
C e n t r u m W i s k u n d e & I n f o r m a t i c a

Software ENgineering

From coordination to stochastic models of QoS

F. Arbab, T. Chothia, R.D. van der Mei, S. Meng,
Y.J. Moon, C.G. Verhoef

REPORT SEN-E0901 MARCH 2009

Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2009, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Science Park 123, 1098 XG Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

From coordination to stochastic models of QoS

ABSTRACT
Reo is a channel-based coordination model whose operational semantics is given by Constraint
Automata (CA). Quantitative Constraint Automata extend CA (and hence, Reo) with quantitative
models to capture such non-functional aspects of a system's behaviour as delays, costs,
resource needs and consumption, that depend on the internal details of the system. However,
the performance of a system can crucially depend not only on its internal details, but also on
how it is used in an environment, as determined for instance by the frequencies and
distributions of the arrivals of I/O requests. In this paper we propose Quantitative Intentional
Automata (QIA), an extension of CA that allow incorporating the influence of a system's
environment on its performance. Moreover, we show the translation of QIA into Continuous-
Time Markov Chains (CTMCs), which allows us to apply existing CTMC tools and techniques for
performance analysis of QIA and Reo circuits.

2000 Mathematics Subject Classification: -
1998 ACM Computing Classification System: F.4.3
Keywords and Phrases: Performance evaluation, Coordination language, Reo, Markov Chains
Note: This work was carried out under project SEN3 and PNA2 - CooPer project.

From Coordination to Stochastic Models of QoS

Farhad Arbab1, Tom Chothia2, Rob van der Mei1,3, Sun Meng1,
YoungJoo Moon1, and Chrétien Verhoef1

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
2 School of Computer Science, Univ. of Birmingham, United Kingdom

3 Vrije Universiteit Amsterdam, The Netherlands
{Farhad.Arbab,R.D.van.der.Mei,M.Sun,Y.J.Moon,C.G.Verhoef}@cwi.nl

T.P.Chothia@cs.bham.ac.uk

Abstract. Reo is a channel-based coordination model whose opera-
tional semantics is given by Constraint Automata (CA). Quantitative
Constraint Automata extend CA (and hence, Reo) with quantitative
models to capture such non-functional aspects of a system’s behaviour
as delays, costs, resource needs and consumption, that depend on the
internal details of the system. However, the performance of a system can
crucially depend not only on its internal details, but also on how it is
used in an environment, as determined for instance by the frequencies
and distributions of the arrivals of I/O requests. In this paper we pro-
pose Quantitative Intentional Automata (QIA), an extension of CA that
allow incorporating the influence of a system’s environment on its perfor-
mance. Moreover, we show the translation of QIA into Continuous-Time
Markov Chains (CTMCs), which allows us to apply existing CTMC tools
and techniques for performance analysis of QIA and Reo circuits.

Keywords: Performance evaluation, Coordination language, Reo, Markov
Chains.

1 Introduction

Service-oriented Computing (SOC) provides the means to design and deploy
distributed applications that span organization boundaries and computing plat-
forms by exploiting and composing existing services available over a network.
Services are platform- and network-independent applications that support rapid,
low-cost, loosely-coupled composition. Services run on the hardware of their own
providers, in different containers, separated by fire-walls and other ownership and
trust barriers. Their composition requires additional mechanisms (e.g., process
work-flow engines, connectors, or glue code) to impose some form of coordination
(i.e., orchestration and/or choreography). Even if the quality of service (QoS)
properties of every individual service and connector are known, it is far from
trivial to build a model for and make statements about the end-to-end QoS of
a composed system. Yet, the end-to-end QoS of a composed service is often as
important as its functional properties in determining its viability in its market.

2

The coordination language Reo [3, 5] provides a flexible, expressive model
for compositional construction of connectors that coordinate service behaviour.
CA [6] were introduced to express the operational semantics of Reo. Indeed, CA
provides a unified model to capture the semantics of components and services,
as well as Reo connectors and their composition. Quantitative Reo and Quanti-
tative Constraint Automata (QCA) [4] extend Reo and CA with the means to
describe and combine the QoS aspects of composed systems. The QCA model
integrates the QoS aspects of components/services and connectors that com-
prise an application to yield the QoS properties of that application, ignoring the
impact of the environment on its performance such as throughput and delays.
While QCA provide a useful model for service selection and composition [19],
the performance of a system can crucially depend not only on its internal de-
tails, but also on how it is used in an environment, as determined, for instance,
by the frequencies and distributions of the arrivals of I/O requests which be-
long to stochastic aspects. However, such stochastic aspects are not investigated
in [19]. Intentional Automata (IA) [14] take into account the influence of the
environment as well as internal details of a system by describing the pending
status of I/O operators interacting with the environment. A particular class of
IA models, called the Reo Automata class, is defined in [14], which provides
precise characterization of context-dependent connectors [6].

In this paper we propose QIA, an extension of IA that allows incorporating
the influence of a system’s environment on its performance. The QIA model
extends the semantics of Reo by admitting annotations on its channel ends and
the channels to represent the stochastic properties of request arrivals at those
ends, data-flows, and data processing and transportation delays through those
channels. The resulting Stochastic Reo model retains its compositional semantics
through QIA: the QIA of a composed system is the product (composition) of the
QIA of the individual channels and components/services used in its construction.

The QIA of a system typically has more states than its counterpart CA or
QCA, reflecting the (epistemologically) intentional configurations of the system
that CA and QCA abstract away. In addition to the synchronization and data
constraints of the CA model, the transitions in QIA carry extra information
in their labels to convey arrival and firing of data/requests, and their stochastic
properties. This information is adequate to allow the analysis of the performance
of a system in the context of the stochastic processes in its environment that
determine the arrival of data/requests on its ports and their delays. In order
to carry out such analysis, in this paper we show the translation of QIA into
CTMCs [12], which allows us to apply existing CTMC tools and techniques for
performance analysis of QIA and (Stochastic) Reo circuits.

The main contributions in this paper include:

– Stochastic Reo as a compositional model for specifying system behaviour
that captures its non-functional (QoS) aspects and takes into account the
influence of the environment on its performance,

– QIA as the operational semantics for Stochastic Reo which serves as an
intermediate model for generating CTMCs, and

3

– translation from QIA specifications into CTMC models for performance eval-
uation.

