Stochastic Models

for Quality of Service of
Component Connectors

Young-Joo Moon

Stochastic Models

for Quality of Service of
Component Connectors

Stochastic Models

for Quality of Service of
Component Connectors

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden
op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 25 oktober 2011
klokke 10.00 uur

door
Young-Joo Moon

geboren te Pohang, Zuid-Korea

Promotor: Prof. Dr. F. Arbab Universiteit Leiden
Co-promotor: Dr. A. Silva Radboud University Nijmegen
Dr. E.P. de Vink Technische Universiteit Eindhoven

Other members: Prof. Dr. F.S. de Boer Universiteit Leiden

Dr. M.M. Bonsangue Universiteit Leiden
Prof. Dr. J.-M. Jacquet University of Namur, Belgium
Dr. J. Kleijn Universiteit Leiden
Prof. Dr. J.N. Kok Universiteit Leiden
Prof. Dr. R. van der Mei Vrije Universiteit Amsterdam
Prof. Dr. M. Sirjani Reykjavik University, Iceland

INSTITY,
3
L

K7 ¥
N gy ACS

GWAYED0y

o

’,

2
4
iy

NPIZ3 Cii_

The work reported in this thesis has been carried out at the Center for Mathemat-
ics and Computer Science (CWI) in Amsterdam and Leiden Institute of Advanced
Computer Science at Leiden University, under the auspices of the research school IPA
(Institute for Programming research and Algorithmics). The research was supported
by the grant from the GLANCE funding program of NWO through Coordination with
Performance Guarantees (CooPer) project (600.643.000.05N12).

Copyright (©) 2011 by Young-Joo Moon

Cover design by Young-Joo Moon & Song-Hee Lee.
Printed by Ponsen & Looijen.

ISBN: 978-90-6464-506—8
IPA Dissertation Seriese 2011-17

Contents

1 Introduction 1
1.1 Quantitative analysis of systems 2
1.2 Thesis overview and contributions 3

1.2.1 Contributions 5

2 Models for component coordination 7
2.1 Reolanguage 7
2.2 Stochastic Reo 8
2.3 Semantic modelsfor Reo 11

2.3.1 Constraint Automata 11
2.3.2 Intentional Automata 12
2.3.3 Reo Automata 17
2.4 Markov Chains 21
2.5 Interactive Markov Chains 22
2.6 Related work 23
2.6.1 Other coordination languages 23
2.6.2 Continuous-Time Constraint Automata 24
2.6.3 Stochastic Process Algebra 25
2.6.4 Stochastic Petri Nets 26
2.6.5 Stochastic Automata Networks 27

3 Quantitative Intentional Automata 29
3.1 Introduction 29
3.2 Quantitative Intentional Automata 30

3.21 Inmvariants 31
3.2.2 QIA composition 32
3.3 Translation into a stochastic model 37
3.3.1 Micro-step transitions oL 39
3.3.2 Extracting a delay-sequence 40
3.3.3 Dividing macro-step transitions with a delay-sequence 41

3.3.4 Preemptive request-arrivals 45

3.4 Discussion e 47

4 Stochastic Reo Automata 49
4.1 Introduction 49
4.2 Stochastic Reo Automata 50
4.2.1 Stochastic Reo Automata 50

43 Rewardmodel. 57
4.3.1 Stochastic Reo with reward information 58

4.3.2 Stochastic Reo Automata with reward information 61

4.4 Translation into CTMC 64
4.4.1 Synchronized data-flows oL, 64

4.4.2 Deriving the CTMC 64

443 Rewards 66

4.5 Interactive Markov Chainsand Reo. 69
4.5.1 Interactive Markov Chains. 70

4.6 Discussion 75

5 Tool implementation 77
5.1 Imtroductiono 7
5.2 Reo2MC: description and implementation 7
5.2.1 Implementation oL 78

522 Usage 87

5.3 Discussion e 94

6 Case study 97
6.1 Introduction 97
6.2 The ASK system 98
6.2.1 Overview of the ASK system 100

6.3 Modeling the ASK system 102
6.3.1 The Reception component 102

6.3.2 Extracting distributions from logs 104

6.4 QoS analysis 105
6.4.1 Analysis on derived CTMC 105

6.4.2 Simulation 109

6.5 Discussion 112

7 Conclusions and Future work 115
7.1 Conclusions 115
7.2 Future worko 116
Bibliography 119
Abstract 127

ii

Samenvatting 129

iii

Chapter 1

Introduction

In Service-oriented Computing (SOC), services distributed over a network are com-
posed according to the requirements of service consumers. Services are platform- and
network-independent applications that support rapid, low-cost, loosely-coupled com-
position. Services typically run on the hardware of their own providers, in different
containers, separated by fire-walls and other ownership and trust barriers. Their com-
position requires additional mechanisms (e.g., process work-flow engines, connectors,
or glue code) to impose some form of coordination (i.e., orchestration and/or chore-
ography).

The holy grail of service and component-based software engineering is to develop
truly reusable software services and components that can be sold off-the-shelf and
reused to build software systems [88]. Research on software composition plays a key
role in this quest, as it offers flexible ways of plugging together components. Some
approaches to software composition use textual glue code [64, 71, 38|, usually in a
scripting language, whereas others offer a more visual approach, where ‘channels’ or
‘connectors’ are used to compose components into a system (e.g. [2, 80, 14]). Connec-
tors play the role of coordinating software, yet their functionality is traditionally more
limited than scripting languages. This has changed with the advent of the notion of
compositional connectors [2, 64]. In such a setting, connectors are formed by com-
posing simpler connectors, such as channels, together. Several coordination languages
have been proposed for software composition.

Coordination languages express various coordination patterns exhibiting combi-
nations of synchronization, mutual exclusion, non-deterministic choice, and state-
dependent behavior. Some have been used as component connector models, including
Reo [2], Ptolemy [58, 36], Ptolemy II [59, 36], Orc [64], MoCha [80], Manifold [7],
Linda [41], BIP [15], and pipe and filter architectures [81]. Although these models
overlap in philosophy and functionality, Reo is the only one that enables propagation
of synchrony though composition, mutual exclusion through connectors, and combi-
nation of synchrony and asynchrony [78, 73, 77].

1

2 Chapter 1. Introduction

1.1 Quantitative analysis of systems

In recent years, there has been an increasing interest in studying the behavior of
software systems from a quantitative perspective. Consider a service-based system
running in a call center that matches calling clients with the appropriate represen-
tatives that can provide them with the specialized customer service that they need.
Challenges that the center might face include minimizing the number of customers
waiting to be matched at any point (while not having to increase their number of
employees and servers too much) and improving the quality of the matching service.
The relevance of being able to propose solutions for such challenges cannot be un-
derestimated, since resources are neither infinite nor free. In addition, the answers to
quantitative questions have to be adapted according to the context: different services
have different constraints. For instance, in the context of safety critical and time criti-
cal applications (like airplane and automobile control systems), if a request is waiting
for more than a few seconds there could be disastrous consequences, whereas in other
applications, such as a ticket booking website, a few seconds will not have too much
of a negative impact.

As mentioned above, distributed services are platform independent and, there-
fore, heterogeneous, in the sense that, for instance, they are written in different pro-
gramming languages. In such a setting, even if the QoS properties of every indi-
vidual service and connector are known, it is far from trivial to build a model for
and make statements about the end-to-end QoS of a composed system. For this pur-
pose, over the past few decades, several stochastic methods, such as Stochastic Petri
Nets (SPN) [79, 65] and Stochastic Process Algebra (SPA) [63, 49, 45], have been
suggested in various application areas. SPN are useful for the analysis of computer
systems since they allow the system operations to be precisely described by means of
a graph which then translates into a Markovian model used to obtain performance
estimates. Due to its graphical representation, it can easily be understood. In addi-
tion, the derivation of the Markovian model and its solution can be automated and
transparent to the users. However, as typical of state-based models, they suffer from
the state-explosion problem, and often, for a large SPN model, exact solutions cannot
be computed. In addition, SPN essentially deal with asynchronous events and, hence,
the synchrony of events is not propagated through composition [4]. SPA, on the other
hand, offers a compositional specification framework. A complicated system can be
modeled by first modeling its sub-systems and then the interaction between them.
The main disadvantage of SPA is the lack of expressiveness of the timing distribu-
tions that can be used in the modeling: only negative exponential distributions are
allowed.

In this thesis we focus on Reo, a channel-based coordination language which pro-
vides a flexible and expressive model for compositional construction of connectors
that coordinate distributed services over networks. Reo has been around for many
years now and much research has been done in order to turn it into an expressive,
modular and usable language. One of the main streams in this research concerns
formal semantic models for Reo. There have been several proposals: a coalgebraic

1.2. Thesis overview and contributions 3

model [9], colouring tables [30] which are used in the animation tool of Reo con-
nectors in Extensible Coordination Tools (ECT) [35], and several automata models,
particularly suitable for verification. Among the proposed automata models, each of
which offers different expressiveness and modeling advantages, we mention Constraint
Automata (CA) [12], Intentional Automata (TA) [31] and Reo automata [19]. CA are
a basic and compact automaton model, which unfortunately does not support con-
text dependency directly. Context dependency expresses behavior that depends on
both the positive and negative availability of I/O requests on the boundary ports of
a connector. To overcome this limitation of CA, IA and Reo automata were recently
proposed. The Reo automata model is compact, quite close in spirit to the CA model,
whereas the TA model is more verbose. In this thesis, we provide quantitative exten-
sions of both TA and Reo automata.

First steps have been taken to extend Reo in order to accommodate QoS aspects
of a system. In [5], Quantitative Reo and Quantitative Constraint Automata (QCA)
were introduced. The QCA model integrates the QoS aspects of components/services
and connectors that comprise an application to yield the QoS properties of that appli-
cation, ignoring the impact of the environment on its performance, such as throughput
and delays. QCA provide a useful model for service selection and composition [61],
but, because it ignores the interaction with the environment, it does not provide a
faithful model for the end-to-end QoS of a system. The latter can crucially depend not
only on the internal details of a system, but also on how it is used in an environment,
as determined, for instance, by the frequencies and distributions of the arrivals of I/O
requests. Such stochastic aspects are not investigated in [5].

1.2 Thesis overview and contributions

The main aim of this thesis is to provide an expressive model wherein the specification
of the overall end-to-end QoS of a composed service in a distributed environment
can be carried out compositionally. We use as basis of our model Reo, which we
extend with the power to specify stochastic aspects of a system. We provide two
formal semantic models for this extension of Reo, based on the IA and Reo automata
models mentioned above. Furthermore, in order to enable practical analysis of the
end-to-end QoS of a system, we provide translation methods from the specification
models into stochastic models (Markov Chains and Interactive Markov Chains). We
have implemented all the methods presented in this thesis as plug-ins for the ECT
tools [8] and, using them, we have modeled and analyzed a real application, the ASK
system [83].

In Chapter 2 we mention the basic preliminaries of Reo and its semantics models.
In addition, Stochastic Reo, a stochastic extension of Reo, is introduced, in which it
is possible to specify the end-to-end QoS of a system. Stochastic Reo constitutes the
only original contribution of this chapter and it is based on the paper:

4 Chapter 1. Introduction

[6] Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo Moon, and
Chrétien Verhoef. From Coordination to Stochastic Models of QoS. In COORDINA-
TION, volume 5521 of Lecture Notes in Computer Science, pages 268—287. Springer,
2009

In Chapter 3 we introduce Quantitative Intentional Automata (QIA), as a se-
mantic model for Stochastic Reo. QIA extend the semantics of Reo by representing
Reo channels and their channel ends separately and admitting annotation on them
to describe data-flows through those channels and I/O request arrivals at the chan-
nel ends as stochastic events. In addition, QIA can be considered as an intermediate
model for translation into stochastic models, in particular Continuous-Time Markov
Chains (CTMCs), for stochastic analysis. The translation method from Stochastic
Reo into CTMCs via QIA is also introduced in this chapter. This chapter is based on
the following paper:

[6] Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo Moon, and
Chrétien Verhoef. From Coordination to Stochastic Models of QoS. In COORDINA-
TION, volume 5521 of Lecture Notes in Computer Science, pages 268-287. Springer,
2009

QIA can be seen as an extension of IA. In the above paper, the structure and basic
definitions of QIA are different from the ones we now present in Chapter 3 since the
reference for TA [31] was not available when the above paper was written. For the
sake of consistency and coherence, we have completely rewritten the above paper to
keep the definitions closer to the IA definitions.

In Chapter 4 we introduce Stochastic Reo Automata as an alternative semantic
model for Stochastic Reo. In general, QIA have a large number of states, mainly due
to the separate representation of I/O request arrivals and data-flows. Stochastic Reo
Automata were designed to provide a more compact semantic model for Stochastic
Reo. More importantly, Stochastic Reo Automata also enable an easy formal proof for
their compositionality, which is lacking in the case of QIA. For general QoS aspects,
Stochastic Reo Automata were extended with reward information to accommodate
concerns such as CPU computation time and memory space. As an alternative model
to QIA, Stochastic Reo Automata are also used to generate corresponding CTMCs.
In addition, in this chapter, we discuss why Interactive Markov Chains (IMCs) [43]
are not an appropriate semantic model for Stochastic Reo, and show the translation
from Stochastic Reo into IMCs via Stochastic Reo Automata. This chapter is based
on the following papers:

[68] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab. A Composi-
tional Semantics for Stochastic Reo Connectors. In FOCLASA, volume 30 of EPTCS,
pages 93-107, 2010

[67] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab. A Compo-
sitional Model to Reason about end-to-end QoS in Stochastic Reo Connectors. To
apper in Science of Computer Programming, 2011

1.2. Thesis overview and contributions 5

In Chapter 5 we describe the Reo2MC tool which is available as a plug-in for
the ECT. Reo2MC is a fully automated tool which is able to automatically derive the
QIA semantics of Reo models and their corresponding CTMCs. In addition, it provides
bridges to existing third-party tools for stochastic analysis, such as PRISM* [57, 48],
Maple, and MATLAB, by generating the input files for those tools. We also explain
the usage of the Reo2MC tool. This chapter is based on the following paper:

[8] Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Z. Kwiatkowska, and Hongyang
Qu. Reo2MC: a tool chain for performance analysis of coordination models. In
ESEC/SIGSOFT FSE, pages 287-288. ACM, 2009

In Chapter 6 we show a case study using the ASK system [83], an industrial soft-
ware developed by the Dutch company Almende [1], and marketed by their daughter
company ASK Community Systems [10]. The ASK system is a communication soft-
ware product that acts as a mediator between service consumers and service providers.
We model the ASK system using Stochastic Reo, and then translate the model into a
CTMC in order to analyze it using PRISM. The rates used in this model were obtained
by applying statistical analysis techniques on the raw values that we obtained from
the real logs of an actual running ASK system. Since the translation target model is a
CTMC, only exponential distributions are allowed as rates in the modeling. However,
not all the distributions we obtained from the statistical analysis were exponential.
In the case of properties involving rates that follow a non-exponential distribution,
we also show in this chapter how to use the Reo simulator to obtain insights in the
behavior of the system. This chapter is based on the following paper:

[66] Young-Joo Moon, Farhad Arbab, Alexandra Silva, Andries Stam, and Chrétien Ver-
hoef. Stochastic Reo: a Case Study. Accepted for publication in TTSS 2011

1.2.1 Contributions

We summarize in the table below the main contributions of this thesis and the chapters
where they can be found.

Stochastic Reo: a compositional model for specifying
composite systems, where non-functional (QoS) as- Chapter 2
pects and the influence of the environment on their
performance are taken into account.

Quantitative intentional automata (QIA): an opera- Chapter 3
tional semantic model for Stochastic Reo

Methods to translate QIA into CTMC Chapter 3, Section 3.3

Thttp:/ /www.prismmodelchecker.org/

Chapter 1. Introduction

Stochastic Reo Automata (SRA): an alternative Chapter 4
compact semantic model for Stochastic Reo
Methods to translate SRA into CTMC and IMC Chapter 4,

Sections 4.4 and 4.5

Formal proof of compositionality of SRA

Chapter 4, Section 4.2.1

Extension of SRA to specify more general QoS (re-
ward information)

Chapter 4, Section 4.3

Reo2MC: a tool for the analysis of Stochastic Reo Chapter 5
models
Case study of a real commercial system, the ASK

Chapter 6

system, using the Reo2MC tool and the Reo simula-
tor

Chapter 2
Models for component coordination

In this section, we recall the basics of the Reo coordination language and its seman-
tic models. We also present Stochastic Reo, an extension of Reo, which enables the
modeling of QoS properties. In addition, we introduce the basic definitions of some
stochastic models, in particular Markov Chains and Interactive Markov Chains which
we will use later as target models for the translation from Stochastic Reo for perfor-
mance analysis. We conclude this chapter with a brief discussion on related work.

2.1 Reo language

Reo is a channel-based coordination model wherein so-called connectors are used to
coordinate (i.e., control the interaction among) components or services exogenously
(from outside of those components and services). In Reo, complex connectors are
compositionally built out of primitive channels. Channels are atomic connectors with
exactly two ends. An end can be either a source or a sink end. Source ends accept
data into, and sink ends dispense data out of their respective channels. Reo allows
channels to be undirected, i.e., to have two source or two sink ends.

Sync LossySync FIFO1 SyncDrain

Figure 2.1: Some basic Reo channels

Figure 2.1 shows the graphical representations of some basic channel types. The
Sync channel is a directed, unbuffered channel that synchronously reads data items
from its source end and writes them to its sink end. The LossySync channel behaves
similarly, except that it does not block if the party at the sink end is not ready to
receive data. Instead, it just loses the data item. The FIFO1 is an asynchronous channel
with a buffer of size one. The SyncDrain channel differs from the other channels in

7

8 Chapter 2. Models for component coordination

that it has two source ends (and no sink end). If there is data available at both ends,
this channel consumes (and loses) both data items synchronously.

Channels can be joined together using nodes. A node can have one of three types:
source, sink or mixed node, depending on whether all ends that coincide on the node
are source ends, sink ends or a combination of both. Source and sink nodes, called
boundary nodes, form the boundary of a connector, allowing interaction with its envi-
ronment. We assume that at most one request can wait for the acceptance at a bound-
ary node. Source nodes act as synchronous replicators, and sink nodes as mergers. A
mixed node combines both behaviors by atomically consuming a data item from one
of its sink ends and replicating it to all of its source ends.

a c

Figure 2.2: LossyFIFO1 and Ordering circuit

For example, the connectors shown in Figure 2.2 are a (overflow) LossyFIFO1 and
an alternator. The LossyFIFO1 reads a data item from a, buffers it in a FIFO1 and
writes to ¢. This connector loses data items at a if and only if the FIFO1 buffer is
already full. The alternator imposes an ordering on the data from its input nodes a and
b to its output node c. The SyncDrain channel enforces that data flow through a and
b only synchronously. The empty buffer together with the propagation of synchrony
through the three nodes guarantee that the data item obtained from b is delivered
to ¢ while the data item obtained from a is stored in the FIFO1 buffer. After this,
the buffer of the FIFO1 is full and propagation of exclusion from a through the
SyncDrain channel to b guarantees that data cannot flow in through either a or b,
but ¢ can dispense the data stored in the FIFO1 buffer, which makes it empty again.
Assume three independent processes (that follow no communication protocol and each
of which knows nothing about the others) place I/O requests on nodes a, b, and ¢,
each according to its own internal timing. By delaying the reply to their requests,
when necessary, this circuit guarantees that successive read operations at ¢ obtain
the values produced by the successive write operations at b and a alternately.

