
A transition system semantics for the

control�driven coordination language MANIFOLD

M�M� Bonsangue �

Leiden University� Department of Computer Science

P�O� Box ����� ��		 RA Leiden� The Netherlands

F� Arbab� J�W� de Bakker� J�J�M�M� Rutten� A� Scutell�a

CWI� P�O� Box �
	��� �	�	 GB Amsterdam� The Netherlands

G� Zavattaro

Bologna University� Department of Computer Science

Mura Anteo Zamboni ��
	��� Bologna� Italy

Abstract

Coordination languages are a new class of parallel programming languages which
manage the interactions among concurrent programs� Basically� coordination is
achieved either by manipulating data values shared among all active processes or
by dynamically evolving the interconnections among the processes as a consequence
of observations of their state changes� The latter� also called control�driven coordi�
nation� is supported by MANIFOLD� We present the formal semantics of a kernel
of MANIFOLD� based on a two�level transition system model� the �rst level is used
to specify the ideal behavior of each single component in a MANIFOLD system�
whereas the second level captures their interactions� Although we apply our two�
level model in this paper to de�ne the semantics of a control�oriented coordination
language� this approach is useful for the formal studies of other coordination models
and languages as well�

� Introduction

Coordination models and languages represent a new approach to design and
development of concurrent systems� Their purpose is to separate computing

�Corresponding author� E�mail� marcello�cs�leidenuniv�nl

Preprint submitted to Elsevier Science �� October ����

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concerns from those activities that deal with the structure of an application
�communicationmechanisms� protocols� system con�gurations� etc�� called �co�
ordination activities	
������ The interest in coordination has intensi�ed in the
last few years� as evidenced by the increasing number of conferences� tracks�
and papers devoted to this topic� and by the recent upsurge of research activ�
ity in the theoretical computer science community in this �eld� Furthermore�
the �eld of coordination has a considerable overlap of interest with the work
on software architectures and con�guration languages� especially for systems
with more complex and dynamically evolving architectures
���������

In spite of their generic label� most coordination languages are actually not
languages� rather� they are only collections of primitive operations meant to
augment conventional computation languages� There have been relatively few
attempts to study coordination as a stand�alone programming paradigm� with
its own self�contained programming language� Gamma
�� and Interaction
Abstract Machines
� are some such examples� and MANIFOLD� the subject
of study in this paper� is another�

Coordination models and languages can be classi�ed as either data�oriented
or control�oriented
��� For instance� Linda
�� uses a data�oriented coordina�
tion model� whereas MANIFOLD is a control�oriented coordination language�
Coordination models and languages can also be classi�ed as either endoge�
nous or exogenous
��� For instance� Linda is based on an endogenous model�
whereas Strand
�� and MANIFOLD are exogenous coordination languages � �
Endogenous models and languages provide primitives that must be incorpo�
rated within a computation for its coordination� In applications that use such
models� primitives that a�ect the coordination of each module are inside the
module itself� In contrast� exogenous models and languages provide primitives
that support coordination of entities from without� In applications that use
exogenous models primitives that a�ect the coordination of each module are
outside the module itself�

A focal point of the activity on the theoretical aspects of coordination is� of
course� formal semantics� There are several attempts to de�ne formal seman�
tics for coordination languages based on shared data�spaces and generative
communication� e�g�� Linda
������������������ Gamma
������ ��Log
���
and SPLICE
��� On the other hand� formal treatments of the semantics
of control�oriented coordination languages are very scarce� We know only of
two preliminary studies both on the formal semantics of an earlier version of
MANIFOLD
�������

� Logic�programming�based coordination models� such as Strand� essentially im�
pose the implicit� restrictive control structure of logic programming on the compo�
nents they coordinate� Other than being exogenous� there is no similarity between
these models and MANIFOLD�

In this paper� we present the formal operational semantics for the core of the
coordination languageMANIFOLD� using transition systems� The study of the
formal semantics ofMANIFOLD is interesting for at least three reasons� ��� as a
pure� self�contained coordination language �as opposed to language extensions�
that contains no computation primitives�MANIFOLD is a unique programming
language with interesting properties� �� the view of coordination embodied in
MANIFOLD is actually more general than the MANIFOLD language itself� and
��� the inherent characteristics of MANIFOLD suggest a certain methodology
for de�ning its formal semantics that� in our view� is applicable to a much
wider spectrum of coordination models and languages as well� An exercise
in the formal semantics of MANIFOLD is a good way to grasp the essential
concepts related to all these areas�

Everything inMANIFOLD is a process� computing entities� �meta��coordinator
entities� and communication links� Our approach consists of de�ning an op�
erational model for MANIFOLD� based on a two�level transition system� The
�rst level consists of a number of transition systems� each of which de�nes
the behavior of a single process� embedded in an ideal environment and hence
independent of the rest of the processes� The second level consists of a single
transition system that de�nes the interactions among the �rst�level transition
systems�

Multi�level transition systems were �rst used to de�ne the formal semantics of
coordination languages in
��� and
���� Although both these attempts� as well
as our current paper� use multi�level transition systems speci�cally to de�ne
the semantics of MANIFOLD�like models and languages� this formalism is not
speci�c toMANIFOLD nor to control�oriented coordination� Indeed� multi�level
transition systems are much more general and seem to be suitable for formal�
izing data�oriented coordination models and languages as well� as illustrated
more recently in
����

We use a set of �rst level transition systems to specify processes as autonomous
entities that can compute and�or interact with their environment� Thus� every
step of the computation in such a process may depend not only on the internal
state of the process� but also on some input it may obtain from its environment�
Such processes are open systems in a sense analogous to Wegner	s notion of
Interaction Machines
���� Typically� each such transition system is unbounded
and nondeterministic� re�ecting the fact that the process it represents is an
interactive system� i�e�� its unpredictable behavior depends on the input it
obtains from an external environment that it does not control� The details of
the internal activity of every process �e�g�� its computations� are described by
its respective �rst�level transition system� Most such detail is irrelevant for�
and hence unobservable by� the second�level transition system� The second�
level transition system� thus� abstracts away the semantics of the �rst level
processes� and is concerned only with their �mutually engaging� externally

�

observable behavior� Dually� by �conceptually� embedding each single process
in an ideal environment� its interactions with the rest of the processes become
irrelevant for the de�nition of individual �rst�level transition systems�

The activity of an entire MANIFOLD application is modeled by the second�
level transition system� Here� a con�guration corresponds to a set of active
processes �i�e�� coordinators� atomic processes� and�or streams� each of which
is associated with a list of pending messages that have already been broad�
cast but not yet received� Each second�level transition is de�ned in terms of
a number of �rst�level transitions re�ecting the actions of some interacting
processes� The second�level transitions are based only on a partial view of the
whole system� re�ecting the true time and space decoupling of processes in a
MANIFOLD application�

The contributions of this paper can be summarized as follows� First� the pre�
sented operational semantics is a rigorous de�nition of the intended meaning
of MANIFOLD programs� Given that MANIFOLD is a real�life programming
language for coordination� this can be considered a major achievement� It
turned out to be a far from trivial task to give a mathematically precise and
transparent description of the semantics of MANIFOLD� essentially because
what it does is di�erent than the semantics of traditional computation lan�
guages� Notably� the event broadcasting mechanism� on the one hand� and the
management of dynamically changing process con�gurations� including the
creation and removal of processes as well as stream connection and reconnec�
tion� on the other� each constitutes a powerful non�trivial machinery that is
more generally applicable in its own right� The fact that we have succeeded
in modeling all these aspects and their interplay in a uniform and transparent
way� simultaneously justi�es the various choices that have been made in the
design of the language�

Second� we feel that some of the operational techniques that have been used
in the construction of our model� are of interest in themselves� beyond the
speci�cs of the language MANIFOLD�

� Transition systems� which are structures commonly used in operational se�
mantics� have been used in a uniform and universal way� Every one of the
three di�erent types of processes that exist in MANIFOLD �coordinator��
stream�� and atomic processes�� is modeled as a transition system �in the
�rst level�� Each such transition system describes the potential steps that
its corresponding process can take� assuming that it is embedded in an en�
vironment that is optimally cooperative� The interplay of all processes put
to work together is� again� described by one �big	 transition system in the
second level� comprising the parallel composition of all individual �rst�level
transition systems� This second�level transition system thus constrains and
describes all the actual steps of an entire MANIFOLD program�

�

� Computation is performed by atomic processes only� whereas the activity of
all other processes is regarded as coordination� not computation� A clear and
consistent separation of computation and coordination has been achieved by
modeling atomic processes as abstract transition systems with prede�ned
transitions� in contrast� the transitions for coordinator and stream processes
are de�ned in all detail in the paper� The transition relation of a coordinator
process is� more speci�cally� determined by the MANIFOLD program text it
is executing�

� The embedding of atomic processes in our model is an elegant formal ex�
pression of how arbitrary black�box processes can be coopted as participants
in a coordinated cooperative application� without their own knowledge�

� In our model� the autonomous status of streams �modeled as transition
systems�� includes an explicit and precise semantic description of their var�
ious connection modes� This constitutes a key ingredient in the modeling of
asynchronous communication in general�

� The event broadcasting mechanism has been modeled using some state�of�
the�art semantic tools� notably Mazurkiewicz traces
���� In fact� the present
treatment of events has already given rise to similar applications for other
coordination languages� such as SPLICE
����

The rest of this paper is organized as follows� In Section � we give an infor�
mal overview of the MANIFOLD language� In Section �� we give an abstract
syntax for writing coordinator processes� and characterize a class of transition
systems that specify the behavior of atomic processes �the only computational
entities in MANIFOLD�� In Section �� we de�ne labeled transition systems for
coordinator processes� for atomic processes� and for streams� These transition
systems specify the behavior of their respective processes in isolation� without
any interaction with their environment� In Section �� the interaction between
di�erent processes and streams is modeled by a new transition system� com�
bining di�erent transitions of the previous systems� Thus� we obtain a formal
description of the behavior of an entire MANIFOLD system� Section � is the
conclusion of the paper� and the basic notations for partial functions as used
in the paper appear in the appendix�

� An informal overview of MANIFOLD

This section is a brief informal overview of the MANIFOLD coordination lan�
guage� MANIFOLD is a control�oriented coordination language for managing
complex� dynamically changing interconnections among sets of independent�
concurrent� cooperating processes
����������

Two major concepts inMANIFOLD are separation of concerns and anonymous
communication� Separation of concerns means that computation concerns are

�

isolated from the communication and cooperation concerns� Anonymous com�
munication means that the parties engaged in communication with each other
need not know each other� Furthermore all communication is asynchronous� In
MANIFOLD communication is either through broadcast of events or through
point�to�point channel connections which� generally� are established between
two communicating processes by a third party coordinator process�

A MANIFOLD application consists of a �nite set of process type de�nitions�
Because a process type is analogous to the notion of class in object oriented
languages� in this paper we use the term �class� instead� whenever it helps
clarity� There are two kinds of classes� computation classes and coordinator
classes� A class can have formal parameters which will be replaced by their cor�
responding actual parameters when an instance of that class is created at run
time� Instances of coordinator classes are called coordinator processes� while
instances of computation classes are called atomic processes� The execution
starts with the creation of an instance of the designated initial coordinator
class� For simplicity� we assume in this paper that the initial coordinator class
is parameterless�

Coordinator class de�nitions are written in the block�structured MANIFOLD

language� Since their instances are involved only in coordination� there is no
need for the constructs and the entities that are common in conventional
programming languages such as values� expressions� and sequential composi�
tion� The only entities known to MANIFOLD are processes �including streams�
which are asynchronous channels�� ports� and events� The main control struc�
ture is an event�driven guarded statement evaluation mechanism� Primitive
operations allow for creation� activation� and killing of processes� broadcast of
events� and dynamic �re�connection of the ports of some of these processes via
streams� These operations take place in a coordinator process instance as a
consequence of the repeated evaluation of conditions on the events it receives
from its environment� If several conditions can be successfully evaluated within
a block� one is selected non�deterministically � � and its associated actions are
executed� When all actions are executed� the coordinator process goes back to
evaluating the conditions again� This iteration continues� until the execution
of a speci�c action terminates the coordinator process�

Computation class de�nitions may be written in di�erent programming lan�
guages and some of them may not know anything aboutMANIFOLD� Instances
of computation classes� also called atomic processes� typically are not aware of
the fact that they are cooperating with other processes within theMANIFOLD

�This non�determinism is actually subject to a priority scheme on the matching
event occurrences that can potentially open the alternative guards� This scheme
ensures that the handling of events with higher priority take precedence over lower�
priority events� For simplicity� we do not model this priority scheme in our formal
semantics presented in this paper�

�

system� An atomic process is not responsible for the communication that is
necessary for it to obtain the proper input it requires to perform its computa�
tion� nor is it responsible for the communication that is necessary to deliver the
results it produces to their proper recipients� They can compute and produce
and consume values through their ports� and broadcast and receive events�

C1

A2

A3A1

Fig� �� Ports and streams connecting a coordinator �C�	 and atomic processes �Ai	

Both coordinator and atomic processes have named ports of connection� Atomic
processes use them to exchange values with streams in their environment� Co�
ordinator processes do not produce or consume values themselves� their ports
are used as support for communication between two or more streams� Because
both coordinator and atomic processes have ports� through which values are
�or at least� seem to be� produced and consumed� they are externally indis�
tinguishable from one another �see Figure ���

Because atomic and coordinator processes are absolutely indistinguishable
from the point of view of other processes� coordinator processes can� recur�
sively� manage the communication of other coordinator processes just as if
they were computation processes� This means that any coordinator can also
be used as a higher�level or meta�coordinator� to build a sophisticated hierar�
chy of coordination protocols� Such higher�level coordinators are not possible
in most other coordination languages and models�

A stream is a communication channel with an unbounded bu�er for trans�
porting values between the ports of atomic or coordinator processes� A stream
represents a reliable and directed �ow of information from its source to its
sink� Once a stream is established between a �port of a� producer process and
a �port of a� consumer process� it operates autonomously and transfers the
values from its source to its sink� The �process at the� sink of a stream re�
quiring a value is suspended only if no values are available in the stream� The
suspended sink resumes as soon as the next value becomes available for its
consumption� An attempt by the source of a stream to place a value into the
stream is never suspended because of the unbounded bu�er capacity of the
stream� Streams can be created and broken by coordinator processes� Further�
more� they can be reconnected� meaning that one of their ends can be �rst
disconnected and then reconnected to another port� Because a stream may
contain some pending values in its bu�er� it may or may not be desirable for
a stream to immediately disconnect itself from its source or its sink as soon
as its connection at its opposite end is broken� Therefore� it is meaningful
for a stream to remain connected at one of its ends� after it is disconnected

�

from the other� Two types of connection can be identi�ed between a port and
a stream� break�type and keep�type� A break�type connection between a port
and a stream breaks automatically when the connection at the other end of
the stream breaks� A keep�type connection� on the other hand� persists even
after the connection at the other end of the stream breaks� The connection
between a stream and a port it is connected to is severed when ��� either the
stream or the process to which the port belongs dies� or �� a coordinator
process breaks up its break�type connections�

The combination of break�type and keep�type connections at the two ends of
a stream lead to four di�erent stream types designated as BB� BK� KB� and KK�
The letters �B	 and �K	 in a stream type name respectively designate break and
keep connections of a streams of that type� where the rightmost letter refers to
the stream	s connection with its sink� and the leftmost letter to the one with
its source�

BB� A stream of this type is disconnected from either its producer or
consumer automatically� as soon as it is disconnected from the other�
BK� A stream of this type is disconnected from its producer automatically�
as soon as it is disconnected from its consumer� but disconnection from
its producer does not disconnect the stream from its consumer�
KB� A stream of this type is disconnected from its consumer automatically�
as soon as it is disconnected from its producer� but disconnection from
its consumer does not disconnect the stream from its producer�
KK� A stream of this type is not disconnected from either of its processes
automatically� if it is disconnected from the other�

Independent of the communication mechanism o�ered by the streams� there
is a broadcasting mechanism for information exchange in MANIFOLD� Both
atomic and coordinator processes may broadcast events in their environment�
each broadcast yielding an event occurrence for which the broadcasting pro�
cess becomes its event source� Once an event is broadcast by a process� the
latter continues with its processing� while the resulting event occurrence prop�
agates through the environment independently� Broadcast event occurrences
are eventually received in the event memory of every observing coordinator
or atomic process� The observed event occurrences in the event memory of a
process can be examined and reacted on by the observer process at its own
leisure�

Programming in MANIFOLD is a game of dynamically creating �coordinator
and�or computation� process instances and dynamically �re�connecting the
ports of some of these processes via streams� in reaction to observed event
occurrences� MANIFOLD encourages a discipline for the design of concurrent
software that results in two separate sets of modules� pure coordination� and
pure computation� This separation disentangles the semantics of computation

�

modules from the semantics of the coordination protocols� The coordination
modules construct and maintain a dynamic data��ow graph where each node
is a process� These modules do no perform any computation� but only make
the prescribed changes to the connections among various processes in the
application� which changes only the topology of the graph� The computation
modules� on the other hand� cannot possibly change the topology of this graph�
making both sets of modules easier to verify and more reusable� The concept
of reusable pure coordination modules inMANIFOLD is demonstrated� e�g�� by
using �the object code of� the sameMANIFOLD coordinator program that was
developed for a parallel�distributed bucket sort algorithm� to perform function
evaluation and numerical optimization using domain decomposition
������

TheMANIFOLD system runs on multiple platforms and consists of a compiler�
a run�time system library� a number of utility programs� and libraries of builtin
and prede�ned processes of general interest� Presently� it runs on IBM RS����
AIX� IBM SP��� Solaris� Linux� Cray YMP� and SGI IRIX� A MANIFOLD

application consists of a �potentially very large� number of processes running
on a network of heterogeneous hosts� some of which may be parallel systems�
Processes in the same application may be written in di�erent programming
languages and some of them may not know anything about MANIFOLD� nor
the fact that they are cooperating with other processes throughMANIFOLD in
a concurrent application� A number of these processes may run as independent
operating�system�level processes� and some will run together as light�weight
processes �preemptively scheduled threads� inside an operating�system�level
process� None of this detail is relevant at the level of the MANIFOLD source
code� and the programmer need not know anything about the eventual con�
�guration of his or her application in order to write a MANIFOLD program�

MANIFOLD has been used in a number of real applications� e�g�� implementing
parallel and distributed versions of a semi�coarsened multi�grid Euler solver
algorithm
����� modeling cooperative Information Systems
������� coordina�
tion of Loosely�Coupled Genetic Algorithms on parallel and distributed plat�
forms
������ coordination of multiple solvers in a concurrent constraint pro�
gramming system
���� and coordination of a distributed propositional theorem
checker
���

Di�erences between MANIFOLD and its kernel

Some of the features of MANIFOLD have been left out of the kernel language
that is the subject of our formal study in this paper� This makes the ker�
nel simpler� but we do not believe this simpli�cation has compromised the
interesting semantic issues of the language�

A number of linguistic features of MANIFOLD are common in most other

�

modern programming languages as well� They include scope rules� separate
compilation� parameterized sub�programs� import�export of entities among
modules� etc� We ignore these features in our kernel because there is nothing
very unusual about such features and their semantics are well understood for
many programming languages� Furthermore� MANIFOLD supports some syn�
tactic sugar for common control structures and expressions� In reality� only
the front end of the MANIFOLD compiler knows about such conventions and
internally translates them into their corresponding normal syntax� We have
left out these �extensions� because� e�ectively� they �do not exist� even in
the real MANIFOLD language either� A few coordinator types are prede�ned
inMANIFOLD� They provide special services� such as grading ports� obtaining
single values from ports� producing reference values� and dereferencing them�
In our kernel� such special purpose coordinators are nothing special�

Finally� there are a number of more signi�cant features that have been left out
of the kernel for simplicity� Although these features do have an impact on the
practical usefulness of the language� their semantic signi�cance is too small to
justify the added volume of their inclusion in this paper� Among them are�

� Scope rules and statements that control the broadcast of events� They sup�
port static and dynamic means for �programming� which event sources are
observable to which processes�

� Event handling declarations� Event occurrences can be saved� ignored� and
assigned higher or lower priorities by each process for its own purposes�

� Death of streams� A stream automatically dies when it detects certain con�
ditions that signify it is no longer needed�

� Flow of values� Port managers �see Section �� are also aware of the �ow of
values through their ports� in order to allow the evaluation of �ow related
port conditions�

� Opening and closing individual ports�
� Automatic breakup of streams at the end of each block�

� Abstract syntax of MANIFOLD

We assume the existence of two �nite disjoint sets of types designating the
classes for coordinator and atomic processes� CType� ranged over by C� and
AType ranged over by A� respectively� Both coordinator and atomic processes
have ports through which values are exchanged with or among streams� We
assume the existence of a �nite set of ports� Ports� ranged over by i� o�

Each of the four stream types� mentioned earlier� will get a �xed interpretation�
We de�ne the set SType of stream types� with its typical element S� as

��

SType� fBB� BK� KB� KKg �

and assume SType is disjoint from both AType and CType�

In this section� we de�ne the abstract syntax for coordinator classes� No ex�
plicit syntax will be de�ned for computation classes� they may be written in
any programming language� about which we do not wish to make any assump�
tions� Instead� as explained in the introduction� we de�ne computation classes
in terms of abstract transition systems that model their externally observable
behavior�

Coordinator classes

A coordinator process refers to other processes� events� streams� ports� and
process types by means of elements of the following countable sets�

� PrcNm of process names� ranged over by p� q �
� StrNm of stream names� ranged over by s�
� EvtNm of event names� ranged over by e� f �
� PrcTypNm of process type names�
� StrTypNm of stream type names�
� PrtNm of port names�

There are special event names begin� die� and stop denoting� respectively� the
request for starting a process� the request for terminating a process� and the
actual termination of a process� Also� we assume that � and self are special
process names denoting the system and the name used by each process to
denote itself� Furthermore� for each process type P � AType � CType there is
a countable set of process names PrcNm�P� that excludes � and self� such
that PrcNm�P�� is disjoint from PrcNm�P�� if P� �� P�� If p � PrcNm�P� then
we say that the process named p is of type P� For simplicity� we de�ne the
function ClassOf �PrcNm � AType � CType such that ClassOf �p� � P ��
p � PrcNm�P��

We denote by Nm the set of names obtained as the disjoint union of PrcNm�
StrNm� EvtNm� PrcTypNm� StrTypNm� PrtNm� CType� AType� SType� and
PrcNm�Ports� An element of PrcNm�Ports is a pair� say p�i� denoting the
port i of a process named p� Note that elements in Ports are not included in
Nm because a port must always be paired with the name of its owner process�
The set of names is ranged over by n�m� x � We use the convention of writing
in italic those names that can be replaced by other names in a substitution
�de�ned below��

��

In order to specify a coordinator class we need the following grammar�

G ��� ep�S j �G G� �

ep ��� �p� e� j ��p� e� j �p� �e� j ��p� �e�

S ��� end j halt j ��S j fj G jg�S

� ��� evn�e� j raise�e� j post�e� j prc�p��� �n� j start�p� j �nish�p� j

str�s��� �� 	� j break�s� j src�s� �� j snk�s� 	�

In this grammar� e is an event name in EvtNm� other than die and stop� p� q
are process names in PrcNm �we assume that names pre�xed by � are not in
Nm�� s is a stream name in StrNm� �� 	 are either port names in PrtNm or
pairs in PrcNm�Ports� �n � Nm is a �possibly empty� list of names� � is either
a process type in CType � AType or a process type name in PrcTypNm� and �
is either a stream type in SType or a stream type name in StrTypNm� We use
lists where order matters �e�g�� matching of parameters� but we often treat
them as sets� abusing the formal notation accordingly� We use the operator �	
to construct lists� e�g�� w�	 x�	 y�	 z is a list of the four elements w � x � y � and z �

In the above grammar� we say that G is a command� or guarded statement�
ep is an event pattern� S is a statement and � an action� We let EvnPat be
the set of all event patterns�

A coordinator class is a pair hG �Pi� where G is a command� and P
 Ports

is a set declaring the ports of the class� The execution of an instance of the
class hG �Pi loops over the execution of the command G until the statement
halt is executed�

The command ep�S matches the event pattern ep with stored event occur�
rences �to be de�ned below�� The � pre�xed names can match with the pro�
cess and�or event names of any event occurrence� yielding bound names in the
scope of S � They act as formal parameter of the statement S � For example�
in the command �p� �e��S the event pattern �p� �e� can match with the event
occurrence �p� e �� and yield a version of the statement S where the actual
event name e � is substituted for the formal event name e� The operator is
a guarded sum� where all alternatives are statements guarded by their event
patterns� The operator selects one of its alternatives non�deterministically
� �

Next� we informally describe the meaning of the statements�

� end is the terminated statement�

� See footnote
�

�

� halt is the statement that causes the termination of the process�
� evn�e��S is the declaration of a new event� It creates a fresh event name�
say e �� and reduces to a version of the statement S where e � is substituted
for e�

� raise�e��S broadcasts the event name e to all processes and becomes S �
� post�e��S sends the event name e only to the process executing it and
becomes S �

� prc�p��� �n��S is executed if � is a coordinator or atomic process type� say
P� and the actual parameters �n are consistent with the formal parameters
of the declaration of P� It creates a new instance of a process of type P and
assigns to it a fresh process name in PrcNm�P�� say q � The list of names
�n is passed to the new process q as its actual parameters� This statement
then reduces to a version of S where the name q is substituted for p�

� start�p��S sends a message for starting the execution of the process p and
becomes S �

� �nish�p��S sends a message for �nishing the execution of the process p and
becomes S �

� str�s��� �� 	��S is executed if � is a stream type� say S� and � and 	 are pairs
in PrcNm �Ports� say p�i and q �o� respectively� It creates a new stream of
type S connecting the port i of process p to the port o of process q � and
assigns to it a fresh stream name� say t � This statement then reduces to a
version of S where the name t is substituted for s�

� break�s��S severs the break�type connections of the stream s� if any� and
becomes S �

� src�s� ���S is executed if � is a pair in PrcNm�Ports� say p�i� It reconnects
the source of a stream s to the port i of process p and becomes S �

� snk�s� 	��S is executed if 	 is a pair in PrcNm�Ports� say q �o� It reconnects
the sink of the stream s to the port o of process q and becomes S �

� fj G jg�S executes the command G and when G terminates it becomes the
statement S �

The set bn�G�
 Nm of bound names in a command G is given by

bn��p� e��S � � fself � �� beging � bn�S �

bn���p� �e��S � � fp� e� self � �� beging � bn�S �

bn��p� �e��S � � fe� self � �� beging � bn�S �

bn���p� e��S � � fp� self � �� beging � bn�S �

bn�G� G�� � bn�G�� � bn�G�� �

��

where

bn�evn�e��S � � feg � bn�S �

bn�prc�p��� �n��S � � fpg � f� j � � AType � CTypeg � bn�S �

bn�str�s��� �� 	��S � � fsg � f� j � � STypeg � bn�S �

bn�src�s� ���S � � bn�S �

bn�snk�s� 	��S � � bn�S �

bn�fj G jg�S � � bn�G� � bn�S � �

and bn�S � � � for all other statements� The free names in a command G or in
a statement S are those names occurring in G but not in bn�G�� For example�
in the statement

str�s�BK� p�i� x ��end

the names s � StrNm and BK � SType are bound� while p � PrcNm and
x � PrtNm are free� Note that i � Ports is not a name in Nm� and therefore
is neither free nor bound� Free names are formal parameters to be replaced by
actual ones at the moment a process is created�

As usual� we denote by S
n
m� the statement obtained by substituting a name
m for the free name n� We require the following consistency between names
in a substitution�

� a process name p � PrcNm can be replaced only by a process name q �
PrcNm�

� a stream name s � StrNm can be replaced only by a stream name t �
StrNm�

� an event name e � EvtNm can be replaced only by an event name f �
EvtNm�

� a process type name c � PrcTypNm can be replaced by either a process
type name d � PrcTypNm� a coordinator type P � CType� or an atomic
type Q � AType only�

� a stream type name k � StrTypNm can be replaced by either a stream type
namej � StrTypNm or a stream type y � SType only�

� a port name a � PrtNm can be replaced by either a port name b � PrtNm
or a pair p�x � PrcNm � Ports only�

For �n � n� 	 	 	nl and �m � m� 	 	 	ml we denote by S
�n
�m� the statement
obtained by simultaneously substituting in S all occurrences of every ni with
its corresponding mi � Similarly� we denote by G
n
m� the statement obtained
by substituting a name m for the name n�

��

For every coordinator type C � CType there is a unique declaration

C��x �� hGC�PCi

where �x is a list of distinct names in Nm� GC is a command and PC is a subset
of PrtNm� We say that i is a port of C if i � PC� The names in �x are the
formal parameters that will be replaced by actual ones at the moment a new
instance of the class hGC�PCi is created� All free names in the command GC

are in �x � Note that since PrtNm and Nm are disjoint� PC and �x are disjoint�

Computation classes

Computation classes may be written in di�erent programming languages and
are declared using atomic types� Instances of computation classes use values to
carry out their computation� Therefore� we assume the existence of an abstract
set Val of values� ranged over by v � Values are produced and consumed by
atomic processes and are transported through streams�

For every atomic type A � AType there is a unique declaration

A��x �� h!A�ActA��A� �A�PAi �

where �x is a list of distinct event names in EvtNm� As for coordinator pro�
cesses� these are formal parameters that will be replaced by actual ones at the
moment a new instance of the process is created� The right hand side of the
above declaration is a computation class� It consists of a transition system with
an abstract set of states �� �� !A� a set of observable actions �a �� ActA� and a
�nondeterministic� transition relation �A
 !A�ActA�!A that describes the
�observable� behavior of the instances of the class� We assume that the sets of
internal states of transition systems of di�erent types are disjoint� Intuitively�
� a
�A �

� denotes a transition step in which the action a � ActA is executed�
causing the state to change from � to ��� An instance of this class starts its
activity in the initial state �A� The last component PA
 Ports contains the
ports of the class� We say that i is a port of A if i � PA�

The set ActA of observable actions of a computation class of type A is de�ned
as follows�

ActA� f�� haltg

� fraise�e� j e � �xg

� freceive�e� j e � �xg

� fget�i� v� j i � PA� v � Valg

� fput�o� v� j o � PA� v � Valg �

��

The action � represents an internal action� about which no assumptions are
made� It may� for instance� be the update of a local store �which is externally
invisible�� The action halt indicates that the process has �nished its activity�
An atomic process may broadcast an event name e by executing an action
raise�e�� as long as e belongs to the parameters of the declaration� By per�
forming the action receive�e�� an atomic process can at any stage receive an
event name e broadcast by other processes if e is one of the names declared in
A� This permanent �event�enabledness	 is formally expressed by the following
condition� which the transition system must satisfy�

�� � !A �e � �x ��� � !A� �
receive�e�
�����A �

� �

Finally� atomic processes may read or write values through their ports� by
performing the actions get�i� v� and put�o� v�� If at some moment an atomic
process is willing to read a value through one of its ports� then it should be
willing to accept any value� This results in a second condition on the transition
relation�

��
get�i�v�
����A �

� �v � � Val ���� � !A� �
get�i�v ��
����A �

�� �

Examples

The examples in this section illustrate some simpleMANIFOLD programs writ�
ten in our abstract syntax introduced above� As a �rst example� we use a
client�server application� Clients ask for services by raising events� Reacting
to such an event� the server creates and �hooks up� a speci�c process that
will provide the desired service to its requesting client� For instance� we can
imagine requests to use electronic mail or File Transfer Protocol facilities�

Our application consists of the following process types �classes��

CType � fMain� Srvg

AType � fElm� Ftp� Cltg

The coordination type Main creates and activates the clients and the server
processes as instances of the atomic type Clt and the coordinator type Srv�
respectively� The computation types Elm and Ftp represent� respectively� elec�
tronic mail and File Transfer Protocol facilities� Declarations for the coordi�
nator classes are as follows�

Main�� � hGMain� �i

��

Srv�ev��	 ev�� � hGSrv� fin� outgi

The de�nition of the body for the coordinator types Main and Srv is given
below� The computation types Elm and Ftp have associated declarations

Elm�� � h!Elm�ActElm�� ��� fin� outgi

Ftp�� � h!Ftp�ActFtp�� ��� fin� outgi

and the declaration for the computation type Clt is

Clt�ev��	 ev�� � h!Clt�� ��� fin� outgi�

σ4
τ

τ

τ

σ0 σ1

σ2

Clt

 σ0 σ4

σ2

σ3

τ

τ

τ

Elm

τ

raise(ev1)

raise(ev2)

get(in,v) get(in,v)

put(out,v)
σ3

put(out,v)

Fig� �� Transition relations for Clt and Elm

The transition relations that de�ne the externally observable behavior of the
computation classes can be summarized as in Figure �the transition relations
for Ftp are the same as for Elm�� The internal transitions of these processes
are uninteresting for their coordination and are thus simply summarized as
transitions labeled � �

The body for the coordinator class type Main creates and activates one in�
stance of Srv and three instances of Clt�

GMain � ��� begin��evn�mail��evn�ftp��

prc�Server �Srv� �mail�	 ftp���prc�C ��Clt� �mail�	 ftp���

prc�C �Clt� �mail�	 ftp���prc�C ��Clt� �mail�	 ftp���

start�Server��start�C ���start�C ��start�C ���halt

The body for the coordinator class Srv is given below� It reacts to a request
�for a service� from a client by setting up two connections �streams�� one from
the input port of the client to the output port of the process providing the re�
quested service� and vice versa� The process name p in ��p�mail� and ��p� ftp�
will be replaced by a speci�c client	s name at run time through matches with
the occurrences of events mail and ftp raised by instances of Clt�

GSrv � ��p�mail��prc�q �Elm� ��start�q��

��

str�s��BK� p�out� q �in��str�s�BK� q �out� p�in��

end

��p� ftp�� prc�r �Ftp� ��start�r��

str�s��BK� p�out� r �in��str�s��BK� r �out� p�in��

end

Note that the process Server never ends�

As our second example� we consider a simpli�ed version of the realMANIFOLD

program called ProtocolX in reference
��� This program was originally de�
veloped to coordinate a dynamic data��ow network of atomic processes to
perform a distributed bucket�sort� The separation of concerns principle of
MANIFOLD implies that the actual computation �i�e�� sorting� coordinated by
this program is a completely irrelevant detail� this program is simply an ex�
pression of a recursive coordination scheme suitable� e�g�� for a class of divide�
and�concur type applications� For instance� this same program is used to coor�
dinate a distributed numerical optimization through dynamic domain decom�
position application� This reusable pure coordination module is more properly
described in reference
��� The purpose of our presentation here is to demon�
strate the expressive power of our kernel language by showing its closeness to
the real MANIFOLD language�

Sorter�AtomicSorter�	 Merger� � hGSorter� fin� outgi

GSorter �
��� begin��

evn��lled��evn��nished��evn�e��
prc�g��PortGuard� self�in�	 �a everdisconnected�	 empty��	�nished��
start�g���
prc�atomicsorter �AtomicSorter � �lled��start�atomicsorter��post�e��fj
�self� e��

str�s��KB� self�in� atomicsorter �in��end
jg�fj
�g�� �nished��

post�e��fj
�self� e��str�s��BK� atomicsorter �out� self�out��end

jg�break�s���end

�atomicsorter � �lled��

prc�newsorter �Sorter�AtomicSorter�	Merger��start�newsorter��
prc�merger �Merger � ��start�merger��post�e��fj
�self� e��

snk�s�� newsorter �in��

��

str�s�BK� newsorter �out�merger �in��
str�s��BK� atomicsorter �out�merger �in��
str�s��BK�merger �out� self�out��end

jg�fj
�g�� �nished�� break�s���end

jg�end
jg�end

Although� as mentioned above� the program knows nothing about sorting� in
the following presentation� for didactical reasons� we assume that its purpose
is to sort an unspeci�ed number of values that arrive through its input port�
The Sorter coordinator has two ports� in and out� and takes two classes as
its arguments� AtomicSorter and Merger � The body of Sorter is GSorter� An
instance of Sorter� thus� �rst declares some events and then creates g� as an
instance of another coordinator class called PortGuard� passing it three pa�
rameters� a port� self�in� a list� �a everdisconnected�	 empty�� and an event�
�nished � PortGuard represents a prede�ned class in the real MANIFOLD lan�
guage�

Note that for our purposes� there is nothing special about PortGuard� it is just
a coordination class that happens to be prede�ned� An instance of PortGuard
watches the port it is passed as its �rst argument and when the sequence
of port�conditions in its second argument is satis�ed for that port� it raises
the event that is its third argument� � The elements of a port�conditions list
are members of a �xed set of prede�ned predicates on the status of ports in
MANIFOLD� Each such predicate is satis�ed when a certain fact about the
�history� state� or incident of� �dis�connection of a port and its �incoming
or outgoing� streams becomes true �� connection predicates�� Three other
predicates in this set deal with the �un�availability and the �ow of values
through ports� 	 For instance� the condition a everdisconnected is true for a
port if an incoming stream has ever been disconnected from that port
 � The
empty condition is true if the port has a connection with at least one outgoing
stream that contains no value� See reference
�� for more details�

A Sorter instance then creates an instance of the AtomicSorter class� which
it calls atomicsorter � passing it the event �lled as its parameter� The process

�Having a list as an argument is a slight deviation from our strict simpli�ed syntax
in this paper� but allowing ourselves a bit of syntactic freedom for the exceptional
case of a prede�ned class is not a big indulgence
	Although not mentioned explicitly� the port manager construct described in Sec�

tion � in this paper already contains enough information to allow PortGuard suc�
cessfully evaluate � of its �� connection predicates� The rest of the conditions require
straight�forward extensions which are too distracting to mention in this paper�

 In the terminology of Section �� if the cardinality of the IC set of the port has

ever dropped to ��

��

atomicsorter is expected to wait until it can read n � � values through its
input port in� raise the �lled event when the n values have been read �each
process dynamically decides for itself what its number n is�� sort the values�
and write them out in their sorted order through its output port out� The
Sorter instance then connects its own in port to the in port of atomicsorter
and enters a block�

At this point� one of two things can happen� either atomicsorter raises �lled
or g� raises �nished � The event �lled means that atomicsorter has read in the
number of values it is willing to sort� and the rest of the input values now
must be diverted to a new instance of Sorter� The event �nished means that
all input values have passed through and have been consumed� In reaction
to �nished � the out port of atomicsorter is connected to the out port of
the Sorter instance� s� is disconnected �to make atomicsorter realize the
end of its input�� and the Sorter instance suspends� In reaction to �lled �
newsorter and merger are created as new instances of Sorter and Merger
classes� respectively� The rest of the input to the Sorter instance �part of
which may be contained in the bu�er of the stream s�� and the output of
atomicsorter are fed into merger � and the out port of merger is connected
to the out port of the Sorter instance� The Sorter instance then waits for
�nished � in reaction to which it disconnects s� �to make newsorter realize the
end of its input� and suspends�

� Semantics of MANIFOLD� �rst level

In this section we de�ne labeled transition systems for instances of coordinator
classes� instances of computation classes� and for streams� We specify processes
as autonomous systems that can compute and interact with their environment�
Therefore� each such transition system is typically non�deterministic and un�
bounded� re�ecting an unpredictable behavior which depends on the input a
process obtains as the result of an interaction with its environment�

In Section �� we give a transition system for an entire MANIFOLD system�
wherein the various �rst�level transition systems de�ned in the present section
are to be embedded and �put to work	� Thus� some of the de�nitions in the
present section can be fully understood only in the context of the de�nitions
of Section �� and the reader may have to postpone grasping the details of the
full picture until the end of that section�

�

��� Coordinator processes

The transition system we present for a coordinator process is driven by the
syntactic structure of the class of which it is an instance� First� we intro�
duce the semantic domains and functions we use to de�ne the semantics of
coordinator processes�

Several streams can be connected to have the same port as their common
source� When a value becomes available through such a port� it is replicated
and a copy is inserted in each stream that has this port as its source� The
replication of values can create some inconsistencies with respect to the ex�
pected result� Suppose p is an atomic process that continuously produces
values through its port x � and let q be a coordinator process that creates
within the same block� two streams s� and s�� both connected to the port x of
p as their common source� Note that streams can consume values from their
sources as soon as they are created �see Section ���� and that two streams can�
not both be created instantaneously by the same coordinator process� Thus�
it is possible for one of the two streams to consume and carry some values
before the second one is in place� This contradicts the intended semantics of
MANIFOLD and to rectify it we use a port locking mechanism analogous to
the one used in its actual implementation�

If a port is locked� no value can pass through it� In Section �� we de�ne
this concept more precisely by associating with each process a port manager�
Informally� each time a new stream is connected to a source port within a
block of a coordinator process� the port manager of the process that owns the
port locks that port� When a coordinator process �nishes the execution of a
block construct� all ports used as sources of the streams created or reconnected
in that block are unlocked� To this end� each coordinator process stores within
a block the number of streams connected in that block to each source port�
This information is modeled by a partial function in

Unlocks ��PrcNm � Ports�� IN �

For U � Unlocks� if U ����� then the port � must be unlocked U ��� times at
the end of the block� Note that U ��� � � does not necessarily mean that the
port � is completely unlocked� other stream connections to this same source
port constructed by other coordinator processes that may not have yet �nished
the execution of their respective blocks may still be keeping the port locked�

In a coordinator process the unlock information is local within each block�
Since blocks can be nested� we use a stack to maintain the unlock information�
Each time a new block is entered an empty unlock information is allocated
onto the top of the stack� and when a coordinator process exits from a block�

�

its unlock information is popped from the stack�

In Section � we saw that in addition to the possibility of putting and read�
ing values through their ports� processes may communicate with each other
asynchronously through an event mechanism� An event name e may be broad�
cast by a coordinator or an atomic process p to its environment� yielding an
event occurrence �p� e� for which the broadcasting process p becomes its event
source� The set of event occurrences is therefore de�ned by

EvnOcc�PrcNm � EvtNm �

Once an event name is broadcast by a process� the process continues with
its processing� while the resulting event occurrence propagates through the
environment independently� Any process that is interested in that event oc�
currence will receive it and can� subsequently� react on it� In our semantic
model� the actual broadcasting of event occurrences is the responsibility of
the second�level transition system which models an entire MANIFOLD system
�Section ���

Once an event occurrence is received by a process� it is stored in its event
memory � i�e a subset of EvnOcc� We denote the set of all event memories by
EvnMem� with E as its typical element� A coordinator process may react to
the event occurrences stored in its event memory� The reaction takes place by
evaluating an event pattern� Recall that event patterns appear as guards in
commands� so the evaluation of an event pattern in�uences the choice of which
component of a command is chosen� In principle� such an evaluation may or
may not be successful� If it succeeds� then it consumes an event occurrence
from the event memory� All of this is modeled by the following evaluation
function�

eval � �EvnPat � EvnMem� P�EvnOcc� �

de�ned� for p � PrcNm� e � EvtNm� and E � EvnMem as follows�

eval��p� e��E � � f�x � y� � E j x � p and y � eg

eval��p� �e��E � � f�x � y� � E j x � pg

eval���p� e��E � � f�x � y� � E j y � eg

eval���p� �e��E � � E �

This function takes an event pattern as input and evaluates it on the basis of
the current event occurrences stored in the event memory E of the process�
We say that the evaluation is successful if it returns a non�empty set of event

occurrences� This evaluation mechanism is important because it permits to
dynamically substitute actual parameters for formal ones� The only other way
for communicating names is at the moment of process creation �where new
names are also created��

In the de�nition of a transition for coordinator processes� below� we encounter
the need for a slightly extended syntax for partially executed programs� To this
end� we introduce a set of resumptions �R �� ResC � de�ned by the grammar

R ��� stop j wait�R j "G j S �R j G �R

where G is a command and S is a statement� A resumption indicates the part
of the program that is yet to be executed by the coordinator process� stop
indicates that the activity of the process has terminated� wait�R indicates
that the process is waiting to be activated before executing the resumption
R� and "G indicates that a new execution of the body G of a program has
to start� The other cases correspond to when the process has to execute a
statement S � or has to execute a command G � respectively�

Certain syntactically di�erent resumptions will have the same operational
meaning� In order to simplify the presentation of the transition system �no�
tably� the number of rules� which are numerous� anyway�� we de�ne an con�
gruence relation � on ResC as the least equivalence relation such that�

"G � G �"G and �G� G���R � �G� G���R �

The above relation forces a repeated execution of the command G and the
� 	 operator to be commutative� The associativity of the � 	 operator can be
deduced from its meaning given in the rule ��C�� Command choice	� below�

We describe the behavior of coordinator processes by means of a transition
system of the form

hConfC �ObsC ��C i�

consisting of a set ConfC of con�gurations� a set ObsC of observations� and a
transition relation �C � They are de�ned in detail below�

The set ConfC of con�gurations consists of tuples

hp�P �T �E �Ri �

where p � PrcNm is the name of the coordinator process� P
 Ports is a
set containing the active ports of p� T � Unlocks� is a stack containing the

�

unlock information� E � EvnMem is the event memory� and R � ResC is the
resumption�

The set ObsC � ranged over by �� is de�ned as follows�

ObsC � f�g

� f�p� halt� j p � PrcNmg

� fdscnct��� j � � PrcNm � Portsg

� f�p� receive�eo�� j p � PrcNm� eo � EvnOccg

� fevn�e� j e � EvtNmg

� f�p� raise�e�� j p � PrcNm� e � EvtNmg

� f�p� post�e�� j p � PrcNm� e � EvtNmg

� fprc�p�P� �n� j p � PrcNm� P � CType � AType� �n � Nm�g

� fstart�p� j p � PrcNmg

� f�nish�p� j p � PrcNmg

� fstr�s�S� �� 	� j s � StrNm� S � SType� �� 	 � PrcNm � Portsg

� fbreak�s� j s � StrNmg

� fsrc�s� �� j s � StrNm� � � PrcNm � Portsg

� fsnk�s� �� j s � StrNm� � � PrcNm � Portsg

� funlock�U � j U � Unlocksg �

Intuitively� � denotes some internal activity� �p� halt� denotes the termination
of the process p� dscnct�p�i� is the disconnection of all streams connected
to the port i of the process p before its termination� �p� receive�eo�� is the
receiving of the event occurrence eo by process p� evn�e� is the declaration
of a new event name e� �p� raise�e�� is the broadcasting of the event name
e by process p� �p� post�e�� is the sending of the event name e only to the
process p� prc�p�P� �n� denotes the creation of a process of type P� assigning it
the name p� and passing it the actual parameters �n� start�p� is the activating
of the process p� �nish�p� is the deactivating of the process p� str�s�S� �� 	�
is the creation of a stream with name s of type S from the port � to the
port 	� break�s� is the breaking of the connections of the stream s� src�s� ��
is the reconnection of the source of the stream s to the port �� snk�s� �� is
the reconnection of the sink of the stream s to the port �� and unlock�U � is
the unlocking of the ports in dom�U ��

Next� we de�ne the transition relation �C
 ConfC �ObsC � ConfC � It de�
scribes the local steps of a coordinator process in isolation� Transitions that
model the interaction of a process with its environment �for instance� react�
ing to an event� should be interpreted only as attempts to make such steps�
Whether or not a speci�c step is actually possible will depend on whether
or not the environment is willing to cooperate� for instance� by providing the
event to which the process can react� This actual interaction with the en�

�

vironment is modeled by the second�level transition system for MANIFOLD�
described in Section ��

�C�� Syntactic identity�

R� � R� and hp�P �T �E �R�i
�
�C hp�P ��T ��E ��R�

�i and R
�

� � R�

�

hp�P �T �E �R�i
�
�C hp�P ��T ��E ��R�

�i

Syntactically di�erent resumptions that are related by the equivalence relation
� de�ned above� have the same operational meaning� This rule allows us to
substitute a resumption with an equivalent one in a given con�guration�

�C� Port disconnection� If i � P then

hp�P �T �E �halt�Ri
dscnct�p�i��
������C hp�P n fig� � ��halt�Ri

Before terminating� a process destroys the connections with all its ports� The
stack containing the information about the ports to be unlocked is set to
empty� as well as the event memory� This action is repeated until the set
P of the ports of the process is empty� Each such action will result� in the
transition system for theMANIFOLD system� in the disconnection of all streams
connected with its corresponding port�

�C�� Internal process termination�

hp� ��T �E �halt�Ri
�p�halt�
����C hp� ��T �E � stopi

If the process has no ports or it has already destroyed the connections with
all its ports� then the execution of the statement halt causes the termination
of the process activity� This action will result� in the transition system for the
MANIFOLD system� in the elimination of the process from the set of active
processes�

�C�� Process start� If ��� begin� � E then

hp�P �T �E �wait�Ri �
�C hp�P �T �E �Ri

If the coordinator process p has received the event occurrence ��� begin� and
it is waiting to start its execution� then it may begin its activity� The process
is now ready to start the execution of the resumption R�

�C�� External process termination� If ��� die� � E then

hp�P �T �E �Ri �
�C hp�P �T �E n f��� die�g�halt�Ri

When the process p has received the event occurrence ��� die� then it may
cease its activity by executing a halt statement�

�C�� Event receiving�

�

hp�P �T �E �Ri
�p�receive�eo��
��������C hp�P �T �E � feog�Ri

An event occurrence is received and� consequently� stored in the event memory
of the coordinator process�

�C�� Event declaration�

hp�P �T �E � evn�e��S �Ri
evn�x�
���C hp�P �T �E � S
e
x ��Ri

where x � EvtNm is an event name that does not occur in the resumption S �R
nor in the set E � In this step a new event name x is declared and substituted
for e in S � The rule �M�� in the transition system for the MANIFOLD system�
subsequently uses the locality rule �M�� to ensure that x is indeed a fresh
event name in the whole system�

�C�� Event broadcasting�

hp�P �T �E � raise�e��S �Ri
�p�raise�e��
������C hp�P �T �E � S �Ri

By executing the statement raise�e� the process p broadcasts the name e� This
will result� in the transition system for the MANIFOLD system� in a broadcast
of the event occurrence �p� e� to all coordinator and atomic processes except
p itself �see rule ��M�� Event broadcasting	 in Section ���

�C�� Event posting�

hp�P �T �E �post�e��S �Ri
�p�post�e��
������C hp�P �T �E � S �Ri

This step is similar to the rule �C��� above� The di�erence� visible only in the
transition system for the whole MANIFOLD system� is that the event occur�
rence �p� e� will be sent only to the process p itself� it will not be broadcast
to any other process�

�C��� Coordinator process creation� Let C � CType with C��x � � hGC�PCi� If
GC
�x
�m� is a syntactically correct command then

hp�P �T �E �prc�q �C� �n��S �Ri
prc�q ��C� �m�
������C hp�P �T �E � S
q
q ���Ri

where q � is a fresh process name in PrcNm�C� that does not occur in the re�
sumption S �R nor in the set E � and �m is the list �n where q is replaced by
q �� The rule �M�� in the transition system for the MANIFOLD system� subse�
quently uses the locality rule �M�� to ensure that q � is indeed a fresh process
name in the whole system� This step represents the intention of process p to
create a new process� Unbeknownst to p� if C � CType� then this is an attempt
to create a coordinator process� if C � AType� then the rule �C���� below�
applies� A new process name q � for this process is created and substituted for
q in S � In this way� the process p will later be able to refer to its child within
S � while the new process q � initially knows the names in �m already in use

�

in the system passed to q � as actual parameters� The syntactic correctness of
the command of the newly created process is veri�ed at run�time� because the
type C may be known only after a �possible� substitution for a type name � �

�C��� Atomic process creation� Let A � AType with with A��x � � h!A�ActA��A

� �A�PAi� If �n is a correct substitution for �x then

hp�P �T �E �prc�q �A� �n��S �Ri
prc�q ��A��n�
������C hp�P �T �E � S
q
q ���Ri

where q � is a process name in PrcNm�A� that does not occur in the resump�
tion S �R nor in the set E � The rule �M��� in the transition system for the
MANIFOLD system� subsequently uses the locality rule �M�� to ensure that
q � is indeed a fresh process name in the whole system� This rule is similar to
the rule �C���� above� except that unbeknownst to p� an atomic process is
created instead of a coordinator process�

�C�� Process activation�

hp�P �T �E � start�q��S �Ri
start�q�
����C hp�P �T �E � S �Ri

By executing start�q�� the process p signals that the process q may begin its
activity� Locally� the execution of the statement start�q� has no e�ect on p�

�C��� Process deactivation�

hp�P �T �E ��nish�q��S �Ri
�nish�q�
����C hp�P �T �E � S �Ri

Similar to the preceding rule ��C�� Process activation	� the execution of
�nish�q� signals that the process q is to �nish its activity�

�C��� Stream creation� Let S � SType� � � q �i� 	 � q ��o� P � ClassOf �q��
and P� � ClassOf �q ��� If i is a port of P and o is a port of P� then

hp�P �T 	 U �E � str�s�S� �� 	��S �Ri
str�s��S�����
�������C hp�P �T 	 U ��E � S
s
s ���Ri

where s � is a new stream name not occurring in the resumption S �R nor in
the sets E and P � and

U ��

���
��
U
� � �� if � �� dom�U �

U
� � u �� if U ��� � u

� In practice� compilers perform such type checking statically� e�g�� by using struc�
tured names as identi�ers that include �parameter� and� inMANIFOLD� also port�	
signatures� Although it is straight�forward to use a similar scheme in our formal se�
mantics� we skip such �matters of e�ciency� here to avoid distracting non�essential
detail�

�

The rule �M��� in the transition system for the MANIFOLD system� subse�
quently uses the locality rule �M�� to ensure that s � is indeed a fresh stream
name in the whole system� In this step� a new stream of type S is created�
connecting port i of process q to port o of process q �� The stream receives the
new stream name s �� This name is also substituted for s in S for future ref�
erence� A new stack is obtained from the old one by pushing the information
that port i of process q must be locked �once more� if it is already locked��
Note that this step is executed only if the port names i and o are declared in
the classes that the processes q and q �� respectively� are instances of�

�C��� Breaking a stream�

hp�P �T �E �break�s��S �Ri
break�s�
����C hp�P �T �E � S �Ri

By executing the statement break�s�� the process p indicates that it wants
to sever the break�type connections of the stream s�

�C��� Source reconnection� Let P � ClassOf �q�� If i is a port of P then

hp�P �T 	 U �E � src�s� q �i��S �Ri
src�s�q�i�
�����C hp�P �T 	U ��E � S �Ri

where the formal de�nition of U � is the same as under the rule ��C��� Stream
creation	� above� The execution of the statement src�s� q �i� indicates that the
source of the existing stream named s should be connected to the port i of
process q � The new stack of unlock information is obtained by replacing the
top of the old one with the updated information about the port i of process
q � The action blocks if the port name i is not declared in the class P of which
q is an instance�

�C��� Sink reconnection� Let P � ClassOf �q�� If o is a port of P then

hp�P �T �E � snk�s� q �o��S �Ri
snk�s�q �o�
�����C hp�P �T �E � S �Ri

The execution of the statement snk�s� q �o� is meant to connect the sink of the
existing stream named s to the port o of process q � As before� the action blocks
if the port name o is not declared in the class P of which q is an instance�

�C��� Block entrance�

hp�P �T �E �G �Ri �
�C hp�P �T ��E �� S �Ri

hp�P �T �E � fj G jg�S ��Ri �
�C hp�P �T ��E �� S ��S ��R�i

A block is entered if one of the event patterns of the guarded command G is
positively evaluated� By the axiom ��C�� Event pattern evaluation	 and the
rule ��C�� Command choice	 it follows that a new empty unlock information
is put on the top of the stack� The control remains within the command body
of the block until it is completely executed�

�C��� Statement termination�

�

hp�P �T 	 U �E � end�Ri
unlock�U �
�����C hp�P �T �E �Ri

When a block statement is completely executed� then all ports locked during
the execution of the statement are unlocked� this is indicated by the action
unlock�U �� The top of the stack of is popped and the control goes to the
resumption R� The actual unlocking takes place in the transition system for
the MANIFOLD system�

�C�� Event pattern evaluation� Let ep � �pr � ev� with pr � q or pr � �q �
and ev � e or ev � �e� If �q �� e �� � eval�ep�E � then

hp�P �T �E � ep�S �Ri �
�C hp�P �T 	 ��E n f�q �� e ��g� S
q
q ��
e
e ���Ri

If an event pattern matches an event occurrence stored in the event memory�
then the event occurrence is removed from the event memory and an empty
unlock information is pushed on top of the stack� The control goes to the
statement S where the process name q � and the event name e � are substituted
for the formal parameters q and e� respectively�

�C�� Command choice�

hp�P �T �E �G��Ri
�
�C hp�P �T ��E �� S �Ri

hp�P �T �E � �G� G���Ri
�
�C hp�P �T ��E �� S �Ri

The choice between two guarded commands is nondeterministic� Using this
rule we can easily prove that if in a con�guration we substitute a resumption
�G� �G� G����R with the resumption ��G� G�� G���R �or vice�versa��
then the con�gurations obtained after one transition are the same�

��	 Atomic processes

Atomic processes are instances of computation classes� In Section �� we saw
that computation classes are speci�ed by a transition system extended with
some extra components� In order to be able to describe the behavior of in�
stances of computation classes within the MANIFOLD system� we adapt these
transition systems somewhat� essentially by naming the process� remembering
the actual parameters to be substituted for the formal ones� and by adding
some information on the status of the process�

More formally� we consider a new transition system

hConfA�ObsA��Ai

de�ned as follows� The set ConfA consists of tuples

�

hp�P �B � ��Ri �

where p � PrcNm is the name associated with the atomic process� P
 Ports

is a set containing the ports of the process� B �EvtNm � EvtNm is the function
binding the formal parameters of atomic processes to the actual ones� � is an
internal state of one of the transition systems A��x �� for some A � AType� and
R � fwait� run� stopg is the execution mode of the process �either waiting to
be activated� already activated and executing� or �nished��

The set ObsA of observable actions is de�ned as follows�

ObsA� f�g

� f�p� halt� j p � PrcNmg

� fdscnct��� j � � PrcNm � Portsg

� f�p� receive�eo�� j p � PrcNm� eo � EvnOccg

� f�p� raise�e�� j p � PrcNm� e � EvtNmg

� f�p� get�p�i� v�� j p � PrcNm� i � Ports� v � Valg

� f�p� put�p�o� v�� j p � PrcNm� o � Ports� v � Valg �

These actions are similar to the actions in ActA of some computation class of
type A � AType� except for the action dscnct��� which denotes the disconnec�
tion of all streams connected with the port �� Furthermore� we now add the
identity of the process executing the action everywhere� except for the internal
actions � �

Finally� the new transition relation �A
 ConfA�ObsA�ConfA is given by
the following axioms and rules�

�A�� Internal activity�

� �
�A �

�

hp�P �B � �� runi �
�A hp�P �B � ��� runi

An atomic process embedded into the MANIFOLD system changes its local
state by executing an internal action exactly in the same way as it would have
done without being embedded in the MANIFOLD system�

�A� Port disconnection� If R �� wait and i � P then

� halt
�A �

�

hp�P �B � ��Ri
dscnct�p�i��
������A hp�P n fig� �� ��Ri

Before terminating� a process destroys the connections with all its ports� The
state � is not changed until the set of ports becomes empty� In the transition
system for the MANIFOLD system� all streams connected with the port i will
be disconnected�

��

�A�� Process termination� If R �� wait then

� halt
�A �

�

hp� ��B � ��Ri
�p�halt�
����A hp� �� �� ��� stopi

After executing the action halt� the atomic process p terminates� changing
its execution mode to stop� No further transitions are possible from this new
con�guration�

�A�� Process activation�

hp�P �B � ��waiti
�p�receive����begin���
�����������A hp�P �B � �� runi

If the event begin is received from the �system	 � and the process is waiting to
be activated� then it may start its execution� In this case� its execution mode
wait is changed to run�

�A�� Receiving events
I�� Let R �� stop� If there exists q � PrcNm such that
eo � �q �B�e�� then

�
receive�e�
����� ��

hp�P �B � ��Ri
�p�receive�eo��
��������A hp�P �B � ���Ri

where R � wait implies eo �� ��� begin�� The process q is arbitrary and merely
represents an assumption about the identity of the sender of the event B�e��
which at this stage is unknown� An atomic process is willing to receive an event
in which it is interested any time after its creation� even when it is waiting
to be activated� However� receiving events cannot change the execution mode
of an atomic process� The only exception is given in the rule ��A�� Process
activation	�

�A�� Receiving events
II�� Let R �� stop� If B���e� � � then for all q �
PrcNm

hp�P �B � ��Ri
�p�receive��q�e���
���������A hp�P �B � ��Ri

where R � wait implies q �� � or e �� begin� If an event is received and
the process is not interested in it� then nothing happens� As before� the only
exception is when the process has not yet started its activity and it receives
for the �rst time the event begin from ��
Rules �A�� and �A�� together with the axiom �A�� imply that an atomic

process that is in an execution mode other than stop� is always event�enabled�
This can be explained as follows� From the moment of its creation� a process is
part of the system� and hence able to receive events� These may be stored for
a later reaction� after the start of its execution� Dually� when a process �nishes
its activity� it is eliminated from the system as soon as all connections of the
streams with its ports are broken up� Since termination is irreversible� when

��

its execution mode is stop it no longer makes sense for the atomic process to
be event�enabled�

�A�� raising events�

�
raise�e�
����A �

�

hp�P �B � �� runi
�p�raise�B�e���
��������A hp�P �B � ��� runi

Raising an event name e causes the broadcast of the event occurrence �p�B�e��
to all processes except itself� Here B�e� is the actual parameter substituted
for the formal parameter e at the moment of creation of the atomic process�

�A�� Getting values�

�
get�i�v�
����A �

�

hp�P �B � �� runi
�p�get�p�i�v��
�������A hp�P �B � ��� runi

A value v is read by the process p from its port i� assuming that it is available�

�A�� Putting values�

�
put�o�v�
����A �

�

hp�P �B � �� runi
�p�put�p�o�v��
�������A hp�P �B � �

�� runi

A value v is put by the process p on its port o� In the second�level transition
system for the MANIFOLD system� this value is replicated� if necessary� and
inserted into all �outgoing� streams connected to this port�

��� Streams

Next we de�ne a transition system for streams� Streams are active entities in
charge of transporting values between ports of processes in the MANIFOLD

system� Values �ow in a stream from its source to its sink� The source and the
sink of a stream are elements of the set

StrCn ��PrcNm � Ports� � f�g �

Here � denotes no connection �with � �� Nm�� while a pair in PrcNm�Ports

denotes a connection with a port of a process�

We describe the behavior of a stream by a transition system

hConfS �ObsS ��Si �

�

consisting of a set ConfS of con�gurations� ObsS of observations� and a tran�
sition relation �S � Streams are not programmable� their transitions depend
only on their type and their content�

The set ConfS of con�gurations for a stream consists of tuples

hs� S� �� 	�wi �

where s � StrNm is the name of the stream� S � SType is the type of the
stream� �� 	 � StrCn are the source and the sink of the stream� respectively�
and w � Val� is the list of values still to be delivered to its sink�

The set ObsS is de�ned as follows�

ObsS � f�s� get��� v�� j s � StrNm� � � PrcNm � Ports� v � Valg

� f�s� put��� v�� j s � StrNm� � � PrcNm � Ports� v � Valg

� f�s� break��� 	�� j s � StrNm� �� 	 � StrCng

� f�s� src��� 	�� j s � StrNm� � � StrCn� 	 � PrcNm � Portsg

� f�s� snk��� 	�� j s � StrNm� � � StrCn� 	 � PrcNm � Portsg

� f�s� dscnct��� 	�� j s � StrNm� � � PrcNm � Ports� 	 � StrCng �

Intuitively� �s� get��� v�� denotes the stream s getting the value v from the
port �� �s� put�	� v�� is the delivering of the value v to the port 	 by the
stream s� �s� break��� 	�� is the breaking of the connections � and 	 of the
stream s� �s� src��� 	�� is the reconnection of the source � of the stream s to
the new source 	� �s� snk��� 	�� is the reconnection of the sink � of the stream
s to the new sink 	� and �s� dscnct��� 	�� is the disconnection of the stream s
from � and� perhaps� 	� due to the termination of the process that owns the
port ��

The relation �S is de�ned as the least relation in ConfS � ObsS � ConfS
satisfying the following axioms and rules�

�S�� Get value�

hs� S� �� 	�wi
�s�get���v��
������S hs� S� �� 	� v 	 wi

At any stage� a value v can be inserted in the queue of values of a stream
s� assuming that it is available from the port connected at the source of the
stream�

�S� Put value�

hs� S� �� 	�w 	 vi
�s�put���v��
������S hs� S� �� 	�wi

��

A stream s can always remove a value v from its queue of values to be delivered�
and make this value available to the port connected at its sink�

�S�� Breakup
I�� If S � fKK� BKg then

hs� S� �� 	�wi
�s�break�������
��������S hs� S� �

��� 	�wi

where if S � KK then �� � � and ��� � �� otherwise �� � � and ��� � �� The
break�type �source and�or sink� connections of a stream s may be broken up
at any time� This rule primarily deals with all cases where the sink cannot be
disconnected� The source is disconnected only if it is of break�type� We will
see in Section � that if �� �� �� the port manager associated with this port
updates its information�

�S�� Breakup
II�� If S � fBB� KBg then

hs� S� �� 	�wi
�s�break�������
��������S hs� S� �

�����wi

where if S � KB then �� � � and ��� � �� otherwise �� � � and ��� � �� This
rule deals with the cases where the sink can be disconnected� The source is
disconnected only if it is of break�type�

�S�� Source reconnection�

hs� S� �� 	�wi
�s�src�������
�������S hs� S� �

�� 	�wi

where �� � StrCn is arbitrary and merely represents an assumption about
the new connection at the source of the stream s� In any con�guration� a
stream s can disconnect its source �regardless of its type� and reconnect it
to a new port� In the transition system for the MANIFOLD system� the port
managers associated with the processes connected at the source of the stream
before and after this transition step will update their information about their
a�ected ports�

�S�� Sink reconnection�

hs� S� �� 	�wi
�s�snk�������
�������S hs� S� �� 	

��wi

where 	 � � StrCn and� as before� it represents an assumption about the new
connection at the sink of the stream s�

�S�� Source disconnection
I�� Let � �� �� If S � fBB� KBg then

hs� S� �� 	�wi
�s�dscnct������
��������S hs� S�����wi

The stream s disconnects from its source if the process that owns this port
terminates its activity� If the connection to the sink is of break�type� then it
is also disconnected�

��

�S�� Source disconnection
II�� Let � �� �� If S � fBK� KKg then

hs� S� �� 	�wi
�s�dscnct������
��������S hs� S��� 	�wi

The stream s disconnects from its source because the process that owns this
port terminates its activity� The sink is not disconnected because it is of keep�
type�

�S�� Sink disconnection
I�� Let 	 �� �� If S � fBB� BKg then

hs� S� �� 	�wi
�s�dscnct������
��������S hs� S�����wi

A stream disconnects from its sink if the process that owns this port terminates
its activity� If the connection to the source is of break�type� then it is also
disconnected�

�S��� Sink disconnection
II�� Let 	 �� �� If S � fKB� KKg then

hs� S� �� 	�wi
�s�dscnct������
��������S hs� S� ����wi

A stream disconnects from its sink because the process that owns this port
terminates its activity� The source is not disconnected because it is of keep�
type�

� Semantics of MANIFOLD� second level

In Section �� we de�ned a collection of transition systems that specify the be�
havior of coordinator processes� atomic processes� and streams� as autonomous
entities that can compute and interact with their environment� This collection
de�nes the �rst�level transition system

hConf��Obs����i�

where Conf� � ConfC �ConfA �ConfS is the set of all con�gurations of coor�
dinator processes� atomic processes� and streams� Obs� � ObsC �ObsA�ObsS
is the set of all observable actions of coordinator processes� atomic processes�
and streams� and �� is the least relation in Conf��Obs��Conf� including
�C � �A� and �S �

In this section� we de�ne another transition system that describes the behavior
of an entire MANIFOLD system� In this new transition system� the interaction
between di�erent processes and streams will be modeled by combining di�erent
transition steps of the �rst�level systems into a single second�level transition
step�

��

The activity of an entire MANIFOLD system is modeled using con�gurations
consisting of three components� the active processes� a list for each active
atomic or coordinator process of the pending messages that have already been
broadcast but not yet received by that process� and a port manager for each
atomic or coordinator process� These concepts are de�ned below�

Active processes

A MANIFOLD system starts its execution with an instance of a coordinator
process� This coordinator process may create and activate new instances of
atomic processes� streams� and�or coordinator processes� The latter may in
turn create new instances of processes� and so on� To describe the con�gura�
tions of each process active in a MANIFOLD system� we de�ne a set APrc of
collections of active processes as the set of all �nite subsets of Conf��

We consider only sets of active processes A � APrc with di�erent names�
Therefore� we need a function Id �APrc P�PrcNm � StrNm� that� for each
set A � APrc of active processes� returns the set of process or stream names
of the con�gurations in A�

Id�A�� fp j hp�P �T �E �Ri � A � ConfCg

� fp j hp�P �B � ��Ri � A � ConfAg

� fs j hs� S� �� 	�wi � A � ConfSg �

Given a set of active processes A � APrc� we say that a process stream or
event name n occurs in A if either n � Id�A� or there exists C � A such that

� C � hp�P �T �E �Ri � ConfC and n occurs in E or R�
� C � hp�P �B � ��Ri � ConfA and n � B�x � for some x � dom�B��

Lists of pending messages

We already saw in the Section � that active processes of the MANIFOLD sys�
tem may generate and receive event occurrences� When an event occurrence is
generated� it is broadcast to all other active atomic and coordinator processes
which� eventually� will receive it� To model this broadcast mechanism� we asso�
ciate with each con�guration of theMANIFOLD system� a sequence of pending
event occurrences for every process� These represent the event occurrences
that have already been broadcast but not yet received by that process� Recall
that a broadcast event occurrence may be received by di�erent processes at
di�erent moments in time� They will be received one at a time when a pro�
cess performs a �receive	 transition� whereby the received event occurrence is

��

deleted from the list of pending event occurrences of that process�

In MANIFOLD� the reception of event occurrences respects the order in which
they were broadcast by their source processes only� Thus� two event occur�
rences broadcast by di�erent source processes may be received by a process
in any order� while two event occurrences broadcast by the same source pro�
cess are received by any process that observes them both� in the same order
as they were produced� We model this aspect of the semantics of MANIFOLD

by considering Mazurkiewicz traces
��� of pending event occurrences� rather
than sequences of them�

First� we de�ne a binary relation � on EvnOcc that relates two event occur�
rences with the same process as their common source�

eo � eo � if and only if eo � �p� e� and eo � � �p� e �� �

The relation � is re�exive� commutative� and also transitive�

Let now F�EvnOcc��� be the partially commutative monoid obtained by
considering all strings in EvnOcc� modulo the least congruence �with respect
to string concatenation� such that� for all eo and eo � in EvnOcc�

eo 	 eo � � eo � 	 eo if eo �� eo � �

Elements of F�EvnOcc���� typically denoted by t � are called traces
���� We
write � for the string concatenation 	 modulo the above congruence� and feo
for the congruence class containing the one�element string eo � EvnOcc� The
congruence class containing the empty string is denoted by �

In other words� we consider lists of pending event occurrences such that oc�
currences with di�erent source processes may commute� In each con�guration�
we associate such a list to every atomic or coordinator process� Formally� we
consider partial functions M in

Msg � PrcNm � F�EvnOcc��� �

The partiality of functions in Msg is necessary because the set of active pro�
cesses can dynamically change�

Port managers

Every port has a port manager that regulates the �ow of values into or out of
the process that owns the port� Speci�cally� a port manager associates with

��

its port a natural number l and two �nite sets of stream names� IC and OC �
The number l indicates how many times the port has been locked� while the
two sets IC and OC contain the names of the streams connected to the port
at their sink or source� respectively� Following is a more detailed description
of the relevance of these components�

If l � � then the port is said to be unlocked and values can �ow through the
port� However� if l � � then the port is locked and values cannot �ow through
the port� We see below that every time a new stream is created or the source
of a stream is reconnected� its source port is locked� i�e�� its port manager
increments the l value of the port by �� The l value of a port is decremented
by � or more when the transition system of a coordinator process �that has
already locked the port� executes the action �unlock�U �	� The increment and
decrement of the l value of a port is formally de�ned in the transition system
below� It is important to note that the �unlock 	 action is not programmable
and takes place every time a coordinator process completes the actions within
a block �see the rule ��C��� Statement termination	 in Section �����

A port manager of a port � stores in the set IC the names of the streams whose
common sink is �� and in the set OC the names of the streams whose common
source is �� This information is dynamically updated� for example� every time
a new stream is created� The information in OC is used� for example� every
time a value �ows through the port out of the process� enabling the port
manager to deliver a copy of the value to each stream in OC �

A port manager cannot be considered an autonomous active process but rather
a store of information available for each process� However� the execution of
a process is independent of the activity of its port managers� For example� a
process may be executing some internal activity� while one of its port managers
updates the information about its port�

Formally� within a con�guration of the MANIFOLD system� we model a collec�
tion of port managers by a partial function Pt in

PrtMng ��PrcNm � Ports�� �IN� P�StrNm�� P�StrNm�� �

The partiality of a function Pt is necessary because the set of active processes
�and hence of their ports� can dynamically change� If Pt��� is de�ned� then
we refer to it as the port manager associated with the port �� In this case we
say that its left component is the lock�value of � and its other two components
are the sets of streams with the port � as their common sink �IC � and source
�OC �� respectively�

��

A transition system for a MANIFOLD system

In this section we de�ne a transition system to model the behavior of a
MANIFOLD system� The basic scheme is as follows� Given a collection of con�
�gurations of active processes �either coordinator processes� atomic processes�
or streams�� we de�ne a transition for a MANIFOLD system whenever one or
more of these processes make a transition at the �rst level� Some of these
transitions may need to be synchronized with others before they can actually
take place� resulting in a coordinated activity� Also� we must take care of the
broadcasting of event occurrences to all processes� and manage the information
stored in the port managers�

We describe the behavior of a MANIFOLD system through a transition system

hConf��Obs����i�

consisting of a set Conf� of con�gurations� a set Obs� of observables� and a
transition relation ��� Each of these components is de�ned in detail� below�

The set Conf� of con�gurations consists of tuples

hA�M �Pti �

where A � APrc is a set of active processes� M � Msg is a partial function
for the lists of pending messages� and Pt � PrtMng is a partial function for
the port managers�

We say that a con�guration hA��M��Pt�i is disjoint from another con�guration
hA��M��Pt�i if Id�A���Id�A�� � �� dom�M���dom�M�� � � and dom�Pt���
dom�Pt�� � ��

Given a designated coordinator type C � CType with its associated declaration
C��� � hG �Pi� aMANIFOLD system starts its execution from the con�guration

hfhp�P � �� �� "Gig� �
p � ��� begin���Pti

where p is a new process name not occurring in G � and Pt�p�i� � h�� �� �i for
all i � P and it is unde�ned otherwise� In other words� theMANIFOLD system
starts its execution by activating an instance of the class with type C� which
receives a new name p� Because the execution of a coordinator process is trig�
gered by event occurrences� the system sends to p a starting event occurrence
��� begin�� The locality rule �M�� in the transition system for the MANIFOLD

system� ensures that p indeed remains a globally unique process name in the
whole system�

��

The set Obs� is de�ned as follows�

Obs�� f�g � EvnOcc � PrcNm � StrNm � EvtNm �

Intuitively� � denotes some internal activity� eo � EvnOcc is the broadcasting
of an event occurrence� and n � PrcNm�StrNm�EvtNm denotes a new name
created by some process�

The transition relation �� is de�ned as the least relation in Conf��Obs��
Conf� satisfying the axioms and rules introduced below� We introduce each
transition step� below� by conditions on the minimal set of resources necessary
for that step to take place� Then� we can embed these resources into a broader
context� using the locality rules ��M�����M��	� de�ned below� In this way�
our de�nition of the transition relation �� re�ects the true time and space
decoupling of a MANIFOLD system�

�M�� Internal activity�

C �
�� C

�

hfCg� �� �i �
�� hfC �g� �� �i

A single process may execute an internal action� about which no further knowl�
edge is necessary� Since the action is executed locally by the process� it is not
visible to the environment and no resource from the environment is required
by the process�

�M� Process halting� Let dom�M � � fpg�

C
�p�halt�
����� C

�

hfCg�M � �i
�p�stop�
����� h�� �� �i

When a process terminates its execution� it ceases to be an active process and
broadcasts an event occurrence denoting its termination� Every other active
process will eventually receive this event occurrence� thus learning that the
process p has terminated its activity�

�M�� Port disconnection� Let dom�Pt� � f�g � ff �s� j s � IOC � f �s� �� �g�
where Pt��� � hl � IC �OC i� IOC � IC �OC � and f � IOC StrCn is de�ned
below� We have

C
dscnct���
������ C

� and Cs
�s�dscnct����s ��
���������� C

�

s for all s � IOC

hfCg � fCs j s � IOC g� ��Pti �
�� hfC �g � fC �

s j s � IOC g� ��Pt �i

where f �s� � 	s if Cs
�s�dscnct����s ��
���������� C

�

s � and� for x � dom�Pt� n f�g�

Pt ��x � � hl �� IC � n f ���x ��OC � n f ���x �i if Pt�x � � hl �� IC ��OC �i �

��

When a process disconnects a port� every stream whose source or sink is con�
nected to this port must break its connection� regardless of its type� Depending
on its type� the other end of each such stream may also be broken� This is
why all port managers in f �IOC � are involved in this step� Note that the port
manager of the port that is disconnected in this rule is destroyed�

�M�� Event declaration�

C
evn�e�
���� C

�

hfCg� �� �i e
�� hfC �g� �� �i

�

A new event name e is declared by a process in the con�guration C � The label
of the above transition is used in the locality rule �M�� to ensure that e is a
fresh event name in the whole system�

�M�� Event broadcasting� If dom�M � � fpg then

C
�p�raise�e��
������� C

�

hfCg�M � �i
�p�e�
��� hfC

�g�M � �i
�

The process p broadcasts an event occurrence to all active processes� As ex�
plained in the rule ��M�� Locality
II�	 the requirement that the function M
is de�ned only for p implies that this event occurrence will not be sent to the
process p itself�

�M�� Event posting� Let dom�M � � fpg� If M �p� � t then

C
�p�post�e��
������� C

�

hfCg�M � �ig �
�� hfC �g�M �� �i

where M � � M
p � t � g�p� e��� The event occurrence �p� e� is sent only to
its source process p� This operation is asynchronous� and hence� the event
occurrence need not be received immediately by the process�

�M�� Input synchronization� Let dom�Pt� � f�g� If Pt��� � hl � IC �OC i and
s � IC then

