
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

F. Arbab, I. Herman

Examples in Manifold

Computer Science/Department of Interactive Systems Report CS-R9066 November

t;r~ ·r~
Ci> :•n•,-n ,.., V, :C ~~ ~ lnformaliga

n,t .. ,r.afT'

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Examples in MANIFOLD

Farhad Arbab, Ivan Herman

Interactive Systems
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

Telephone: +31 20 5924056, +31205924164
Email: farhad@cwi.nl, ivan@cwi.nl

ABSTRACT

This document gives an insight into the use of the MANIFOLD system by presenting a
few short examples. The overall description and the more formal syntax and semantics of
MANIFOLD are given in separate documents.

1987 CR Categories : C.1.2, C.1.3, C.2.m, D.1.3, D.3.2, F.1.2, I. 1.3.
1985 Mathematical Subject Classification: 68N99, 68QIO.
Keywords and Phrases: parallel computing, MIMD, models of computation.

Table of Contents

I . Introduction

2. What is it Like?

3. The MANIFOLD Model of Computation 2

4. Examples 3

4.1. Simple copy 3

4.2. Action Synchronization 5

4.3. Counter 5

4.4. Control structures 7

4.5. The repeater 9

4.6. A Memory Cell I 0

4.7. A Resource Management Example 11

4.7.1. The Static Case 11

4.7.2. The Dynamic Case 17

4.8. Bucket Sorting 18

5. Other Applications 23

6. Conclusion 23

7. Acknowledgments 24

1. Introduction

The examples given in the present report are meant to be a "didactic" help for using MANIFOLD. Some of the
examples have a practical importance as well ; as such, they may become part of the set of builtin processes
in a MANIFOLD implementation. This is notably the case for the manifolds pass and pass1 (both described in
§4.1), count and count1 (both described in §4.3), and the two versions of the if manner (see §4.4).

No detailed description of the MANIFOLD syntax and semantics is given in the present document, apart
from some general outline of the underlying model of computation. The reader should refer to 1 for a more
detailed description of the model and the general concerns leading to the specification of MANIFOLD and to
the more complete MANIFOLD description2, for the detailed presentation of the MANIFOLD semantics and syn­
tax.

2. What is it Like?

The Webster' s dictionary defines the term manifold as an adjective to mean:

1. having many forms, parts, etc. 2. of many sorts 3. being such in many ways 4. operating
several parts of one kind.

It also defines manifold as a noun to mean:

a pipe with several outlets, as for conducting cylinder exhaust from an engine.

MANIFOLD can be viewed from several different perspectives, each revealing similarities with the
features and concerns of a different set of models and systems. However, it is useful to establish a few
approximate reference points to inspire an intuitive feeling for what MANIFOLD is all about before encounter­
ing the details .

To the extent that the primary focus in MANIFOLD is the connections among processes, not the
processes themselves, it is a conductor that orchestrates the interactions among a set of cooperating con­
current processes, without interfering with their internal operations. As such, MANIFOLD programming is
vaguely reminiscent of writing shell scripts in a system like UNIX™ . Similar to a shell script, the con­
currency and interconnection issues are completely outside of the processes. However, the possibilities for
defining and dynamically changing the interconnections among processes in MANIFOLD go much beyond
what is offered in such simple shell scripts.

Orchestration of the interactions among a set of processes in MANI FOLD is done in an entity with multi­
ple inlets and outlets, called a manifold. As the conductor of such interactions, a manifold has a number of
states , each specifying a specific connection pattern. Connection patterns define links between the input
and output ports of various processes, called streams, through which the information produced by one pro­
cess is made available for consumption to another.

A manifold goes through state transitions as a result of observing in its environment the occurrences

™UNIX is a trademark of AT&T Bell Laboratories

Report CS-R9066
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam , The Netherlands

- 2 -

of events in which it is interested. State transitions cause dismantling of the interconnections set up in pre­
transition states, and establish the ones defined in the post-transition states. As such, events are the princi­
pal control mechanism in MANIFOLD , which makes it an event driven programming system.

The streams among processes in MANIFOLD form a network of links for the flow of information that is
reminiscent of dataflow networks. However, there are several major differences between MANIFOLD and
dataflow programming. In MANIFOLD the connection patterns among processes change dynamically. Furth­
ermore, processes are created and deleted dynamically as well. This by itself makes the connections graph
of a MANIFOLD program, which is the combined effect of all its manifolds, very dynamic. However, there is
more. The manifestation of a single manifold is also a single (dynamically changing) process
inter-connection graph. Since manifolds too are processes, the combined graph of a MANIFOLD program is
indeed not a simple graph, but a hyper-graph, where each node in itself is a dynamically changing graph of
connections among processes.