2.2 Stochastic Reo

Stochastic Reo is an extension of Reo where channels are annotated with stochastic
values denoting distributions of their relevant data-flow events and arrival of I/O re-
quest at the channel ends. We refer to these distributions as processing delay rates
and arrival rates of I/O requests, respectively. Such stochastic values are non-negative
real values and describe the probability of a certain value (or interval) of a discrete (or

2.2. Stochastic Reo 9

continuous) random variable. Figure 2.3 shows some primitive channels of Stochastic
Reo that correspond to the primitives of Reo in Figure 2.1. In this figure and through-
out, for simplicity, we do not show node names, but these names can be inferred from
the names of their respective arrival rates: for instance, ‘ya’ refers to the node ‘a’.

It should be noted that such an annotation does not affect the functionalities
of Reo connectors, thus, when the annotations of rates are neglected, the mapping
operational semantics between Reo and Stochastic Reo is quite straightforward, i.e.,
one-to-one mapping.

~yab ~yab ~yab YyaF YFb
e === >e
ya ~b ya yalL b Yya ~b ya ~b

Figure 2.3: Some basic Stochastic Reo channels

A processing delay rate represents the duration that a channel takes to perform
a certain activity such as transporting a data item. For instance, a LossySync has
two associated variables yab and yaL for the stochastic delay rates of, respectively,
successful data-flow from node a to node b, and losing the data item at node a when
a read request is absent at node b. In a FIFO1l, yaF means the delay for data-flow
from its source node a into the buffer, and vF'b means the delay for sending the data
from the buffer to the sink b. Similarly, yab of a Sync (and a SyncDrain, respectively)
indicates the delay for data-flow from its source node a to its sink node b (and losing
data at both ends, respectively).

Arrival rates describe the time between consecutive arrivals of I/O requests at
source and sink nodes of Reo channels. For instance, ya and b in Figure 2.3 represent
the associated arrival rates of write/take requests at nodes a and b. As mentioned
earlier, at most one request can wait at a boundary node for acceptance. That is,
if a boundary node is occupied by a pending request, then the node is blocked and
consequently all further arrivals at that node are lost.

Stochastic Reo supports the same compositional framework of joins of connectors
as in Reo. Most of the technical details of this join operation are identical to that
of Reo. The nodes in Stochastic Reo have certain QoS information on them, hence
joining nodes must accommodate QoS composition.

Since arrival rates on nodes model their interaction with the environment only,
mixed nodes have no associated arrival rates. This is justified by the fact that a
mixed node delivers data items instantaneously to the source end(s) of its connected
channel(s). Thus, when joining a source with a sink node into a mixed node, their
arrival rates are discarded!.

1For simplicity, we assume that the activity of ideal nodes incur no delay. Any real implementation
of a node, of course, induces some processing delay rate. However, such a real node can be modeled
as a composition of an ideal node with a Sync channel that manifests the processing delay rate. Thus,
we can even associate delay distributions with Stochastic Reo nodes and automatically translate such
nodes into “Sync plus ideal node” constructs. We ignore this issue in the rest of this thesis.

10 Chapter 2. Models for component coordination

The activities of a Reo connector consist of I/O request arrivals at boundary nodes,
synchronization in mixed nodes, and data-flows through primitive channels. Adding
time information to a connector gives rise to the causality of such activities. That is,
for a given Reo connector, first I/O requests must arrive at the boundary nodes of a
connector, second synchronization occurs, and finally data-flows happen. For instance,
in Figure 2.4, first I/O requests arrive at a and d; second the synchronization on the
mixed node b or ¢, selected by merger d, occurs; finally a data item is delivered from
the source node a to the sink node d via the mixed node b or c.

Figure 2.4: Example for the causality of a Reo connector

In order to describe the processing delay rates of a primitive channel explicitly,
we name the rate by the combination of a pair of (source, sink) nodes and the buffer
of the channel. For example, yab for the Sync channel and «aF for the FIFO1 channel
in Figure 2.3. As mentioned in Section 2.1, a source node and a sink node act as
a replicator and a non-deterministic merger, respectively, and each activity, such as
replicating data to its source nodes or selecting a sink node, has its own stochastic
value, the reference of which can be represented using their source and sink nodes.
However, for simplicity, we do not describe the names of source and sink nodes of a
replicator and a merger explicitly when the nodes are not boundary nodes. In these
cases, the processing delay rates for the selection or the replication by, respectively, a
merger or a replicator are not distinguishably described. Thus, we name the internal
nodes of a replicator or a merger by naming after the initial name of the replicator or
the merger with index. For example, merger d in Figure 2.4 has three different nodes:
two source nodes and one sink node. Let the source node transmitting data from node
b, the other source node, and the sink node be, respectively, di, da, and d, whereas

~yay F yFeq
e e LI

Yye

oo > 1>

vbaeg

~b

Figure 2.5: LossyFIFO1 and ordering circuit in Stochastic Reo

2.83. Semantic models for Reo 11

the first two of those distinctive names are omitted here. Then, the processing delay
rates of merger d are described as ydid and ydad which refer to the rates for the
selection of data from node b and ¢, respectively.

Figure 2.5 shows the LossyFIFO1 and the ordering circuit in Stochastic Reo with
their stochastic values. (Compare Figure 2.2)

2.3 Semantic models for Reo

2.3.1 Constraint Automata

Constraint Automata (CA) were introduced in [12] as a formalism to capture the
operational semantics of Reo, based on timed data streams, which constitute the
foundation of the coalgebraic semantics of Reo [9].

We assume a finite set ¥ of nodes, and denote by Data a fixed, non-empty set
of data that can be sent and received through these nodes via channels. CA use a
symbolic representation of data assignments by data constraints, which are propo-
sitional formulas built from the atoms “d, € P”, “d, = dp” and “d, = d” using
standard Boolean operators. Here, a,b € X, d, is a symbol for the observed data item
at node a, d € Data, and P C Data. DC(N) denotes the set of data constraints
can refer to the observed data items d, at node a for a € N where N C X. Logical
implication induces a partial order < on DC: g < ¢’ iff g = ¢'.

A CA over the data domain Data is a tuple A = (S, Sy, X, —) where S is a set
of states, also called configurations, () # Sy C S is the set of its initial states, ¥ is
a finite set of nodes, — is a finite subset of (Jy yecox S X {N} x DC(N) x S, called
the transition relation. A transition fires if it observes data items in its respective
ports/nodes of the component that satisfy the data constraint of the transition, and
this firing may consequently change the state of the automaton.

1
——— e —--—-=-=-=--- >e
a b a 5 b a . b b
Sync LossySync SyncDrain FIFO1
m a,dg =d
b, dy =d
ab,dq = dy, ab,dq = dy, ab

Figure 2.6: Constraint Automata for basic Reo channels of Figure 2.1

Figure 2.6 shows the CA for the primitive Reo channels in Figure 2.1. In this figure
and the remainder of this thesis, the initial states are indicated with an extra incoming
arrows. For simplicity, we assume the data constraints of all transitions are implicitly
true (which simply imposes no constraints on the contents of the data-flows) and omit
them to avoid clutter. In addition, we use a simplified notation for the set of nodes in

12 Chapter 2. Models for component coordination

the labels of transitions by deleting the curly brackets { and } and commas between
the set elements. For a full treatment of data constraints in CA, see [12].

As the counterpart for the join operation in Reo, the product of two CA A; =
(S1,51,0,21,—1) and Ay = (S2, 52,0, X2, —2) is defined as a constraint automaton
A1 pa Ay = (81 % S2,51,0 X S2,0, 1 UXs, —) where — is given by the following rules:

Ny, No,
o If 54 1—91>1 8/1,32 2—g2>2 3/2 and N1 N Yy = NoN 3y,

N1UN2,91Ag2 <5/ ,>

then (s1, $2) 1, 85).

N Ny,
o If 57 —24, s1 and Ny N Xy = 0 then (sq, s2) EALLEEN (s], s2).

N. N.
o If 5o —2%, sh and Ny N3y = () then (sq, s2) RELEN (81, 85).

Context-dependency

The context-dependency of a Reo connector is not captured by CA. For example, recall
the LossyFIFO1 example in Figure 2.2. The corresponding CA for the LossyFIFO1 is
built by the product of a Sync channel ab and a FIFO1 channel bc as shown below.
For simplicity, here and in the remainder of this chapter, the representations of the
configurations are simplified by omitting commas between composed configurations
and round brackets ‘(” and ‘)’ surrounding the composed configurations.

ab,dq = dp = d

b, dy =d
-
/
EROUB O C @
\N_T
“ ab ¢ de =d “ ¢ de = d ¢

dq = dy

The dashed transition from the source state £e is unintended because it implies that
a data item is lost at node a even though the buffer is empty and able to take a data
item from node a.

2.3.2 Intentional Automata

Intentional Automata (IA) [31, 32] are another semantic model for Reo, where the
arrivals of I/O requests and the actual communication are described separately. Based
on such characteristics, IA are useful to represent certain behavior that depends on
the presence or absence of pending I/O requests in its environment /context. Thus, it
can be used to specify context-dependent connectors [2] which CA cannot capture.

In general, a connector has a range of possible outputs for the same inputs from
its environment. To model such a connector, throughout this thesis IA are considered
to be non-deterministic even if the non-determinism is not explicitly mentioned.

Definition 2.3.1 (Intentional Automaton [31]). An Intentional Automaton is
a tuple (Q, X, 5) with a set of states (internal configurations) Q, a set of nodes ¥, and
a transition relation § : Q — P(F x Q)® where

2.83. Semantic models for Reo 13

e R =P(X) is a set for the arrival of 1/0 requests, a so-called request-set, and
e F=P(X) is a set for the actual communication, a so-called firing-set.

This transition relation associates a function dq : R — P(F x Q) with every state
q € Q, defined by 64(R) = 6(q)(R). u

Note that P(S) is the collection of all subsets of any set S, ie., P(S) = 2% A

transition in an TA model (Q, %,) is represented as ¢ m—F> ¢’ where R, F € P(X)

which is interpreted as (F,¢’") € 64(R). Based on this definition, Figure 2.7 shows the
IA for a Sync channel. For readability, here and in the remainder of this chapter, we
simplify the representation of labels on transitions by omitting curly brackets for the
sets of R and F' and the commas between the elements in R and F.

ablab
blab alab

0
al0 g b0

Figure 2.7: TA for a Sync channel

However, the TA only considers internal configurations of connectors. This is not
enough to fully specify the behavior of Reo connectors since the behavior of a con-
nector does not only involve its internal configuration, but also the external configu-
ration of the system interacting with its environment. For this purpose, IA have been
extended by states in S C @ x P(X) where @ is the set of internal configurations of
a connector and X is the set of nodes. Such an extension allows us to infer important
invariants for the evaluation steps (transitions) of the extended IA model of a Reo
connector [31, Chapter 5]:

1. a node can fire only if it either has already a pending request, or receives a
request in this step;

2. when it receives a request, a node either fires the request in this step or the
request becomes pending;

3. a node with a pending request, either fires it in this step or it remains pending;

4. a node has a pending request after an evaluation step only if the node receives
a request and does not fire it in this step, or a request was already pending and
does not fire in this step;

5. a node with a pending request is unavailable to receive requests;

6. a node that fires cannot become/remain pending.

14 Chapter 2. Models for component coordination

The following formulas show these invariants formally; each formula corresponds to
the invariant with the same number. For the evaluation step of the extended IA of a
connector (g, P) Rl—F> (¢’, P’), it holds that

1.FCRUP 2.RCFUP 3. PCFUP

4. P CRUP 5. PNR=1 6. FNP =1

Here and in the remainder of this thesis, we consider the extended TA that satisfy
the above invariants.

Compared to CA, the extended IA models have more states since TA consider
both internal and external configurations, whereas CA only consider internal configu-
rations. For a concise specification of the configurations of the extended IA, a listing,
called an abstract configuration table, is used.

Definition 2.3.2 (Abstract configuration table [31]). Given a set of internal
configurations S and a set of nodes X2, an abstract configuration table over S and X,
denoted by 0(S,Y), is a table such that:

e for each s € S, there is one column labeled by s;
e for each R C X, there is one row labeled by R;

e at each cell of the table at the intersection of row R with column s we have
a set, denoted (s, R), such that 0(s,R) C P(X) x (S x P(X)), and for all
(F, (s, P")) € 0(s,R), we have R=F U P’ and FNP =0.

For example, Figure 2.8 shows the extended IA for a Sync channel ab and its
configuration table. For readability, here and in the remainder of this chapter, we
simplify the representation of the configurations by omitting brackets ¢()’ and ‘{}’
for, respectively, the overall configurations and the external configuration. Moreover,
we delete commas between the elements in the external configuration.

ablab

{b}

(0, (s,0
0lab {a} (0, (s,{a}

(0, (s, {b}
G aD) {a,b} ({a,

Figure 2.8: Extended IA for Sync ab and its configuration table Osync

Such an abstract configuration table defines the extended IA model for a Reo con-
nector and is, generally, more compact than its automaton model. Thus, an abstract

2.83. Semantic models for Reo 15

configuration table is used to apply other operations to its corresponding automaton
model, for example, the product of the extended TA corresponding to a Reo connector
is defined with abstract configuration tables (see below). The extended IA model of
an abstract configuration table for a connector C is denoted by [6¢c(S, X)] g where S
is a set of configuration and ¥ is a set of nodes.

Operations

For the compositional semantics of a join operation in a Reo connector, the configu-
ration tables of automata models are used. The advantage of this method, instead of
using the operation of automata composition, is that it has lower computational cost,
since in general, abstract configuration tables are smaller than automata models.

Definition 2.3.3 (Product of abstract configuration tables [31]). Given two
abstract configuration tables 0(S1,%1) and 0(Ss, X)), their product abstract configura-
tion table is

9(81,21) X 9<SQ,ZQ> = 9<Sl X S9, 21 U ZQ)

where each cell of the table is given by: for every R € P(X1 U Xs) and R; € P(%;)
with i € {1,2}

0{(s1,52), R) =
{(F,((s},85),P")) | R=RiURy, F=F UF,, P'=P/UPj,
FiNYy=F,NXYq, <Fi, (SZ,PL/» € 9<3i7Ri>7 1=1,2 }
U{ (F1, ((s1,52), ")) |
FinNndY, = @, R=R, URQ, P = Pll URQ, <F1, (S&,P{)) S 9<81,R1> }
U{ (F2, ((s1,85), P')) |
Ny, = Q], R=RiURy, PP=Ry UP2/, <F2, (8/2,P2)> € 9<82,R2> }

Note that, here and the rest of this section, X is used to represent the product of
two abstract configuration tables, as defined in [31, Chapter 5].
The notion of equivalence ~2 is used as a bisimilarity, defined below.

Definition 2.3.4 (Bisimulation of TA [31]). Given two IA A; = (Q1,%1,61) and
A = (Q2,X9,062), a relation Z C Q1 X Q2 is called a bisimulation if for g1 € Q1 and
g2 € Q2, (q1,q2) € Z, then

R|F o . R|F .
e g1 ‘—>51 q; tmplies there is a ¢4 € Qo such that go ‘—)52 gy with (q1,¢5) € Z

R|F o . R|F .
° (o ‘—>52 ¢ implies there is a g} € Q1 such that g1 ‘—)51 qy with (¢1,¢5) € Z

2In this thesis, we mention IA and Reo Automata as preliminaries. For a bisimilarity relation, the
same notation ~ is used for both automata models in their original literatures (IA in [31] and Reo
Automata in [19]). To distinguish these two relations, in this thesis, ~ is used for the bisimilarity of
IA, and ~ is used for Reo Automata.

16 Chapter 2. Models for component coordination

Two states ¢1 € Q1 and g2 € Q2 are bisimilar, written ¢ =~ go, if there exists a
bisimulation relation that contains the pair (g1, ¢2). Furthermore, two automata A
and A, are bisimilar, written A; ~ A, if there exists a bisimulation relation such
that every state of one automaton is related to some state of the other automaton.

Theorem 2.3.5. [31] Given two abstract configuration tables 0(S1,31) and 6(Sz, Xa),
[0¢S1, 1) r x1 [0(S2, X2)|r =~ [0(S1,%1) X7 0(S2, X2)[r

Note that xj is used to represent the product of the extended IA models, as defined
in [31, Chapter 5]. The proof of Theorem 2.3.5 is shown in [31, Chapter 5].
A hiding operation is also defined for IA on abstract configuration tables.

Definition 2.3.6 (Hiding on abstract configuration tables [31]). Consider an
abstract configuration table 6(S,X) and a node h € . We define

Ir[P]0(S, %) = O[p)(S, 5\ {h})

where
0[h]{s,R) =
{ {(F\{h},q) | (F,q) € 6(s, RU{h}), he F} if non-empty
0(s, R) otherwise

In addition, the extended IA model context-dependent connectors. For instance,
the LossyFIFO1 example mentioned above is given below with the correct semantics,
where a data item is lost only if the buffer is full, i.e., a loop with ala occurs in
configuration £f.

ala

cle
aclac
c|®
ef, 0 Le, 0
ala

Figure 2.9: Extended TA for a LossyFIFO1 connector in Figure 2.2

2.83. Semantic models for Reo 17

2.3.3 Reo Automata

In this section, we recall Reo Automata [19], another semantic model for Reo. This
model also provides a compositional operational semantics and the correct semantics
for the context-dependent Reo connectors. Intuitively, a Reo Automaton is a non-
deterministic automaton whose transitions have labels of the form g|f, where f a set
of nodes that fire synchronously, and g is a guard (boolean condition) that represents
the presence or the absence of I/O requests at nodes, i.e., the pending status of the
nodes. A transition can be taken only when its guard g is true.

Compared to TA, Reo Automata provide the formal proof of their compositional-
ity [19]. Moreover, Reo Automata are simpler and more compact, retaining the power
of correctly encoding context-dependency of Reo connectors.

We recall some facts about Boolean algebras. Let ¥ = {o71,...,0%} be a set of
symbols that denote the names of connector nodes, @ be the negation of ¢, and By
be the free Boolean algebra generated by the grammar:

gui=0c€X|[T[L|gVglgnglg

We refer to the elements of the above grammar as guards and in their representation
we frequently omit A and write g1 9o instead of g; A go. Given two guards g1, g2 € By,
we define a (natural) order < as g1 < g2 <= ¢g1Ag2 = ¢1. The intended interpretation
of < is logical implication: g; implies go. An atom of By, is a guard ay ... ax such that
a; € LUYX with ¥ = {7, | 0; € X}, 1 < i < k. We can think of an atom as a truth
assignment. We denote atoms by Greek letters a, 3, ... and the set of all atoms of By,
by Aty. Given S C X, we define S € By, as the conjunction of all elements of S. For
instance, for S = {a, b, c} we have S = abe.

Definition 2.3.7 (Reo automaton [19]). A Reo Automaton is a triple (X, Q,J)
where ¥ is the set of nodes, Q is the set of states, 6 C Q x By, x 2% x Q s the
finite transition relation such that for each (q,g,f,q') € &, which is represented as

q g‘—f> q €0:
(1)g=<f (reactivity)
(2) Vggg’gf”v’agg’ﬂqmq’e& a<g’ (uniformity)

In Reo Automata, for simplicity we abstract data constraints [12] and assume they
are true.

Intuitively, a transition ¢ gl—f> ¢’ in an automaton corresponding to a Reo connector
conveys the following notion: if the connector is in state ¢ and the boundary requests
present at the moment, encoded by an atom « that is the conjunction of all possible
requests presence, are such that a < g, then the nodes f fire and the connector evolves
to state ¢’. Each transition labeled by g|f satisfies two criteria: (i) reactivity — data
flow only through those nodes where a request is pending, capturing Reo’s interaction
model; and (ii) wniformity — which captures two properties: (a) the request set

18 Chapter 2. Models for component coordination

ablab a|a
ablab abla ablab @

W W | & | W

Sync LossySync | SyncDrain FIFO1

Figure 2.10: Automata for basic Reo channels of Figure 2.1

corresponding precisely to the firing set is sufficient to cause firing, and (b) removing
additional unfired requests from a transition will not affect the (firing) behavior of the
connector [19]. In compliance with these criteria, for a firing f, its guard g considers
the presence of the least sufficient requests.

In Figure 2.10 we depict the Reo Automata for the basic channel types listed
in Figure 2.1. Note that here and in the remainder of this thesis, given transition

q (]‘Hf ¢, if there is more than one transition from a state g to the same state ¢’

we often just draw one arrow and separate their labels by commas, and every guard
in a transition label in the automata is a conjunction of literals in 3. Moreover, it
is always possible to transform any guard g into this form, by taking its disjunctive
normal form (DNF) g; V...V g and splitting the transition g|f into the several
gilf, for i = 1,... k. Given a transition relation 6 we call norm(J) the normalized
transition relation obtained from § by putting all of its guards in DNF and splitting
the transitions as explained above.

Composing Reo connectors

We now model at the automata level the composition of Reo connectors. We define
two operations: product, which puts two connectors in parallel, and synchronization,
which models the plugging of two nodes. Thus, the product and synchronization
operations can be used to obtain the automaton of a Reo connector by composing
the automata of its primitive connectors. Later in this section we formally show the
compositionality of these operations.

We first define the product operation for Reo Automata. This definition differs
from the classical definition of (synchronous) product for automata: our automata
have disjoint alphabets and they can either take steps together or independently. In
the latter case the composite transition in the product automaton explicitly encodes
that one of the two automata cannot perform a step in the current state, using the
following notion:

Definition 2.3.8. [19] Given a Reo Automaton A = (X,Q,0) and q € Q we define

d=-Vigle2hqes)

2.83. Semantic models for Reo 19

This captures precisely the condition under which A cannot fire in state q.

Definition 2.3.9 (Product of Reo Automata [19]). Given two Reo Automata
A = (21,0Q1,61) and Ay = (X3, Q2,2) such that X1 NXy =, we define the product
of A1 and Ay as Ay X As = (31 UX5, Q1 X Q2,0) where § consists of:

ag'IF 1! glf gl
{(g.p) ——= (", V) |a—d € Ap—=1p €}
a*lf.

glf
—=(@\p) g ——=d € ApecQa}
glf
— (¢,p)) |p == €02 ANqgeEQ1}
]

Here and throughout, we use ff’ as a shorthand for fU f’. The first term in the union,
above, applies when both automata fire in parallel. The other terms apply when one
automaton fires and the other is unable to (indicated by p* and ¢, respectively). Note
that the product operation is closed for Reo Automata, since according to [19], the
product result preserves the properties of Reo automata, i.e., reactivity and uniformity
in Definition 2.3.7. Figure 2.11 shows an example of the product of two automata.

abc|ab abd|ab
blab abcla abclabe abd|a
abla abclac
abla acle
cle
dld
abd|abd
abd|ad
adl|d

Figure 2.11: Product of LossySync and FIFO1

We now define a synchronization operation that corresponds to joining two nodes
in a Reo connector. When synchronizing two nodes a and b (which are then made
internal), only the transitions where either both a and b or neither a nor b fire are
kept in the resulting automaton, i.e., a € f < b € f — this is what it means for a
and b to synchronize. Moreover, we keep only those transitions whose guards encode
that ports a and b are not blocked. That is, transitions labeled by g|f where g £ @b.
This condition roughly corresponds to the notion of an internal node acting like a
self-contained pumping station [2], which implies that an internal node cannot store
data nor actively block behavior.

Definition 2.3.10 (Synchronization [19]). Given a Reo Automaton A = (%, Q,9),
we define the synchronization for a,b € ¥ as 0,A = (X,Q, ") where

20 Chapter 2. Models for component coordination

0 ={q EAUTAVGIUN qd |q s, ¢ €norm(8) st. g£abandac€ f < be f}

Here and throughout, g\ is the guard obtained from g by deleting all occurrences
of a and b. It is worth noting that synchronization preserves reactivity and uniformity.

Synchronizing nodes b and ¢ of the product automaton in Figure 2.11 yields the
automaton depicted in Figure 2.122, which provides the semantics for the LossyFIFO1
example.

ala
o=
ad|ad
ad|d

Figure 2.12: Reo Automaton for LossyFIFO1

Compositionality

Given two Reo Automata A; and As over the disjoint alphabet sets ¥; and X,
{a1,...,ax} €21 and {b1,...,bx} C Xo we construct Ju, b, Day. by * - * Vag.bp (A1 X A2)
as the automaton corresponding to a connector where node a; of the first connector
is connected to node b; of the second connector, for all ¢ € {1,...,k}. Note that the
‘plugging’ order does not matter because 0 can be applied in any order and it interacts
well with product. These properties are captured in the following lemma.

Lemma 2.3.11. [19] For the Reo Automata A; = (X1, Q1,01) and Ay = (X2, Q2,92):
1. 0ap0c,0A1 = Oc,a0ap A1, if a,b,c,d € Xy.
2. (81171,,41) X Ay ~ a,b(Al X AQ), ifa,b ¢ Yo X1 Ny = 0.

The notion of equivalence ~ used above is bisimilarity, defined as follows.

Definition 2.3.12 (Bisimulation [19]). Given the Reo Automata A; = (X, Q1,91)
and Ay = (3, Q2,02), we call R C Q1 x Q2 a bisimulation iff for all (q1,q2) € R:

If 1 ELEN q; € 01 and a € By, a < g, then there exists a transition go EAEN qh € 5y
such that o < ¢' and (q},4¢5) € R and vice-versa. [|

3For simplicity, we abstract away data-constrains on firings by assuming them true. Thus, the
composition result of a LossySync and a FIFO1 channels, i.e., an overflow LossyFIFOL1 circuit, becomes
indistinguishable from the automaton for a shift LossyFIFO1 [12] circuit. However, by reviving data-
constraints we can distinguish the automata for these two circuits.

2.4. Markov Chains 21

We say that two states g1 € @1 and g2 € Q5 are bisimilar if there exists a bisimulation
relation containing the pair (¢1,¢2) and we write ¢; ~ go. Two automata 4; and As
are bisimilar, written A; ~ Aj, if there exists a bisimulation relation such that every
state of one automaton is related to some state of the other automaton.

2.4 Markov Chains

Stochastic processes are used for modeling random phenomena as transition sys-
tems with probability distributions for the outgoing transitions of a state. Markov
Chains (MCs) are a special case of such stochastic processes, which satisfy

1. discrete state space which implies that their state space is countable and

2. Markov property which implies that the state change from a current state de-
pends on only the current state, not on the history, i.e., the sequence of visited
states.

Such state change in MCs can be considered with or without taking into account
the time instance when the change occurs. In case that the state change is independent
of the time instance, MCs are said to be homogeneous. The time homogeneity in
stochastic processes gives us the freedom for a certain event to occur at any time
instance. In the other case, it is called inhomogeneous, which gives much flexibility
for specifying system behavior.

In addition, the Markov property requires that the waiting time (i.e., sojourn time)
satisfies memoryless property: at time instance ¢, the remaining time before leaving a
state is independent of the time already spent in that state.

According to the time domains, MCs are categorized into two classes: Discrete-
Time Markov Chains (DTMCs) and Continuous-Time Markov Chains (CTMCs). To
satisfy the memoryless property in respective time domains, the geometric distribution
and the exponential distributions are necessary for DTMC and CTMC, respectively.

With these conditions, MCs can be seen as relatively simple stochastic processes.
Nonetheless, MCs are frequently used to model various probabilistic systems. More-
over, its simplicity yields efficient algorithms [85] for numerical analysis.

Here and in the remainder of this thesis, we deal only with homogeneous MCs,
especially homogeneous CTMCs, even though we do not mention the homogeneity of
MGCs explicitly.

Continuous-Time Markov Chains

A Continuous-Time Markov Chain (CTMC) is a discrete-state Markov process with
continuous time domain, {X(¢)|¢ > 0}, which can be used to model and analyze
random system behavior. X (¢) € S denotes the state in a given state space S at
time ¢t. Let P{X(t) = i} be the probability that the process is in state ¢ at time ¢.
The stochastic process X (t) is a homogeneous CTMC if, for ordered times ¢t < --- <

22 Chapter 2. Models for component coordination

tn < (tn + At), the conditional probability of staying in any state j satisfies:

P{X(tn + At) = j | X(tn) = in, X(tn-1) = in—1, -, X(to) =10} =
P{X(tﬂ + At) =J | X(tn) = Zn}

Briefly, the probability that the process is in future state j depends on only the current
state i,, not the past states.

The sojourn time in any state of a CTMC model must be exponentially distributed
since the exponential distributions are the only class that satisfies the memoryless
property in continuous time domain. Below we list the properties of the exponential
distributions that are relevant to our work.

e An exponential distribution P{delay < t} = 1 — e~ * is characterized by a
positive real value A, the so-called rate of the distribution. Its mean duration is
1/ time units.

e While satisfying the memoryless property, the remaining delay after some time
to has elapsed is also exponentially distributed:

P{delay <t+tg | delay > to} = P{delay <t}

e Exponential distributions are closed under minimum which is the sum of the
rates:

P{min(delay,, delays)} = 1 — e~ (M1+A2)t
where A\; and)\ are the rates of the distributions delay; and delays, respectively.

e The probability that delay; with the rate A; is smaller than delays with the
rate Ay is

P{delay, < delays} = /\111)\2

e In the continuous-time domain, the probability that two delays elapse at the
same time is zero.

Such properties of exponential distributions state that the probability to stay in a
state decreases as time elapses, i.e., a transition emanating from a certain state will
be triggered eventually. When a certain state has more than one possible leaving
transitions, the transition will be triggered proportional to its rate.

2.5 Interactive Markov Chains

Interactive Markov Chains (IMCs) [43] are a stochastic model to specify reactive sys-
tems. In IMCs, timing information and actions are represented separately. Timing in-
formation is described by Markovian transitions, and actions are described by inter-
active transitions. Roughly speaking, IMCs are a combination of Labeled Transition
Systems (LTSs) and CTMCs.

2.6. Related work 23

An IMC is formally described as a tuple (S, Act, —, =, so) where S is a finite set
of states; Act is a set of actions; sg is an initial state in S; — and = are two types of
transition relations:

e — C S x Act x S for interactive transitions and
e = C S xRt xS for Markovian transitions.

Thus, an IMC is an LTS if == () and —# (), and is a CTMC if == () and —= 0.
Compared to other stochastic models such as CTMCs, the main strength of IMCs

is their compositionality. Thus, one can generate a complex IMC as the composition of

relevant simple IMCs, which enables compositional specification of complex systems.

Definition 2.5.1. (Product of IMCs [43]) Given two IMCs J; = (Sy, Act1,—1
,=1,8(1,0)) and Jy = (82, Acta, —2,=>2, 8(2,0)), the composition of J1 and Jo with
respect to a set A of actions is defined as J; x Jo = (S1 x Sy, Acty U Acty, —,=
»8(1,0) X 5(2’0)) where — and = are defined as:

— = {(s1,82) 5 (s,85) | a€ A, s1 18] A sy g sh)
U {(s1,80) = (sh,80) | ad A, s €Sy 81518}
U {(s1,80) = (s1,85) | ad A, s1 €51, s5 2 sh}

= = {(s1,52) 2 (sh,52) | s2€ 8y, 5121 8}
U {(s1,50) 2 (s1,8%) | s1 €51, 55298}

The product of interactive transitions is similar to ordinary automata product, which
includes interleaving and synchronized compositions of interactive transitions. The
product of Markovian transitions consists of only interleaved transitions.

Compared to CTMCs, IMCs can represent not only exponential distributions, but
also non-exponential distributions, especially phase-type distributions. The analysis
of IMCs is supported by tools such as the Construction and Analysis of Distributed
Processes (CADP) [40]. CADP verifies the functional correctness of the specification
of system behavior and also minimizes IMCs efficiently [39]. Moreover, IMCs can be
used in various other applications, such as Dynamic Fault Trees (DFTs), Architectural
Analysis and Design Language (AADL), and so on [44].

2.6 Related work

2.6.1 Other coordination languages

Orc [64] is a theory of orchestration of sites which are considered as basic services
distributed over a network. In Orc, each connection between sites takes place highly
asynchronously and performs only once. While performing the connection, the orches-
trator (Orc expression) initiates its connections dynamically. Such dynamics enables

24 Chapter 2. Models for component coordination

to deal with failures in sites well. Compared to Orc, the connection in Reo is static, as
it is based on the assumption that components communicate continuously. Recently,
the research on the dynamic reconfiguration of Reo connectors has been initiated
in [53]. In addition, Reo is highly synchronous, thus, it can specify the propagation of
synchrony and mutual exclusion through Reo connectors. More detailed comparison
is provided in [78].

Linda [41] is the first coordination language that describes the communication
between different processes by exchanging data. In Linda, data objects are referred to
as tuples, and communicating data takes place in a shared tuple-space. Communication
actions in the shared tuple-space can occur atomically, and interactions occur in an
interleaved way. That is, Linda does not handle the propagation of synchrony which
is supported by Reo.

BIP [15] (an acronym of Behavior, Interaction, and Priority) is a methodology
for modeling heterogeneous real-time components and their composition. The com-
position in BIP happens in three different layers, viz. that of behavior, interaction,
and priority. The lower layer, an atomic component, describes its behavior; the inter-
mediate layer specifies possible interactions between atomic components; the upper
layer presents the priority relation to select amongst possible interactions. Compared
to Reo, the priority relation in BIP is the main difference. This priority is used to
explicitly consider the scheduling the connection between components. Whereas, in
Reo, the scheduling/selection aspects is decided non-deterministically randomly by
each merger.

These coordination languages have been proposed to model the composition of
distributed system over a network. Each of them has its own features to specify some
situations in the composition. However, Reo is the only coordination language that
supports global synchronization (the propagation of synchrony), mutual exclusion
through connectors, and the combination of synchrony and asynchrony.

2.6.2 Continuous-Time Constraint Automata

Continuous-Time Constraint Automata (CCA) [13] are a stochastic extension of CA
that support reasoning about QoS aspects such as expected response times. CCA are
close to IMCs in that they distinguish between interactive transitions and Markovian
transitions:

. . .- N,g
e interactive transitions p —= q as an ordinary transition in CA and

— hidden transitions ifN=0
— visible transitions otherwise

o Markovian transitions p 2 g where A € R™, called the rates of distributions.

In CCA, data-flows in connectors are represented by interactive transitions since
the synchrony and the asynchrony of data-flows can be captured by the ordinary CA
transitions. Processing data in components is represented by Markovian transitions

2.6. Related work 25

since processing data in each component is independent of the processing in the others,
and each processing occurs concurrently.

CCA can be used to specify the interaction of components and connectors that
connect the components, as well as to reason about some QoS aspects of the con-
nectors such as the average processing time of I/O requests in a certain component.
Moreover, CCA support both non-deterministic choice and probabilistic choice. When
a current state has one or more outgoing hidden (invisible interactive) transitions, one
of the outgoing interactive transitions from the state is chosen non-deterministically.
When there is no outgoing hidden transitions from a current state, then one outgoing
Markovian transition from the current state is chosen probabilistically and fires.

The stochastic extension in CCA focuses on internal behavior of a connector, but
it does not take into account the interaction with the environment, i.e., the arrivals
of I/O requests at the boundary nodes of a connector are not considered as stochastic
processes. Reasoning about the end-to-end QoS of systems requires incorporation of
this external behavior. In addition, CCA do not capture the context-dependency of
a Reo connector since interactive transitions in CCA merely follow CA transitions
that do not formalize the context-dependency of Reo connectors. Compared to such
CCA, the specification models in this thesis, Quantitative Intentional Automata and
Stochastic Reo Automata (See Chapter 3 and Chapter 4, respectively), not only spec-
ify the end-to-end QoS of a Reo connector, but also capture context-dependent be-
havior.

2.6.3 Stochastic Process Algebra

Process Algebra (PA) [63, 49, 11] is a compositional specification formalism of alge-
braic nature for concurrent systems. It describes interactions, communications, and
synchronizations between processes in a system. PA provides a compositional ap-
proach, where a system is modeled by a collection of subsystems called agents that
execute atomic actions. These actions describe communications between agents and
sequential behavior that may run concurrently.

Stochastic Process Algebra (SPA) [45] is a stochastic extension of PA, which in-
tegrates Process Algebra theory and stochastic processes. SPA is described by three
parts: actions that model the system activities, algebraic operators that compose the
subsystem specifications, and synchronization discipline. An action in SPA consists
of an action type a and its exponential rate A, i.e., (a.\). Several algebraic operators
are shown below:

name expression | denotation

prefix (a.\).E After action a with a rate)\, the agent
becomes F.

abstraction E/L The actions in L are hidden.

relabeling Elay/ag,...] | The label a; is renamed ao.

choice Fi + Es The agent behaves either F; or Es.

parallel composition Er||Es The agents F; and E5 proceed
in parallel.