C�
�s�put���v��
������� C

�

� and C�
�p�get���v��
������� C

�

�

hfC��C�g� ��Pti
�
�� hfC �

��C
�

�g� ��Pti

A value �ows through the port � from a stream s into a process p� The
condition s � IC guarantees that s is a stream� but p can be an atomic
process or a stream �not necessarily distinct from s�� Note the nondeterminism
caused by the possibility of having several streams with their respective sinks
connected to the same port�

�M�� Output synchronization� Let dom�Pt� � f�g� If Pt��� � h�� IC �OC i
and OC �� � then

��

C
�n�put���v��
�������� C

� and Cs
�s�get���v��
������� C

�

s for all s � OC

hfCg � fCs j s � OCg� ��Pti �
�� hfC �g � fC �

s j s � OC g� ��Pti

A process or a stream o�ers to put a value v to the set of streams that share
the unlocked port � as their common source� The name n may refer to either
the process that owns the port � itself� or one of the streams in IC � i�e�� one of
the streams whose sinks are connected to the port �� In the �rst case� n is an
atomic process �because coordinator processes do not produce values� and the
value �ows in a manner that is the dual of the one described in the previous
rule� from an atomic process to one or more streams connected to one of its
ports� In the second case� the process that owns the port � may be an atomic
or a coordinator process� and its port is used only to let values �ow through
from some streams to some other streams�

�M�� Coordinator process creation� If C � CType and C��x � � hG �Pi then

C
prc�p�C��n�
������ C

�

hfCg� �� �i p
�� hfC �� hp�P � � ��wait�"G
�x
�n�
self
p�ig�M �Pti

where M � �
p � � and Pt�p�i� � h�� �� �i for all i � P and it is unde�
�ned otherwise� In this step� a process creates a new coordinator process� An
initial con�guration for the new coordinator process is created� and assigned
to the name p� The stack for unlock information of p is initially empty� and
so is its event memory� The resumption of p indicates that before proceeding
with the execution of the command G � it must �rst wait until it is activated
�rule ��M��� Process activation	� below�� At the moment of its birth� a new
process has no pending messages to be received� An initial port manager is
also created for every port of the process�
The label of the above transition indicates that p is a new name created

during this step and is used in the locality rule �M�� to ensure that it is a
fresh name in the whole MANIFOLD system�

�M��� Atomic process creation� If A � AType and A��x � � h!�Act ��� ��Pi
then

C
prc�p�A��n�
������ C

�

hfCg� �� �i p
�� hfC �� hp�P � �
�x � �n�� ��waitig�M �Pti

where M � �
p � �� and Pt�p�i� � h�� �� �i if i � P and it is unde�ned oth�
erwise� This step is similar to the previous rule �M��� except that an atomic
process is created instead of a coordinator process� The initial con�guration
for a new atomic process consists of its name p� an initial binding of its for�
mal parameters to the actual ones� and an initial state� Before starting its
execution� the process must receive the event begin from the system ��	�
As in the previous rule� the new process has no pending messages to be

received and an initial port manager is created for each of its ports�

�

�M��� Process activation� If dom�M � � fpg then

C
start�p�
����� C

�

hfCg�M � �i �
�� hfC �g�M �� �i

where M � � M
p � t � g��� begin�� for M �p� � t and it is unde�ned otherwise�
The event name begin is sent to the process p to announce that it can start
its execution�

�M�� Process deactivation� If dom�M � � fpg then

C
�nish�p�
����� C

�

hfCg�M � �i �
�� hfC �g�M �� �i

where M � � M
p � t � g��� die�� for M �p� � t and it is unde�ned otherwise�
This rule is the dual of the previous rule �M���� to terminate the execution of
a process� the event name die must be sent to it�

�M��� Stream creation� If dom�Pt� � f�� 	g then

C
str�s�S�����
������� C

�

hfCg� ��Pti s
�� hfC

�� hs� S� �� 	� ig� ��Pt �i

where� for x � f�� 	g�

Pt ��x ��

���
��
hl �� IC �OC � fsgi if x � � and Pt��� � hl � IC �OC i

hl � IC � fsg�OC i if x � 	 and Pt�	� � hl � IC �OC i �

A new stream is created with name s� Its source is connected to the port � and
its sink to the port 	� Initially� the new stream has no value to deliver� The
port managers of the two ports connected at the ends of the stream update
their information� The label of the above transition is used in the locality rule
�M�� to ensure that s is a fresh stream name in the whole system�

�M��� Unlocking ports� If dom�Pt� � dom�U � then

C
unlock�U �
������ C

�

hfCg� ��Pti �
�� hfC �g� ��Pt �i

where� Pt ���� � hl�U ���� IC �OC i if Pt��� � hl � IC �OC i� and it is unde�ned
otherwise� We saw in the previous rule �M��� how the lock�value of a port is
incremented by its port manager� This rule describes the inverse operation that
takes place when a coordinator process executes an �unlock	 action� typically�
when a statement is completely executed and the process exits from a block
construct� The function U � Unlocks contains the information about the

��

number of times each port must be unlocked� Hence� every port manager
associated with a port in U must update its information�
During an execution of a MANIFOLD system� the lock�value of each port

manager is always greater than or equal to �� This is because it is decremented
only if it has previously been incremented� for example� by rule �M��� or
�M����

�M��� Stream breakup� Let dom�Pt� � f�� 	g n f�g�

C�
break�s�
����� C

�

� and C�
�s�break������
��������� C

�

�

hfC��C�g� ��Pti
�
�� hfC

�

��C
�

�g� ��Pt
�i

where� for x � f�� 	g�

Pt ��x ��

���
��
hl � IC �OC n fsgi if x � � and Pt��� � hl � IC �OC i

hl � IC n fsg�OC i if x � 	 and Pt�	� � hl � IC �OC i

In Section ���� we saw that if a stream is connected at both ends with a break�
type connection� then its connections break through this operation� Hence� the
port managers of the ports at the two ends must update their information�
Note that we update the information about a port only when there is a real
connected port �i�e�� not �� and the connection is not keep�type� For example�
if both ends of the stream are either disconnected or have a keep�type connec�
tion then dom�Pt� � � and hence no port manager involvement is necessary�

�M��� Sink reconnection� Let dom�Pt� � f�� 	g n f�g�

C�
snk�s���
����� C

�

� and C�
�s�snk������
�������� C

�

�

hfC��C�g� ��Pti
�
�� hfC �

��C
�

�g� ��Pt
�i

where� for x � f�� 	g�

Pt ��x ��

���
��
hl � IC n fsg�OC i if x � � and Pt��� � hl � IC �OC i

hl � IC � fsg�OC i if x � 	 and Pt�	� � hl � IC �OC i �

In this step� the stream s is disconnected from its current sink and is subse�
quently reconnected to the port 	 instead� Note that if the stream is discon�
nected at its sink� i�e� � � �� then only one port manager is involved in this
step�

�M��� Source reconnection� Let dom�Pt� � f�� 	g n f�g�

C�
src�����
����� C

�

� and C�
�s�src������
������� C

�

�

hfC��C�g� ��Pti
�
�� hfC �

��C
�

�g� ��Pt
�i

where� for x � f�� 	g�

��

Pt ��x ��

���
��
hl � IC �OC n fsgi if x � � and Pt��� � hl � IC �OC i

hl �� IC �OC � fsgi if x � 	 and Pt�	� � hl � IC �OC i �

This step is similar to the previous one� except that the source of a stream is
reconnected instead of its sink� This is why the lock number of the new port
connected at the source is incremented�

�M��� Receiving event occurrences� Let dom�M � � fpg� If M �p� � feo� t then

C
�p�receive�eo��
��������� C

�

hfCg�M � �i �
�� hfC

�g�M
p � t �� �i

An event occurrence that is in the list of pending messages associated with a
process can be received by this process at any stage by performing a �receive	
transition� Once received� the event occurrence is removed from the list of
pending messages of the process�
Recall that because we use traces as lists of pending messages� event occur�

rences with di�erent process sources may be received in any order� and event
occurrences broadcast by the same source process are received in the same
order as they were broadcast�

�M��� Locality
I�� Let hA��M��Pt�i� hA��M��Pt�i and hA��M��Pt�i be three
con�gurations in Conf�� If both hA��M��Pt�i and hA��M��Pt�i are disjoint
from hA��M��Pt�i then

hA��M��Pt�i
�
�� hA��M��Pt�i

hA� � A��M� �M��Pt� � Pt�i
�
�� hA� � A��M� �M��Pt� � Pt�i

where � is the union of partial functions �de�ned in Appendix A�� This rule
and the next two� below� re�ect the decoupling of the independent activities
of processes in a system� each active process can independently and locally
take one step� possibly broadcasting event occurrences to other processes� The
disjointness conditions ensure that a new name is not used by two di�erent
processes�

�M�� Locality
II�� Let hA��M��Pt�i� hA��M��Pt�i and hA��M��Pt�i be three
con�gurations in Conf� such that both hA��M��Pt�i and hA��M��Pt�i are
disjoint from hA��M��Pt�i� If eo � EvnOcc then

hA��M��Pt�i
eo
�� hA��M��Pt�i

hA� � A��M� �M��Pt� � Pt�i
eo
�� hA� � A��M �Pt� � Pt�i

where

M �p��

���
��
M��p� if p � dom�M��

M��p�� feo if p � dom�M�� �

��

Names broadcast by processes in dom�M�� are added to the list of pending
messages of every process in dom�M���

�M�� Locality
III�� Let hA��M��Pt�i� hA��M��Pt�i and hA��M��Pt�i be three
con�gurations in Conf� such that both hA��M��Pt�i and hA��M��Pt�i are
disjoint from hA��M��Pt�i� If the �process� stream� or event� name n does not
occur in A� then

hA��M��Pt�i
n
�� hA��M��Pt�i

hA� � A��M� �M��Pt� � Pt�i
n
�� hA� � A��M� �M��Pt� � Pt�i

This rule guarantees that the new name n created by some process in A� is
also new for processes in A��

	 Conclusions and further work

MANIFOLD is a pure coordination language that abstracts computation away
as internal� unobservable details inside atomic processes� As such� it is a good
model and language for the formal study of the core concepts and issues in�
volved in interactive systems �as in
���� and coordination programming� In
this regard� MANIFOLD is especially interesting as an example of a control�
oriented coordination language� The fact thatMANIFOLD has a practical� real
implementation and has already been used in a number of applications� also
makes the formal study of this language necessary as well as interesting�

The separation of computation and coordination concerns that is inherent in
MANIFOLD is the basis for the two�level transition system model we use for
its formal semantics in this paper� We believe such two�level models are useful
not only for the formal study of control�oriented coordination languages such
as MANIFOLD� but more generally� for all coordination languages� Such an
approach separates the concerns for the proper behavior of each individual
component process in a system� from the concerns for the proper behavior of
the system as a whole� The �rst class of concerns are addressed in the �rst
level of the semantic model� assuming each component process is embedded in
an ideal supportive environment� The second class of concerns are addressed
in the second level of the semantic model where the collective behavior of
the system emerges only from the interactions among its components� whose
individual behavior mutually engage and constrain that of their peers�

One of the important reasons for the study of the formal semantics of the
MANIFOLD language is proving properties of programs written in this lan�
guage� This requires a precise de�nition of the �observables	 produced by the
second�level transition rules presented in this paper� The formal de�nition of
these observables may depend on the speci�c investigation of the properties

��

and proofs they are to be used for� For instance� one may or may not wish
to include a local time�stamp in each observable� which will then collectively
imply a virtual global clock and re�ect a partial order on all observables� With
or without such time�stamps� however� the two level semantic model we use for
MANIFOLD already dictates much of the essence of the observables that can
be produced by our second�level transition system� these observables can only
re�ect such activities as creation and death of processes and streams� breakup
and �re�connection of streams and ports� production� �ow� and consumption
of values through ports and streams� broadcast and reception of events� etc� A
trace of such observables produced as the outcome of our formal semantics for
a MANIFOLD program is thus conceptually indistinguishable from an actual
trace of the execution of the MANIFOLD program by the MANIFOLD run�time
system�

The set of all possible permutations of the trace of aMANIFOLD program that
are permissible under the partial order of its observables� then� corresponds to
the set of all possible executions of thatMANIFOLD program on any platform�
This makes the traces produced by formal semantics useful for the study of the
behavior of actual programs� Our experience with writing real lifeMANIFOLD

programs indicates that a majority of the bugs we have observed inMANIFOLD

program modules are of the type that could have been detected by an investi�
gation of their individual behavior in isolation� Most such bugs could have been
revealed through asking reachability questions� which guarded commands are
reachable from a given guarded command� From which other guarded com�
mands can a given guarded command be reached� In practice� reachability
questions can also reveal many of the important aspects of the interaction
behavior of the component processes that comprise a MANIFOLD application�
can certain states �e�g�� representing deadlocks� ever be reached� The formal
semantics presented in this paper can be used as the basis for the development
of tools for visual debugging� as well as analysis and �semi�automatic veri�ca�
tion of the coordination protocols of concurrent programs� This is part of our
on�going work on building a visual programming environment forMANIFOLD�
called Visifold
����

The semantic model presented in this paper already has a great deal of modu�
larity� the second�level transition system is de�ned essentially as a composition
of the �rst�level transition systems� The practical signi�cance of composition�
ality is that it lends itself to better modular software design� A target for
further research is the design of other fully modular compositional semantic
models for MANIFOLD� to support analysis and proof techniques for reason�
ing about the properties of programs� For instance� a denotational semantics
for MANIFOLD may be derivable from the operational semantics we present
in this paper following the approach of
��� There a three�level denotational
semantics is given for a distributed object�oriented language� a �rst level for
statements� one for objects in isolation� and a third one for the whole system