The Reo and automata editors in the Eclipse Coordination Tools (ECT) [1]
have been extended to support Stochastic Reo and QIA, and the automatic
derivation of the QIA semantics of Reo circuits. We have implemented the trans-
lation of QIA to CTMCs described in this paper as a plug-in within this plat-
form. We have also developed a bridge plug-in that generates the proper input
for other stochastic analysis tools like PRISM [2, 18] from our CTMC models to
allow performance analysis of Stochastic Reo.

The remainder of this paper is organized as follows. In Section 2, we provide
a short overview of Reo, CA, and their quantitative variants. In Section 3 we
introduce Stochastic Reo. In Section 4 we define QIA and their composition
through product and refinement. In Section 5, we show the translation from
QIA into its corresponding CTMC. In Section 6, we show an example of how our
CTMC model can be analyzed in PRISM. We review related work in Section 7.
Conclusions and future work comprise Section 8. A crucial step in the translation
of QIA into a CTMC, as described in Section 5, consists of the sequencing of the
delays of synchronized actions that appear on the label of a single transition.
We present the algorithm for the sequencing of these delays in Appendix A.

2 Preliminaries

2.1 Reo

Reo is a channel-based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally built out of simpler ones. We
summarize only the main concepts of Reo and its CA semantics here. Further
details about Reo and its semantics can be found in [3, 6].

Fig. 1. Some basic Reo channels

Complex connectors in Reo are organised in a network of primitive connec-
tors, called channels. Connectors serve to provide the protocol that controls and
organises the communication, synchronization and cooperation among the com-
ponents/services that they interconnect. Each channel has two channel ends,
and there are two types of channel ends: source and sink. A source channel end
accepts data into its channel, and a sink channel end dispenses data out of its
channel. Reo places no restriction on the behaviour of a channel, so it is possi-
ble for the ends of a channel to be both sources or both sinks. Figure 1 shows
the graphical representation of some simple channel types. A FIFO1 channel

4

(FIFO1) represents an asynchronous channel with one buffer cell. A synchronous
channel (Sync) has a source and a sink end and no buffer. It accepts a data item
through its source end if it can simultaneously dispense it through its sink. A
lossy synchronous channel (LossySync) is similar to a synchronous channel ex-
cept that it always accepts all data items through its source end. The data item
is transferred if it is possible for the data item to be dispensed through the sink
end, otherwise the data item is lost. A synchronous drain (SyncDrain) has two
source ends and no sink end. It accepts a data item through one of its ends if
and only if a data item is also available to be accepted simultaneously through
the other end as well.

Connectors are constructed by composing simpler ones via the join opera-
tion. Channels are joined together in a node which consists of a set of channel
ends. Nodes are categorised into source, sink and mixed nodes, depending on
whether all channel ends that coincide on a node are source ends, sink ends
or a combination of both. In remainder of this paper, we call source and sink
nodes boundary nodes since they interact with the environment. Reo allows an
open-ended set of user-defined channels with arbitrary behaviour, but it fixes
the semantics of the nodes. A source node acts as a synchronous replicator. A
sink node acts as a merger. A mixed node combines the behaviour of the the
other two nodes and acts as a self-contained “pumping station” that atomically
consumes an item out of one of its selected sink ends and replicates it to all of its
source ends. Nodes have no memory or buffer and perform their actions atomi-
cally. This forces synchrony and exclusion constraints to propagate through the
nodes, which causes the channels involved in each synchronous region of a circuit
to synchronize their actions in atomic steps.

Fig. 2. Ordering circuit

For example, the connector shown in Figure 2 is an alternator that imposes
an ordering on the flow of the data from its input nodes A and B to its output
node C. The SyncDrain channel enforces that data flow through A and B only
synchronously. The empty buffer together with the propagation of synchrony
through the three nodes guarantee that the data item obtained from B is deliv-
ered to C while the data item obtained from A is stored in the FIFO1 buffer.
After this, the buffer of the FIFO1 is full and propagation of exclusion from
A through the SyncDrain channel to B guarantees that data cannot flow in
through either A or B, but C can dispense the data stored in the FIFO1 buffer,
which makes it empty again. Assume three independent processes (that follow

5

no communication protocol and each of which knows nothing about the others)
place I/O requests on nodes A, B, and C, each according to its own internal
timing. By delaying the success of their requests, when necessary, this circuit
guarantees that successive read operations at C obtain the values produced by
the successive write operations at B and A alternately.

2.2 Constraint Automata

CA were introduced [6] as a formalism to capture the operational semantics of
Reo, based on timed data streams, which also constitute the foundation of the
coalgebraic semantics of Reo [5].

We assume a finite set N of nodes, and denote by Data a fixed, non-empty
set of data that can be sent and received through these nodes via channels. CA
use a symbolic representation of data assignments by data constraints, which
are propositional formulas built from the atoms “dA ∈ P”, “dA = dB” and
“dA = d” using standard Boolean operators. Here, A,B ∈ N , dA is a symbol
for the observed data item at node A and d ∈ Data. DC(N) denotes the set
of data constraints that at most refer to the observed data items dA at node
A ∈ N . Logical implication induces a partial order ≤ on DC: g ≤ g′ iff g ⇒ g′.

A CA over the data domain Data is a tuple A = (S, S0,N ,→) where S is a
set of states, also called configurations, S0 ⊆ S is the set of its initial states, N is
a finite set of nodes,→ is a finite subset of S×{N}×DC(N)×S with N ∈ 2N ,
called the transition relation. A transition fires if it observes data items in its
respective ports/nodes of the component that satisfy the data constraint of the
transition, and this firing may consequently change the state of the automaton.

Fig. 3. Constraint Automata for basic Reo channels

Figure 3 shows the CA for the primitive Reo channels in Figure 1. In this
figure and the remainder of this paper, for simplicity, we assume the data con-
straints of all transitions are true (which simply imposes no constraints on the
contents of the data-flows) and omit them to avoid clutter. For proper full treat-
ment of data constraints in CA, see [6].

As the counterpart for the join operation in Reo, the product of two CA
A1 = (S1, S1,0,N1,→1) and A2 = (S2, S2,0,N2,→2) is defined as a constraint
automaton A1 ./ A2 ≡ (S1 × S2, S1,0 × S2,0,N1 ∪N2,→) where → is given by
the following rules:

6

– If s1
N1,g1

−−−−−−−−−−→1 s′1, s2
N2,g2

−−−−−−−−−−→2 s′2, N1 ∩ N2 = N2 ∩ N1 and

g1 ∧ g2 is satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2
−−−−−−−→ 〈s′1, s′2〉.

– If s1
N1,g1

−−−−−−−−−−→1 s′1, where N1∩N2 = ∅ then 〈s1, s2〉
N1,g1

−−−−−−−→ 〈s′1, s2〉.
– If s2

N2,g2
−−−−−−−−−−→2 s′2, where N2∩N1 = ∅ then 〈s1, s2〉

N2,g2
−−−−−−−→ 〈s1, s′2〉.

2.3 Quantitative Constraint Automata and Quantitative Reo

Quantitative Reo and QCA are extensions of Reo and CA, respectively, with
quantitative aspects by Q-algebra [13] and form the basis for compositional
specification and reasoning on QoS issues for connectors. A Q-algebra is an
algebraic structure R = (C,⊕,⊗,:,0,1) such that R⊗ = (C,⊕,⊗,0,1) and
R: = (C,⊕,:,0,1) are both constraint semirings [9, 20]. C is a set of QoS
values and is called the domain of R. The operation ⊕ induces a partial order
≤ on C, which is defined by c ≤ c′ iff c ⊕ c′ = c′. The other two operators ⊗
and : can combine QoS values when they occur, respectively, sequentially and
concurrently. In these constraint semirings, 0 is the identity for ⊕, and 1 is the
identity for ⊗ and :.

A QCA is a tuple A = (S, S0,N , R,−→) where S is a set of states, S0 ⊆ S
is the set of its initial states, N is a finite set of nodes, R = (C,⊕,⊗,:,0,1) is
a Q-algebra with domain C of QoS values, −→ is a finite subset of S × {N} ×
DC(N)× C × S with N ∈ 2N .

The synchronous behaviour of each Quantitative Reo channel has a certain
QoS value in its label, which is in the domain C of a Q-algebra. The following
types of QoS for the basic channels in Reo are considered: t (execution time
for data transmission), c (allocated memory cost for the message transmission)
and p (reliability represented by the probability of successful transmission). The
corresponding Q-algebras are given as:

– execution time: (R+ ∪ {∞},max,+,max, 0, 0)
– memory cost: (N+ ∪ {∞},max,+,+, 0, 0)
– reliability: ([0, 1],min,×,×, 1, 1)

Fig. 4. Quantitative Constraint Automata for basic Quantitative Reo channels

Quantitative Reo keeps a compositional framework with the same join op-
eration of Reo, and QCA, as operational semantics of Quantitative Reo, pro-
vide a corresponding composition method (product). Two QCA A and B with

7

the same Q-algebra turn into a new QCA by the product operation. For A =
(S1, S0,1,N1, R,−→1) and B = (S2, S0,2,N2, R,−→2), their product is defined
as

A ./ B = (S1 × S2, S0,1 × S0,2,N1 ×N2, R,−→)

where −→ is given by the following rules:

– If s1
N1,g1,c1
−−−→ 1 s′1, s2

N2,g2,c2
−−−→ 2 s′2, N1 ∩N2 = N2 ∩N1 6= ∅ and g1 ∧ g2 is

satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2,c1:c2
−−−−−−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g,c
−−−→1 s′1, where N ∩N2 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s′1, s2〉.

– If s2
N,g,c
−−−→2 s′2, where N ∩N1 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s1, s′2〉.

The quantitative version of the circuit in Figure 2 and its corresponding QCA
are shown in Figure 5. The relevant QoS values are given by the tuple (ti, ci, pi)
that represents the QoS values for the basic channels, as specified in Figure 4.

Fig. 5. Ordering circuit in Quantitative Reo and its QCA

3 Stochastic Reo

Stochastic Reo is an extension of Reo annotated with stochastic properties, such
as processing delays on channels and arrival rates of data/requests at the channel
ends, allowing general distributions. Figure 6 shows the primitive channels of
Stochastic Reo that correspond to the primitives of Reo in Figure 1. In this
figure and the remainder of this paper, for simplicity, we delete node names, but
these names can be inferred from the names of their respective arrival processes:
for instance, ‘dA’ means an arrival process at node ‘A’. The labels annotating
Stochastic Reo channels can be separated into the following two categories:

Fig. 6. Basic Stochastic Reo channels

8

– channel delays
To model the stochastic behaviour of Reo channels, we assume every Reo
channel has one or more associated delays represented by their corresponding
random variables. Such a delay represents how long it takes for a channel to
deliver or throw away its data. For instance, a LossySync has two associated
variables ‘dAB’ and ‘dALost’ for stochastic delays of, respectively, successful
data-flow through the nodes ‘A’ and ‘B’ and losing data at node ‘A’ when
a read request is absent at node ‘B’. In a FIFO1 ‘dAF ’ means the delay for
data-flow from its source ‘A’ into the buffer, and ‘dFB’ for sending the data
from the buffer to the sink ‘B’. Similarly, the random variable of a Sync (and
a SyncDrain) indicates the delay for data-flow from its source node ‘A’ to its
sink node ‘B’ (and losing data at both ends, respectively).

– arrivals at nodes
I/O operations are performed on the source and sink nodes of a Reo circuit
through which it interacts with its environment. We assume the time be-
tween consecutive arrivals of read and write requests at the sink and source
nodes of Reo connectors depends on their associated stochastic processes. For
instance, ‘dA’ and ‘dB’ in Figure 6 represent the associated arrival processes
at nodes ‘A’ and ‘B’. Furthermore, at most one request at each boundary
node can wait for acceptance. If a boundary node is occupied by a pending
request, then the node is blocked and consequently all further arrivals at
that node are lost.

Stochastic Reo supports the same compositional framework of joining nodes
as Reo. Most of the technical details of this join operation are identical to that of
Reo. The nodes in Stochastic Reo have certain QoS information on them, hence
joining nodes must accommodate their composition. Nodes are categorized into
mixed, source, and sink nodes. Boundary nodes receive data/requests from the
environment, after that mixed nodes are synchronized for data-flow and then
merely pump data in the circuit, i.e., mixed nodes do not interact with the envi-
ronment. This account shows the causality of the events happening in the circuit,
such as arrivals of data/requests at its boundary nodes, synchronizing its mixed
nodes, and occurrences of data-flow, sequentially. Besides, we assume that pump-
ing data by mixed nodes is an immediate action and therefore mixed nodes have
no associated stochastic variables 4. Boundary nodes have their corresponding
stochastic arrival processes, yet when they are combined into mixed nodes by a
join operation, they lose their stochastic variables. As mentioned in Section 2, a
source node and a sink node act as a replicator and a non-deterministic merger,
respectively, and each activity, such as selecting a sink end or replicating data to
its source ends, has its own stochastic property. In order to describe stochastic
delays of a channel explicitly, we name the delay by the combination of a pair of
(source, sink) nodes and the buffer of the channel. For example, the stochastic
4 This assumption is not a real restriction. A mixed node with delay can be modelled

by replacing this mixed node with a Sync channel with the delay. Moreover, according
to the required level of specification detail, each input and output of the mixed node
can be modelled by adding corresponding Sync channels with their stochastic values.

9

property ‘dAF ’ of FIFO1 in Figure 6 stands for the data-flow from the source end
‘A’ into the buffer of the FIFO1. However, in cases where, for instance, a source
node (as a replicator) A is connected to two different FIFO1s (buffers), then the
corresponding stochastic processes have the same name, e.g., dAF . To avoid such
an ambiguous situation, we rename the stochastic processes by adding a number
after its node name like dA1F and dA2F when the node has more than one out-
going channel or one incoming channel. As an example of composed Stochastic
Reo, Figure 7 shows the ordering circuit with the annotation of its stochastic
variables.

Fig. 7. Ordering circuit in Stochastic Reo

4 Quantitative Intentional Automata

In this section we introduce the notion of QIA which is an extension of CA and
provides operational semantics for Stochastic Reo. Whereas CA transitions de-
scribe system configuration changes, QIA transitions describe the changes of not
only the system configuration but also the status of its pending I/O operations.
In CA, configurations are shown as states, and processes causing state changes
are shown in transition labels as a set of nodes where data are observed. Simi-
larly, in QIA, system configurations and the status of pending I/O operations are
shown as states. Data-flow or firing through nodes causes changes in the system
configuration, and arrivals of data/requests at the nodes or synchronization of
nodes changes the status of pending data/requests. These two different types of
changes are shown in the transition labels by two different sets of nodes. More-
over, QIA transitions carry their relevant stochastic properties in their labels.
We use such QIA as an intermediate model for translation Stochastic Reo into
a homogeneous CTMC.

Definition 1. QIA
A Quantitative Intentional Automaton is a tuple A =(S, S0,N ,→) where

– S ⊆ L× 2N is a finite set of states.
• L is a set of system configurations.
• R ∈ 2N is a set of pending nodes, that describes the pending status in

the current state.
– S0 ⊆ S is a set of initial states.

10

– N is a finite set of nodes.
– →⊆

⋃
M,N⊆N

S ×{M}× {N}×DC(N)× 2DI × S is the transition relation.

• DI ⊆ 2N × 2N × R+.

A transition in a QIA is represented as 〈l, R〉
M,N,g,D
−−−−−−−→ 〈l′ , R′〉 where M is

the set of nodes that exchange data or synchronize for data-flow through the
transition, N is the set of nodes to be released by the firing of the transition,
and D ⊆ DI is the set of delay information tuples (I,O, r) where I and O are
sets of, respectively, source (input) and sink (output) nodes, and r indicates
the stochastic delay rate for the data-flow from I to O or the arrival rate of
data/request from the environment at nodes in I ∪ O. Furthermore, let D =
{(Ij , Oj , rj)|1 ≤ j ≤ n}, then

⋃
1≤j≤n

(Ij ∪Oj) = N ∪M .

Fig. 8. QIA for each channel of Figure 6

Definition 1 is not enough to specify the system behaviour correctly. The
causality of activities, such as arrivals of data/requests and firing, is not em-
braced in this definition. Moreover, in continuous time scale, all events occur
one by one: only a single event, such as one request arrival or a single firing in a
set of synchronized atomic firings, is taken into consideration at a time. Taking
these features into account, we explore additional conditions that can be placed
on QIA, and define the well-formedness condition of QIA. Hence, the QIA cor-
responding to the primitive Stochastic Reo channels are represented like Figure
8.

11

Definition 2. QIA Well-formedness

A QIA A = (S, S0,N ,→) is well-formed if ∀〈l, R〉
M,N,g,D
−−−−−−−→ 〈l′ , R′〉 ∈→ all

following conditions are satisfied:

1. N ⊆ R ∪M
2. M ∩R = ∅
3. (R ∪M) \N = R′

4. ((N 6= ∅ ∧M ⊆ N) ∨ (N = ∅ ∧M 6= ∅ → |M | = 1))

According to the assumption on synchronization and the causality of the activ-
ities in a Reo circuit, the well-formedness conditions are interpreted as follows:

1. A data-flow can occur only when all necessary nodes are ready to transfer
the data.

2. A node is blocked when the node is suspended and occupied by another data
item.

3. A firing releases the nodes involved in the firing.
4. A firing and a data arrival are mutually exclusive:

– A firing and its relevant synchronization happen simultaneously, i.e.,
after the synchronization of nodes, those nodes are immediately released
by their corresponding firing.

– Only one single data/request arrives at a time.

QIA provide a compositional framework for Stochastic Reo. Hence, the QIA
corresponding to a circuit is obtained by the product of the QIA of all primitive
channels that constitute the circuit, for example, the QIA model in Figure 9
corresponding to the ordering in Figure 7 is obtained by composing the QIA of
its primitive channels. The mixed nodes from such a composition are obtained by
a function newMixed : A ×A → 2N . As mentioned above, the synchronization
of its relevant mixed nodes has no associated stochastic property and occurs
simultaneously with its corresponding firing. Hence, the mixed nodes involved
in a certain firing must be considered as undergoing an atomic change through
the firing, and the stochastic properties of the mixed nodes are deleted in the
composed result. To represent such simultaneous occurrence, the relevant mixed
nodes must be collected and shown in the label of their firing together.

Definition 3. Synchronization of mixed nodes
For two QIA A = (S1, S0,1,N1,→1), B = (S2, S0,2,N2,→2), the firing with

synchronization of its mixed nodes is defined as s
C∪M,N,g,D

−−−−−−−−−→∗i s
′

for C ⊆
newMixed(A ,B) such that there are consecutive transitions with the mixed
nodes until its firing appears

s
{Bi},∅,true,Di

−−−−−−−−−−→i s1
{Bk},∅,true,Dk

−−−−−−−−−−→i · · ·
M,N,g,D

−−−−−−−−−−→i s
′

where Bi, Bk, · · · ∈ C ∧ C ⊆ N for i = 1, 2.

12

Fig. 9. Corresponding QIA to the ordering circuit in Figure 7

Definition 4. QIA Product
Given two QIA A = (S1, S1,0,N1,−→1) and B = (S2, S2,0,N2,−→2), their
product is defined as A ./ B = (S1 × S2, S1,0 × S2,0,N1 ∪N2,−→) where −→
is given by the following set of rules:

1. for every 〈l1, R1〉
M1,N1,g1,D1
−−−−−−−−−−→1 〈l

′

1, R
′

1〉 and 〈l2, R2〉
M2,N2,g2,D2
−−−−−−−−−−→2 〈l

′

2, R
′

2〉
– if M1 ∩N2 = ∅ ∧ N1 ∩N2 = ∅, then

〈(l1, l2), R1 ∪R2〉
M1,N1,g1,D1
−−−−−−−−−−−→ 〈(l′1, l2), R

′

1 ∪R2〉.
– if M2 ∩N1 = ∅ ∧ N2 ∩N1 = ∅, then

〈(l1, l2), R1 ∪R2〉
M2,N2,g2,D2
−−−−−−−−−−−→ 〈(l1, l

′

2), R1 ∪R
′

2〉.

2. for every 〈l1, R1〉
C1∪M1,N1,g1,D1

−−−−−−−−−→∗1 〈l
′

1, R
′

1〉 and 〈l2, R2〉
C2∪M2,N2,g2,D2

−−−−−−−−−→∗2 〈l
′

2, R
′

2〉
with ∀C1, C2 ⊆ newMixed(A ,B)
– if N1 6= ∅ 6= N2 ∧N1 ∩N2 = N2 ∩N1, then

〈(l1, l2), R1 ∪R2〉
C1∪C2∪M1∪M2,N1∪N2,g1∧g2,D1∪D2
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈(l′1, l

′

2), R
′

1 ∪R
′

2〉

The product of two QIA generates all possible compositions of transitions,
though some of the generated transitions are irrelevant. For instance, in the
product of the automata LossySync AB and Sync BC (cf. the first automaton
in Figure 10), the state 〈l0, {A,C}〉 has two possible firing transitions: one for
losing the data at A and the other for the data-flow from A to C via the mixed
node B. However, this state says that some requests are pending on nodes A and
C, therefore, only data-flow between A and C can occur in the next step. We

13

define a notion of refinement in the following that can be used to delete such
unnecessary transitions from a product.

Definition 5. QIA Refinement
For a QIA A = (S, S0,N ,→), the refinement of A , Ref(A), is defined as
(S, S0,N ,→′

) with →′
=→ \T , where T is defined as

T = {s
M,N,g,D
−−−−−−−→ s

′ |∃s
M1,N1,g1,D1
−−−−−−−→ s1 ∈→ s.t. P}

, P is the conjunction of the following conditions:

1. g ∧ g1 is satisfiable.
2. M ⊆M1 ∧ ∅ 6= N ⊆ N1

3. N \M ⊆ N1 \M1

4. @s
M2,N2,g2,D2
−−−−−−−→ s2 s.t. (N1 \M1) \ (N \M) ⊆ (N2 \M2) 6= ∅

∧ (N \M) ∩ (N2 \M2) = ∅

Intuitively, conditions 1, 2, and 3 in Definition 5 guarantee that a transition
with less pending and firing nodes than another transition from the same source
state will be removed, and condition 4 ensures that transitions with independent
firings of pending nodes are kept. Now we apply such refinement to the product
of LossySync AB and Sync BC in Figure 10. The transition from 〈l0, {A,C}〉
with losing data at node A has less pending and firing nodes than the other
transition from the same source state with a data-flow from A to C via the
mixed node B, and also there is no independent firing through the node C (∈
{A,C} \ {A}), which means the firing of pending requests at nodes A and C are
dependent. Hence the transition of losing data at node A with pending data at
nodes A and C will be removed from the product result. A QIA model specifies
the system behaviour with considering the influence of the environment, and
provides a compositional framework, i.e., the QIA version of a complex connector
is obtained by applying the product to primitive channels which comprise the
connector. However, the context-dependency [6] of the connector is ignored in
the product, hence we apply the refinement to the product result to retain the
dependency.

5 From QIA to CTMC

A CTMC is a stochastic discrete-state process, often used to model and analyse
system performance. A CTMC process is defined as {X(t)|t ≥ 0}. X(t) ∈ S
denotes the state in state space S at time t. Let P{X(t) = i} be the probability
that the process is in state i at time t. The stochastic process X(t) is a homo-
geneous CTMC if, for ordered times t0 < · · · < tn < tn + ∆t, the conditional
probability of staying in any state j satisfies:

P{X(tn +∆t) = j|X(tn) = in, X(tn−1) = in−1, · · · , X(t0) = i0} =
P{X(tn +∆t) = j|X(tn) = in}

14

Fig. 10. QIA product of LossySync AB and Sync BC

In this section we propose an approach for translating QIA into CTMC to
carry out performance evaluation. Through this translation, we can specify a
system in Stochastic Reo, provide its operational semantics with QIA, and then
evaluate its performance via the CTMC derived from its QIA. A Markov Chain
(MC) is not compositional and it is difficult to obtain a MC model for a com-
plex system. In our approach, QIA provide a compositional framework for the
specification, and the corresponding CTMC model even for a complex system
can be subsequently derived from the composed QIA by translation.

In a CTMC, all the stochastic variables on each of its transitions must be
exponentially distributed. Hence every stochastic event occurs one by one. In
QIA, each transition corresponds to an atomic behaviour, i.e., an arrival of a
single data item or synchronized multiple events (especially firings). Such syn-
chronized multiple events happen together, and this is where QIA and CTMC
differ. Therefore, for our translation, we need to spread and divide such synchro-
nized multi-event firings into micro-step single-event transitions.

Principle 1 A data-flow in a channel takes place from its input node to its
output node.

Principle 2 Mixed nodes send and receive data instantaneously.

Recall that a D in a QIA transition label is a set of delay information tuples
(I,O, r) in 2N × 2N × R+. Each such tuple describes a data-flow from its
input nodes in I to its output nodes in O with the stochastic delay r. The above
principles impose a causality-based sequence on the events in D. For example, in
D = {({A}, {B}, dAB), ({B}, {C}, dBC)}, the two tuples directly indicate that
data-flow occurs from A to B, with delay dAB, and from B to C, with delay dBC.
Moreover, since B appears in the output set of one tuple and the input set of the
other, B must be a mixed node, which implies that the data-flow between A and
B occurs before data-flow between B and C. From such causality-based sequences
we derive a delay-sequence d for each firing, capturing the sequential or parallel
properties of each element in its D. The concrete algorithm of extracting such a

15

delay-sequence from D is given in Appendix A. Syntactically, a delay sequence
is:

d ::= ε | delay | d; d | d|d (1)

where ε is the empty sequence, delay ∈ D, ‘d; d’ is the sequential composition of
delays, and ‘d|d’ is the parallel composition of delays. We also use parentheses ‘(’
and ‘)’ to indicate the highest priority for grouping, where more deeply nested
groups have higher precedence. The empty sequence ε is an identity element for
the ‘;’ and ‘|’ operations, i.e., ε|d = d = d|ε, ε; d = d = d; ε, and ‘|’ is commutative,
associative, and idempotent, i.e., A|B = B|A, (A|B)|C = A|(B|C), A|A = A.

In the translation from QIA to CTMC, a single delay causes no change to a
transition. A synchronized multi-event firing in the ‘d; d’ or ‘d|d’ form is divided
into micro-step single-event transitions by, respectively, enumerating each delay
element in a sequential delay-sequence and considering the interleaving of all
single delays in a parallel delay-sequence. For example, in Figure 11, the con-
secutive transitions from state Y to the initial state via state X correspond to
the result of splitting the synchronized multi-event firing from state 〈l1, {C}〉 to
state 〈l0, {}〉 in Figure 9, into micro-step single-event transitions. Similarly, the
second and third diamond-shaped clusters of transitions (G2 and G3 in Figure
11, respectively) represent the result of splitting the synchronized multi-event
firing from state 〈l0, {A,B,C}〉 to state 〈l1, {}〉 in Figure 9. This splitting is ap-
plied until no multi-event firing remains. Consequently, every transition in the
result corresponds to a single event with its stochastic property.

In QIA, a synchronized multi-event firing is considered atomic, hence other
events cannot interfere with it. However, as we split multiple synchronized events,
we cannot guarantee their atomicity any more. A transition having the same
source state as another transition that involves a synchronized multi-event firing
represents an event that can preempt the sequence of transitions that result from
splitting the multi-event firing. For example, state 〈l1, {C}〉 of the QIA in Figure
9 is connected to the initial state by the transition labeled with the synchro-
nized multi-event firing {({}, {C1}, dFC1), ({C1}, {C}, dC1C)}, and there are
two other transitions of data arrivals at nodes A and B out of 〈l1, {C}〉. These
arrivals are preemptible events for the sequence of micro-step transitions that
result from the splitting of this synchronized multi-event firing. State 〈l1, {C}〉
in Figure 9 corresponds to state Y in Figure 11, and hence its preemptible events
are added as extra transitions tracing the split single-event transitions, like the
transitions from state X labeled with data arrivals at nodes A and B.

6 Stochastic Analysis

Our QIA to CTMC translation tool has been incorporated as a plug-in in our
ECT environment and can generate input files for analysis in other existing tools
like PRISM. For instance, PRISM can be used on a CTMC for the analysis of its
steady-state distributions to gain insight not only into the essential states of a
system but also about principal performance measures such as delays, through-
put, bottlenecks, and blocking probabilities. Moreover, by adjusting values of

16

Fig. 11. Derived MC from ordering circuit

some stochastic variables, we can perform sensitivity analysis on the system. To
illustrate the relevance of our method and the usefulness of our tool, we briefly
consider an example, and show the results of a simple analysis of our generated
model.

Consider the ordering circuit in Figure 7. As mentioned in Section 3, a bound-
ary node or a buffer in a connector is blocked when it is occupied by another
pending request. Figure 12 shows the blocking probabilities of nodes A, B, and C
and the buffer of the FIFO1 channel when the arrival rate dA at node A increases
(i.e., the arrival frequency of requests at node A is increasing) while the arrival
rates of requests at nodes B and C, and all processing delays are fixed to 1. A
blocking probability is calculated by accumulating steady-state probabilities of
its corresponding states, i.e., the blocking probability of node A is obtained as the
summation of the steady-state probabilities of all the states whose configurations
show that node A is blocked. The arrival rate λ is distributed exponentially and
its mean is 1/λ time units. Hence, as dA increases, the blocking probability of
node A also increases, which increases the probability that the FIFO1 is full since
the request at node A is delivered to its buffer. A request at node B is consumed
together with a request at node A, and a request at node C is consumed together
with another at node B or the FIFO1 buffer, alternately. Hence as requests arrive
at node A more frequently, the probabilities that nodes B and C are released
increase (i.e., their blocking probabilities decrease). Because node C is released
by both node B and the buffer, its blocking probability decreases more quickly

17

Fig. 12. Blocking probabilities of ordering circuit in Figure 7

than that of node B. However all probabilities reach a certain threshold after a
while, because of the fixed stochastic values.

7 Related work

The research in formal specification of a system with quantitative aspects en-
compasses many developments such as Stochastic Process Algebras (SPAs) [11],
Stochastic Automata Networks (SANs) [15, 24, 22], Stochastic Petri nets (SPNs)
[16, 23]. SPA is a model for both qualitative and quantitative specification and
analysis with a compositional and hierarchical framework, and has algebraic laws
(or so called static laws) and expansion laws which express a parallel composition
in terms of its operators. In SPA the interpretation of the parallel composition is
a vexed one, which allows various interpretations such as Performance Evaluation
Process Algebra (PEPA) [17], Extended Markovian Process Algebra (EMPA) [7,
8]. SPA describes ‘how ’ each process behaves, but (Stochastic) Reo directly de-
scribes ‘what ’ communication protocols connect and coordinate the processes in
a system, in terms of primitive channels and their composition. Therefore, QIA
and (Stochastic) Reo explicitly model the pure coordination and communica-
tion protocols including the impact of real communication networks on software
systems and their interactions. Compared to SPA, our approach more naturally
leads to a formulation using queueing models like SPNs.

SPN is a directed, weighted, and bipartite graph with an associate exponen-
tially distributed firing delay on each transition. SPN is widely used for mod-
elling concurrency, synchronization, and precedence, and is conducive to both
top-down and bottom-up modelling. Stochastic Reo shares the same properties
with SPN and natively supports composition of synchrony and exclusion together
with asynchrony, which is not possible in Petri nets. The topology of connec-
tors in (Stochastic) Reo is inherently dynamic, and it accommodates mobility.

18

Moreover, (Stochastic) Reo supports a liberal notion of channels and is more gen-
eral than data-flow models and Petri nets, which can be viewed as specialized
channel-based models that incorporate certain specific primitive coordination
constructs.

SAN consists of a couple of stochastic automata which act independently. In
other words, it supports a modular approach. Hence the state of SAN at time t is
expressed by the states of each automaton at time t. The concept of a collection
of individual automata helps modelling distributed and parallel systems more
easily. SAN might be viewed as SPA. However, SPA is concerned with structural
properties such as compositionality and equivalence, and mapping of the speci-
fication onto Markov Chains for the computation of performance measures. On
the other hand, the original purpose of SAN is to provide an efficient and con-
venient methodology for computing performance measures rather than a means
of deriving algebraic properties of complex systems. The interactions in SAN
are rather limited to patterns like synchronizing events or operating at different
rates. Compared with the SAN approach, the expressiveness of (Stochastic) Reo
makes it possible to model different interaction patterns involving both asyn-
chronous and synchronous communications.

In general, the reachability graphs or MCs derived from the above formalisms
have a large state space that prohibits the computation of a solution. In case
of SAN the state space explosion problem is relieved by a modular approach to
modelling and efficient numerical treatment of the generator matrix [22]. Ame-
liorating the state explosion problem in other models is still ongoing research,
and we are also concerned with the efficient solution technique for the MC de-
rived from Stochastic Reo. The compositional nature of Reo encourages a mod-
ular design approach that can, as in the case of SAN, help the state explosion
problem. Moreover, the Markov Chains generated by our translation method
from Stochastic Reo and QIA consistently show certain interesting structural
properties that can be exploited for modular solution and composition through
re-scaling. We are currently investigating these alternative solution techniques.

QCA and Quantitative Reo deal with various kinds of non-functional aspects
of the system’s behaviour and provide a computational and reasoning model with
Q-algebra, as used for selection and composition of services/components [19].
The QoS aspects concerned in QCA, such as delays, costs, and resource, depend
on the internal details of the system, and accordingly ignore the influence of
the environment. However, the performance of a system depends not only on its
internal details but also on how it is used in its environment like the the frequency
and distribution of request arrivals, and QCA do not concern these stochastic
aspects. QIA and Stochastic Reo cover both the internal details of a system as
well as the influence of the environment, and hence support a comprehensive
approach for specification and performance analysis of a system.

19

8 Conclusion and Future work

In this paper, we propose Stochastic Reo and QIA by adding quantitative sup-
port in our coordination model and its operational semantics to account for the
influence of the environment on the performance of a coordination protocol (i.e.,
connector). We provide an approach to translate QIA into CTMC for perfor-
mance analysis when the performance properties are distributed exponentially
in QIA. The Reo and automata editors in the Eclipse Coordination Tools [1] have
been extended to support Stochastic Reo and QIA, and the automatic deriva-
tion of the QIA semantics of Stochastic Reo circuits. We have implemented the
translation from QIA to CTMC, and also the generation of the input files for
PRISM, and have incorporated them within this platform.

As future work, we want to consider non-exponential distributions, for ex-
ample, by considering phase-type distributions [21] as an approximation of non-
exponential distributions or using (generalized) semi-Markov processes [25] as a
target model of the translation. We have found that the CTMCs that are derived
from Reo circuits frequently contain a pattern of essentially feed-forward clus-
ters of states. We are investigating methods to exploit these patterns for more
efficient compositional solution techniques. A recent semantic model for Reo
captures the context-dependent behaviour of Reo connectors in a very small au-
tomata model [10]. We expect that using these automata as a basis can provide a
more abstract model with significantly smaller numbers of states and transitions
compared to the QIA. This can make translating a Reo connector to an MC
considerably more efficient.

Acknowledgment

The work reported in this paper is supported by a grant from the GLANCE
funding program of NWO, through project CooPer (600.643.000.05N12); project
SYANCO (DN 62-613) funded by the DFG-NWO bilateral program; and by
the European IST-33826 STREP project CREDO. The authors are indebted to
the members of SEN3 for helpful discussions on various aspects of this work.
Specifically, the authors are thankful for the assistance of Christian Koehler and
Ziyan Maraikar for their cooperation in the implementation of the QIA tools.

References

1. Eclipse Coordination Tools. http://reo.project.cwi.nl/.
2. Probabilistic model checker. http://www.prismmodelchecker.org/.
3. F. Arbab. Reo: a channel-based coordination model for component composition.

MSCS, 14(3):329–366, 2004.
4. F. Arbab, T. Chothia, S. Meng, and Y.-J. Moon. Component Connectors with

QoS Guarantees. In COORDINATION, pages 286–304, 2007.
5. F. Arbab and J. J. M. M. Rutten. A Coinductive Calculus of Component Connec-

tors. In WADT, pages 34–55, 2002.

20

6. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling component
connectors in Reo by constraint automata. Sci. Comput. Program., 61(2):75–113,
2006.

7. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In CONCUR,
pages 315–330, 1996.

8. M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Pro-
cesses with Nondeterminism, Priorities, Probabilities and Time. Theor. Comput.
Sci., 202(1-2):1–54, 1998.

9. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. J. ACM, 44(2):201–236, 1997.

10. M. Bonsangue, D. Clarke, and A. Silva. Automata for context-dependent connec-
tors. Submitted.

11. M. Calzarossa and S. Tucci, editors. Performance Evaluation of Complex Systems:
Techniques and Tools, Performance 2002, Tutorial Lectures, volume 2459 of LNCS.
Springer, 2002.

12. W.-K. Ching and M. K. Ng. Markov Chains: Models, Algorithms and Applications.
Springer, 2005.

13. T. Chothia and J. Kleijn. Q-Automata: Modelling the Resource Usage of Concur-
rent Components. Electr. Notes Theor. Comput. Sci., 175(2):153–167, 2007.

14. D. Costa. Formal Models for Context Dependent Connectors for Distributed Soft-
ware Components and Services. Phd thesis, 2009.

15. P. Fernandes, B. Plateau, and W. J. Stewart. Efficient Descriptor-Vector Multi-
plications in Stochastic Automata Networks. J. ACM, 45(3):381–414, 1998.

16. B. R. Haverkort, R. Marie, G. Rubino, and K. S. Trivedi, editors. Performability
Modelling: Techniques and Tools. Wiley, 2001.

17. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

18. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic
Model Checker. In Computer Performance Evaluation/TOOLS, pages 200–204,
2002.

19. S. Meng and F. Arbab. QoS-Driven Service Selection and Composition. In ACSD,
pages 160–169. IEEE Computer Society, 2008.

20. R. D. Nicola, G. L. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Process
Calculus for QoS-Aware Applications. In COORDINATION, pages 33–48, 2005.

21. C. O’Cinneide. Characterization of phase-type distributions. Stochastic Models,
6(1):1–57, 1990.

22. B. Plateau and W. J. Stewart. Stochastic automata networks: product forms and
iterative solutions, RR-2939. Technical report, INRIA Research Report, 1996.

23. R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and reliability analy-
sis of computer systems: an example-based approach using the SHARPE software
package. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

24. W. J. Stewart, K. Atif, and B. Plateau. The numerical solution of stochastic
automata networks. EOR, 86(3):503–525, 1995.

25. H. Younes and R. Simmons. Solving Generalized Semi-Markov Decision Processes
using Continuous Phase-Type Distributions. In Proceedings of the 19th National
Conference on Artificial Intelligence, pages 742–747. California AAAI Press, 2004.

A Algorithm for Deriving Delay-sequences

Some firing transitions in QIA have multiple synchronized events, identified as
a set of firing node names, in their labels, together with a set of delay informa-

21

tion, D, that gives the (stochastic) performance properties of each firing event.
In continuous time scale, only a single event can (be observed to) happen at a
time. Therefore, the translation of QIA into a CTMC requires breaking down
every QIA transition with atomic multi-event firing into its valid sequences of
micro-step single-event transitions. The contents of the delay information sets
are used to guide the decomposition of a multi-event transition into its corre-
sponding sequence of single-event transitions. For this purpose, we generate a
delay-sequence from the contents of the delay information set, and then spread
and split the multi-event firing into micro-step single-event transitions along with
their relevant elements in the delay-sequence. For a sequential delay-sequence we
enumerate each element, and for a parallel delay-sequence we consider the in-
terleaving of all elements. We give here the algorithm that receives D, a set of
delay information, for a firing and returns its corresponding delay-sequence d
whose syntax complies with (1) in Section 5. We use the following functions to
define this algorithm. For brief explanation of them, we use capital letters for
the elements in a delay information set, and let 〈〉 be an empty delay-sequence
and A be a given finite set of delay information. Moreover we assume that each
delay-sequence contains a specific delay information at most once.

– Concatenation ˆ adds the second delay-sequence to the end of the first delay-
sequence:

d1 ˆ d2 = d1d2

– contains(d,B) checks if the delay information B is already included in the
delay-sequence d:

contains(d, B) =
{
true if B ∈ d
false if B /∈ d

– removes(A, d) deletes the delay information A from the delay-sequence d if
A exists in d :

remove(A, 〈〉) =〈〉

remove(A, 〈B〉ˆd) =
{
d if A = B
〈B〉ˆremove(A, d) if A 6= B

– getNext(P,A) with P ∈ 2A returns a set of delay information whose rele-
vant events follow the events relevant to the elements in P:
getNext(∅, A) = ∅
getNext({A,B, · · · , C}, A)

=

{D} ∪ getNext({B, · · · , C}, A) if ∃D ∈ A s.t. OA = ID
where A = (IA, OA, rA), D = (ID, OD, rD)

getNext({B, · · · , C}, A) otherwise
– sorting(P, d) with P ∈ 2A sorts the elements in P according to the occur-

rence order in the delay-sequence d:
sorting(∅, d) = 〈〉

22

sorting({A,B, . . . , C}, d)

=

〈A〉ˆsorting({B, · · · , C}, d) if ∀D ∈ {B, · · · , C}

s.t. d = d1; (A|d2); d3; (D|d4); d5

〈〉 otherwise
– commonD(d1, d2) returns a set of delay information that appear in both d1

and d2:

commonD(d1, d2) = {A ∈ A| contains(d1, A) ∧ contains(d2, A)}

– parallel(d,A) returns a set of delay information in delay sequence d2 if A|d2

is a subsequence of d:

parallel(d1; (A|d2); d3, A) = {C ∈ A| contains(d2, C)}

– sub1(d,A) returns a subsequence of d that starts from the head of d and
ends right before A appears:

sub1(d1; (A|d2); d3, A) = d1

– sub2(d,A,B) returns a subsequence of d that appears between A and B, and
A must occurs before B:

sub2(d1; (A|d2); d3; (d4|B); d5, A, B) = d3

– sub3(d,A) returns a subsequence of d that starts right after A and ends at
the end of d:

sub3(d1; (A|d2); d3, A) = d3

23

ExtractDelaySequence(D)

D := {delay1, · · · , delayn} s.t. delayi = (Ii, Oi, ri) where ri ≥ 0
d := 〈〉
Init := {delayi|∃delayi ∈ D, Ii ∩

S
k∈ Nn

1 \{i}
Ok = ∅}, di := 〈〉, · · · , d|Init| := 〈〉

for i = 1 to |Init| do
di := diˆ〈Init[i]〉
Pre := {Init[i]}, Post = getNext(Pre, D)
while Post 6= {} do

for k = 1 to |Post| do
if contains(di, Post[k]) then

remove(Post[k], di)
end if

end for
di := diˆ〈 ; (Post[1] | · · · | Post[|Post|])〉
Pre := Post, Post := getNext(Pre, D)

end while
end for
for i = 1 to |Init| do

for m = 1 to |Init| do
Com := commonD(di, dm)

end for
end for
Sort := 〈〉 ˆ

1≤i≤|Init|
sorting(Com, di)

if Com = ∅ then
d := dˆ〈(d1|d2| . . . |d|Init|)〉

else
FPar = {delay|∃delay ∈

S
1≤k≤|Init|

(parallel(dk, Sort[1])}

FSub1 := sub1(d1, Sort[1])
...

FSub|Init| := sub1(d|Init|, Sort[1]))
d := dˆ〈(FSub1 | . . . | FSub|Init|)〉ˆ〈; (FPar[1]| . . . |FPar[|FPar|])〉
for j = 2 to |Com| do

MPar = {delay|∃delay ∈
S

1≤l≤|Init|
parallel(dl, Sort[j])}

MSub1 := sub2(d1, Sort[j − 1], Sort[j])
...

MSub|Init| := sub2(d|Init|, Sort[j − 1]), Sort[j])
d := dˆ〈; (MSub1 | . . . | MSub|Init|)〉ˆ〈; (MPar[1]| . . . |MPar[|MPar|])〉

end for
LSub1 := sub3(d1, Sort[|Sort|])

...
LSub|Init| := sub3(d|Init|, Sort[|Sort|])
d := dˆ〈; (LSub1 | . . . | LSub|Init|)〉

end if
return d

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20090331084131
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 None
 Down
 8.5039
 0.0000

 Both
 19
 AllDoc
 20

 CurrentAVDoc

 Uniform
 14.1732
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 23
 22
 23

 1

 HistoryList_V1
 qi2base