26 Chapter 2. Models for component coordination

There are several synchronized solution disciplines for the rate of the synchronized (sh-
ared) actions, and different solutions yield various SPA formalisms such as Perfor-
mance Evaluation Process Algebra (PEPA) [46, 47], Extended Markovian Process
Algebra (EMPA) [17, 16]. In PEPA, it is assumed that each agent has a bounded
capacity to carry out activities of any particular type, determined by the rate that is
the sum of the rates of each action enabled in that agent. That is, an agent cannot
exceed its boundary capacity, thus the rate of a synchronized action is the minimum
of the rates of the agents involved. In EMPA, it is assumed that in a synchronization,
at most one participant in the synchronization has an explicit representation for the
rate of the resulting (synchronized) action.
SPA has the following benefits:

e to support a compositional specification, i.e., given a complicated system, mod-
eling its sub-systems and the interaction between the sub-systems

e clear structure and semantics
e model reuse and maintaining a library of models

The limitation of SPA is the lack of expressiveness with respect to its timing
distribution: only negative exponential distributions can be used. To make the SPA
more general, some work has been carried out by associating general distributions
with the actions of a model [52].

The operational semantic model of SPA is defined by means of a labeled transition
model. Because of interleaving, the semantic model of SPA suffers from the state
explosion problem. Research has been carried out to mitigate this problem in [26, 62,
42].

SPA describes ‘how’ each process behaves, whereas, (Stochastic) Reo directly de-
scribes ‘what’ communication protocols connect and ‘how’ they coordinate the pro-
cesses in a system, in terms of primitive channels and their composition. Therefore,
(Stochastic) Reo explicitly models the pure coordination and communication proto-
cols including the impact of real communication networks on software systems and
their interactions.

2.6.4 Stochastic Petri Nets

Petri Nets (PNs) [74, 79] are graphical and mathematical models that describe system
behavior with concurrency, asynchrony, and synchrony. As a graphical model, PN is
similar to flow charts, block diagrams, and networks. As a mathematical model, it is
used to set up state equations, algebraic equations, and so on.

Stochastic Petri Nets (SPNs) [65, 87, 60] are a stochastic extension of PN, by
associating an exponentially distributed firing time with each transition in a PN. The
reachability set of an SPN model is identical to the one of its underlying PN model,
thus, the structural properties obtained for PN, such as liveness, boundness, conser-
vativeness, repetitiveness, consistency, and controllability, are still valid for SPNs.

2.6. Related work 27

The countability of the markings and the memoryless property of exponential dis-
tributions allow an isomorphism between SPN models and CTMC models. Thus, the
CTMC model corresponding to an SPN is obtained by constructing the reachability
graph of the SPN model and by labeling its arcs with the firing rates of each transition
that changes markings.

Such an SPN is a useful tool for the analysis of computer systems since it allows the
system operations to be described precisely by means of a graph that translates into
a Markovian model useful for obtaining performance estimates. Due to its graphical
representation, an SPN can be easily understood. In addition, the derivation of the
MC model and its solution can be made automatic, and transparent to the users.

However, as for state-based models, they in general suffer from the state-explosion
problem, the graphical representation of an SPN causes fast increasing complexity in
their numerical solution as the system size increases. Thus, a large SPN model is often
used for simulation. In addition, a PN essentially deals with asynchronous events and
does not propagate the synchrony of events, thus, its compositionality is not clear in
general [4].

The topology of connectors in (Stochastic) Reo is inherently dynamic, and it ac-
commodates mobility as described in [56]. Moreover, (Stochastic) Reo supports a lib-
eral notion of channels, which allows to express synchrony and asynchrony. Reo is
more general than data-flow models and PNs [4], which can be viewed as specialized
channel-based models that incorporate certain built-in primitive coordination con-
structs.

2.6.5 Stochastic Automata Networks

A Stochastic Automata Network (SAN) [86, 37] specifies a system consisting of a
number of individual Stochastic Automata. Each Stochastic Automaton runs inde-
pendently or synchronously with the others. The rates on the transitions of a SAN
are either constants or functions:

e constants, i.e., non-negative real numbers
e functions from the global state space to non-negative real numbers

Normally an automaton makes use of both kinds of transitions for modeling.

In general, events in each automaton are categorized into two different types of
independent and synchronized events. In the case of independent events in a SAN,
the effect of the constants or functional transitions is local, thus, all the information
relevant to the transitions in a Stochastic Automaton is handled in that automaton
with the assumption that the automaton has a knowledge of the global state space.

In the case of synchronized events, the effect of the transitions is global by altering
the state of a number of Stochastic Automata.

SAN is used for performance modeling related to parallel distributed systems.
Parallel and distributed systems can be seen as collections of components that inter-
act with each other. Thus, each component corresponds to an individual Stochastic
Automaton and the overall system corresponds to a collection of such automata.

28 Chapter 2. Models for component coordination

However, SAN is a state-base model, where potentially the state explosion problem
arises. To mitigate this problem, techniques to minimize the number of states have
been suggested. For this purpose, in SAN, it is possible to make use of symmetries as
well as lumping and various superpositioning of automata [27, 82]. In addition, SAN
does not store nor generate the (global) state transition matrix. Instead of that, it is
represented by a number of small matrices relevant for each Stochastic Automaton.
Thus, a SAN approach has minimal memory requirements.

Compared to (Stochastic) Reo, the interactions in SAN are rather limited for pat-
terns like synchronizing events. The representation of synchronized events requires an
appropriate transition label that consists of a transition probability and an alterna-
tive probability. A transition probability must be unique for the synchronized events;
an alternative probability is different for each individual automaton involved in the
synchronized event [75].

Chapter 3

Quantitative Intentional Automata

3.1 Introduction

In Service-oriented Computing (SOC), services distributed over a network are com-
posed according to the requirements of service consumers. Services are platform —
and network — independent applications that support rapid, low-cost, loosely-coupled
composition. Services run on the hardware of their own providers, in different contain-
ers, separated by firewalls and other ownership and trust barriers. Their composition
requires additional mechanisms (e.g., process work-flow engines, connectors, and glue
code) to impose some form of coordination (i.e., orchestration and/or choreography).
Even if the quality of service (QoS) properties of every individual service and connec-
tor are known, it is far from trivial to build a model for and make statements about
the end-to-end QoS of a composed system.

In CA, Reo Automata, and IA, mentioned in Chapter 2, the end-to-end QoS is
not considered along with the specification of system behavior. In order to specify
and reason about the end-to-end QoS of system behavior, Stochastic Reo was also
introduced in Chapter 2. As the name reveals, Stochastic Reo is a stochastic extension
of Reo and preserves the flexibility and the expressiveness of Reo for compositional
construction of connectors. The aim of this chapter is to introduce a semantic model
for Stochastic Reo.

This chapter consists of two parts. the first part introduces a semantic model for
Stochastic Reo, Quantitative Intentional Automata (QIA) [6]. Actually, this seman-
tic model is a stochastic extension of Intentional Automata (IA) [31]. We show the
mapping between primitive Stochastic Reo channels and their corresponding QIA, as
well as other operations such as the product.

The second part shows the translation from QIA into homogeneous CTMCs which
are simple stochastic processes, widely used with efficient algorithms [85] for stochastic
analysis.

29

30 Chapter 3. Quantitative Intentional Automata

3.2 Quantitative Intentional Automata

In this section, we introduce the notion of Quantitative Intentional Automata (QIA)
which is designed as a stochastic extension of IA to provide an operational semantics
for Stochastic Reo. Existing semantic models for Reo include IA! and CA. Whereas
CA transitions describe system configuration changes, transitions of TA (and QIA)
describe both the changes of system configuration as well as the changes of pending
I/O requests. In CA, configurations are stored in the states, and processes causing
state changes are shown in transition labels as a set of nodes where data are observed.
Similarly, in TA (and QIA), the configurations of a system and the pending I/O
requests are stored in the states. A data-flow or a firing through nodes causes changes
in the system configuration, and arrivals of I/O requests at the nodes change the
configurations of the pending I/O requests. These two different types of changes are
distinguishably represented. (See Definition 3.2.1.)

Definition 3.2.1 (Quantitative Intentional Automaton). A Quantitative Inten-
tional Automaton is a tuple (Q,I,%,—,r) where

e Q C L x 2% is a finite set of states, where

— L is a finite set of system configurations.

— 2% 4s a set of pending node sets, each element in 2% describes the pending
status in the current state.

e I C Q is a set of initial states.
e X is a finite set of nodes.

o - CQx2%x2%x2°9 xQ is the transition relation where © C 2% x 2 x Rt
such that for any 1,0 C ¥ and INO =, each (I,0,r) € © corresponds to
a data-flow where I is a set of mized and/or input nodes; O is a set of output
and/or mized nodes; and r is a processing delay rate for the data-flow described
by I and O. We require that

— for any two 3-tuples (I1,01,r1), (I2,02,72) € O such that Iy = I3 A O1 =
Oo, it holds that r1 = ro, and

— for a transition s BED o ey with D = {(I1,01,71), .., (In, On,1pn) },
F\N(INO)={IU0O)\(INO) where I =J,<;<, Ii and O =U,;<,, Oi-

o r:Y — RT is a function that associates with each node its arrival rate.

LJA is a general semantic model for component connectors. For a Reo connector, some invari-
ants [31, Chapter 5] are required. Here and in the remainder of this chapter, IA are considered to be
the extended version of IA, with the invariants, even though this will not be explicitly mentioned.

8.2. Quantitative Intentional Automata 31

Note that for simplicity, here and throughout, we assume that all data constraints
for transitions are true and thus abstract away the data constraints without loss of
generality. In fact, the data constraints are used only for the nodes that fire, and they
can be obtained from the transition with the same firing nodes in the corresponding
CA of a QIA. In case of I/O request arrivals, there are no specific constraints on
incoming data items, thus, the data constraints for I/O request arrivals are always
true. In [31], for TA, a function Q — P(2% x 2© x Q)22 is used as an alternative.

In the QIA model for a Stochastic Reo connector, a transition (g1, R, F, D, q2) is

R,F,D
represented as g1 ——— g2 where:
e R is the set of nodes that interact with the environment of the nodes;
e Fis the set of nodes that fire and are released by the data-flows of the transition;

e D C O is the set of 3-tuples # = (I,0,r) that correspond to individual data-
flows in primitive Reo channels; the first two elements in 6 depict the structural
information of the relevant channel ends in the data-flow corresponding to 0, e.g.,
input and output nodes for the data-flow; the last element shows the processing
delay rate of the data-flow.

In case a transition corresponds to only request-arrivals, D = (). The arrival rates for
I/0O requests are given by the function r. For instance, a QIA transition

0,{a,b},{({a},{b},ya
<€, {a,b}> { b} {({ }{b} 8 b)} <£l7®>

encodes that a data-flow occurs from source node a to sink node b with the processing
delay rate yab. Each element of a 3-tuple § € O is accessed, respectively, by the
projection functions i : © — 2%, 0 : © — 2% and v : © — R*T. Note that for
readability, here and in the rest of this chapter, we use simplified representations for
all sets used to describe QIA, such as R, F, and D in a QIA transition. The curly
brackets { and } for these sets are deleted, and the elements in the sets are arranged
without commas. In addition, R and F are distinguished by a vertical bar ‘|, i.e., the
above transition is represented as

Dlab,{(a,b,yab)}
R

(¢, ab) ', 0).

3.2.1 Invariants

Consider the following automaton, with two states.

@ cld, {(c,d,7)} e

This automaton satisfies Definition 3.2.1. However, it does not capture a behavior
that corresponds to the semantics for a Reo connector. The reason is that node c¢ is

32 Chapter 3. Quantitative Intentional Automata

already pending (as indicated by the presence of ¢ in the configuration of the source
state of the transition) and blocked to further request arrivals, therefore, it cannot
interact with the environment as indicated by the new request arrival at node ¢ on the
transition. The correct behavior of a Reo connector is subject to the same invariants
mentioned for TA in Section 2.3.2. We recall these invariants. For an TA transition

R|F,D . .
(g, P) —= (¢, P, it is required that:

1.FCRUP 2.RCFUP 3. PCFUP

4. P CRUP 5. PNR=1 6. FNP =1

. . .. R|F,D . .
These invariants are also used for a QIA transition (¢, P) —— (¢/, P’), since in
QIA, the function r and the set of 3-tuples D in transition labels do not affect the
structure on the transitions of QIA, which are decided by F'.

The intuitive meaning of these invariants is explained in Section 2.3.2. Based on
Definition 3.2.1 and these invariants, the appropriate QIA, as a semantic model for
Stochastic Reo, corresponding to the primitive Stochastic Reo channels are presented
in Figure 3.1. Note that here and the remainder of this chapter, for simplicity, when a
set of 3-tuples is empty, i.e., transitions correspond to request-arrivals, we abstract it
away. That is, only firing transitions include a set of relevant 3-tuples. The function
r is shown as tables in Figure 3.1.

3.2.2 QIA composition

As mentioned in Section 2.2, a Stochastic Reo connector is obtained by composing
primitive channels. Similarly, the QIA corresponding to a connector is also obtained
by the composition of the QIA of its respective primitive channels. This composition
is carried out in two operations:

1. product that plugs two automata together, considering synchronization and
interleaving of the transitions from each automaton, and

2. synchronization that makes mixed nodes internal and filters firing transitions,
taking into account the context-dependency of a Reo connector.

The QIA product is similar to the TA product in [31, Chapter 5]. However, this TA
product does not account for the status of pending requests. In addition, we need to
define how the QIA product handles the extended elements of the function r and the
sets of 3-tuples in the transition labels of QIA. The function r associates arrival rates
with the nodes in the set of nodes only, thus, it does not influence the structure of
QIA. The set of 3-tuples in transition labels depends on firings. However, the converse
is not true, i.e., the firing is not decided by the set of 3-tuples. In general, the product
operation decides if firings are either composed together or interleave according to
the synchronization constraints of the firings. Therefore, the function r and the set
of 3-tuples do not affect the product definition, which as usual (e.g., CA and IA)
primarily depends on firings. We define the QIA product considering synchrony of
firings as follows:

8.2. Quantitative Intentional Automata

33

Synchronous Channels
ablab
{(a, b, ~vab)}
yab al® b0 r
*r—>e
a a
e b 2, a 2,0 v
blab — alab ’}/b
{(@.bva)} 1 {(a.b,~ab)}
ala, {(a, 0, vaL)}
ablab, {(a, b, vab)}
vyab e b0 r
—— -l _
ya yalL ~b a
2,0 l,b
T e b
{(a, b, vab)}
ablab
{(ab, 0, vab)}
~ab al® b0 r
*r—>—<———0
a
e b 2, a 2,0 v
blab — alab 7b
{(ab, 0, vab)} T {(ab, 0, vab)}
Asynchronous Channel
abla,a : {(a,0,vaF)}
yaF ~Fb r
ala, a bla, a
S b | b
Y
ablb, B : {(0,b, vFb)}

Figure 3.1: QIA for channels of Figure 2.3

Definition 3.2.2 (Product of QIA). Given two QIA A = (Q1,11,%1,—1,1r1) and
B = (Q2, I3, X2, —2,12), their product is defined as A<t B = (Q1 X Q2,11 X I3, 31 U
Yo, —,r1 Urs) where — is given by following rules:

Rq1,F1,D
1 (01, P) ——" (¢4, P]) FiNSa=0 V(ls,Pa)EQs s.t. PanRy=0
. R,,F,,D
((£1,02), PyUPy) ————3((¢} £2),P{UP)
Rg,Fy,Dg , o,
PR R e—— A () FoNEy =0 V{£1,P)E€Q1 s.t. PN Ra=0
. Ro,Fo,D
((01,12),PLUPy) —2"25((£4,£}),PLUP})
Ryi,F1,Dq PR Rg,Fa,Do PR _ a4
g (L P)=ET (P (e Py) =Ry (0 P FINS,=Fa0Sh A RiNP=0=RynP,

R{UR9,F|UF5,D1UDg

((£1,£2),PLUP,) (.85, P{UP)

34 Chapter 3. Quantitative Intentional Automata

Request-arrivals and data-flows are representative activities of Reo connectors. Reque-
st-arrivals are independent of synchrony or asynchrony of connector behavior, thus,
the product result of transitions for request-arrivals interleave. On the other hand,
data-flows are influenced by the synchrony or asynchrony of the behavior. Therefore,
the product operation needs to consider the set of firing nodes, for example, F1 N3 =
0, F;NY, =0, and F1NYy = F,NY; in the definition. In addition, the consideration
of request-arrivals (R) and existing pending status (P) is required to satisfy the
aforementioned invariants. For example, consider the following two transitions:

blab,D1 c|lbe,Do
E— e

1. <€17a> < /1,(Z)> with 21 = {a,b} 2. <€2,b> < /2,@> with 22 = {b, C}

Taking into account only the synchrony, e.g, {a,b} N Xy = {b,c} N X1, the product
result of transitions 1 and 2 is

belabe,D1UDy
_—

<(€17£2>7ab> <(/17£/2)7@>

However, this violates invariant 5 of PN R = 0, i.e., {a,b} N {b,c} = {b}. Therefore,
in the product operation, LN Ry =0, B, NRy =0, or PLNRy =0 = P, N Ry must
be considered.

The product result of the set D is the union of 3-tuple sets from each automaton.
In order to keep QIA generally useful and compositional, and their product commu-
tative, we avoid fixing the precise formal meaning of distributions of synchronized
transitions composed in a product; instead, we represent the “processing delay rate”
of their composite transition in the product automaton as the union of the processing
delay rates of the synchronizing transitions of the two automata. How exactly these
rates combine to yield the composite rate of the transition depends on the different
properties of the distributions and their time ranges. For example, in the continuous-
time case, no two events can occur at the same time; and the exponential distributions
are not closed under taking maximum. In Section 3.3, we show how to translate a
QIA to a CTMC using the union of the rates of the exponential distributions in the
continuous-time case.

As an example, Figure 3.2 shows the product of a LossySync channel ab and a Sync
channel bc. For simplicity, we represent the set of 3-tuples in the labels of transitions

only by their names and give them in the table below.

Note that the resulting automaton includes unintended transitions such as (¢, ¢) alaa

(£, c) and (¢, bc) olaer, (€,bc) which imply losing data items at node a which violate
context-dependency of the LossyFIFO1 connector. These unintended transitions are
generated since the product operation does not consider mixed nodes as internal nodes
that cannot interact with the outside. For this reason, we define a synchronization
operation that makes mixed nodes internal and filters firing transitions taking into
account the context-dependency of a Reo connector.