��

of objects running in parallel�

On a more theoretical level� the work presented in this paper is being used
as a basis for the development of a more abstract calculus for coordination�
Furthermore� the insight we gained through the work reported in this paper
indicates that coalgebraic models
������ seem very appealing as a mathemat�
ically sound foundation for the semantics of MANIFOLD� Such mathematical
models can also bene�t other coordination models and languages with simi�
lar constructs� or those that can in turn be modeled by constructs analogous
to our semantic model for MANIFOLD� As our formal semantics presented in
this paper demonstrates� MANIFOLD	s strict separation of computation from
communication� plus the fact that it is based on an exogenous model of co�
ordination� leads to a clear dichotomy of internal vs� externally observable
behavior of each process� This� in turn� corresponds directly with the inherent
�strict information hiding	 property of coalgebras� On the other hand� coal�
gebraic models for the semantics of MANIFOLD raise interesting challenges in
the �eld of coalgebras� to re�ect the compositionality ofMANIFOLD� a suitable
theory of composition of coalgebras is necessary�

Acknowledgment

We are thankful to the former and present members of the MANIFOLD group
at CWI for their contributions towards the development� implementation� and
application of this language� through which process many of the abstract no�
tions presented in this paper were congealed and tested� We are also grateful
for the comments of Frank de Boer and the Amsterdam Coordination Group
on earlier versions of this paper� We are indebted to the anonymous referees�
who have written extensive and detailed reports� suggesting several ways of
improving our presentation�

References

��� America� P�� and Rutten� J� A layered semantics for a parallel object�
oriented language� Formal aspects of computing
 �����	�
�������

��� Andreoli� J��M�� Ciancarini� P�� and Pareschi� R� Interaction Abstract
Machines� In Trends in Object�Based Concurrent Computing� MIT Press� ���
�
pp� ��������

�
� Arbab� F� Coordination of massively concurrent activities� Tech�
Rep� CS�R����� Centrum voor Wiskunde en Informatica� Kruislaan ��
�
���� SJ Amsterdam� The Netherlands� November ����� Available on�line
http���www�cwi�nl�ftp�CWIreports�IS�CS�R�����ps�Z�

��

��� Arbab� F� The IWIM model for coordination of concurrent activities� In
Coordination Languages and Models �April ����	� P� Ciancarini and C� Hankin�
Eds�� vol� ���� of Lecture Notes in Computer Science� Springer�Verlag� pp�
��
���

��� Arbab� F� Manifold
version �� Language reference manual� Tech� rep�� Centrum voor Wiskunde
en Informatica� Kruislaan ��
� ���� SJ Amsterdam� The Netherlands� �����
Available on�line http���www�cwi�nl�ftp�manifold�refman�ps�Z�

��� Arbab� F� What do you mean� coordination� Bulletin of the Dutch

Association for Theoretical Computer Science� NVTI �����	� ������ Available
on�line http���www�cwi�nl�NVTI�Nieuwsbrief�nieuwsbrief�html�

��� Arbab� F�� Blom� C�� Burger� F�� and Everaars� C� Reusable
coordinator modules for massively concurrent applications� In Proceedings

of Euro�Par �� �August ����	� L� Bouge� P� Fraigniaud� A� Mignotte� and
Y� Robert� Eds�� vol� ���
 of Lecture Notes in Computer Science� Springer�
Verlag� pp� ��������

��� Arbab� F�� Blom� C�� Burger� F�� and Everaars� C� Reusable
coordinator modules for massively concurrent applications� Software� Practice
and Experience ��� � �June ����	� ��
��
�� Extended version�

��� Arbab� F�� Ciancarini� P�� and Hankin� C� Coordination languages for
parallel programming� Parallel Computing �
� � �July ����	� ��������� special
issue on Coordination languages for parallel programming�

���� Arbab� F�� Herman� I�� and Spilling� P� An overview of Manifold and its
implementation� Concurrency� Practice and Experience �� � �February ���
	�
�
����

���� Arbab� F�� and Monfroy� E� Using coordination for cooperative constraint
solving� In Proceedings of the ���� ACM Symposium on Applied Computing�

Special Track on Coordination Models� Languages and Applications �Atlanta�
Georgia� February�March ����	� ACM� pp� �
������

���� Bonsangue� M�� Kok� J�� Boasson� M�� and de Jong� E� A software
architecture for distributed control systems and its transition system semantics�
In Proceedings of the ���� ACM Symposium on Applied Computing� Special
Track on Coordination Models� Languages and Applications �Atlanta� Georgia�
February�March ����	� ACM� pp� ��������

��
� Bonsangue� M� M�� Kok� J� N�� and Zavattaro� G� Sharing distributed
replicated data� Tech� rep�� Rijksuniversiteit Leiden� August ����� Unpublished
note� submitted to conference�

���� Bouvry� P�� and Arbab� F� Visifold� A visual environment for a coordination
language� In Coordination Languages and Models �April ����	� P� Ciancarini
and C� Hankin� Eds�� vol� ���� of Lecture Notes in Computer Science� Springer�
Verlag� pp� ��
�����

��

���� Busi� N�� Gorrieri� R�� and Zavattaro� G� Three semantics of
the output operation for generative communication� In Coordination

Languages and Models� Proceedings of the second international conference

COORDINATION�� �September ����	� D� Garlan and D� Le M�etayer� Eds��
vol� ���� of Lecture Notes in Computer Science� Springer�Verlag� pp� ��������

���� Busi� N�� Gorrieri� R�� and Zavattaro� G� A process algebraic view of
Linda coordination primitives� Theoretical Computer Science ���� � �����	�
��������

���� Butcher� P� A behavioral semantics for Linda��� IEEE Software Engineering

Journal
� � �July ����	� ��������

���� Ciancarini� P�� Gorrieri� R�� and Zavattaro� G� An alternative
semantics for the parallel operator of the calculus of Gamma programs�
In Coordination Programming� Mechanisms� Models and Semantics� Imperial
College Press� ����� pp� �
������

���� Ciancarini� P�� and Hankin� C�� Eds� �st Int� Conf� on Coordination
Languages and Models� vol� ���� of Lecture Notes in Computer Science�
Springer�Verlag� April �����

���� Ciancarini� P�� Jensen� K�� and Yankelevich� D� On the operational
semantics of a coordination language� In Object�Based Models and Languages

for Concurrent Systems �����	� P� Ciancarini� O� Nierstrasz� and A� Yonezawa�
Eds�� vol� ��� of Lecture Notes in Computer Science� Springer�Verlag� Berlin�

���� Dury� J��Y� V�� Bellissard� L�� and Marangozov� V� A component
calculus for modelling the Olan con�guration language� In Coordination

Language and Models� Proc� �nd Int� Conf� Coordination �����	� D� Garlan
and D� L� M�etayer� Eds�� vol� ���� of LNCS� Springer� pp�
�������

���� Everaars� C�� and Arbab� F� Coordination of distributed�parallel multiple�
grid domain decomposition� In Proceedings of Irregular �� �August ����	�
A� Ferreira� J� Rolim� Y� Saad� and T� Yang� Eds�� vol� ���� of Lecture Notes

in Computer Science� Springer�Verlag� pp� �
������

��
� Everaars� C�� Arbab� F�� and Burger� F� Restructuring sequential
Fortran code into a parallel�distributed application� In Proceedings of the

International Conference on Software Maintenance �� �November ����	�
IEEE� pp� �
����

���� Everaars� C�� and Koren� B� Using coordination to parallelize sparse�grid
methods for
D CFD problems� Parallel Computing �
� � �July ����	� �����
����� special issue on Coordination languages for parallel programming�

���� Everaars� C� T� H�� and Lisser� B� Coordination of a distributed proof
checker� Tech� rep�� Centrum voor Wiskunde en Informatica� April �����
Unpublished note�

���� Foster� I�� and Taylor� S� Strand� New Concepts in Parallel Programming�
Prentice�Hall� �����

��

���� Garlan� D�� and Le M�etayer� D�� Eds� �nd Int� Conf� on Coordination

Languages and Models� vol� ���� of Lecture Notes in Computer Science�
Springer�Verlag� September �����

���� Gelernter� D� Generative communication in Linda� ACM Transactions on

Programming Languages and Systems �� � �����	� �������

���� Hankin� C�� Le M�etayer� D�� and Sands� D� A calculus of Gamma
programs� In Proc� �th workshop on Languages and Compilers for Parallel

Computing ����
	� vol� ��� of Lecture Notes in Computer Science� Springer�
Verlag�

�
�� Inverardi� P�� Wolf� A�� and Yankelevich� D� Checking assumption in
component dynamics at the architectural level� In Coordination Language and

Models� Proc� �nd Int� Conf� Coordination �����	� D� Garlan and D� L� M�etayer�
Eds�� vol� ���� of LNCS� Springer� pp� ����
�

�
�� Jacobs� B�� and Rutten� J� A tutorial on �co	algebras and
�co	induction� Bulletin of EATCS �� �����	� �������� Available on�line
http���www�cs�kun�nl� bart�PAPERS�JR�ps�Z�

�
�� Jacquet� J��M�� and Bosschere� K� D� On the semantics of �log � Future

Generation Computer Systems �	� � �����	� �
��
��

�

� Kramer� J� Con�guration programming � a framework for the development
of distributable systems� In Proc� IEEE Int� Conf� on Computer Systems and
Software Engineering �CompuEuro �	� �����	� pp�
���
���

�
��Mazurkiewicz� A� Concurrent program schemes and their interpretations�
Tech� Rep� DAIMI ��
���� Aarhus University� �����

�
�� Nicola� R� D�� and Pugliese� R� An observational semantics for Linda� In
Structures in Concurrency Theory �����	� Workshops in Computing� Springer�
Verlag� Berlin� pp� ������
�

�
�� Nicola� R� D�� and Pugliese� R� A process algebra based on Linda� In
Coordination Languages and Models �April ����	� P� Ciancarini and C� Hankin�
Eds�� vol� ���� of Lecture Notes in Computer Science� Springer�Verlag� pp� ����
����

�
�� Papadopoulos� G�� and Arbab� F� Control�based coordination of human
and other activities in cooperative information systems� In Proceedings of

the Second International Conference on Coordination Languages and Models

�September ����	� vol� ���� of Lecture Notes in Computer Science� Springer�
Verlag� pp� ��������

�
�� Papadopoulos� G�� and Arbab� F� Modelling activities in information
systems using the coordination language Manifold� In Proceedings of the

���� ACM Symposium on Applied Computing� Special Track on Coordination

Models� Languages and Applications �Atlanta� Georgia� February�March ����	�
ACM� pp� ������
�

��

�
�� Rutten� E� Minifold� a kernel for the coordination language Manifold�
Tech� Rep� CS�R����� Centrum voor Wiskunde en Informatica� Amsterdam�
November �����

���� Rutten� E�� Arbab� F�� and Herman� I� Formal speci�cation of Manifold�
a preliminary study� Tech� Rep� CS�R����� Centrum voor Wiskunde en
Informatica� Kruislaan ��
� ���� SJ Amsterdam� The Netherlands� �����

���� Rutten� J� Universal coalgebra� A theory of systems� Tech�
Rep� CS�R����� Centrum voor Wiskunde en Informatica� Kruislaan
��
� ���� SJ Amsterdam� The Netherlands� ����� Available on�line
http���www�cwi�nl�ftp�CWIreports�AP�CS�R�����ps�Z�

���� Seredynski� F�� Bouvry� P�� and Arbab� F� Distributed evolutionary
optimization in Manifold� the Rosenbrock�s function case study� In FEA��

� First International Workshop on Frontiers in Evolutionary Algorithms �part

of the third Joint Conference on Information Sciences� �Mar� ����	� Duke
University �USA	�

��
� Seredynski� F�� Bouvry� P�� and Arbab� F� Parallel and distributed
evolutionary computation with Manifold� In Proceedings of PaCT���

�September ����	� V� Malyshkin� Ed�� vol� ���� of Lecture Notes in Computer

Science� Springer�Verlag� pp� �������

����Wegner� P� Interactive foundations of computing� Theoretical Computer

Science ���� � ��� Feb� ����	�
���
���

�

A Appendix� basic notation

In this appendix we give the basic notations for partial functions that we used
in the paper�

For a partial function f �X � Y we denote by dom�f � the subset of X on
which f is de�ned� The partial function with an empty domain is denoted
by �� As usual� application of a function to a set is done element�wise� and
application to a list is done component�wise�

For any partial function f �X � Y � x � X and y � Y � we use the notation
f
x � y � to denote the function mapping x to y and otherwise acting as f �
Since the domain of f may or may not contain x we have that dom�f
x �
y �� � dom�f ��fxg� For �x � x� 	 	 	 xn and �y � y� 	 	 	 yn we denote by f
�x � �y �
the function ��f
x� � y���
x� � y��� 	 	 	
xn � yn ��

If f �X� � Y� and g �X� � Y� are two partial functions de�ned on disjoint
domains then we denote by f � g � �X� �X��� �Y� �Y�� the partial function
de�ned by�

�f � g��x ��

���
��
f �x � if x � dom�f �

g�x � if x � dom�g� �

Clearly� f � g � g � f � Note that f � � � �� f � f for every f �X � Y �

��

