred out of
its output port. This is done by the event output_arrived which is raised by guard. Note the use of a
separate inline manner for the effective termination: occurrences of the event output_arrived must be
saved, and they must not affect this manifold as long as the "finish" state is not reached. This is what is
achieved by using the separate inline manner.

4 The Computing Farm Model

As it became more feasible to use a large amount of, possibly loosely coupled, very powerful processors
in parallel to solve highly computing intensive applications, the notion of computing farms has come to
the fore. In the genera.I model of a. computing farm, it is immaterial whether its individual processors
are processing elements connected via a hardware bus or other direct communication media. (e.g., a. transputer network and. hardware) or full-blown workstations connected via a. local area network7 . What
is impor tant is that different and sometimes complicated communication patterns are set up to solve
a. given application problem. The exact topology of communication depends on the application proper.
It is also part of the underlying model, although rarely stated explicitly, that the individual processors
are fairly autonomous, which means that a computing farm can be considered as a large-scale MIMD
and very much coarse grained parallel system. In view of the practical importance of such computing
environments, it is important to have a. flexible means to describe a.nd/ or modify these various topologies.
We feel that a language like MANIFOLD is particularly well suited for such tasks.

In this section, a simple topology, namely a ring, is described in MANIFOLD. It must be stressed that
other alternative topologies are also feasible and usable. In (19), for example, Green gives a whole range of
alternative forms in relations to, e .g., distributed ray tracing. The programming techniques presented in
the following subsections a.re easily adaptable for other communication patterns as well. In this report, the
aim is not to give an exhaustive presentation of all possible computing farm models; instead, we intend
to show that the expressive power of MANIFOLD is particularly well adapted for such applications.

4.1 The Abstract Model
The original and simplest computing farm model, (as described, e.g. , in [19]) is as follows. A farm consists
of two types of processors: a. single controller, and one or more farm processors. The controller generates
new tasks and communicates them to the farms as required, and also collects the results as they are
produced by the network.

The farm processor consists of two distinct parts, namely an application-specific part and a wrapper.
Figure Z gives an overview of the original structure.

7 The term "processor fa.rm" is also in use, in, e.g., [19]. We have chosen to use the t erminology "computing farm" instead, to refer to a. more general situation when not only "processors" are used.

14

Coot<ollu ~.__w_o_f_k_er _ _.~._·_w_o_~_ke_r _ _.I=

Task s
;: • TaskRouter 11

Tasks

"I
""

Application

Result s
'I'

ResultRoute!
Results

Figure 2: The Computing Farm Model

The router process for tasks on a farm node contains a buffer to store tasks so that a new task can be
passed to the application with a minimal latency when it becomes idle. On receipt of a new task, a router
places it in its buffer if the buffer is not full, otherwise it is passed on to the next farm node. When a
task has been processed, its result is passed to the results router which returns it to the controller. The
controller then sends a new task to the network to replace the one which was completed. The system
is initialized by sending sufficient tasks to the network to fill the capacity of the farm nodes and their
buffers.

This original model (clearly inspired by the transputer and OCCAM world, which, in turn, have their
roots in CSP, see (25, 26]) presupposes that the controller sets up a configuration once and lets the farm
nodes do their job. While it is easy to describe this model as it is in MANIFOLD, it is also t rue that
MANIFOLD gives the possibility to enhance a computing farm by aidding some dynamism to it, namely:

• to allow. a node to die, i.e., its encapsulated application program may abort, and

• to allow the controller to dynamically add a new node to the list.

Clearly, the addition of these new features increases the usability of the model for environments where
the nodes are not necessary as reliable as they are supposed to be in a transputer network. A set of
workstations hanging off a local area network obviously represents such a less reliable environment.

In this section, the MANIFOLD program for the computing farm is explained in more details. The
complete listing of this MANIFOLD program appears in Appendix A. The overall structure of the program
is the following.

• Each application unit is an instance of an imported process.

• The application units are managed by a wrapper (called Farm) , which is a manifold.

• A separate manifold process, called Link, controls the streams connecting two adjacent Farms.

• The controller process (which is again a manifold) is responsible for setting up the starting config­
uration and for adding a new Farm node if requested. This process interfaces the whole processor
farm to the external world.

By "controlling" t he streams between adjacent fa.rm nodes, we mean that the streams between Farm1
and Farm.;+1 are set up and broken up by the manifold Link;. For convenience, we refer to Farmi as the

15

, _ ~ Linker I
I N

~ Wo~k:, ~

~~~~ Stable Connections ta.sk...in Farm 
task_out 

- - - - - > Temporary Connect ions 
"' Application 

resulLout result ...in 

Figure 3: Computing Farm in MANIFOLD 

"left" node of the linker manifold Linki; likewise, the "right" node of Link, is Farm;+1· We also say that 
Lin~ :is the "right linker" of the node Farmi. 

An overview of our MANIFOLD program is given in Figure 3. Note that there are some major differences 
between this version and the model presented in Figure 2: 

• The wrapper is one process only (instead of two in the original model). The reason is that a manifold 
is able to set up and manage parallel information flows within one process, whereas this becomes 
difficult in a CSP-oriented approach (which is the underlying model behind the original description). 

• The farm nodes are linked into a ring. This is necessary to allow dynamic reconfiguration; more 
about that later. 

• The connections between the adjacent nodes are "active", in the sense that they are controlled by 
yet another process. This is aga.in necessary to allow dynamic reconfiguration. 

In the following sections we first describe the "basic" behavior of all manifolds involved, i.e., their 
actions towards securing a constant information flow within the computing farm. In a separate section 
on deactivation (§4.6) the remaining parts of these manifolds will be described. The reason is that the 
deactivation of a node requires coordination and synchronization among a farm node and both its left 
and right linkers; it is better to describe this deactivation looking at all these manifolds jointly instead 
of describing their behaviors separately. 

4.2 The Farm Nodes 
A Farm node's basic functionalities are described in a (nested) inline manner labelled normaLoperation 
(see page 30 or Listing 7). However, to get there, the manifold must go through several internal state 
transitions (see page 29 or Listing 6). 

First, the application program (i.e., Appl) must be activated as well as an internal variable which 
stores a boolean constant describing the current state of the application. This latter is necessary for the 
correct deactivation of the manifold (see §4.6). Another (boolean) variable (appL.requires) is used to 
store whether or not the application has a pending request for work. Finally, yet another local variable, 

16 



Fa.rm(n) 
process n. 
port in input "' procref' " 

task_in. 
task_out. 

port in 
port out 
port in result_ in. 

result_out. 
asks_for_vork. 

port out 
event 
{ 

process Appl 
process appl_state 

is Application[task_inltask_out](). 
is variable. 

process appl_requires is variable. 
process m 
port 
event 
permanent 

start: 
(activate Appl(), 

is variable. 
in internal. 
goto_nev_linker, nev_linker, input_arrived. 
Appl, parent. 

activate appl_state() , true->appl_state, 

activate appl_requires(), false->appl_requires, 
activate m(), m • 0, 

) ; 

(guard(input,goto_nev_linker),void). 
goto_nev_linker: 

do nev_linker . 
n~v _linker: 

{ 

process linker deref self.input. 

event normal_operation. 
permanent linker. 
begin: 

guard(input,goto_new_linker); 
if(appl_state, do normal_operation, do end_of_all). 

Listing 6: Startup of the Farm Node 

called m, is activated; this variable serves as a counter to count the task descriptions "cached" for the 

application program8 . 

The previous set of operation ends with an idle state coupled with the activation of the pseudo-process 

guard set on the standard input of the manifold. The intention is to wait for the right linker to transmit 

its own process identifier to the farm node; this is necessary to make this linker visible as the source of 

events, which control the deactivation protocol (see §4.6). This process identifier is dereferenced within a 

subsequent inline manner. 
The reason why a guard is used (instead of, e.g., a direct dereferencing at this point) is that the right 

linker may change at run-time if an adjacent farm nodes deactivates itself (see the section on deactivation, 

§4.6) in which case the value of the process reference linker must be renewed. In other words, a general 

mechanism must be used here to allow the manifold Farm to dereference this process reference again at 

a later stage. The effective dereferencing of the process reference is performed in another inline manner 

8Note that in the original description in §4, this "cache" was only one level deep, whereas we permit an 

arbitrary depth here, controlled by the variable process size. This latter is an input argument to the manifold. 

17 



labelled new_linker. 
At the beginning of this manner, it must be decided whether the application process is active or not. 

While this is obviously superfluous the first time, in view of what has been said before, the inline manner 
might be re-entered again in a later stage. On the other hand, it is also possible that the local farm node 
has already been entered its own deactivation procedure (see §4.6), that is the application process is no 
longer active (and hence the value of the variable appLstate may be false). 

4.2.1 The Main Control Part 

After all these transitions, the manifold is now in the inline manner labelled normaLoperation (page 30 
or Listing 7). This is the manner which controls the task descriptions' correct transmission either to the 
next farm node or to the local application. 

The assumptions on the behavior of the application are very simple. It is supposed to raise the event 
asks _for_work when it requires a new task description to work on and, afterwards, it should read a task 
description on its task.in port (to be absolutely precise, it should be suspended on this port until the task 
description arrives). It is also supposed to produce its result unit on its output port called result_out. 

The farm node sets up a permanent set of pipelines to transmit the results back to the controller, using 
the declaration: 

nobreak (result_in->,Appl.result_out->)->result_out . 

which installs a permanent stream from the node's own result_in to result_out and, also, a stream to 
forward the results from the application to result_out. In other words, this latter port merges the two 
streams to the outside world. The (private) port of the farm node called internal is used as a cache. 
Finally, the (boolean) variable appL.requires notifies the manifold that the application has requested a 
new task description but the farm node was not able to provide one (i.e., the application is pending). 

The farm node, within this manner, reacts on two events: either on the arrival of a new task description 
on its task_in port or on the event notifying that the application is ready to work on a new task. The 
former event is raised by a guard installed by the farm node, and t he latter is raised by the application. 

The task descriptions arrive on the port task_in; it is the sub-manner labelled input-arrived which takes care of them. This manner consists of an if-elseif-else type construct which does the following: 

• if the application is pending, the unit is read and forwarded to it at once; else 

• if the internal cache (i.e., the internal port) is full, the unit is directly transferred to the next farm 
node; else 

• the unit is put into the cache a.nd the counter is incremented. 

In all cases, the guard must be re-installed. 
Symmetrically, if the application requires a new task description (see the sub-manner labelled by the 

corresponding event), the farm node looks at the number of "cached" units; if there is none, the boolean 
variable is set to "true", otherwise a unit is read and transferred to the application (and the counter is decremented). 

The MANIFOLD code describing the state transitions is quite straightforward. Care should be taken 
at ea.eh step not to loose incoming events which would influence the value of the counter. It is to avoid 
such discrepancies that the two major actions are enclosed within inline manners. The only role of these 
manners is to allow a save for all interesting events. Note that these events are also saved within the 
"bottom" scope as well (i.e., on the manifold level), t o safeguard the events even if a new linker appears (see page 31 in the Appendix). 

The reason why an internal port is used (instead. of simply piling up the units directly on t he port Appl. task_in) is to perform deactivation properly. Indeed, if the application program deactivates itself, 
the still unused task descriptions must be made available to the next node. In order to do this properly, 
the farm node retains these units as long as possible. More about this later. 

18 



normal._operation: 
{ 

}. 

event vait. 
nobreai (result_in-> ,Appl .resu1t_out->)->rea'1l.t_out. 
begin: 

(guard(task_in,input_arrived),do vait). 
wait: 

void. 
input_arrived.taak_in: 

{ 

}. 

if( appl_requires, 

) ; 

(getunit(task_in) -> Appl.task_in, 
fa.lae -> appl_requirea 

) . 
if( m > • size, 

) 

getunit(task_in) -> task_out, 
(getunit(task_in) -> self.internal, 
m • m + 1 

) 

(guard(task_in,input_a.rrived) , do wait). 
input_arrived.task_in: 

save. 
goto_nev_linker.input: • .Appl: 

save. 

asks_for_work.Appl: 
{ 

}. 

begin: 
if( m • 0, 

) ; 

true -> appl_requires, 
(getunit(internal) -> Appl.taak_in, 
m • m - 1 

do wait. 

input_arrived.task_in: 
save. 

goto_nev_linker.input: •.Appl: 
save. 

Listing 7: Central Part of the Farm Node 

19 



4.3 The Linker Process 
The "normal" behavior of the manifold Link (see page 32 or Listing 8) is to set up the necessary streams 
between its left a.nd right farm nodes. This is done in the begin block of a.n internal inline manner: 

begin: 
&self -> left.input; 
(left.task_out -> right.task_in, 
right.result_out -> left.result_in, 
guard(input,go_to_startup) 

) . 
The block includes a pipeline which transfers a single process reference unit. ~said before (see §4.2), 

the farm node dereferences this unit in order to receive events coming from this link node. Setting up of 
this pipeline will have the side-effect of raising locally an event in the farm node, via the guard installed 
by this node (see §4.2). This is how a farm node is notified of a possible change in its linker node. 

To get to this point, though, the manifold must dereference the process references it has to work 
on. At first glance, this seems to be an over-complication; one may think that using input arguments 
instead of dereferencing would solve the problem more properly. However, as a result of deactivation 
(see §4.6), the processes this manifold has to manage might change at run-time. To cope with this sort of 
dynamism, process references must be sent via ports and they must be explicitly dereferenced by Link. 
The mechanism is very similar to the one described for farm nodes; a guard is used to generate an event 
to notify the manifold of the arrival of a new set of process references. 

The manifold Link will remain in the begin block of its internal inline manner as long as it is not 
preempted by events coming either from its left or its right farm node, or by an event generated by its 
guard, as described above. The farm node events a.re used to deactivate these nodes. The remainder of 
the manifold Link is exclusively devoted to the deactivation procedure, described in more detail in §4.6. 

4.4 Start-up (the Controller) 
The start-up of the whole computing farm is done by the manifold called Controller (see pages 33 and 
34 or 'Listings 10 and 11). The keyword export means that this manifold can be accessed from outside 
the present MANIFOLD source file. 

This manifold has all the input and output port specifications as the farm nodes (plus some more); 
this enables the system to set up a ring, rather than a linear list of nodes. Also, this means that, as far 
as the linker processes are concerned., there is no difference whatsoever between linking real farm nodes 
or the controller to the first farm node. 

As shown in Figure 2, the last farm node sends the (unused) task descriptions back to the beginning 
by forwarding them to the task_in port of the Controller. The controller must then forward these task 
descriptions back into the ring. In this sense, the task.in port plays an active role. This is not the case 
for the port result.out; obviously, the controller should not re-send any result unit into the ring. This 
port is there for symmetry only, to allow the linker to set up the links properly. 

The external world is accessed by the ports external.task. in and external...xesult.out. Strictly 
speaking, there is no need for the first one (the new task descriptions could just he sent onto the port 
task_in), but there is a need for the second one; therefore having both of these two ports is for the sake 
of symmetry. 

What the controller has to do at first is to start up farm nodes and their corresponding linker processes 
in a cycle; this cycle is controlled by an input argument of the process n. The second argument, size, is 
just transferred to all individual farm nodes to control the size of their local caches. The essence of this 
generation is described in a separate manner, called StartNextFarmNode (see Listing 9). 

The only non-obvious part of this manner is the following. Each new linker must have a reference to 
its left and right nodes a.s well M to its previous linker process. Consequently, the process references for 
the "previous" farm node and for the previous linker should be available when a new pair is generated. 
To achieve this, dereferencing is used: at step i , the process references of the (just generated) Farm; and 
Link; are put into a local port internal. Then, at step i + 1, when Farm.;+l and Link;+l are generated, 
this internal port is used to dereference the local process references for the manner. This procedure is 

20 



Link() 
port in input "'procref'" . 
{ 

} 

permanent parent . 
event startup,go_to_startup. 
start: 

(guard(input , go_to_atartup),void). 
go_to_atartup: 

do startup. 
startup: 

{ 

}. 

process left[result_inltask_out]() deref input. 
process right[result_inltask_out]() deref input. 
pr.ocess previous_link deref input. 
begin: 

tself -> left.input; 
(left.task_out -> right.task_in, 
right.result_out -> left.result_in, 
guard(input,go_to_startup) 

) . 
wish_to_die.right: 

{ 

}. 

nobrea.k right.reault_out - > left .result_in. 
begin: 

tleft->output; tprevious_link->output; void. 
wish_to_die.left: 

ignore. 

wish_to_die.left: 
{ 

process n.ew_left [result _in I task_ out] () 
deref previous_link.output. 

process over_previous_link() 
deref previous_link.output. 

nobreak l eft.t ask_out -> right . task_in. 
begin: 

(guard(input,noevent),raise empty_buffers,left) . 
buffers_emptied .left: 

(deactivate previous_link, 
deactivate left); 
<tnew_left,tright,tover_previous_linlt> -> self.input 

) ; 

do start. 
go_to_startup.input: 

ignore. 
}. 

go_to_startup.input: 
do start. 

terminate . "'' : . 

Listing 8: The Linker Process 

21 



manner StartiextF&r:Node() 
{ 

process next_farm 111 Farm(). 
process next_l1nker is Linklniiu.ls(); 
procesa prev1ou11_farm(task_1n,re11ult_1n lta11k_out,re11ult_out)() 

deret internal. 
proceas previous_lin.lcer() deref internal . 
start: 

(activate next_f11.X111(11ize),activate next_lin.lcer(), 
<tnext_farm,.tnext_lin.lcer> -> aelf.internal, 
<tpreviou11_farm,tnext_farm,tp.reviou11_linker> -> nn:t_linker. input 

) . 
} 

Listing 9: Startup of a new Farm Node and its Associated Linker 

export Controller(n,11ize) 
proce1111 n,si:z:e. 
port 
port 
port 
port 
port 
port 
port 
< 

in input 11 'procref' 11
• 

in task_in. 
out taek_out. 
in result_in. 
out result_out. 
in external_taslt_in. 
out external_result_out. 

procesa m is variable(). 
is Farm(). proceas fir11t_farm 

process !irst_link is Lin.lcO. 
port 
event 

in intel'l:lal "'procref'". 
generation_cycle,next_one, 
end_of_generation . 

atart: 
(activate mO, 
m•l, 
activate first_farm(si:z:e),activate first_link(), 
<t11elf,tfir11t_farm,t11elf> -> first_link.input, 
<Hirst_farm,tfirst _lin.lc> -> self. internal 

) ; 
do generation._ cycle. 

generation_cycle: 
if(m • n, do end_of_generation, do next_one}. 

ne·xt_one: 
StartNextFarmNode(); m • m + 1; do generati on_cycle. 

Listing 10: Startup of the Controller 

initialized from within the controller manifold: the very first farm node and the first linker are activated 
from within its start block and their references are put onto the port in.ternal explicitly. 

Note that the newly generated linker process is initialized by sending a triplet of process reference units to its input port (the match fix operator < ... , ... > is a shorthand for an atomic process which "glues" the units into one). The regular expression assigned to t he input port of the receiver (i.e., 'procref') will take care of "cutting" the unit into three separate process reference units. 

22 



end_of_generation: 
{ 

}. 

event matin_block. 
nobreak ((external_task_in->,task_in->) -> task_out, 

result_in -> external_result_out 
) . 

begin: 
LinlcEndHode(); 
tfirst_link -> self . i .nternal; 
do -in_block. 

main_block: 
void. 

start_newr_one.• 
{ 

}. 

process first_link() deref input. 
process first_farm[ta.sk_in ,re,sult_in I task_ out ,result_out] () 

deref internal. 
process ne11_farm 
process ne11_linker 
begin : 

is 
is 

Farm(). 

Link(); 

(activate nev_farm(size),activate new_linker(), 
<tself,tne11_farm,tself> - >ne11_linker.input, 
<tne11_farm,tfirst_farm,tne11_linker>->first_link.input, 
tnev_fa.rm -> self.internal 

) ; 
do main_block. 

start_nev_one.•: 
save. 

Listing 11: Central Part of the Controller 

Coming back to the main body of the controller manifold, the generation of all the internal farm nodes 
is done in a cycle: 

generat~on_cycle: 

if(m = n,do end_of_generation,do next_one). 
next_one: 

StartNextFarmNode(); m = m + 1; do generation_cycle. 

Each of these generation steps starts up Farmi and Link,. 
The heart of the controller manifold action is in t he (inline) manner labelled end_of..generation (see 

page 34 or Listing 11). It sets up a permanent pipeline which connects the ring to the external world; it 

also completes the generation of the full ring, using a separate manner called LinkEndNode (a simplified 
version of StartNextFarm.Node) which generates the last farm node and links it to the controller itself. 

The manifold then goes into the main_block, which simply puts the controller into idle an state (i.e. , 

only transfer of units takes place). The only events which can possibly preempt the manifold from now 
on are those that signal either the activation of a new node in the ring (see §4.5), or the termination of 

the whole computing farm. Both of these actions are described in separate sections below. 

4.5 New Activation 

Once all nodes are set up, the only real action the controller process performs (besides termination) is the 
addition of a new node to the ring. This is done on an external request, by the reception of an (external) 

event start_new_one. 
Generation of a new node involves activation of a new farm node and adding it to t he ring. The simplest 

23 



way to do this is to add the new node a.t the head of the ring. For this purpose, the following steps must be taken: 

• activate a new farm node; 

• activate a new linker to link the controller to this new farm node, and 

• re-initialize t he linker process which used to link the controller to t he (formerly) first node of the ring. 

T hese actions are all performed in the inline manner la.belled start_uew_one within the controller. In order to properly activate and initialize a new linker (which links t he controller to a newly generated farm node) and to re-init ialize the former first linker node, the controller needs the process references of the old first link as well as a reference to the old first farm node. The reference to t he old first link is readily available. Indeed, remember that the first action a linker does is to put its own process reference to the input port of its «left" node which is, in this case, the controller itself. By dereferencing this port, the controller can access this process reference without problems. 
In order t o access the old first node, a method used before is re-used here. First of all, at t he end of startup generation procedure, Controller puts the process reference of the very first farm node onto the internal port. This properly initializes the usual procedure: every time a new farm node is generated, the old farm node's reference is acquired by dereferencing this port. Also, t he reference to the new ly generated process is put back onto the internal port to make it available for the next round. 
In view of these, the code to start up a new node is straightforward (see page 34 or Listing 11). The controller (re-)initia.lizes the linker processes: t he t riplets containing references to the left and right farm nodes as well as to the previous linker process a.re put onto the input port of the respective linker processes. T he guards installed on these ports will force t he linkers to (re-)initialize themselves. Then, by performing an explicit state transition to outside the inline manner, the controller process is ready to re-enter the generation manner again (on request) and dereference the process references anew. 

4.6 DeactivaUon 
Deactivation of a farm n ode is the most complex operation in t he computing farm. Deactivation is the result of the death of an application instance. When this happens, the wrapper farm node also deactivates as a process and is deleted from the farm. 

T here a.re basically two actions which are performed when a farm node intends to deactivate: 

• All units residing on the farm node must reenter the ring properly. This involves the possibly cached task descriptions and the not-yet-forwarded result units. 

• The node must be deleted from the ring and new must be set up between the two adjacent farm nodes. 

Because the farm nodes and the linker processes are activated in a cycle by the controller manifold (see §4.4), this latter has no permanent record of the references to the farm nodes and t he linker nodes. Consequently, deactivation must be done locally and it involves the left and right linker of the farm node to be deactivated. In other words, there is no "central authority" to t ake care of deactivation9 . 
If an application i is d eactivated, it automatically raises (as all processes in a MANIFOLD system do) the death event. This event is caught by the wrapper manifold Fanni and will preempt its normal operation by causing a transition to a. special (inline) manner (see page 31 or Listing 12). 
The first action in this manner is to change t he value of the boolean variable appLactive. Note that this is done in (yet another) inline manner because setting this va.riab)e should not, by any means, be preempted (the events connected.i. taek_in and goto.new..linker. input are the events that may arrive at this point, signalling a change in t he topology of the ring; see later). 

9This "distributed" approach to deactivation is, as a matter of fa.et, much more in the line 0£ the computing model advocated by MANIFOLD. 

24 



death.Appl:end_of_all : 
{ 

}. 

event raise_vish_to_die. 
begin: 

{ 

begin: 
fa.l.se->appl_active. 

goto_new_linlter.input: connected_i.task_in: 
save. 

}; do raise_wish_to_die. 
raise_wish_to_die: 

(raise wish_to_die,linker). 
empty_buffers.linker: 

Empty_Buffer(internal,task_out); 
Empty_Buffer(result_in,result_out); 
Empty_buffer(task_in,task_out); 
(raise buffers_emptied,void). 

connected_i.task_in: 
do raise_vish_to_die. 

input_received.•: 
ignore. 

Listing 12: Deactivation of a Farm Node 

Once this is done, a special event is raised (wish_to_die) and then Farm; waits until the right linker 
gives the authorization to proceed. 

The event wish_to_die will be caught by Link;_ 1 and Link;; indeed, these are the only two processes 
that have a process reference to Farm;. Because of their respective "position" , one will see this event as 
coming from its "right" node (this is the case for Link;- 1) and the other one will see the event as coming 
from its "left". In both cases, the linker processes will preempt their usual state and change to a state 
specially defined for the death of one of the nodes. Note that this state transition disconnects Farm; from 
its adjacent farm nodes: the state transition in the respective linker nodes will break the corresponding 
streams. 

The role of the two linker nodes are quite asymmetric at this point. We can say that Linki "controls" 
the deactivation process, whereas Link,_1 plays a somewhat more passive role. What Linki has to do is 
as follows: 

1. it must control FarIDi in emptying its buffers; 

2. it must re-initialize itself to properly link Farm;-1 and Farmi+l ; 

3. it must deactivate both Link;_1 and Farllli. 

In order to perform step 2, Link; must have a reference to Farm, _1 , which it does not have by default. 
Link;-1 does have this reference (its "left" node); consequently, this information must be passed from 
Link;_1 to Linki. An obvious way to do that is to use the dereferencing mechanism again. Link; derefer­
ences a process reference on a port of Link.;- 1. To do that, Link.; must have a reference to Link.:- 1; this 
is why this reference is passed as part of the initializing triple to the manifold Link. 

In view of these facts, the reaction of Linki- l and Link;, respectively, is as follows. Link,_1 re-sets an 
output connection for Farm; to allow this latter manifold to forward the still remaining results. It also 
puts two process references onto its output port, namely the reference for Farllli-l and the reference to 
Link;-2. Finally, it goes into an idle state; essentially, it waits for its deactivation which will be performed 
by Link;. 

Link; must also set up an output connection for Farmi, to allow this latter to forward its remaining task 
descriptions. It must dereference some local process references (originating from Link;_ 1 ), to eventually 
re-initialize itself. Then, Linki raises an event (empty_buffers) which will be reacted to by the left farm 

25 



node (i.e., the one which wishes to deactivate). This farm node must then empty all its internal p orts 
and signal that by raising another event, buffers_emptied. 

At this point, Link; is free to deactivate all processes and re-initialize itself. Deactivation is simply done 
by using the deactivate primitive action. Re-initializat ion is done by putting new process references into 
its own input port and by an explicit state transit ion to another inline manner. This last state t ransition 
forces the linker to dereference the values of "left" and "right" again and sets up the new streams 
connecting Farm;-1 to Farl!li+t · 

It may seem disturbing that t he possibility of external re-initialization of Link; is "switched off" at 
this point (by setting noevent as a guard event and by explicitly ignoring the possible arrival of the 
go to_startup event, see page 32 or Listing 8). However, external re-initialization of a linker process is 
performed exclusively when the linker process happens to be the first ]inker, linking the controller process 
to the first farm node. Obviously, if this were the case, Link; could not have received a wish_to_die event 
from its left node. Consequently, it would not be in the state described above. 

Finally, we come back to the behavior of Farm;. Being in an idle state, it waits for the event empty _buffers 
to arrive (coming from Link;). It then empties its internal port (i.e., the "cache"), its task_ in port which 
may still contain some not-yet-forwarded task descriptions, and its resul t_in port wh.ich may also conta.in 
some units. 

Note that t he event empty _buffers is ra.ised by Linki when both Link;_ 1 and Li.nk; have preempted 
their «normal" mode of operations. In other words, no incoming streams are connected to Farm, any 
more. Consequently, Farm; can simply rely on the disconnected_i event for emptying its ports. 

Once its ports are empty, Farm; can be deactivated and so can Link;-1 . This is signalled by raising the 
event buffers_emptied which triggers the final deactivation as descri bed above. 

4.6.t Concurrent Deactivation 

There is one more issue which must be addressed here. It is theoretically possible that when Farm; is 
engaged in its deactivation (i.e., it raises the event wish_to_die) either Linki-l or Link, is already 
entered into a separate deactivation protocol triggered by either FaxJlli-l or Farmi+l respectively. We 
must therefore check to see whether the protocol described above arrives to its termination in these cases 
as well. 

As the first case let us suppose t hat Farm;_1 has also started a deactivation process and, consequently, 
Link;- 1 is in the state labelled wish_to_die. left. This results in the suspension of Linki (it will not 
receive the process references to be dereferenced, which means a suspension). Event ually, Linki-l will 
terminate its deactivation process and will therefore reconnect Farm;_ 2 to Farm;. 

Setting up such a connection will induce the connected_.i. task_in event in Farm;. Consequently, what 
t his latter must do is to repeat the event wish_to_die. This forces Link;_ 1 to react on the deactivation of 
Farm; and proceed as described above. Note that Link; will not be affected by this repeated raising of the 
event: being in the state triggered by t his very event, the second occurrence of this event is automatically 
ignored. The repetition of the event is secured by the block 

connected_i.task_in: 
do raise_wish_to_die. 

i.e., Farllli will go "back" to an earlier state. 
Things get a bit more complicated if Link; is the one which is already engaged in a deactivation 

procedure (triggered by Farmi+l)· Ind eed, Link, will be deactivated after a while and Link;+i will take 
its place. Farm; must then renew its process reference value for "linker" , otherwise it will not be able to 
receive events coming from Linki+l· 

The re-initializat ion of Link;+1 will result in its process reference to appear on the input port of Farm;. 
Within t his latter manifold, the guard on the input port is still active. The arrival of this new process 
reference will preempt Farmi which will go out of its current scope and reenter the in.line manner aga.in 
to dereference a new value for "linker" . Furthermore, the local variable appLactive will produce the 
value of false at the very beginning of this inline manner. Consequently, F~ will repeat the event 
'll'ish_to_die again with the new value of the linker. Here again, Link;_1 will not be affected by t he 
occurrence of this event. 

26 



4. 7 Termination 

The termination of the whole computing farm is done by the deactivation of the Controller process. 
Deactivation of this process results in raising the system-event terminate. The corresponding block raises 
this event a.gain, deactivates the locally activated variables and halts. 

The net effect of raising the terminate event in t he Controller is that all instances of Farm as well 
as of the manifold Link will be able to react on this event. Indeed, the Controller process is the parent 
of all these processes. Consequently, all events raised by Controller are potentially visible for all farm 
nodes and the linker processes. All that needs to be done is to declare parent to be permanent in all 
these manifolds. 

The reaction on the terminate event is straightforward: after deactivating all locally activated processes 
(i.e., variables) the process should die. This is done in the corresponding blocks of Farm and Link (see 
the Appendix). 

5 References 

[l) F. Arbab, "Specification of Manifold," Tech. Rep. to appear, Centrum voor Wiskunde en Informatica, 
Amsterdam, 1992. 

[2] F. Arbab and I. Herman, "Manifold: A language for specification of inter-process communication," in 
Proceedings of the EurOpen Autumn Conference (A. Finlay, ed.), (Budapest), pp. 127-144, September 
1991. 

[3) F. Arbab, I. Herman, and P. Spilling, "An overview of Manifold and its implementation,'' Tech. Rep. 
CS-R9142, Centrum voor Wiskunde en Informatica, Amsterdam, 1991. 

[4) F . Arbab, I. Herman, and P. Spilling, "An overview of Manifold and its implementation," Concur­
rency, Practice and Experience, to appear. 

(5) E . Rutten, F. Arbab, and I. Herman, "Formal specification of Manifold: a preliminary study," Tech. 
Rep. t o appear, Centrum voor Wiskunde en Informatica, Amsterdam, 1992. 

[6] F. Arbab and I. Herman, "Examples in Manifold,'' Tech. Rep. CS-R9066, Centrum voor Wiskunde 
en Informatica, Amsterdam, 1990. 

(7) D. Soede, F. Arbab, I. Herman, and P . ten Hagen, "The GKS input model in manifold," Computer 
Graphics Forum, vol. 10, pp. 209-224, September 1991. 

[8) F. Arbab, I. Herman, and P. Spilling, "Interaction management of a window manager in Manifold," 
in Proceedings of the JCC/'92 Conference (W. Koczkodaj, ed.), (Toronto), IEEE, June 1992. 

[9) D. Duce, R . van Liere, and P. ten Hagen, "Components, frameworks and GKS input," in Eurograph­
ics '89 Conference Proceedings (W. Hansmann, F. Hopgood, and W. StraJ3er, eds.), (Amsterdam) , 
pp. 87-106, North Holland, 1989. 

(10] D . Duce, R . van Liere, and P. ten Hagen, "An approach to hierarchical input devices," Computer 
Graphics Forum, vol. 9, pp. 15- 26, 1990. 

[11) G. Faconti, M. Caneve, E. Salvatore, and N. Zani, "A LOTOS view of the input model of stan­
dard graphics systems," in Formal Methods in Computer Graphics (D. Duce and G. Faconti, eds.), 
Heidelberg: EurographicSeminar Series, Springer Verlag, 1992. 

[12) G. Faconti, F. Paterno, and N. Zani, "Towards the improvement of the input model of graphics 
systems," tech. rep., CNR-CNUCE, Pisa, 1991. 

[13] I. Herman, F. Arbab, and F. Burger, "The m anifold stack ma.chine," Tech. Rep. to appear, Centrum 
voor Wiskunde en Informatica, Amsterdam, 1992. 

[14) J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics - Principles and Practice. 
Reading: Adison- Wesley, 1990. 

27 



[15] R. Gonzalez and P. Wintz, Digital Image Processing. Rea.ding, Massachusetts: Addison- Wesley, 
1983. 

[16] W. Bronsvoort, F. Jansen, and F. Post, "Design and display of solid models," in Advances in Com­
puter Graphics VI (G. Garcia and I. Herman, eds.), Heidelberg: EurographicSeminar Series, Springer 
Verlag, 1991. 

(17] R. Bartels, J. Beat ty, and B. Barsky, An Introduction to Splines for Use in Computer Graphic.s CJ 
Geometric Modelling. Los Altos, California: Morgan Kaufmann Publishers, Inc., 1987. 

[18] M. Cohen and J. Painter, "State of the art in image synthesis," in Advances in Computer Graphics 
VI (G . Garcia and I. Herman, eds.), Heidelberg: EurographicSeminar Series, Springer Verlag, 1991. 

(19] S. G reen , Parallel Processing for Computer Graphics. Research Monographs in Parallel and Dis­
t ribut ed Computing, London: Pitman, 1991. 

(20] F. Crow, "Parallel computing for graphics," in Advances in Computer Graphics VI (G. Garcia and 
I. Herman, eds.), Heidelberg: EurographicSeminar Series, Springer Verlag, 1991. 

(21] H. Siegel, J. Armstrong, and D. Watson, "Mapping computer-vision related tasks onto reconfigurable 
parallel processing systems," IEEE Computer, vol. 25, pp. 54-64, February 1992 .. 

(22] D. Laur and P. Hanrahan, "Hierarchical splatting: Progressive refinement algorithm for volume 
rendering," Computer Graphics {SIGGRAPH'91}, vol. 25, pp. 285-288, July 1991. 

(23] A. Hansen and F. Arbab, "Fixed-a.xis tool positioning with built- in global inteference checking for 
NC path generation," IEEE Journal of Robotics and Automation, vol. 4, December 1988. 

(24] D. Gelernter and N. Carriero, "Coordination languages and their significance," Communication of 
the ACM, vol. 35, pp. 97- 107, February 1992. 

(25] C. Hoare, Communicating Sequential Processes. Prentice Hall International Series in Computer 
Science, New Jersey: Prentice-Hall, 1985. 

(26] INMOS Ltd., OCCAM 2, Reference Manual. Series in Computer Science, London - Sydney -
Toronto - New Delhi - Tokyo: Prentice-Hall, 1988. 

28 



A The Full Code for the Processing Farm 

.lpp1icat ion() 