Definition 3.2.3 (Synchronization). Given a QIA A = (Q,I,X,—,r), synchro-
nization of a mized node h € 3, denoted by synch[h](A), is equal to (Q,I,%,—' 1)

8.2. Quantitative Intentional Automata 35

- - -1 _5e e 4
a yaL b c
ala, o
ala, a abc|abe, B ala,

clo b|0

r
a | ya
c | vye

ablabe, B

,val)}
,yab), (b, ¢,vbe) }

—
8
S =

a:
5: A,

ala, o

Figure 3.2: Product of a LossySync channel ab and a Sync channel be

where

v’ is v restricted to the domain X\ {h}, r'(h) is co, and
o= (e, Py PP pry e, py BPEEOUED oy
U {(P) 252w Py | h¢ R A g F A
B0, Py BENDL g pry b R = RURYY 2)

where W : ¥ X ¥ — X is a union restricted to disjoint sets. |

As an internal node, a mixed node does not interact with the environment and is
always ready to dispense data-items, i.e., a mixed nodes deliver data items that it
receives immediately. Thus, the synchronization operation restricts function r to only
boundary nodes.

The product operation of QIA does not take into account context-dependency of
connecting channels. The synchronization operation allows in an automaton (possibly
resulting from the product of two automata) only firing transitions that respect the
interaction with new environment. For example, consider the connector in Figure 3.2.
In a LossySync channel ab, losing data at node a occurs only when node b is not
pending. After the product with a Sync channel be, node b is always pending, and
losing data occurs only when node ¢ is not pending. However, the state (¢,¢) in
the product result has two firings for losing data at node a and dispensing data
from node a to node ¢ via node b. The synchronization checks such situation and
deletes unintended firings, i.e., it allows firings that 1) consider pending and firing
at the mixed nodes as an immediate atomic activity or 2) are independent of mixed
nodes. The QIA synchronization operation is analogous to the hiding operation [31,
Chapter 4] for TA. The result of the synchronization operation on the product result

36 Chapter 3. Quantitative Intentional Automata

in Figure 3.2 is shown in Figure 3.3, which is the same as the original QIA for a
LossySync channel.

ala, a
aclac, B

clo a: {(a,0,val)}
B {(a,b,vab), (b,c,vbc)}

e, 0
alac, B —

Figure 3.3: Synchronization result on QIA in Figure 3.2

The semantics of plugging two Reo connectors together on a common node h is
represented in QIA by first considering the product of their QIA and then applying
the synchronization operation, i.e. synch[h](A; >1 As). Thus, the product and the
synchronization operations can be used to obtain, in a compositional way, the QIA
of a connector built out of the primitive channels that comprise the connector. Given
two QIA A; and A, with their node sets 31 and s, respectively, sharing the common
nodes X1 NYg = {hq, he,..., hi}, synchlhi](synchlhsa] - - - (synch[hg] (A1 <1 Az))) rep-
resents the automaton corresponding to a connector. Note that the “plugging” order
does not matter as synchronization interacts well with product.

Example 3.2.4. As a more complex example of the QIA composition, we apply the
product and synchronization operations to the LossyFIFO1 example in Figure 2.5. The
product result A = (Q, I, %, —,r) of a LossySync channel ab and a FIFO1 channel be is
too big to draw and not readable. Instead of showing the whole figure of A, we show
—prod, the transitions that will be considered by the synchronization operation:

oa =1 (e, 0) s e, e, v
(e, D) ﬂ (Ce,c), X
(e, 0) 2B i oy v
(e, D) a‘—a> (e, Dy, X
(e, 0) 2222 or 0y, v
(05, 0) % 0. 0), v
wr,0) 2% e, 0), v
Of,0) 2% e, 0y, v
(e, c) ﬁ) (e, c), X
(e, ey 220 wr o) v
(ef,e) U5 efe),
wt, o) 2% e, 0), v
wf,e) % e, 0y v}

3.3. Translation into a stochastic model 37

Note that the system configuration fe and £f are the abbreviation of (¢,¢) and
(¢, f) where ¢ represents the system configuration of a LossySync channel ab, and e
and f represent the configurations of, respectively, an empty and a full buffer of the
FIFO1 channel be. Formally, these system configurations must be written as ((¢, e), P)
where P C {a,b, c}, but for simplicity, we use the aforementioned abbreviations. The
transitions with the bold labels represent the filtered transitions by the synchroniza-
tion. The reason of this filtering is that the nodes in bold in these transitions are
dependent on mixed nodes, thus, they must fire together with the mixed nodes. This
dependency is shown by the presence of their counterparts that fire with the same
nodes(represented in bold) as well as the mixed nodes (represented in roman, next
to the nodes in bold). Each counterpart follows its relevant filtered transition above
and belongs to the transition set 1) in Definition 3.2.3. The transitions with the black
labels represent the independent firings of the mixed nodes and belong to the transi-
tion set 2) in Definition 3.2.3.

In this example, the three transitions (fe, () e, (e, D), (le, D) ocla, (Ce, c), and
(e, c) i‘aﬁ (le,), which have only the labels in bold, are deleted by the synchro-
nization because they have counterparts that fire the pending mixed node b since
node b is always ready to dispense data items as an internal node. The counterparts

blab belab
of these transitions are, respectively, (e, () ablab, (£f,0), (Ce,0) abelab, (¢f,c), and

blab
(e, c) ablab, (¢f,c), firing mixed node b is represented in red. The synchronization
result of the product result A is shown in Figure 3.4.

ala, o

cle, 8
aclac, ¢

Lf, 0 Le, O
ala, B

Ole, s

alac, ¢

,e,vFe)}

ala, o

Figure 3.4: Corresponding QIA for LossyFIFO1 in Figure 2.5

3.3 Translation into a stochastic model

In this section, we show how to translate QIA into a homogeneous CTMC model for
stochastic analysis. In general, CTMCs are not compositional and large even for a

38 Chapter 3. Quantitative Intentional Automata

small system. That is, it is difficult to model CTMCs for complex systems directly.
In our approach, modeling compositional behavior is carried out by QIA, and then
corresponding CTMCs are derived from QIA which is considered as an intermediate
model for this translation. Even though the resulting CTMCs are still big to handle,
we can easily obtain CTMCs for complex systems via QIA. A homogeneous CTMC is
a stochastic process with (1) discrete state space, (2) Markov property, (3) memory-
less property, and (4) homogeneity in the continuous-time domain [43]. These prop-
erties yield efficient methodologies for numerical analysis. Note that here and in the
remainder of this chapter, CTMCs are homogeneous even though it is not explicitly
mentioned.

In the continuous-time domain, the exponential distribution is the only one that
satisfies the memoryless property. Therefore, for the translation, we assume that the
rates of request-arrivals and data-flows are exponentially distributed. However, note
that such restriction did not appear in the QIA model. Other types of distributions
can appear in the label of QIA, but then the target model has to be other than
CTMCs.

A CTMC model derived from a QIA is a pair (S,9) where S = S4 U Sy, is the
set of states. Sy represents the configurations of the system derived from its QIA
including the pending status of I/O requests; Sy is the set of states that result
from the micro-step division of synchronized actions (see below). § = darr U dproe C
S x Rt x S, explained below, is the set of transitions, each labeled with a stochastic
value specifying the arrival or the processing delay rate of the transition. d4,, and
dproc are defined in Section 3.3.4 and Section 3.3.3, respectively.

A state in QIA models a configuration of the connector, including the presence
of the I/O requests pending on its boundary nodes, if any. Request-arrivals change
system configuration only by changing the pending status of their respective bound-
ary nodes. Data-flows corresponding to a transition in QIA change the system con-
figurations, and release the pending I/O requests on their involved boundary nodes.
In addition, data-flows depicted in a single transition illustrate multiple synchronized
firings. In the following, we show how to deal with such request-arrivals and data-flows
in an appropriate way for the translation from QIA into CTMCs.

In a CTMC model, the probability that two events (e.g., the arrival of an I/O
request, the transfer of a data item, a processing step, etc.) happen at the same time
is zero: only a single event occurs at a time. In compliance with this requirement, for
a QIA A= (L x 2% 1,%,—,r) and a set of boundary nodes ¥/, we define its set of
request-arrival transitions, 4., in several steps. The set S and the preliminary set?
of request-arrival transitions of the CTMC derived from A are defined as:

2In the process of generating CTMCs, some macro-step events (e.g., synchronized data-flows)
are divided into several micro-step events. After that, independent events (e.g., request-arrivals) are
considered as preemptive events between any two micro-step event. Before this division, we need to
specify the transitions for respective synchronized data-flows. For this purpose, S4 is obtained to
describe source and target states of these transitions. The preliminary set of request-arrivals includes
the transitions that connect the states in S4, each of which corresponds to all possible request-
arrivals at every connector configurations.

3.3. Translation into a stochastic model 39

Sa = {{g.P)|gel, PCY}
e = {la.P) = (¢, PU{d}) | (g, P), (¢ PU{d}) € Sa, v=r(d)}

The set ¢'y,.,. is used in Section 3.3.4 to define the d 4, component of 4.

As an example of obtaining Sy and ¢/y,.,., recall the QIA for the LossyFIFO1 circuit
in Figure 3.4. It has two system configuration of states e and /f, and its boundary
nodes set ¥/ is {a, c}. Therefore:

Sa = { {le,0), (le,a), (le,c), {le,ac), (Lf,0), (Lf,a), (Lf,c),{Lf, ac) }
e = { (Le,0) ae, (be,a), (Le,D) RAN (le,c), (le,a) RAN (Ce,ac),
(Le,c) = (te,ac), {LF,0) == (Uf,a), {L,0) = (L),

a

(¢f,a) MAN (Lf,ac), {Le,c) — (Lf,ac) }

The diagrams of S and ¢/, are presented in Figure 3.5.

~ye ~ye Yye ~ye

@ ya @ . Yya

Figure 3.5: State diagram for request-arrivals

3.3.1 Micro-step transitions

The CTMC transitions associated with data-flows are more complicated because
groups of synchronized data-flows are modeled as a single transition® in QIA, ab-
stracting away their precise occurrence order. Therefore, we need to divide such syn-
chronized data-flows into so-called micro-step transitions?, respecting the connection
information, i.e., the topology of a Reo connector, through which the data-flow occurs.

The connection information can be recovered from the 3-tuples in the label on
each firing transition in a QIA, since the first and the second elements of a 3-tuple
describe, respectively, the input and the output nodes involved in the data-flow of
its transition, and the data-flow in the transition occurs from its input to its output
nodes.

For example, the transition from state (fe,?) to state (£f,0) in the QIA of the
LossyFIFO1 example in Figure 3.4 has {(a,b,vab), (b,0,vbF)} as its set of 3-tuples.
The connection information inferred from this set states that the data-flows occur

3Note that here and in the remainder of this section, we skip to explicitly mention that a QIA

R|F,D . . .
transition s l—) s’ satisfies ' # @ A D # @ for its synchronized data-flows.

4This division delineates synchronized data-flows, not each data-flow itself.

40 Chapter 3. Quantitative Intentional Automata

from a to the buffer through b. The transition is, thus, divided into two consecutive
micro-step transitions (a, b, yab) and (b,), vbF).

Such data-flow information on each firing transition in a QIA is formalized by a
delay-sequence defined by the following grammar:

AsAXu=e | 6| AN | HA

where € is the empty sequence, and 6 is a 3-tuple (I, O,) for a primitive Reo chan-
nel. A|A denotes parallel composition, and A; A denotes sequential composition. The
empty sequence € is an identity element for | and ;, | is commutative, associative, and
idempotent, ; is associative and distributes over |. Most of properties of these compo-
sitional operators are intuitive, except for the distributivity of ;. The delay-sequence
A extracted by the Algorithm 3.3.1 is in the format A = A;|Az]...|A,. Consider
A = A|X2 = (01;02)|(03;02)°. Distributivity, that is, the property (61;62)|(63;62) =
(01103); 02 is justified by the fact that 6y is the delay of the same action and the
other actions 6, and 63 in the composed delays (61; 62) and (65;62) need to finish be-
fore the action corresponding to 6 occurs. We use this distributivity law to generate
compacter delay-sequences from the delay-sequences extracted in Section 3.3.2. For
example, recall the delay-sequence A = (01]02)|(03;02). Then, A becomes (61|03); 02
and it still preserves the sequential precedence of 8; and 03 over 65 and shows the
undetermined order between 6; and 6s.

3.3.2 Extracting a delay-sequence

The delay-sequence corresponding to a set of 3-tuples associated with a transition in
a QIA is obtained by Algorithm 3.3.1. Note that if the parameter of the function Ext
is a singleton, then Ext({0}) = 0 since i(6) N o(0) = 0.

Intuitively, the Ext function delineates the set of activities that — at the level of a
QIA — must happen synchronously /atomically, into its corresponding delay-sequences.
If a certain data-flow associated with a 3-tuple 6; explicitly precedes another one 65,
then 6 is sequenced before 0s, i.e., encoded as 61;6s. Otherwise, they can occur in
any order, encoded as 6165.

Applying Algorithm 3.3.1 to the LossyFIFO1 example in Figure 3.4 yields the
following result shown in Figure 3.6, where the delineated results appear in the table.

The parameter D of Algorithm 3.3.1 is a finite set of 3-tuples, and Init, Post and
toGo, subsets of D, are also finite. Moreover, Post becomes eventually @) since toGo
decreases during the procedure. Thus, we can conclude that Algorithm 3.3.1 always
terminates.

A resulting delay-sequence S extracted by Algorithm 3.3.1 is generated by the par-
allel composition of Ag. The order of selecting 0 from the set Init is not deterministic,
thus, the resulting delay-sequence for the same input can be syntactically different,

5In general, the operators inside ()’ have the highest order. Here and in the remainder of this
thesis, we also follow this standard order without explicit mention.

3.3. Translation into a stochastic model 41

Algorithm 3.3.1: Extraction of a delay-sequence out of a set © of 3-tuples

Ext(D) where D in p RIED, q

S=¢
toGo =D
Init :=={0 € D]i@)No(d) =0 for all " € D}
for 6 € Init do
)\9 =0
Pre := {0}
toGo := toGo \ Pre
Post = {0 € toGo | 30" € Pre s.t. o(0") Ni(0) # 0}
while Post # () do
A :=(01]---10k) where Post = {601, 0}
IYRE=DVIDY
Pre := Post
toGo := toGo \ Pre
Post := {0 € toGo | 30’ € Pre s.t. o(8') Ni(0) # 0}
end while
S = S|>\9
end for
return S

ala, o

cle, §
aclac, ¢
‘L cl®
L£f, 0 Le, le, c
ala, 8

a: {(a,0,vaL)}
B: {(a,b,vab) ; (b,0,vbF)}
§: {(0,c,vFe)}
¢: {(a,0,vaL) | (0,c,7Fc)}

ala, a

Figure 3.6: Applying Algorithm 3.3.1 to QIA in Figure 3.4

for example, Ag|\g: and Ay |Ag with Init = {6,0'}. However, the parallel composition
operator | is commutative, thus, the composition order of | does not matter.

3.3.3 Dividing macro-step transitions with a delay-sequence

We now show how to derive the transitions in the CTMC model from the QIA tran-
sitions. In QIA, data-flows and request-arrivals can be put on a single transition,

42 Chapter 3. Quantitative Intentional Automata

whereas, in CTMCs, these two must be considered separately. For this purpose, we
explore cases in which sole data-flows are possible. Recall the invariants of QIA in

Section 3.2.1. A firing can occur when all its relevant nodes are pending. For a QIA

R|F,D
transition (g, P) |—> (¢’, P"), the firing can occur if F C PUR. In compliance with

this consideration, we derive the CTMC transitions in two steps:

1. For each QIA transition (g, P) RIFD, (¢, P'y € - such that F #0 A D # 0,

we derive transitions (g, P") 2, (¢’, P"\ F) where P" is a node set that includes
all the firing nodes of each QIA transition; X is the delay-sequence associated
with the set of 3-tuples D in the label on the transition. This set of derived
transitions is defined below as dp/qcro-

2. We divide a transition in d740r0 labeled by A into a combination of micro-step
transitions, each of which corresponds to a single event.

The following figure briefly illustrates the procedure mentioned above, for the two

o A1 A1|A
transitions p =2 ¢ and p ELEN q where A\; = 61; A} and Ay = f; \j:

)\1;)\2 >\1 >\2
q |

pP——4q
)\I
2
y y VU
1 2 - -
o, L g, Tt W8 @
) e e D D O) 6,620, ey
e B
,\ 1
A
A sequential delay-sequence Aj; Ao allows for the events corresponding to A; to oc-
cur before the ones corresponding to As. For a parallel delay-sequence A1|\g, events
corresponding to A\; and Ay occur interleaving each other, while they preserve their
respective order of occurrence in A; and Ay. All indexed states s, are included in Sj,
which consists of the states derived from the division of the synchronized data-flows
into micro-step transitions. The formal description of dealing with these two delay-
sequences is presented in the definition of a div function below, in which handling the
respective delay-sequences correspond to the second and the third conditions of the
div function.

Given a QIA (Q,1,%,—,r) and its boundary nodes set ¥’ a macro-step transition
relation for the synchronized data-flows is defined as:

A
6]%(107"0 = {<p7PN> — <anN\F> |
(p.P) T2,

As an example of obtaining a macro-step transition relation, consider the transition
(e, D) alaf, (¢f,0) with 8 = (a,b,vab) ; (b,0,vbF) in Figure 3.6. Given the firing

(¢,P'ye -, FCP"CY \=Ext(D)}

3.3. Translation into a stochastic model 43

set {a} and the boundary nodes set ¥’ = {a,c}, P” is {a} or {a,c}, this generates
the macro-step transitions (le, a) LR (£f,0) and (e, ac) LR (¢f,c). Figure 3.7 shows
a state diagram derived from the QIA of the LossyFIFO1 example in Figure 3.4 with
the set of macro-step transitions dprqcro and the preliminary set of request-arrival
transitions ¢'y,,., which are represented as dashed transitions.

. v
PP S S g S ¢f,c of, ac
va AN (a, b, vab); (b, 8, ybF) ~—""""Ta, 0, vaL) _

~

(@, 0, vaL)|(B, e 5 FE)

Figure 3.7: State diagram derived from the QIA in Figure 3.4 with dpz4cro and &y,

We now explicate a macro-step transition with a number of micro-step transitions,
each of which corresponds to a single data-flow. This refinement yields auxiliary states
between the source and the target states of the macro-step transition. Let (p, P) be
a source state for a data-flow corresponding to a 3-tuple 6. The generated auxiliary
states are defined as (pg, P\ nodes(6)) where py is just a label denoting that the data-
flow corresponding to 6 has occurred, and the function nodes : A — 2% is defined for
the delay-sequence level as:

[i) Uo() ifA=20
nodes(\) = { nodes(A1) Unodes(Az) ifA=X;02 VA= A1)

The set of such auxiliary states is obtained as Sy = states((p, P) 2, (q, P')) where

states({p, P) LN (g, P"y) =
{ {<p7P>7<q,P/>} ifA=10

\J states(m) Vm € div({p, P) 2, (g, P")) otherwise

44 Chapter 3. Quantitative Intentional Automata

The function div : dprqero — 20Meere is defined as:

div({p, P) 25 (¢, P')) =

{<p7 P> i> <Q7PI>} lf)\ = 0 A 39<p7 P> i> <pI7P/> S 6I\/Iacro
div((p, P) = (px,, P")) U div((pa,, P") 22 (q, P"))

if A = Ay; A2 where P” = P\ nodes(\1)
{my >amy | my € div((p, P) 25 (px,, P")), i € {1,2}}

if A = A\|\y where P” = P\ nodes()\;)
1] otherwise

where the function < dxreero X Oaracro — 20Mecre computes all interleaving composi-

A1]A
% (Q7R/) € 6Macro>

(p, R) N (Pr,» R \ nodes(A1)) and (p, R) 22, (Prgs R\ nodes(Az2)) correspond to,
respectively, m; and mq of the third condition in the definition of the div function.
While m; and ms are handled by the div function recursively, some auxiliary states,
i.e., states(my) and states(ms), are generated. In the interleaving composition, mq
can occur at any states that are generated by states(ms), and vice-versa. This inter-
leaving composition of m; and my is represented as:

tions of the two transitions as follows. For a transition (p, R)

my X<ime = { div((pl,Rl) 22, (p(L)\Q),R\nodes()\g))),

div((p2. B2) ~5 (P, R \ nodes(M1))) |
(p1, R1) € states(m) and (po, R2) € states(ms) }

The following example shows the application of the function div to a non-trivial delay-
sequence, which contains a combination of sequential and parallel compositions.

Example 3.3.1. Consider the Stochastic Reo connector shown below. Every indexed
0 is a rate for its respective processing activity, e.g., 0 is the rate at which the top-left
FIFO1 dispenses data through its sink end; 63 is the rate at which the node replicates
its incoming data, etc. Data-flows contained in boxed regions marked as B; and By
appear in 0prqero, derived from the QIA of this circuit, as two transitions with the
delay-sequences of A\; and Ay where:

e from By: \; = ((02;05)|(0s;69)) ; (04]010]011)
e from Ba: Ay = (05;66) | (012;613)

To derive a CTMC, A\; and Ay must be divided into micro-step transitions. We
exemplify a few of these divisions. For A, the division of (64]|610]611) is trivial since
it contains only simple parallel composition. This division result is then appended
to the division result of (62;63)|(0s;6y), which has the same structure as that of As.
Thus, we show below the division result of As only.

In the following CTMC fragment, to depict which events have occurred up to a
current state, the name of each state consists of the delays of all the events that have

3.3. Translation into a stochastic model 45

By _________ By ____
r 05 o !
— ' :
01 I 02 | 04 i 05 %6
I I I
I N
| ‘\ |
| 910 Y I
|
|
l ¥ ‘
I
| | |
07 08 | 011 | 012 013
L.t LT T
I) N I

05 | (012;013)
(653 66) | (0123 013)

(05:06) | 012

(05;06) | <

occurred up to that state. The delay for a newly occurring event is appended at the
end of its respective segment in the current state name.

This example shows that when a delay-sequence X is generated by parallel com-
position, the events in one of the sub-delay-sequences of A occur independently of
the events in other sub-delay-sequences. Still events preserve their occurrence order
within the sub-delay-sequence that they belong to. %

The division into micro-step transitions ensures that each such transition has a
single 3-tuple in its label. As mentioned above, this 3-tuple includes the structural
information and the processing delay rate of its relevant data-flow, but in CTMCs,
only the processing delay rate is used. Thus, the extraction of processing delay rates
from the micro-step transitions are defined as:

Sproe = {0, P) X2 (0, P') | (p, P) % (pf, P’} € div(t) for all ¢ € Spzaero}

Figure 3.8 shows applying the division method and extracting rates from the
LossyFIFO1 example in Figure 3.7. In Figure 3.8, the elements in Sy; appear in gray,
and the micro-step transitions by the division method are represented as dashed
transitions.

3.3.4 Preemptive request-arrivals

Synchronized data-flows in QIA are considered atomic, thus other events cannot in-
terfere with them. However, splitting these data-flows allows non-interfering events to

46 Chapter 3. Quantitative Intentional Automata

Figure 3.8: Division result of Figure 3.7

interleave with their micro-steps, disregarding the strict sense of their atomicity. For
example, a certain boundary node unrelated to a group of synchronized data-flows
can accept a data item between any two micro-steps. Since we want to allow such
interleaving, we must explicitly add such request-arrivals. With a set of micro-step
states Sy, its full set of request-arrival transitions, including its preliminary request-
arrival set 0y, is defined as:

Sare =0 UL, PY 2 (p, PULAY) | (p, P), (p, PU{d}) € Sar,d €S, d ¢ P}

Figure 3.9 shows the consideration of all possible preemptive request-arrivals for
the division result in Figure 3.8, and the preemptive request-arrival is represented as
a dashed transition. Thus, Figure 3.9 is the CTMC model (Sa U Sar, dar U dproc)
derived from the LossyFIFO1 example in Figure 2.5 via its QIA in Figure 3.4.

Figure 3.9: Derived CTMC of LossyFIFO1

3.4. Discussion 47

3.4 Discussion

In this chapter, we introduced QIA as a semantic model for Stochastic Reo. This
model specifies the behavior of a connector that coordinates services distributed over
a network, along with its end-to-end QoS, specified as stochastic rates. QIA are an
extension of TA, thus, QIA also consider both I/O request arrivals at channel ends and
data-flows through channels separately. In contrast to TA, request arrivals and data-
flows in QIA are considered stochastic activities. Considering the interaction with the
environment of a connector, i.e., I/O request arrivals at channel ends, as a stochastic
activity, QIA can specify and reason about end-to-end QoS aspects of system behav-
ior. As TA capture the context-dependency of connectors, QIA, an extension of TA,
also capture the context-dependency of connectors. As a complex connector is built
out of the primitive Stochastic Reo channels, the QIA model corresponding to a com-
plex connector is also obtained by composing the QIA models corresponding to the
primitive Stochastic Reo channels that comprise the connector.

QIA are considered an intermediate model for translation into stochastic models,
in particular CTMCs, for stochastic analysis. CTMCs are frequently used stochas-
tic processes with some restrictions, such as discrete state space and Markov prop-
erty. These restrictions (features) provide efficient algorithms for their numerical anal-
ysis [85]. For this purpose, we have shown the translation from Stochastic Reo into
CTMCs in this chapter. Based on this method, a tool has been implemented in the Ex-
tensible Coordination Tools (ECT) [35], whose implementation details will be shown
in Chapter 5. The CTMCs derived from Stochastic Reo via the QIA semantic model
can be used for analysis of the stochastic behavior of Reo connectors.

In general, QIA are large models in terms of the number of states and transitions,
because their configurations include not only data-flows, but also the interaction with
the environment, in contrast to CA which consider the configurations of data-flows
only. Thus, QIA quickly become too large to handle. Moreover, as a semantic model
for Stochastic Reo, QIA must support the compositional semantics of a Stochastic
Reo connector. However, the proof of the compositionality of QIA is far from trivial.
Consequently, we designed a more compact and tractable semantic model, called
Stochastic Reo Automata, which we present in Chapter 4.

Chapter 4

Stochastic Reo Automata

4.1 Introduction

In the previous chapter, we introduced Quantitative Intentional Automata (QIA), a
compositional semantic model for Stochastic Reo. QIA specify the behavior of con-
nectors and enable reasoning about their end-to-end QoS. However, QIA explicitly
describe all I/O interaction with the environment which is abstracted away in other
(non-stochastic) semantic models such as Constraint Automata (CA) and Reo Au-
tomata. An explicit description of all interaction with the environment produces many
states and transitions. Having a large state diagram, QIA are not easy to handle.

In this chapter, we introduce Stochastic Reo Automata [68] as an alternative
semantic model for Stochastic Reo. Not only a Stochastic Reo Automaton is com-
pact and tractable, but it also retains the features of QIA for representing context-
dependency and reasoning about end-to-end QoS. Moreover, in order to reason about
general end-to-end QoS, a Stochastic Reo Automaton is extended with reward infor-
mation to deal with Stochastic Reo with rewards.

This chapter consists of four parts. In the first part, Stochastic Reo Automata are
introduced as an alternative semantic model for Stochastic Reo. In fact, this model
is a stochastic extension of Reo Automata. We introduce that the mapping between
primitive Reo channels and their corresponding Stochastic Reo Automata, as well as
the composition operation for Stochastic Reo Automata.

The second part shows the extended version of Stochastic Reo Automata for gen-
eral end-to-end QoS properties. In this extension, the general QoS aspects are con-
sidered as reward information, which is associated with stochastic activities such as
I/0O request arrivals at channel ends and data-flows through channels. We also show
the mapping of Stochastic Reo to Stochastic Reo Automata with the concern for the
reward information.

The third part shows the translation from Stochastic Reo Automata into homoge-
neous CTMCs. In Chapter 3, we have shown the translation from QIA into CTMCs.
This translation is partially similar to the translation from Stochastic Reo Automata
into CTMCs. To avoid duplication, we skip some procedures that we reuse from the

49

50 Chapter 4. Stochastic Reo Automata

earlier translation method. In addition, we present the translation from the Stochastic
Reo Automata extended with reward information into CTMCs with state reward.

In the fourth part, we discuss to what extent Interactive Markov Chains (IMCs)
can serve as another semantic model for Stochastic Reo. As shown in Section 2.5, the
main strength of IMCs is their compositionality. In this section, we show that in our
treatment the compositionality of IMCs is not adequate to specify the behavior of
Stochastic Reo.

4.2 Stochastic Reo Automata

Stochastic Reo Automata constitute an alternative semantic model for Stochastic
Reo to the model explained in Chapter 3. Compared to QIA, each Stochastic Reo
Automaton has a disjoint set of node names. For example, two QIA A; and Ay with
node sets 3 4, and X 4,, respectively, are synchronized at nodes in ¥ 4, N 4,, whereas
two Stochastic Reo Automata B; and B, are assumed that the two automata have
disjoint node sets and can either take a step together or independently. Thus, naming
the nodes of Stochastic Reo for a Stochastic Reo Automaton is slightly different from
that for QIA. For instance, compared to Figure 2.5, Figure 4.1 shows the difference
for the primitive channels of a LossySync and a FIFO1 and their composition result,
i.e., the joined nodes in Figure 4.1 do not use a common name.

~yab ~ycF vFd ~yab yeF vFd

ya yaL ~b ye ~vd ya yaL ~d

Figure 4.1: Stochastic LossyFIFO1 connector

As a more complex Stochastic Reo connector, Figure 4.2 shows a discriminator
which takes the first arriving input value and produces it as its output. It also ensures
that an input value arrives on every other input node before the next round.

4.2.1 Stochastic Reo Automata

In this section, we provide a compositional semantics for Stochastic Reo connectors,
as an extension of the Reo Automata of Section 2.3.3 with functions that assign
stochastic values for data-flows and I/O request arrivals.

Definition 4.2.1 (Stochastic Reo Automata). A Stochastic Reo Automaton is
a triple (A,r,t) with a Reo Automaton A = (3,Q,d4) according to Definition 2.3.7
and

e r:Y — RT is a function that associates with each node its arrival rate.

et : 04 — 29 is a function that associates with a transition a subset of © =
2% x 2% x Rt such that for any I,O0 C ¥ and INO = 0, each (I,0,r) € ©

4.2. Stochastic Reo Automata 51

w XL — vFb
® LI
\
\
Yyor, d
yvL \ e
1
z L otE 1 YFy
\ —
\ \
\
\
YSGN
ysL W vef
\\
i\
§ YoF —1 1Ep
yn
Ygh
Fm\ _. .
7 ik — Fj

Figure 4.2: Stochastic Discriminator with two inputs

corresponds to a data-flow where I is a set of mized and/or input nodes; O is
a set of output and/or mized nodes; and r is a processing delay rate for the
data-flow described by I and O. We require that

— for any two 3-tuples (I1,01,r1), (I2,02,72) € O such that Iy = Iy A O1 =
Oo, it holds that r1 = ro, and

— for a transition s il]; s' € 04 with t(s ﬂf# s =A{(11,01,11), (12,049, 13),

ooy (In, Oy}, FAUINO)=(TUO)\ (INO) where I =J,<;<,, I; and
0= U1§i§n 0.

The Stochastic Reo Automata corresponding to the primitive Stochastic Reo channels
in Figure 2.3 are defined by the functions r and t shown in Table 4.1. Note that the
function t is encoded in the labels of the transitions of the automata, and the function
r is shown inside the tables. For simplicity, here and in the remainder of this chapter,
we simplify the representation of the 3-tuple (I, O,), which is assigned by the function
t, by omitting the curly brackets for I and O and the commas between the elements
in I and O.

An element of § € O is accessed by projection functions i : © — 2%, 0: @ — 2%
and v : © — RT; i(0) and o(f) return the respective input and output nodes of

52 Chapter 4. Stochastic Reo Automata

Synchronous Channels
~yab ablab, {(a,b,vyab)} r
> a ,.ya
ya vb 8 b ’yb
ablab, {(a,b,yab)}
vab abla, {(a,0,vaL)} .
e >e a | vya
ya yaL ~b 8 b /yb
fyab a’b‘ab5 {(a’b7®7’yab)} r
= * a | ya
ya b 8 b ’yb
Asynchronous Channel
. . cle, {(c,0,vel)} .
ye v
—J 1——e
- o @D el e
dld, {(0,d,vFd)} 7

Table 4.1: Stochastic Reo Automaton for some basic Stochastic Reo channels

a data-flow, and v(0) returns the delay rate of the data-flow through nodes in (6)
and o(6).

As mentioned in Section 2.3.3, Reo Automata provide a compositional semantics
for Reo connectors. As an extension of Reo Automata, Stochastic Reo Automata also
present the composition of Stochastic Reo connectors at the automata level. For this
purpose, we define the two operations of product and synchronization that are used
to obtain an automaton of a Stochastic Reo connector by composing the automata of
its primitive connectors. The compositionality of these operations is formally proved
later in this section.

Definition 4.2.2 (Product). Given two Stochastic Reo Automata (Aq,r1,t1) and
(A, 12, t2) with A1 = (31,Q1,04,) and Az = (32, Q2,8.4,), their product (Ay,ry1,t1)x
(Aa,ra,t2) is defined as (A; X As,r1 Ura,t) where

ad'If f'

aqlf g'lf

t((¢.p) = (¢ 9) = ti(a 5) Utalp = p)
whereq‘ilj;q 651/\pg‘f p' € o2
#
t((q, gp*|f (d.,p)) — t(qﬂf%q) whereqﬂf»qle&/\pGQz
"
t(@n) @) = e L) wieep iy enngeq

4.2. Stochastic Reo Automata 53

Note that we use x to denote both the product of Reo Automata and the product of
Stochastic Reo Automata.

The set of 3-tuples that t associates with a transition m combines the delay rates
involved in all data-flows synchronized by the transition m. For this combining, we
might use a representative value for the synchronized data-flows, for example, the
maximum of the delay rates. However, deciding the representative rate is not always
desirable, and moreover, it can cause restriction to modeling random behavior of a
system. In order to keep Stochastic Reo Automata generally useful and compositional,
and their product commutative, we avoid fixing the precise formal meaning of distri-
bution rates of synchronized transitions composed in a product. Instead, we represent
the “delay rate” of a composite transition in the product automaton as the union
of the delay rates of the synchronizing transitions of the two automata. The way
these rates are combined to yield the composite rate of the transition depends on the
different properties of the distributions and their time domains. For example, in the
continuous-time case, no two events can occur at the same time; and we might choose
the maximum one among the rates of the synchronized data-flows as their represen-
tative rate, but the exponential distributions are not closed under taking maximum.
In Section 4.4, we show how to translate a Stochastic Reo Automaton to a CTMC
using the union of the rates of the exponential distributions in the continuous-time
case.

Definition 4.2.3 (Synchronization). Given a Stochastic Reo Automaton (A,r,t)
with A = (%,Q,9), the synchronization operation for nodes a and b is defined as
Oap(A, 1, t) = (OapA,x/ ") where

e 1’ is r restricted to the domain ¥\ {a,b}.
o t' is defined as:
9\av|f\{a,b} q/)

t/(q LM oy (A, B) | (4, B,r) € t(g 2L),
Al = SyTLC(A, {aa b}) AN B'= sync(B, {CL, b}) }

where sync : 2% x 2% — 2% gathers nodes joined by synchronization, and is
defined as:

_(AUB if ANB #0
sync(4, B) = { A otherwise

Note that we use the symbol 9, to denote both the synchronization of Reo Automata
and the synchronization of Stochastic Reo Automata. The number of nodes joined
by a synchronization is always two, and these joined nodes are gathered in a one
set. The sets of joined nodes in multiple synchronization steps are disjoint. That is,
given two different synchronizations 9,5 and J.4 on a Stochastic Reo automaton,

{a,b} N {c,d} = 0.

54 Chapter 4. Stochastic Reo Automata

Example 4.2.4. We now revisit the LossyFIFO1 example. Its semantics is given by
the triple (Arossyrrror1,r,t), where Arossyrrro1 is the automaton depicted in Fig-
ure 2.11 and r is defined as r = {a — va,b — vb,¢ — ¢, d — ~vd}. For t, we first
COHlpllte tLossySyncXFIFC)l:
abe|ab, ©1 abcl|abc, O3 abd|ab, ©;
abcla, O abclac, O4 am|a7 O, O :
cale, Os Oy :
O3 : a, 'yab) (¢,0,vcF)}

{(a,
{(a,
{(
@ @ O4: {(a,0,valL), (c,D,~vcF)}
Os5: {(c @ veF)}
{(
{(a,
{(

o
S
2
Q
h
-
—

O : a,b,vab), (0,d,vFd)}
abd|abd, O O : 0,~vaL),(®,d,vFd)}
abd|ad, @7 Os : ,d,yFd)}

dald, Os

Above, the labels that correspond to the transitions that will be kept after synchro-
nization appear in bold. Thus, the result of joining nodes by synchronization, is shown
in Figure 4.3 with r’ = {a — ~a,d — ~yd} which is restricted to its boundary nodes.

ala
(a, bc,vab), (be,,veF)}

adla, {(a,0,vaL)}

adlad, {(a,0,~aL), (0,d,vFd)}
dald, {(0,d,vFd)}

Figure 4.3: Stochastic Reo Automaton for LossyFIFO1

Note that the node names that appear in bold represent the synchronization of nodes
b and c. For simplicity, here and in the remainder of this chapter, we use abbreviated
representation of states, for example, the states e and £f in the above automaton
are abbreviations for (¢,e) and (¢, f). O

In this way, we can carry on stochastic information, i.e., arrival rates and process-
ing delay rates that pertain to its QoS, in the semantic model of Reo circuits, given
as Reo Automata.

As a more complex example of such composition, Figure 4.4 shows a Stochastic
Reo Automaton for the discriminator in Figure 4.2.

Definition 4.2.1 shows that our extension of Reo Automata deals with such stochas-
tic information separately, apart from the underlying Reo Automaton. Thus, our ex-
tended model retains the properties of Reo Automata, i.e., the compositionality result
presented in Section 2.3.3 can be extended to Stochastic Reo Automata.

4.2. Stochastic Reo Automata 55

(no,0,voF), (no,b,ynF), (av,d,vaF) }
¢ = { (x,st,ystx), (st,0,7tF), (st,q,vsq),
(g, no,vnoq), (no,B,voF), (no,0,ynF) }

¢3 = $2 U @5

¢y = 1 U g

¢5 = { (w,av,'yavw), (GJU,@,’VUL), (ava®77aF)}

o6 = { (x,st,ystx) ,(st,0,vtF), (st,0,vsL) }

o7 = { (O,m,yFm), (m,ik,~ikm), (ik,l,vkl),
(ik;,@,’yiF) }

¢s = ¢7 U g6

b9 = o

$10 = p12 = o7

b1 = ¢7 U @5

P13 = @5

¢14 = { ((Z),bC, ’YFb)v (de@,@,’}/Cd), (®7u77FU)
(u, de,vdeu), (0,p,vFp), (defg,0,~vef),
(p, fg,vfap), (fghj,0,~vgh), (D, hj,vFj) }

Figure 4.4: Stochastic Reo Automaton for discriminator in Figure 4.2

Given two Stochastic Reo Automata (Ay,r1,t1) and (Ag, ra, to) with A; = (34, @4,
01) and Ay = (X2, Q2,92) over the disjoint alphabets ¥; and o, and two subsets
{a1,...,ax} €21 and {by,...,br} C 3o, we construct Ou, b, Vay by * * * Oag by (A1 X Az)
as the automaton corresponding to a connector where node a; of the first connector
is connected to node b; of the second connector, for all ¢ € {1,...,k}. Note that the

56 Chapter 4. Stochastic Reo Automata

‘plugging’ order does not matter because 9 can be applied in any order and it inter-
acts well with the product. These properties are captured in the following lemma.

Lemma 4.2.5 (Compositionality). Given two disjoint Stochastic Reo Automata
(A1, r1,t1) and (Az, o, ta) with Ay = (£1,Q1,01) and Az = (X2,Q2,62),

1. 0gp0c,a(A1,r1,t1) = 0c,d0ap(A1,r1,t1), if a,b,c,d € ¢

2. (Ogp(A1,r1,t1)) X (Ag,ro,t2) ~ 0y p((A1,11,t1) X (Az,Ta,t2)), if a,b ¢ 3y
Here (Ay,r1,t1) ~ (Az,r2,t2), where Ay and Ay are automata over the same alpha-
bet, if and only if Ay ~ Az, r1 =12, and t; = t,. ¢
Proor. For the first proposition, let

¢ 0,40c,da(A1,r1,t1) = (04p0c,qA1,1],t]) and

® 0c,d0ap(A1, 11, t1) = (0c,a0ap AL, 1Y, t])

By [19, Lemma 4.13] which is the analogue result for Reo Automata, we know that
0a.0¢,dA1 = 0¢,d04pA1. Using basic set theory, we also have that

ry r | (3\{a,0}) \{c,d}
= r|(E\{¢d})\{a b}

— /!

where for x C X, r|z is the restriction of r to z.

Before moving to the fact that t] = t7, we show that the order of applying the
synchronization is irrelevant for the synchronization result, i.e., given three node sets
A, {a,b}, and {c,d}, and the synchronization function in Definition 4.2.3,

syne(sync(A, {a, b}), {c,d}) = sync(sync(A4,{c,d}),{a,b})
because, given three node sets A, B, and C' with BN C = (),

AUBUC ifANB#D N ANC #10
AUB fANB#O AN ANC =1

syne(sync(4, B),C) =1 4 [¢ i;AﬂBi@ ANANC #£D
A otherwise

and set union U is commutative. Now
g\abed | (f\{a,b})\{c,d} ,
(g q)

1

= {(A,B'.") [(A,B,r) etilg 25 ¢),
A" = sync(A,{a,b}) N B” = sync(B,{a,b}) A
A" = sync(A”,{c,d}) N B’ = sync(B”,{c,d})}

= {4, B, | (A B, 1) eti(q 2D),

A" = sync(A,{c,d}) N B" = sync(B,{c,d}) A

A" = sync(A”,{a,b}) N B’ = sync(B",{a,b})}
ne, g\edab | (FA\{e,dP)\{a;b}
t1”(q)

4.3. Reward model 57

For the second proposition, let
@ Jup(Ar,ry,t1) X (A2, 12, t2) = (0ap(A1) X Az, 1, t) and
o 0,5((A1,r1,t2) X (Ag, 19, t2)) = (00 p(A1 x Az), 1/, t)

By [19, Lemma 4.13], we know that 04 5(A1) X Ag ~ 9y p(A1 x Ag) if a,b ¢ Xo. Tt
remains to prove that r =r’ and t = t’.
For the first part, we easily calculate:

w - {m DEE -

b b .
For the second part, consider transitions (g1, ¢2) (91\ab)gz|(F1abD) fo (p1,p2) in

ab a,b . .
B (A1) X Ay and (qy, gp) “LENANIDMED ()) in B, (Ar x Ay) with g; € B,
and f; € 2% for i = 1,2, which includes joined nodes a and b. Then

(g91\ab)g2|(f1\{a,b}) f2

t((q1, q2) (p1,p2))
= {(4.B"7) | (A,B.r) € talgs 225 py),

A" = sync(A, {a,b}) N B’ = sync(B,{a,b})}
{(4,B,7) | (4,B,1) € ta(gr 225 p)}

{ABr) | (A, B,r)€ti(q Mpl) U t2(q2 %Pz)a

A" = sync(A,{a,b}) N B’ = sync(B,{a,b})}

C

bl(f1f b
_ t/((qth) (9192)\ad|(f1f2)\{a,b} (p17p2))
Since sync(C, D) = C' if CND = (), the above result holds without a need to consider
if ab < g1 or {a,b} C fy. This also implies that t = t’ holds for transitions (g, p) M
(¢',p) and (g¢,p) % (¢,p"), which do not include joined nodes, in 9, (A1) X Ag
(equivalently, in 9, (A1 x A3)). O

4.3 Reward model

The end-to-end QoS aspects considered in Stochastic Reo typically involve timing in-
formation. Stochastic Reo is, however, general enough to include other types of quan-
titative information and, in this section, we consider rewards to model, for instance,
CPU computation time, memory space, etc. Rewards are assigned to request-arrivals
or data-flows in Stochastic Reo. Assigning a reward is done in a similar fashion to
annotating an activity with a stochastic rate. This similarity is leading in the follow-
ing section which discusses the extension of Stochastic Reo Automata with reward
information.

58 Chapter 4. Stochastic Reo Automata

4.3.1 Stochastic Reo with reward information

To specify the rewards of the behavior of Reo connectors, we have extended Stochastic
Reo by associating reward information to the stochastic activities of request-arrivals
at channel ends and data-flows through channels. Intuitively, the reward information
indicates the amount of resources required or released (gained or lost) for carrying
out the relevant stochastic activities.

In our extension, reward information is not confined to specific types. Moreover,
multiple types of rewards can be associated with a single stochastic activity. The type
of each reward is labeled to its reward value, for instance, memory space: 8. Formally,
the reward information is an element of (Types x R)* where Types is a set of reward
types. For simplicity, here and throughout of this thesis, we do not explicitly mention
reward types and assume that they are implied by the positions of the values in each
sequence. Thus, we use R* instead of (Types x R)*, where R* is a sequence of real
numbers, which we shall call a reward sequence. Let m be a reward sequence. The ith
element of 7 is denoted by 7 (i) and the length of 7, by |x|. Implicitly, each 7 (%) is
associated with a certain type of reward.

Figure 4.5 shows some primitive Stochastic Reo channels with stochastic rates and
reward sequences for stochastic activities. We associate a pair of a reward sequence
and a stochastic rate with each of their relevant stochastic activities, represented in
the format (rate | reward sequence).

(vab|rg) (vab|rg) (vab|rg) (vaF|r3) (vFb|my)
L >e {1
(valmy) (vblma) (valmy) (vaLlma) (yb|mg) (valmy) (vblma) (valmy) (yb|m2)

Figure 4.5: Some basic Stochastic Reo channels with rewards

For efficient reasoning about the rewards, we assume that all reward sequences
of the same connector have the same length. For instance, for my, me, 73 in the
Sync channel in Figure 4.5, |m1| = |m2| = |ns]. In addition, the reward values po-
sitioned at the same index in the reward sequences from the same connector must
have the same type. For example, in the context of the FIFO1 channel in Figure 4.5:
Let the reward types of 73 associated with the data-flow from node a to the buffer be
[memory space, computation time], then for the reward sequence 74 associated with
the data-flow from the buffer to node b, |74| = 2 and the order of reward types in 74
must also be [memory space, computation time).

Stochastic Reo extended with reward information retains the compositionality of
Stochastic Reo. As mentioned in Section 4.2, we assume that pumping data at mixed
nodes is an immediate activity, thus, the rates of mixed nodes are considered as co. In
the case of rewards, even if pumping data does not consume any time it still requires
some rewards/resource to carry out this activity. We need to define how to determine
reward sequences for pumping data at mixed nodes. For this purpose, we recall next
the definition of a constraint semiring (c-semiring, for short).

4.3. Reward model 59

Definition 4.3.1. (Constraint semiring [18]) A constraint semiring is a struc-
ture (C,®,®,0,1) where C is a set, 0,1 € C, and ® and @ are binary operations on
C such that:

e D is commutative, associative, idempotent; 0 is its unit element, and 1 is its
absorbing element.

e ® is commutative, associative and distributes over ®; 1 is its unit element, and
0 is its absorbing element.

It should be noted that the operation ¢ induces a partial order < on C, which is
defined by ¢ < iff cd =

The c-semiring structure is appropriate when only one calculation is possible over
its domain. In the case of Reo connectors, we need two different types of calculations:
a sequential calculation through the connector for its overall reward and a parallel
calculation for joining nodes into a mixed node. For these two different types of calcu-
lations, another algebraic structure, called Q-algebra, is used. We recall the definition
of Q-algebra; here @ refers to the QoS or quantitative values.

Definition 4.3.2. (Q-algebra [29]) A Q-algebra is a structure R = (C, B, ®, ©,0,1)
such that Rg = (C,®,®,0,1) and Rg = (C,®,D,0,1) are both c-semirings. C is
called the domain of R. [|

The set C' is a set of reward values, and the operations ® and @ calculate rewards
whose relevant activities occur sequentially and in parallel, respectively. That is, given
c1, co € C, ¢1 ® co is the composed reward of when ¢ follows ¢y, and ¢; O c¢s is the
composed reward of when ¢; and ¢y occur concurrently. For instance, the Q-algebra
for the shortest computation time can be given as (R™ U {oo}, min, +, +, o0, 0).

The product of two Q-algebra is defined as:

Definition 4.3.3. (Product [29]) For two Q-algebras Ry = (C1,P1,®1,D1,01,11)
and Ry = (Co, D2, ®2, D2, 02, 12), their product is Ry o Ry = R = (C, B, ®,0,0,1)
where

o ' =C1 x (Y

o (c1,02) D (1, ¢h) = (c1 1 ch, c2 D2 ch)
o (c1,00) ®(c],ch) = (1 ®1 ¢}, coa®a0h)
e (c1,02) @ (e, ¢5) = (e1 D1 €y, c2 D2 ¢y)
e 0= (01,02)

e 1=(1,15)

60 Chapter 4. Stochastic Reo Automata

To deal with different types of rewards, we label them, as mentioned above, as
elements of (T'ypes x R)*, and use a labeled Q-algebra, which is defined as follows.

Definition 4.3.4. (A labeled Q-algebra [29]) For each 1 < i < n, let R; =
(Ci, B4, ®i, ©4,04,1;) be a Q-algebra. Associating distinct label l; with each R;, de-
noted by (I; : R;), such that l; # 1; if i # j, the product of R; is a labeled Q-algebra
R=(C,8,®,0,0,1) if

o C:({ll}xCl)xx({ln}an)
o (et ln) @ (s sl €)= (5 (e @1), ol (60 B)
o (ly:cryolnicn)@(ycd, .l i) =1 (aa®1), .. ln: (cn®n)

e (li:cryolnicn) Oy cd, ol i) =1 : (e @1)), -yl : (e O cl))

The product operation on Q-algebras in Definition 4.3.3 can be applied to labeled
Q-algebras only if the order of the labels of two Q-algebras are identical.

Now we show how to comprise/obtain the reward for mixed nodes. When joining
a sink node and a source node into a mixed node, the resulting reward for the mixed
node is obtained using O on two rewards of each node since respective activities for
each node occur in parallel. That is, let a mixed node be composed out of a sink node a
and a source node b whose respective rewards are 7w, and 7y, then the resulting reward
for the mixed node is 7, O 7.

We now consider a merger and a replicator with reward information. As mentioned
in Section 2.1, a merger selects its source node and dispenses a data item from the
selected source node to its sink node. Consider the merger in Figure 4.6'. This merger
has 3 source nodes a, b, and ¢ and a sink node d whose respective rewards are
Tas T, e, and mg, then the comprised reward for this merger is (7, ® mp & 7.) ® 4.

Ta
Tp >—70 Td
Te

(a) merger

(b) replicator

Figure 4.6: Magnified merger and replicator

Ty
T

Td

INote that for simplicity, a merger and a replicator are usually depicted as mixed nodes, but here
we magnify them in order to explain how to calculate their rewards. However, the names of their

source and sink nodes are omitted.

4.3. Reward model 61

In the case of a replicator, it takes a data-item from its source node and dispenses
the duplication of the data-item to its all sink nodes. Consider the replicator in Fig-
ure 4.6. It has a source node a and 3 sink nodes b, ¢, and d whose respective rewards are
Tas Tby Te, and mq, then the comprised reward of this replicator is 7w, ® (7 O 7 O 74).

As an example for the composed reward of Reo connectors, Figure 4.7 depicts the
Stochastic Reo extended with reward information for LossySync and FIFO1, together
with the connector resulting from the composition of the two.

(vab|ry) (yeF|m7) (yFd|mg) (vab|m3) (veF|m7) (yFd|ng)
~—-------- >e x oe——r” 1—e = e 1
(valwy) (YaLlma) (yb|mg) (ye|ms) (vd|mg) (valwy) (YaLlma) (oo|my O w5) (vdlmg)

Figure 4.7: Stochastic Reo for LossyFIFO1 with rewards

Note that the x notation in Figure 4.7 represents joining the source node in a
LossySync channel and the sink node in a FIFO1 channel.

4.3.2 Stochastic Reo Automata with reward information

As an operational semantic model for Stochastic Reo extended with reward informa-
tion, we introduce an extended Stochastic Reo Automata model in this section (Def-
inition 4.3.5). The reward information, which is described using reward sequences in
Stochastic Reo, is propagated to the semantic model by pairing a stochastic rate with
its relevant reward sequence.

Before moving to the definition of the semantic model for Stochastic Reo extended
with reward information, we slightly modify extended Stochastic Reo to reuse the op-
erations and the properties of Stochastic Reo Automata described in the previous sec-
tions. This modification is necessary to accommodate the rewards for mixed nodes.
The original Stochastic Reo discards the rates for mixed nodes, but the extended
Stochastic Reo explicitly represents them as co to make a pair with the rewards for
mixed nodes. In order to deal with this difference and reuse the methods for the orig-
inal Stochastic Reo, an actual mixed node is replaced with an auxiliary Sync channel,
and newly arising mixed nodes are considered as usual in the original Stochastic Reo.
That is, the new mixed nodes are assumed not to consume any time and entail no
rewards for pumping data. For compliance with this assumption, the LossyFIFO1
connector in Figure 4.7 is modified as follows:

w ™ ™ (veFlm7) (yFd|rg)
(vab|rg) (co|ma @ 75) yeF|m7 ¥ 8

| B |
(valmy) (vaLllmg) 3 gy cg e (vd|mg)

Figure 4.8: Modified LossyFIFO1 connector

Note that arbitrary names can be used for new mixed nodes in the modified con-

62 Chapter 4. Stochastic Reo Automata

nectors, but here we use names as by and ¢y to compare its corresponding automata
model to the original Stochastic Reo Automaton corresponding to a LossyFIFO1 con-
nector later. Adding an auxiliary Sync channel does not change the semantics of a con-
nector and enables us to reuse the existing operations for Stochastic Reo Automata.

Definition 4.3.5. [Stochastic Reo Automata extended with reward information] A
Stochastic Reo Automaton with reward information is a tuple (A, v’ t', R) where A =
(X,Q,0.4) is a Reo Automaton and

o r': ¥ — RT x R* is a function that associates with each node a pair consisting
of an arrival rate and a reward sequence.

ot : 04 — 2% is a function that associates with a transition q % qd €64 a

subset of ¥ = 2% x 2% x Rt x R*.
e R: a labeled Q-algebra (C,®,®,D,0,1) with domain C' of rewards.
|

For each ¢ € ¥, the projection functions that access its elements are I : ¥ — 2%,
O:0 =522 V:¥ 5RH R: U = R and pair : ¥ — RT xR*. I, O, and V
return input nodes, output nodes, and its relevant rate, respectively, which correspond
to i, o, and v in Section 4.2. R projects a relevant reward sequence from . The
function pair returns a pair of a rate and its relevant reward sequence from . We
use rate : RT x R* = RT and rew : RT x R* — R* to access the elements of the
results of the function r’ and the function pair.

Table 4.2 shows Stochastic Reo Automata extended with reward information cor-
responding to the basic Stochastic Reo channels in Figure 4.5.

Now we show that using auxiliary Sync channels to retain rewards for mixed
nodes does not affect the structure of Stochastic Reo Automata at all. Consider two
connectors C; and Cy with their boundary nodes, respectively, a and b, and these two
connectors are connected by a Sync channel with ends ag and by as follows:

a ag bog b

Ch . . Co
(00lma © m)

Note that no rewards are assigned for the mixed nodes in the above connector, thus,
we can reuse the definitions and the properties of the product and the synchronization
for Stochastic Reo Automata, as mentioned in Section 4.2.