Although conceptually, the dominant control mechanism in MANIFOLD is event driven, the dataflow
type data driven style of control through streams is at least equally as important. A manifold can internally
raise an event for itself, causing a state transition. This can be, for instance, due to the arrival of a unit of
information in the pre-transition state through a certain stream, and may also depend on the contents of this
information. Thus, there is a smooth transition between the two mechanisms of control in MANIFOLD. The
coexistence of event driven and data driven control gives MANIFOLD a unique flavor.

3. The MANIFOLD Model of Computation

The basic components in the MANIFOLD model of computation are processes, events, ports, and streams. A
process is a black box with well defined ports of connection through which it exchanges units of informa­
tion with the other processes in its environment. The internal operation of some of these black boxes are
indeed written in the MANIFOLD language, which makes it possible to open them up, and describe their inter­
nal behavior using the MA NIFOLD model. These processes are called manifolds. In general, a process in MANI­

FOLD does not, and need not, know the identity of the processes with which it exchanges information.

The interconnections between the ports of processes are made with streams. A stream represents a
flow of a sequence of units between two ports. Streams are constructed and removed dynamically between
ports of the processes that are to exchange some information. The constructor of a stream need not be the
sender or the receiver of the information to be exchanged: any third party manifold process can define a
connection between the ports of a producer process and a consumer process. Furthermore, stream
definitions in MANIFOLD are generally additive. Thus a port can simultaneously be connected to many dif­
ferent ports through different streams. The flows of units of information in streams are automatically repli­
cated and merged at outgoing and incoming port junctions, as necessary. The units of information
exchanged through ports and streams, are passive pieces of information that are synchronously produced
and synchronously consumed at the two ends of a stream, with their relative order preserved.

Orthogonal to the stream mechanism, there is an event mechanism for information exchange in MANI­

FOLD. Contrary to units in streams, events are active pieces of information that are broadcast by their
sources in the environment. In principle, any process in the environment can pick up such a broadcast
event. In practice, usually only a few processes pick up occurrences of each event, because only they are
tuned in to their sources. Occurrences of the same event from the same source can override each other
from the point of view of some observer processes, depending on the difference between their sampling
rare and the occurrence rate of the event. Otherwise, event occurrences are never "lost" in MANIFOLD .

Events are generally raised synchronously by their sources and dissipate through the environment.
They are active pieces of information in the sense that in general, they are observed asynchronously and
once picked up, they preemptively cause a change of state in the observer. Events are the primary control
mechanism in MANIFOLD .

Each state in a manifold defines a pattern of connections among the ports of some processes. The
corresponding streams implementing these connections are created as soon as a manifold makes a state
transition (caused by an event) to a .new state, and are deleted as soon as it makes a transition from this
state to another one. In general, the set of sources whose events are honored by an observer manifold, as
well as the set of specific events which are honored, are both state dependent.

4. Examples

4.1. Simple copy

- 3 -

Received Events

Output

,-----.------,,'----,.Ports

Manifold

Raised Events

Figure 1 - A Process in MANIFOLD

Outgoing Streams

One of the simplest manifolds is one that copies exactly one unit of its input to its output. We call this man­
ifold pass1 , and its definition is as follows.

pass1()

{

start:

getunit(input) ~ output.

Note that we have no explicit buffer declaration for this manifold's input and output ports. The default reg­
ular expression assigned to the standard input and standard output ports of a manifold is an expression
which delivers the units it receives intact (e.g., the expression "\<\>"). Thus, the above manifold works
independently of the unit sizes and makes no modifications to its input units.

Once activated, this manifold sets up a pipeline between the getunit(input) pseudo process and the
manifold's standard output port. The getunit(input) action waits, if necessary, for a unit to arrive at the input
port of the manifold, places it on the output stream and halts . The completion event causes the pipeline to
breakup. Since there are no other actions, the manifold terminates.

A slightly more sophisticated manifold is one that copies all of its input units to its output stream.
Below are two versions of such a manifold, which we call pass, with identical behavior.

pass()

{

start:

getunit(input) ➔ output;

do start.

- 4 -

The above manifold consists of a simple loop. getunit(input) waits for one input unit on the input port, and
copies it as its output. " getunit(input) ➔ output" places the unit into the standard output port of the mani­
fold. Once this pipeline terminates, the handler is entered again.

A simpler version of this manifold is shown below. However, the above form is more useful as the
basis for several other manifolds that perform other tasks in addition to the simple copying.

pass()

{

start:

input ➔ output.

The above manifold is clearly simpler than the previous one, its specification is more concise. Its behavior
is also very similar. Specifically, note that no actual transfer from the input buffer to the output buffer of
the manifold takes place, before a complete unit is available in the input port.

- 5 -

4.2. Action Synchronization

The connective ";" and groups are the basic mechani sms in MANIFOLD for synchronization. The group con­
struct causes the manifold processor to deal with all elements in the group concurrently. The ";", on the
other hand, waits for the termination of the configuration on its left hand side, before proceeding with the
constructs on its right hand side.