port in task_in. 
port out result_out. 
event 
import. 

aske_for_vork. 

event vish_to_die. 
event empty_bu:ffers. 
event bu.ffera_emptied. 

/1--------------------------------------------------------------------------F.mpty_Bu:ffer(inp,outp) 
port in inp. 
port out outp. 
{ 

} 

event next_ one. 
begin: 

getunit(inp) -> outp; 
do next_one. 

next_one: 
do begin. 

diaconnected_i.inp: 
return. 

Farm(n) 
process 
port in 
port in 

n. 
input " ' procref' " 
task_in. 

port out task_out. 
port in result_in. 
port out resu1t_out. 
event asks_for_vork. 
{ 

process lppl 
process appl_atate 
process ~ppl_requires 
process m 

is Application[taak_inl task_out](). 
is variable. 
is variable. 
is variable. 

port in internal. 
event 
permanent 

goto_nev_linlter, nev_linlter, input_arrived. 
Appl, parent. 

start: 
(activate Appl(), 
activate appl_state(), true->appl_state, 
activate appl_requires( ) , falae->appl_requires, 
activate m(), m • 0, 

) ; 

(guard(input,goto_new_linker),void). 
goto_nev_linker: 

do nev_li.nker. 

29 



nev_lin.ker: 
{ 

process linker deref self.input. 
event normal_ operation. 
permanent linker. 
begin: 

guard(input,goto_nev_linker); 
if(appl_state, do normal_operation, do end_of_all) . 

normal._operation: 
{ 

} . 

event vait. 
nobreak (result_in->, Appl.result_out->)->result_out. 
begin: 

(guard(task_in,input_arrived),do vait). 
vait: 

void. 
input_arrived.task_in: 

{ 

}. 

if( appl_requires, 

) ; 

(getunit(task_in) -> Appl.task_in, 
false -> appl_requires 

) . 
if( m > • size, 

} 

getunit(ta.a.k_in) -> task_out, 
(getunit(ta.ak_in) -> self.internal, 
m • m + 1 

) 

(guard(task_in,input_arrived),do wait). 
input_arrived.taak_in: 

save. 
goto_nev_linker.input: •.Appl: 

save. 

asks_for_vork.Appl: 
{ 

} . 

begin: 
if( m • 0, 

) ; 

true -> appl_requires, 
(getunit(internal) -> Appl. task_in, 
m • m - 1 

) 

do vait. 

input_arrived.task_in: 
save. 

goto_nev_linker.input: •.Appl: 
save. 

30 



} 

}. 

death.ippl:end_of_all: 
{ 

} . 

event raise_viah_to_die. 
begin: 

{ 

begin: 
false->appl_active. 

goto_nev_linker.input: connected_i .tllllk_in: 
save . 

}; do raise_vi ah_to_die . 
raiae_viah_to_die: 

(raise viah_to_die,linker). 
empty_buffera.linker: 

Empty_Buffer(interual,taak_out); 
Em.pty_Buffer~re•ult_in,reault_out): 
Em.pty_buffer(taak_in,tllllk_out): 
(raise buffer•_emptied,void). 

connected_i.taak_in: 
do raise_vi•h_to_die. 

input_received.•: 
ignore. 

• . ippl: t_k_in.input_arrived: 
•ave. 

terainate . •: 
(deactivate Appl , 
deactivate appl_•tate, 
deactivate .appl_require• , 
deactiY&.t• • 

) . 

31 



} 

, 
' , 

·t i n input pro ~ef ' 

permanent parent. 
event startup,go_to_startup. 
start: 

(guard(input,go_to_startup),void). 
go_to_startup: 

do startup. 
startup: 

{ 

}. 

process left[result_inltaak_out] () deref input. 
process right[result_inltask_out]() deref input. 
process previous_link deref input. 
begin: 

&self -> left.input; 
(left.task_out -> right.task_in, 
right.result_out -> left.result_in, 
guard(input,go_to_startup) 

) . 
wish_t < .die .right: 

{ 

nobreak right .result_out -> left .result._in. 
begin: 

tleft->output; tprevious_link->output; void. 
wish_to_die.left: 

ignore. 
}. 

wish_to_die.left: 
{ 

process nev_left[result_inltask_out]() 
deref previous_link.output. 

process over_previous_link() 
deret previous_link.output. 

nobreak left.task_out -> right.task_in. 
begin: 

(guard(input,noevent),raise empty_buifers,left). 
buffers_emptied.left: 

(deactivate previous_link, 
deactivate left); 
<tnew_left,tright,tover_previous_link> -> self.input 

) ; 

do start. 
go_to_startup.input: 

ignore. 
}. 

go_to_startup.input: 
do start. 

terminate.•: . 

32 



extern event start_new_one. // This event is used to generate a new node 

m.an.ner StartHextF~ode() 
{ 

} 

process next_farm is Farm(). 
process next_linker is LinkAnimals(); 
process previous_farm[task_in,result_inltask_out,result_out]() 

deref internal. 
process previous _linker() deref internal. 
start: 

(activate next_farm(size),activate next_linker(), 
<tnext_farm,lnext_li.n.ker> -> sel1.internal, 
<tprevious_farm,lnext_f:arm,tprevious_linker> -> next_lilllter.input 

) . 

manner LinkEndHod.eO 
{ 

} 

process next_linker is LinkAnim.als(); 
process previous_farm[task_in,result_inlt.aak_out ,result_out] () 

deref internal. 
process previous_linier() deref internal. 
start: 

(activate next_farm(size),activate next_linker(), 
<tpreviou.s_farm,lself ,tprevious_linke:r> -> next_linker. input 

) . 

export Controller(n,size) 
process n,size. 
port in input "' procref'". 
port 
port 
port 
port 
port 
port 
{ 

in 
out 
in 
out 
in 
out 

ta.slr._in. 
task_out. 
result_in. 
result_out. 
external_task_in. 
external_result_out. 

process m is variable(). 
is Farm(). process first_farm 

process first_link 
port in internal 
event 

start: 
(activate mO, 
m•1 , 

is Lill.kO. 
" 'proc:ref'" . 

ge.neration_cycle ,next_one, 
end_of_generatio:n. 

activate first_farm(size),activate first_linlt(), 
<tself,tfirst_farm,tself> -> first_link.input, 
<tfirst_.farm, tfirst_link> -> self. internal 

) ; 

do genera.tion_cycle. 
generation_cycle: 

if(m • n, do end_of_generation, do next_one). 
next_one: 

Sta.rtHextF~ode(); m • m + 1; do generation_cycle. 

33 



} 

... \Q .. 

} . 

e >ent ma1n_olocA. 
nobreak ((exter nal_taak_in->,taak_in->) -> taak_out, 

reault_in -> external_result_out 
) . 

begin: 
LinkEndliode(); 
tfirat_link -> self .internal; 
do main_block. 

main_ block: 
void. 

start_nev_one.• 
{ 

}. 

process first_linli:() deref input . 
process first_farm[taek_in,reeult_in ltaak_out,result_out]() 

deref int•rnal. 
process nev_farm 
process nev_linker 
begin: 

is 
is 

Farm(). 

Link(); 

(acti vate nev_farm(eize),activate nev_linker(), 
<tsel!,tnev_farm,tself> ->nev_linker.input, 
<tnev_farm,tfirst_farm,tnev_linker>->first_link.input, 
tnev_farm -> self.internal 

) ; 
do main_block . 

start_nev_one.•: 
save. 

start_nev_one.•: 
save. 

terminate: 
(deactivate m,raise terminate). 

34 