However, it is sometimes necessary to synchronize actions with the flow of units in a pipeline. For
example, suppose that we want event "E" to be raised as soon as the first unit passes from " A" to "B" in
the pipeline "A ➔ B". The construct "(A ➔ B, raise E)" does not work, because " E" may be raised just
after the stream between "A" and "B" is set up, which may be too early. The construct "A ➔ B ; raise E"
does not work either, because " E" can be raised only after the pipeline between " A" and " B" has
expired, perhaps after many units have passed through the stream.

The manifold " perform(action)", below, can be used to synchronize "action " with the passing of the
first unit through a stream. Using this manifold, the construct " A ➔ perform (raise E) ➔ B" does the job.

perform(action)

process action.

event act.

event copy.

start:

guard(input, act);

idle.

act:

activate action;

action;

do copy.

copy:

Input ➔ output.

4.3. Counter

The following manifold copies its input units to its output port without any change. It also counts the
number of units that pass through and raises the specified "X" event once the given " limit" is reached. A
typical use of the manifold is of the form " count(limit,E)", which means that an event "E" will be raised
when reaching "limit".

count(limit, X)

process

event

limit.

X.

- 6 -

process n

event

event

event

is

check.

now.

copy.

variable.

start:

check:

now:

copy:

activate limit;

activate n;

n=limit;

do check.

if(n<1, do now, do copy).

raise X;

do copy.

getunit(input) ➔ output;

n:n-1;

do check.

Note that because parameters are not variables as in typical programming languages, we cannot use "limit"

for counting in this manifold. Therefore, we must define a variable (see also §4.5), "n", and set its initial
value to the value of "limit" to do our countingt. Note also that the infix use of=,-, and< is just syntactic
sugar for (implicit) activation of appropriate processes to which the corresponding parameters are passed.

On activation of an instance of count, the event "start" is automatically raised, and thus its
corresponding handler becomes active. Once the process of assignment is complete, the handler for the
event "check" is activated. This handler simply activates an instance of a manner: "if(n<1, do now, do

copy) " (see §4.4 for the detailed description of this manner). The processor now enters the manner and
behaves accordingly. The net effect of the manner "if" is to raise the event "now" if "n" is less than I , or
the event "copy" otherwise.

In either case, the corresponding handlers for these events cannot be found in the "if" manner itself.
The processor then searches the dynamic chain of manner activations to locate the proper blocks. In this
case, the blocks are found in the calling manifold. The manner is thus left, and the processor enters the
appropriate block of the manifold.

The handler for "now" raises the specified event "X", and then activates the handler for "copy".

The handler for " copy " sends out one input unit and decrements the counter "n" by one. The
getunit(input) primitive action waits for the arrival of a unit in the input port, and delivers it as its output.
This output is placed in the standard output port of the manifold. Upon termination of this process, the
counter "n" is decremented, and then the manifold activates the handler for "check" again.

t A variable is simply a built-in manifold that keeps the input units it receives and copies them to its output port. It is simi­
lar to the repeater described in §4.5).

- 7 -

Note that this version of count keeps raising " X" for every input unit it receives once the limit has
been reached. Replacing the final " do check" in the handler for "copy " by a " do copy" will raise "X"

only once but will continue to copy its input to the output. Yet a third version of this manifold, below,
counts and copies ur to " limit " number of units and dies.

count1(Iimit, X)

process limit.

event X.

process n

event

event

is

copy.

now.

variable.

start:

copy:

now:

activate limit;

activate n;

n=limit;

do copy.

getunit(input) ➔ output;

n=n-1;

if(n<1, do now, do copy).

raise X;

halt.

4.4. Control structures

The typical higher level control structures can be built out of the primitives as manifolds or manners. For
instance, following are two versions of an if manner.

manner if(B, T, E)

action 8.
action T,E.

event then.

event else.

start:

B ➔ (➔ trigger(true, then),

➔ trigger(false, else),

➔ check_bool(Berror)).

then:

T.

else:

E.

- 8 -

manner if(B, T)

action B.

action T.

event then.

event else.

start:

B ➔ (➔ trigger(true, then),

➔ trigger(false, else),

➔ check_bool(Berror)).

then:

T.

else:

return.

Both versions of if assume that "B" is a pipeline which, when constructed, will produce a boolean result
To check the validity of this assumption, we use the process "check_bool" which we assume produces the
proper error messages and raises the event " Berror" if its input is not a boolean value. Because there is no
handler for "Berror" in the if manner itself, if raised, it will percolate up the dynamic chain of manner
activations until either a handler is found, or the calling manifold environment is reached.

Note that it is not essential for the validity check of the result of " B" to be done before it is supplied
to the triggers. We take advantage of this and avoid the delay of the validity check for the cases that the
result is indeed a boolean, by supplying the result of " B" to the triggers and the checker simultaneously,
using the group construct.

Exactly one of the three events " then", "else", or " Berror" will be raised in this block. This, in
turn, will activate its corresponding block. In the if-then version, the "else" event simply causes the proces­
sor to leave the manner and return to its call ing environment.

Note also, that in MANIFOLD, "overloading" of manifold and manner names is possible, using the
number of input parameters to disambiguate the references. Consequently, the programmer may freely use
both versions of the if manner, with two and three parameters, respectively. The MANIFOLD system will use
the proper manner, depending on the number of actual parameters supplied.

t A ''boolean '' is , in fact, just a special unit , which may have the values true and false .

- 9 -

4.5. The repeater

A repeater basically reads its input units and copies them to its output. In addition , it goes on repeating the
last input on its output port as long as no new input arrives. The definition of the repeater is as follows .

repeater()

{

process

event

event

start:

get:

flush:

end:

flush.

get.

activate I;

activate (I ➔ void);

do get.

(I ➔ output, I ➔ I,

is pass.

(getunit(input) ➔ I; guard(input, flush))).

I ➔ pass1() ➔ void;

do get.

deactivate(I);

halt.

When starting the repeater, the manifold "I" (an instance of pass) is activated. The output of this manifold
is permanently directed to void; this is to avoid the situation where unnecessary units would remain on the
output port of " I" if this port is not connected to other port. Note that the statement " activate (I ➔ void);"

results in the activation of an internal manifold which would set up the pipeline proper; in other words,
even if the repeater leaves the block labeled by " start", this internal manifold and, consequently, the pipe­
line set up by it, will remain alive.

The block labeled " get " sets up a pipeline shown on Figure 2: basically, a loop is defined where "I"
feeds its output back onto its own input port. When entering this block there is nothing in the ports of ''I''.
The only effect of the first two elements in the group is that the loop pipeline is set up. When, however, the
getunit succeeds, the loop starts, sends the input unit into its output port.

repeater

r
I

I

Figure 2 - Repeater Structure

The arrival of the next input unit will raise (via the guard) the event '' flush ''. The only purpose of thi s block

- 10 -

is (as its name suggests) to flush all previous instances of the previous input unit. This is done by breaking
all pipelines; the output of " I" is directed exclusively to void and the (only) remaining unit on the input
port of "I" is consumed via a pass1 (remember that pass1 dies when it has read one unit).

Note that the manifold variable, which is one of the built-in manifolds, is functionally equivalent to a
repeater (although, of course, it is optimized for speed and efficiency by the run-time environment).

4.6. A Memory Cell

A memory cell is used to internally store a unit; in contrast to a repeater , it dispatches the unit only if it is
explicitly requested to. It does not send, therefore, the value continually onto its output port.

memory_cell()

port in

{

process

event

event

event

start:

read:

write:

assign.

R is repeater.

wait.

read.

write.

activate(R) ;

(guard(assign,read),guard(input,write));

idle.

getunit(assign) ➔ R;

guard(assign,read);

idle.

getunit(input);

R ➔ pass1() ➔ output;

guard(input,read);

idle.

Writing into the "assign" port of the manifold will result in the event "read"; the value on "assign" will
therefore be stored in the repeater "A". A new guard has to be started to react to the next " assign" write.
When writing into the standard input of the manifold the event " write" will be activated; in the correspond­
ing block one instance of the previously stored value will be output (note the use of a pass1 manifold to
secure that only one unit will be transmitted) .

Having non-flushing queues is important here; indeed, with flushing queues, some units can be lost
to the getunit action in the " read" block.

- 11 -

4.7. A Resource Management Example

The example presented below was motivated by a practical problem encountered in the course of a previ­
ous project, described in detail in ten Hagen et al8. Briefly, the goal of this project was to build a highly
parallel graphics engine using dataflow techniques. What follows is a simplified description of the prob­
lems involved.

Conceptually, the graphics engine consisted of a number of independent processes. Each of these
processes can be relatively complex by themselves, but this complexity is of no interest for the moment:
they are considered to be atomic processes in MANIFOLD . For this example we assume that there are two gen­
eric types of such processes: transformation and drawer.

A transformation process encapsulates a number of complex calculations which are usual in com­
puter graphics: matrix-vector multiplication on a list if points, projective division, eventual clipping etc.
The peculiarity of the hardware described by ten Hagen et al8 is that the machine may contain several
instances of the very same generic process, setting up parallel transformation engines which can be run
independently of one another. The result of a transformation is put into a global area, for example in shared
memory. The transformation processes can therefore be viewed as special resources.

There is only one drawer process (usually a piece of hardware) but the access protocol to access this
process involves resource management problems again. Data (which include geometric data as well as
their attributes) are put in special queues for consumption by the drawer; as the time needed to fetch data
from the shared memory area might be too long compared to the speed of the drawer, there may be several
queues, fed in parallel to the actual processing of the drawer. As the hardware in use in the project was
aimed at 3D operation using a Z-buffer, the exact order in which the graphics primitives are processed is
irrelevant.

In case of ten Hagen et al 8, proper management of the resources involved was not a trivial task. The
speed of the machine critically depends on the utilization of its transformation processors and of its drawer
buffers. The necessary resource management procedures were written in dataflow assembly, which was a
long and tedious task. We show, in what follows, that this resource management problem can be solved
very simply using MANIFOLD.

In the first of the following two sections, we consider a simple case of this problem where the
number of resources is predefined and fixed. This directly corresponds to the actual problem solved in ten
Hagen et al8. The drawback of this first solution is that the number of resources is "hardwired" in the
presented programs. Next, we consider a generalization of this resource management problem where the
number of available resources is simply passed as an execution time value.

4.7.1. The Static Case

In this case we assume that the number of transformation processes and the number of drawer buffers are
fixed. For the sake of simplicity we consider two transformation processes and two drawer buffers.

Following is the MANIFOLD program for this case. Note that the atomic processes (listed at the begin­
ning) have only a very limited amount of information about the environment they work in; it might have
been simpler to e.g. pipe the buffer processes directly to the drawer process and avoid the use of the mani­
folds "Buff_Full " and "Draw_Start". However, this would involve more knowledge on the part of these
processes about the whole system environment.

- I 2 -

//------------------
//

// There are three types of atomic processes:

// TR is a transformation pipeline;

II 1/0 ports:

// input: reference to geometric primitive to transform

II output: reference to transformed geometric primitive

// Raised events:

// trans_free: ready to accept a new geometric primitive

// BF is a hardware buffer handler;

II 110 ports:

II

II

II

input:

Raised events:

buff_empty:

reference to the geometric primitive to store

ready to accept a new geometric primitive

// buff_full: geometric primitive stored

// DR Is a drawer;

II 1/0 ports:

II

II

II

II

input:

Raised events:

draw_free:

buffer identifier of next primitive to draw

ready to draw

//------------------
TR()

port

port

atomic.

in

out

input.

output.

pragma TR external "transformation"

BF()

port

atomic.

in input.

pragma BF external "hardware_buffer"

atomic DR()

port

atomic.

in input.

pragma DR external "drawing_engine"

II

II

- 13 -

II Main manifold: it has to activate all necessary processes

II

II

process TR1 is TR.

process TR2 is TR.

process BF1 is BF.

process BF2 is BF.

process TC is Trans_Control.

process FDB is Fill_Draw_Buffer.

process DS is Draw_Start.

permanent TR1, TR2, BF1 , BF2.

Main_manifold()

{

process DR

event

is

setup.

Drawer.

II Activation of all processes and manifold. Note that

II the processes which are targets of activate actions are

II •not• visible to the block and therefore cannot prematurely

II terminate the block's execution.

start:

(activate TC, activate FDB, activate DS(DR),

activate Trans_Queue(TR1, TC), activate Trans_Queue(TR2, TC),

activate Buff_Empty_Queue(BF1, FDB),

activate Buff_Empty_Queue(BF2, FDB),

activate Buff_Full(BF1, DS), activate Buff_Full(BF1, DS),

activate BF1, activate BF2, activate DR);

do setup.

II A permanent pipeline is set up between TRi and FDB.

II The standard input of this manifold is permanently connected

II to TC. It is assumed to carry the graphics primitives.

setup:

(TR1 ➔ FDB, TR2 ➔ FDB, ➔ TC).

- 14 -

//------------------
//

// Transf_Control

II 110 ports:

II

II

II

input:

tr_buffer:

reference for the next geometric primitive

transformation process name

// tr_buffer is filled by Trans_Queue

II

// The manifold starts a transformation process with a new geometric

// primitive (if this latter is available and the transformation process

II is free to work)

II

Trans_Control()

port in input.

port in tr_buffer.

{

start:

getunit(input) ➔ $getunit(tr_buffer) ; do start.

II

II Trans_Queue

II Caught events:

// trans_free: meaning that a transformation process is free to work

II

// The manifold reacts on the events by propagating the process name

II to the TC manifold (in fact, it makes use of the port

// tr_buffer of this latter manifold to queue up events). Note that events

// are queued, that is no "trans_free" events are lost!

II

Trans_Queue(T, TC)

process T,TC.

event trans_free.

permanent T.

start:

activate T;

idle.

trans_free:

event_source ➔ TC.tr_buffer; do start.

- 15 -

11--------- - ------------------II

II

II Fill_Draw_Buffer

I I 110 ports:

II

II

II

input:

bf_buffer:

reference for the next geometric primitive

buffer process name

II bf_buffer is filled by Buff_Empty_Queue

II

II This manifold passes the output of a transformation

II process to a buffer processes; the passed message is

II the data to be filled into the buffer and describes (somehow)

II an input primitive after it has been transformed by a transformer.

II The appropriate buffer identifier is passed via the bf-buffer input

II port.

II

Fill_ Draw_ Buffer()

port

port

{

II

in

in

start:

input.

bf_buffer.

getunit(input) ➔ $getunit(bf_buffer) ; do start.

II Buff_Empty_Queue

II Caught events:

II

II

buff_free: meaning that a transformation process is free to work

II This manifold reacts on the events by propagating the process name

II to the Fill_Draw_Buffer manifold (in fact, it makes use of the port

II bf_buffer of this latter manifold to queue up events). Note that events

II are queued, that is no "buff_free" events are lost!

II

Buff_Empty_Queue(B, FOB)

process B,FDB.

event buff_free.

permanent B.

start:

idle.

buff_free:

event_source ➔ FDB.bf_buffer; do start.

- 16 -

11------------------11

II

II Buff_Full

II Caught events:

II buff_full : buffer is full , ready to draw

II

II If a buffer is full , this event is propagated to DS

II Note that events are queued, that is no "buff_full" events are lost!

II

Buff_Full(BF, DS)

process

event

BF,DS.

buff_full.

permanent BF.

start :

idle.

buff_full :

event_Source ➔ DS; do start.

II

II Draw_Start

II 110 ports:

II input:

II Caught events:

internal name of buffer process

II draw_free: the drawer process is ready to draw

II

II In fact , Draw_Start reacts to two events: draw_free and buff_full

II (via the manifold Buff_Full) to draw the next primitive

II

Draw_Start(X)

process

port

event

X.
in input.

draw_free.

permanent X.

start:

idle.

draw_free:

$getunit(lnput) ➔ X; do start.

- 17 -

4.7.2. The Dynamic Case

As a more complicated case we assume that the number of transformation processes can vary depending on
the local hardware configuration; also that there exists a means (e.g. by inspecting the avai lable memory
area and/or number of processors) to determine this number at start up time. The manifolds presented
above should be extended so that a variable number of transformation processes may be used.

The extension of the example is very simple. Indeed, the only place in the program where the
number of the transformation processes play a role are the lines:

activate Trans_Queue(TR1, TC), activate Trans_Queue(TR2, TC),

appearing in the manifold Main_manifold(). If, however, this line is replaced by something like:

cycle:

activate(Trans_Queue(TR,TC));

n=n+1 ;

if(n == number_of_transformations, do go_on, do cycle).

then, a separate instance of "Trans_Oueue " with its own corresponding " TR " are created in the given
cycle. All other manifolds (including "Trans_Queue ") remain unchanged.

A further possible generalization of the example is to allow a variable number of buffers as well. The
way to do that is identical to what has been done for a variable number of transformations.

- 18 -

4.8. Bucket Sorting

In this section we present a MANirnLD program that implements a parallel bucket sort algorithm. Our parallel
sort algorithm is similar to the one presented by Suhler et al.7, for a dynamic dataflow environment. The
two algorithms, however, are not identical.

The essence of the algorithm is as follows. There exists an atomic process (perhaps a piece of
hardware) that performs an efficient sorting of a number of input units, provided that this number is below
a fixed threshold, b. For example, if b is 2, all that this atomic process has to do is a simple compare to
decide the proper order of its two input units. The aim is therefore to start off as many instances of this
atomic process as possible, passing up to b units of the incoming stream to each, and then merge the sorted
output streams of the parallel sort processes into the final sorted output stream.

The core of the solution is a manifold called " Sort_def ". This manifold receives all the units on its
input and produces the sorted units on its output. It counts the number of incoming units and forwards the
first bucket of units to an instance of the atomic sorting process. The size of a bucket, b, is the value of the
variable limit. In case the original input contains more than one bucket-full of units, "Sort_def" directs the
output of the atomic sorter to a so called " Merger" manifold. The " Sort_def " manifold then activates a
new instance of itself and directs the rest of its incoming units to this new instance. The output of the new
instance of " Sort_def" is directed to the same " Merger" . Finally, the output of the " Merger" is connected to
the output of the former instance of " Sort_det". The behavior of the manifold is therefore recursive. The
"bottom" of the recursivity is when the number of incoming units is smaller than "limit" in which case it
just redirects the output of the atomic sorter process to its own output (see also Figure 3.). In other cases, it
splits the incoming units between the atomic process and another instance of itself (see Figure 4.).

Sort •:---
··· ·•~:--... ,___~

Sort_unit

Figure 3 - Non recursive branch

The merger manifold merges the two incoming streams of sorted units into a single sorted output
stream. It simply switches between its incoming lists based on the comparison of their next two units. To
make it more general to use, comparison is done by another atomic process. Using these two atomic
processes, the manifolds themselves can perform the logical process of sorting without interpreting the
units themselves: this is left to the atomic processes.

The merger manifold uses a separate manner to handle the two cases. This manner ("next_element")
essentially performs the switch between the two incoming ports if necessary. If one of the two ports
becomes empty (in other words, a disconnected event occurs), the manner sets up a direct pipeline between
the other input and the output port which results in a fast copy of all remaining units. Note that we have
made use of the fact that input ports are, by default, non-flushing; in other words, breaking the pipeline
does not mean that the units in the pipeline get lost.

Note that a slight modification of " Sort_def" can improve its performance by modifying the function
of " Merge " . Indeed, "Sort_def" can .use the first incoming unit as a "pivot" and send the first " limit"
number of units that are smaller than this pivot to the "Sort" , and the rest to its recursive incarnation.

- 19 -

Sort :: ···· · ··· .. · .. ·
. ,.,.-

. • ····· .·····
... :-..

Sort_ unit - - -

{ l
Merge

Figure 4 - Recursive branch

II

II Compare_units_def process:

II 110 ports:

II a:
II b:

II output:

Compare_units_def()

port

port

port

atomic.

in

in

out

a.
b.

output.

first unit to compare

second unit to compare

boolean result, true iff a <= b

pragma Compare_units_def internal "compare"

II

II Sort_units_def process:

II 110 ports:

I

Sort

II input:

II output:

units to sort (up to "end of file", i.e. broken port)

sorted units

Sort_units_def()

port

port

atomic.

in

out

input.

output.

pragma Sort_units_def internal "sort"

IE-

- 20 -

//-------------------//
manner next_element(smaller,smaller_data,larger,larger_data,

dest_smaller,dest_larger,other_port)

port

action

port

action

port

action

in smaller.

smaller_data.

in larger.

larger_data.

in dest_smaller,dest_larger.

other _port.

event go_on.

start:

go_on:

do go_on.

smaller_data ➔ pass1 ➔ output;

getunit(smaller) ➔ (➔ dest_smaller, ➔ smaller_data);

larger_data ➔ pass1 ➔ dest_larger; .

if(getunit(result), do go_on, other_port).

disconnected.smaller:

larger_data ➔ pass1 ➔ output;

larger ➔ output.

disconnected.larger:

do finish.

- 21 -

II

II Merge manifold:

II 110 ports :

II a: first list of units

second list of units

sorted & merged units

result of comparison

II

II

II

II

b:
output:

result :

II uses a process "Compare" (of type "Compare_units_def")

II to compare two units; the latter returns a boolean unit

II on input port "result"

II

Merge_def()

port

port

port

port

{

in a.

in b.

in result.

out output.

process store_a is variable.

process store_b is variable.

event a_st_b.

event b_st_a.

event finish.

process Compare is Compare_units_def.

permanent Compare ➔ result.

start: II activate registers and reads in the two first values

activate Compare;

(getunit(a) ➔ (➔ Compare.a , ➔ store_a),

getunit(b) ➔ (➔ Compare.b, ➔ store_b));

if(getunit(result), do a_st_b, do b_st_a).

11-------------------11

a_st_b: II a<= b

next_element(a,store_a,b,store_b,Compare.a,Compare.b,do b_st_a).

b_st_a: II a > b

next_element(b,store_b,a,store_a,Compare.b,Compare.a,do a_st_b).

finish:

deactivate Compare.

II

II Effective Sorter

II 110 ports:

II Input:

II output:

II Caught events:

units to sort

sorted units

- 22 -

II sort_full: the number of Incoming events have reached "limit"

II

II Makes a recursive call to Itself if the number of the Incoming units

II is more than the "limit"

II To count the incoming event, the manifold "count1" is used.

II Halts when all units are sorted and sent

II

Sort_def(limit)

port in

port out

event

process

process

process

process

start:

input.

output.

sort_full.

Sort

Sort_units

Merge

Count

activate Sort_units;

activate Count(limlt);

is

is

is

is

input ➔ Count ➔ Sort_units;

idle.

11-------------------11

Sort_def.

Sort_units_def.

Merge_def.

count1.

disconnected.input: II There are no more units than limit!

deactivate(Count);

Sort_units ➔ output.

death .Sort_ units:

halt.

11------------------11

death.Count:

activate Merge;

activate Sort(limit);

(Sort_units

Sort

➔ Merge.b,

➔ Merge.a,

input

Merge
➔ Sort,

➔ output).

- 23 -

5. Other Applications

The possible application areas for MANIFOLD are numerous. It is an effective tool for describing interactions
of autonomous active agents that communicate in an environment through message passing and global
broadcast of events. For example, elaborate user interface design means planning the cooperation of dif­
ferent entities (the human operator being one of them) where the event-driven paradigm seems particularly
useful. In our view, the central issue in a user interface is the design and implementation of the communi­
cation patterns among a set of modules. Some of these modules are generic (application independent) pro­
grams for acquisition and presentation of information expressed in forms appealing to humans. Others are,
ideally, acquisition/presentation-independent modules that implement various functional components of a
specific application. Previous experience with systems like DICE6• IO has shown that concurrency, event
driven control mechanisms, and general interconnection networks t are all necessary for effective graphics
user interface systems. MANIFOLD supports all of that and in addition, provides a level of dynamism that goes
beyond many other user interface design tool s.

Separating the specification of the dynamically changing communication patterns among the
modules from the modules themselves seems to lead to better user interface architectures. A similar
approach can also be useful in applications of real time computing where dynamic change of interconnec­
tion patterns (e.g., between measurement and monitoring devices and actuators) is crucial. Complex
process-control systems, must orchestrate the cooperation of various programs, digital and/or analogue
hardware, electronic sensors, human operators etc. Such interactions may be more easily expressed and
managed in MANIFOLD .

Coordination of the interactions among a set of cooperating autonomous intelligent experts is also
relevant in Distributed Al applications, open systems, such as Computer Integrated Manufacturing applica­
tions, and the complex control components of systems such as Intelligent CAD.

Recently , scientific visualization has raised similar issues as well. The problems here typically
involve a combination of massive numerical calculations (sometimes performed on supercomputers) and
very advanced graphics. Such functionality can best be achieved through a distributed approach, using
segregated software and hardware tools. Tool sets like the Utah Raster Toolkit5 are already a first step in
this direction , although in case of this toolkit the individual processes can be connected in a pipeline
fashion only. More recently, software systems like the apE system of the Ohio Supercomputer Center3

work on the basis of inter-connecting a whole set of different software/hardware components in a more
sophisticated communication network. An "orchestrator" like MANIFOLD can prove to be quite valuable in
such applications.

Advances in neuroscience have shown that to properly model the nervous system requires massively
parallel systems where, in contrast to conventional neural networks, each node in the system has the com­
putational complexity of a microcomputer4• 9. MANIFOLD may offer an appropriate paradigm for expressing
the dynamic behavior of such complex inter-connection networks.

6. Conclusion

The unique blend of event driven and data driven styles of programming, together with the dynamic con­
nection hyper-graph of MANll'OLD seems to provide a promising paradigm for parallel programming. The
emphasis of MANIFOLD is on orchestration of the interactions among a set of autonomous expert agents, each
providing a well-defined segregated piece of functionality , into an integrated parallel system for accom­
plishing a larger task .

The MANIFOLD model of communication is conceptually powerful enough to express general purpose
computing. Therefore, although the primary purpose of MANIFOLD is to manage communications, the same
language also expresses computation in terms of communication. Thus, it is theoretically possible to
replace every process in a MANIFOLD program by a manifold that expresses the same computation in terms of
interactions among a set of finer-grained processes. This refinement can recursively be carried out all the
way down to the level where each process expresses the functionality contained in a piece of hardware.

t In the case of DICE, this is actually a strict hierarchy , and has turned out to be one of its shortcomings in practice.

- 24 -

7. Acknowledgments

We wish to thank our colleagues at the Interactive Systems Department for their direct and indirect contri­
butions to the work reported in this paper. In particular, Paul ten Hagen inspired the original concerns and
the motivation for MANIFOLD by his earlier work on the Dialog Cells, and through our numerous ongoing dis­
cussions. Kees Blom helped to refine the formal syntax for the MANIFOLD language and is presently working
on the MANIFOLD compiler. Per Spilling and Dirk Soede's exercises in MANIFOLD and their ongoing contribu­
tions to the project are also acknowledged and much appreciated.

- 25 -

References

I. Arbab, F. and Herman, I., "MANIFOLD: A Language for Inter-Process Communication," Technical
Report, Centrum voor Wiskunde en Informatica (CWI), Amsterdam (1990, to appear).

2. Arbab, F., "Specification of MANIFOLD," Technical Report, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam (1990, to appear).

3. Dyer, S., "A Dataflow Toolkit for Visualization," IEEE Computer Graphics & Application, pp. 60-
69 (July 1990).

4. Matsumoto, G., "Neurons as Microcomputers," Future Generations Computer Systems 4, pp. 39-51
(1988).

5. Peterson, J.W., Bogart, R.G., and Thomas, S.W., "The Utah Raster Toolkit," in Proceedings of the
Usenix Workshop on Graphics, Monterey, California (November 1986).

6. Schouten, H.J. and ten Hagen, P.J.W., "Dialogue Cell Resource Model and Basic Dialogue Cells,"
Computer Graphics Forum 7, pp. 311-322 (1988).

7. Suhler, P.A., Bitwas, J., Komer, K.M., and Browne, J.C., "TDFL: A Task-Level Dataflow
Language,'' Journal of Parallel and Distributed Computing 9, pp. 103-115 (1990).

8. ten Hagen, P.J.W., Herman, I., and de Vries, J.R.G., "A Dataflow Graphics Workstation," Com­
puters and Graphics 14, pp. 83-93 (1990).

9. Thorpe, S.J., "Image Processing by the Human Visual System," in Advances in Computer
Graphics VI, ed. I. Herman and G. Garcia, EurographicSeminar Series, Springer Verlag, Berlin -
Heidelberg - New York - Tokyo (1990).

10. van Liere, R. and ten Hagen, P.J.W., "Introduction to Dialogue Cells," Technical Report, Centrum
voor Wiskunde en Informatica (CWI), No. CS-R8703, Amsterdam (1987).