When the Stochastic Reo Automata extended with reward information for the
connectors C; and Cy are (A, r],t), R) with A3 = (X1, Q1, 1) and (Ag, 1), th, R) with
Ay = (X2, Q2, d2), respectively, the composition result of Cq, Ca, and the Sync(ag, bo)
with ag, by ¢ £1 U Xy is given by:

(Ob,by ((Oa,ao (A1 x Sync(ag, bp))) x Az), ', t', R)

= (Op,b, (A1]bo/a] x Ag),r’,t', R) (1)
= (Oap(A1 X Az), 1", t' R) (2)

4.3. Reward model 63

Synchronous Channels
(ablms) abladb, {(a,b,vyab,m3)} T
y a | (ya,m1)
(valmy) (vb|ma) 8)
b (’Yb, 7‘-2)
ab|ab7 {(a,b,fyab,m;)} 7
el abla, {(a,0,vaL,ms)} d
(valwy) (YaLlwa) (yblwg) @ Z %’ﬂgﬂﬁ))
Y0, T2
(vablmrg) ab|ab7 {(abv(ba’yaba 773)} (r)
a | (ya,m
(valmy) (vblma) 8 ’
b (,Yba 7T2)
Asynchronous Channel
C|Cv {(C,@,’}/CF, 7T3)} 7
(yeF|r3) (yFd|my) r
i | @ 0
(velmy) (vd|7g) 2 (’727 7T1)
d|d7 {(®7d7 ’)/Fd, 7T4)} ('Y 771—2)

Table 4.2: Stochastic Reo Automaton extended with reward information

where) S
v =1 U Ur e [(51U E2 U{ao, bo}) \ {a, a0, b,bo}

=ri Ur)|(X; UXs) \ {a,b}
since the r’ function is defined only for boundary nodes, and

ag'lf 1’ glf gl
t'((¢,p) —— (¢, p)) = t1(¢ — ¢') Uts(p —— p')

U {({aa aO}a {bOa b}a 00, g O '/Tb)}

t'((¢,p) % (d'sp)) = ti(q ﬂf% q)
(0, p) 25 (g,0)) = th(p L5 p)

Equality (1) follows by [19, Lemma 4.13] and (2) by an easily proven substitution
property of node names.

The above implies that a reward sequence goes along with the relevant rate asso-
ciated with a transition and does not affect the structure of Stochastic Reo Automata
at all. Therefore, without loss of generality, Stochastic Reo Automata extended with
reward information also support compositional specification and describe context-
dependent connectors. Using the definitions for the composition of Stochastic Reo
Automata in Section 4.2, the following figure shows the Stochastic Reo Automaton
extended with reward information, corresponding to the modified LossyFIFO1 connec-
tor in Figure 4.8:

64 Chapter 4. Stochastic Reo Automata

ala
{(a, bbg,yab,m3), (bbg, coc, 0o, 3 O s), (coc, B, ycF, m7)}

adla, {(a,0,vaL,m4)}

ad|a’d’ {(a,@,’YCI,L,TM), ((Z)ad7 ’YFda 778)}
d&|d, {(@,d, ’YFd7 778)}

This result has the same structure as that of the Stochastic Reo Automaton in Fig-
ure 4.3, except for the 3-tuple (bby, coc, 00, T2 O 75) which contains the reward infor-
mation for the mixed node in the LossyFIFO1 connector in Figure 4.7.

4.4 Translation into CTMC

In this section, we show how to translate a Stochastic Reo Automaton into a homo-
geneous CTMC model. This translation is similar to the translation from QIA into
CTMCs explained in Section 3.3, hence, to avoid repetition, in this section, we only
show the different translation steps while using the same notations, if possible.

A CTMC model derived from a Stochastic Reo Automaton (A, r,t) with A =
(X,Q,0.4) is a pair (5,d). With a set of boundary nodes ¥’ C 3, the set S4 and the
preliminary set of request-arrival transitions of the CTMC derived for (A,r,t) are
defined as:

SA = {<q7P>|q€Q7PCE/}
Sae = e P) 2 (g, PULe}) | (0, P), (q,PU{c}) € Sa, c ¢ P}

The set ¢'y,.,. is used to define 6 4,, which includes preemptive request-arrivals arising
in this translation process, used in the definition of § above.

4.4.1 Synchronized data-flows

Synchronized data-flows are represented in a single transition of a Stochastic Reo
Automaton. To divide this macro-step transition, corresponding to the synchronized
data-flows, into a number of micro-step transitions, corresponding to each data-flow,
the occurrence order of the synchronized data-flows need to be determined. This
decision step is explained in Section 3.3.2 using a delay-sequence and Algorithm 3.3.1.
Applying Algorithm 3.3.1 to the LossyFIFO1 example of Figure 4.3 yields the following
result in Figure 4.9:

4.4.2 Deriving the CTMC

We now show how to derive the transitions in the CTMC model from the transitions
in a Stochastic Reo Automaton. We do this in two steps:

4.4. Translation into CTMC 65
ala, A 3
adla, Az A1: o (a,be,yab) ;
e
o
(

adlad, A3 Ay
ad|d, Ay

Figure 4.9: Extracting delay-sequences

1. For each transition p A, q € 04, we derive transitions (p, P) 2 (¢, P\)
for every set of pending requests P that suffices to activate the guard g (i.e.,

P < g\ X), where X is the delay-sequence associated with the set of 3-tuples

t(p g'—f> q). This set of derived transitions is defined below as dpracro-

2. We divide a transition in a4 labeled by A into a combination of micro-step
transitions, each of which corresponds to a single event.

Given a Stochastic Reo Automaton (A,r,t) with A = (£,Q,d4) and a set of
boundary nodes ¥/, a macro-step transition relation for the synchronized data-flows
is defined as:

Srtacre = {0 PY (. P\f) | p P qesn PCY, P<g\5
A =Ext(t(p 25)}

As an example of obtaining a macro-step transition relation, let us consider the tran-
sition fe 221, Lf with Ay = (a, be,vabd) ; (be, (), veF) in Figure 4.9. Given the guard
g = a and the set of boundary nodes ¥’ = {a,d}, g\ ¥ = a \ @bed = a, and P is
0, {a}, {d}, or {a,d}. Thus,

a if P={a}
P d if P={d}
) ad if P={a,d}
T otherwise

Then, P < g\% is satisfied when P is either {a} or {a,d}, i.e., a < a and ad < a.

This generates the following macro-step transitions (fe, a) T (¢f,0) and (le, ad) A
(¢f,d), and these transitions are represented as dashed transitions in the state diagram
that includes S4 and ¢/y,.. as follows:

66 Chapter 4. Stochastic Reo Automata

r(a)

r(a) r(a)

We explicate a macro-step transition with a number of micro-step transitions,
each of which corresponds to a single data-flow. The detailed technical explanation
on this division of a delay-sequence has been shown in Section 3.3.3. Thus, we skip
the explanation of the division in this chapter.

The division into micro-step transitions ensures that each transition has a single
3-tuple in its label. Thus, the micro-step transitions can be extracted as:

Sproe = {p, PY 205 (5 Py | (p, P) & (pf, P') € div(t) for all t € Spraero}

As mentioned in Section 3.3.4, splitting synchronized data-flows allows non-inter-
fering events, in particular request-arrivals, to interleave with micro-step events, dis-
regarding the strict sense of the atomicity of the synchronized data-flows. The con-
sideration of these preemptive request-arrivals is explained in Section 3.3.4.

4.4.3 Rewards

In this section, we show the translation from the Stochastic Reo Automata extended
with reward information into CTMCs with state reward. As mentioned in Section 4.3,
the reward sequence is independent of the structure of its Stochastic Reo Automaton.
Thus, for the generation of CTMCs with state rewards, the translation from Stochastic
Reo Automata into CTMCs can be reused with a small modification. When the CTMC
(S,0) is derived from a Stochastic Reo Automaton (A, r,t) with A = (3,Q,0.4),
the derived CTMC, thus, is (S x R*,§) for the extended Stochastic Reo Automaton
(A, ', t', R) which is extended from (A, r, t) with Q-algebra R for reward information:

e Stochastic Reo Automata
—r:Y >Rt
— t:04 — 2° where © C 2% x 2% x Rt
e Stochastic Reo Automata with reward information
-1 ¥ - Rt xR*
— t': 64 — 2% where ¥ C 2% x 2% x Rt x R*

Note that the extensions of r’ and t’ by adding a reward sequence do not affect
the structure of a connector, the structural information of which is used for our
translation. Thus, r and t in the previous translation method can be replaced with,
respectively, r’ and t’ easily.

4.4. Translation into CTMC 67

In general, a state has more than one outgoing transition, which illustrates more
than one activity is possible in a state. These activities have generally different re-
wards. Thus, we need to calculate the proper state reward considering all possible re-
wards. For this purpose, state rewards of CTMCs are decided after the whole diagram
is drawn. This requires that the reward sequences should be kept until the complete
CTMC diagram is drawn. The following shows the translation method into CTMCs
considering this requirement.

While the CTMC derived from a Stochastic Reo Automaton (A, r,t) with A =
(2,Q,64) is (S,0), for the extended Stochastic Reo Automaton (A,r’,t',R) with
reward information, the complete CTMC diagram is described as a tuple (S, 0") where
S=854US8y and &' = Sarr Ubproe €S x RT x R* x S. Each label on a transition in
0’ is a pair of a rate, specifying request-arrivals and processing delay of the transition,
and its relevant reward sequence.

For transitions of request-arrivals, given the Stochastic Reo Automaton (A, ', t', R)
with A = (2,Q,04) and a set of boundary nodes ¥’ C ¥, the set S4 and the prelim-
inary set of request-arrival transitions of the CTMC are defined as:

SA = {<QaP>|q€QanZ/}
Oar = L@ P) =% (@ PUL}) | (0, P), (0. PUC}) € Sa, ¢ ¢ P)
The set ¢'y,.,. is used to define 64, below.

For the division of synchronized data-flows, a new delay-sequence is redefined with
the 4-tuple ¥ € U:

pu=elpl Y|y
The characteristics of the new delay-sequence p is inherited from the existing delay-
sequence A in Section 3.3.1, and p can also be extracted by Algorithm 3.3.1. Thus,
the division of synchronized data-flows is carried out by the method mentioned in
Section 4.4.2. The arrangement of labels on the divided result is described as:

Sproc = {(p, P) 228 (7 Py € div(t) | t € Saracro}

For the preemptive request-arrivals, with a set of micro-step states Sj;, obtained
through the division of synchronized data-flows, the full set of request-arrival transi-
tions is defined as:

Sarr = 84y UL P) =% (p, PU{d}) | (0. P), (p.PU{d}) € Sar,d €S, d ¢ P}

So far we have derived a complete CTMC diagram from a Stochastic Reo Au-
tomaton extended with reward information, whereby the calculation of state rewards
is shown below.

A state reward is decided by the outgoing transitions from each state, since the
real values in the sequence represent the amount of resources that are required or
released (gained or lost) for a transition materializing a request-arrival or a data-
flow. When a label on a transition in § is denoted by k € K C Rt x R*, the state

68 Chapter 4. Stochastic Reo Automata

reward is obtained by a function reward : S — R* : for every transition s —+ s; €
5’(e.g., darr U §Proc)

D, (rate(k;) B rew(x;))

i rate(k;)

if3s 2 s€d,---,

d _ . e
reward(s) Is s, €6 and s; # 55 if i # j

rew(kq) otherwise

Note that [: RT x R* — R* is a function that returns the result of the multiplica-
tion of real number for its first parameter (R*) with every element in a reward se-
quence (R*), for instance, when 7 = [7(0), 7 (1), ..., w(n)], the multiplication result of
zand miszE7m = [x7(0),zx7w(1),...,xx7(n)] € R* where # € R* and z,7(i) € R
for 0 < i < n. In addition, the summation H : R* x R* — R* of reward sequences
adds the values having the same index from each reward sequence. For example, for
T, m € R*, m By = [mi(1) 4+ m2(1), m1(2) + m2(2), ..., m1(n) + m2(n)] € R*. @ is
used to represent applying the summation B for the reward sequences with the index
from i to j.

After the calculation of state rewards, the extraction of the relevant rate for each
transition ¢’ is done as:

rate(k

52{8—)>8/|Si>$/65/}

The following example shows the calculation of state rewards from the complete
CTMC diagram of the LossyFIFO1 connector extended with reward information.

Example 4.4.1. Consider the LossyFIFO1 example in Figure 4.7 and the CTMC
diagram derived from it.

k1= (vya,m)

k2 = (’Yda 7(6)

k3 = (vyab,ms)

ke = (00, m O 7s5)
ky = (yeF,mr)

ke = (valL,my)

kr = (yFd,ms)

4.5. Interactive Markov Chains and Reo 69

Then, each state reward is given by:

rewardosymror = { (be,0) s 0BT E(OdEITG)

(va + vd)
i
(e, 0y — (00 & (72 &”f)wf)(’yd [76)
(e, 0y (veF ?WZ;;TSZSBW)

aBm)BHMHdET
w0 - L (;L;gz)d 0)
eay o
(e’ d) +— T O7s
(e, d) +— mq
(0f,dy (WZSZT g}}zic)imm)
o P)
In the case of (fe’,), its state reward is [0o, ..., 00] /00, i.e. the result value is not

meaningful. However, the rate oo implies that its activity occurs immediately, and
other possible activities can be ignored. Therefore, in this example, the state reward
for the state (¢e’,()) is considered as mo © 5. O

4.5 Interactive Markov Chains and Reo

Interactive Markov Chains (IMCs) are a compositional stochastic model [43] which
can be used to provide quantitative semantics to concurrent systems. In IMCs, delays
can be represented by combinations of exponential delay transitions, it allows to ac-
commodate non-exponential distributions within the models. That is, it can represent
delays from the large class of phase-type distributions [72, 70] which can approximate
general continuous distributions. This enables a more general usage of Stochastic Reo
Automata, if IMCs are used instead of CTMCs as the translation target of Stochastic
Reo Automata models.

In this section, we discuss to what extent IMCs are an appropriate semantic model
for Stochastic Reo, instead of Stochastic Reo Automata. In addition, we provide a
translation from Stochastic Reo into IMCs, which enables the use of the latter as an
alternative target stochastic model.

70 Chapter 4. Stochastic Reo Automata

4.5.1 Interactive Markov Chains

An IMC specifies a reactive system and is formally described as a tuple (S, Act, —, =
,S0) where S is a finite set of states; Act is a set of actions; s¢ is an initial state in S;
— and = are two types of transition relations:

e —»C S x Act x S for interactive transitions and
e =C S xRt x S for Markovian transitions.

Thus, an IMC is a Labeled Transition System (LTS) if = = () and — #), and is a
CTMC if = # §) and — = 0.

Compared to other stochastic models such as CTMCs, the main strength of IMCs
is their compositionality. Thus, one can generate a complex IMC as the composition of
relevant simple IMCs, which enables compositional specification of complex systems.

Definition 4.5.1. (Product) [43] Given two IMCs J; = (S1, Act1,—1,=1,5(1,0))
and Jo = (So, Acta, —2,=>2, 8(2,0)), the composition of Iy and Iy over a set of actions
A is defined as Jy x Jo = (S x Sz, Acty U Acty, =, =, 5(1,0) X 5(2,0)) where — and =
are defined as:

= = {(s1,80) (sh,85) | a €A, 51 518, A sy g sh}
U {(s1,82) = (sh,82) | ag A, s9€ Sy, 81518}
U {(s1,80) = (s1,85) | ad A, s1 €51, s5 285}

= = {(s1,52) => (sh,52) | s2€ 85, 51 =151}
U {(s1,92) = (51,85) | s1 €51, 52 =259 sh}

The product of interactive transitions is similar to the ordinary automata product,
which includes interleaving and synchronized compositions of interactive transitions.
The product of Markovian transitions consists of interleaved transitions only.

We now discuss IMCs from two different perspectives:

1. As a semantic model for Stochastic Reo: translating primitive Stochastic Reo
channels into IMCs and then composing the derived IMCs using the product
operation defined above; or

2. As an alternative translation target model: composing the Stochastic Reo Au-
tomata of primitive channels and then translating the composed Stochastic Reo
Automaton into an IMC.

We show now that the first case is not adequate since it provides a wrong seman-
tics for connectors that involve propagation of synchrony. For example, consider the
following connector, denoted as 2sync, that consists of two Sync channels joined at
nodes b and c.

4.5. Interactive Markov Chains and Reo 71

The behavior of primitive channels consists of request-arrivals and data-flows
which occur sequentially, i.e., data-flows follow request-arrivals. Both request-arrivals
and data-flows are divided into two phases: an action and the random processing
delay for each action. For instance, a request-arrival at node a consists of the arrival
action at node a and waiting for the acceptance by node a. To reason about the
end-to-end QoS, the IMCs for each Sync channel must have Markovian transitions for
the random processing delays of both request-arrivals and data-flows. The two phases
of channels must be considered sequentially, that is, the phase of random processing
delays follows that of the action. Figure 4.10 shows the possible IMCs for the Sync
channels ab and cd.

Figure 4.10: IMCs for each Sync channel

Here, we use *°’ and ‘7’ over node names in order to represent request-arrivals and

data-flows, respectively. Rates for each request-arrival and each data-flow are repre-
sented with the prefix ~.

However, the composition of the IMCs for the two Sync channels does not capture
the correct behavior of 2sync as specified by Reo. Figure 4.11 shows a fragment of
the IMC product result where, for simplicity, the rest of the product result is omitted
and represented as a cloud shape.

If we apply the assumption that the synchronization by joining nodes is an im-
mediate action, then transitions with (13, ¢), b, and ~yc labels are considered internal
interactive transitions or discarded by certain refinements before or after the product.
The result of the product and certain refinements is depicted in Figure 4.12.
Consider the diamond shape (1) in Figure 4.12, formed by the two data-flows from a
to b (yab) and from c to d (yed), which occur interleaved. In the 2sync circuit, these
two data-flows occur sequentially, which means that data-flows do not occur concur-
rently. This example illustrates that using the concurrent composition of IMCs is not
appropriate for specifying the behavior of connectors because it does not properly
model the propagation of synchrony. It is natural and interesting to consider whether
it is possible to adapt the composition operator of IMCs in order to delete unintended
transitions (such as in the diamond shape (1) in Figure 4.12) and still retain a com-
positional model. However, we did not investigate this possibility since it is out of the
scope of this thesis.

72 Chapter 4. Stochastic Reo Automata

Figure 4.12: IMC after refinements on 2sync

We now show how IMCs can be used as a target stochastic model, instead of
CTMCs. In this approach, the synchronization is considered in Stochastic Reo Au-
tomata, and we do not need to consider the IMC level refinements for synchronization
such as the transitions with the labels (3, é), vb, and e in Figure 4.11.

Since a Stochastic Reo Automaton does not have an initial state, the derived result
is precisely an IMC transition system (IMCTS) [43], i.e., an IMC without an initial
state. However, an initial state can be decided by the interpretation of the behavior of
a connector. Thus, in this section, we consider the IMCTS derived from a Stochastic
Reo Automaton as an IMC. An IMC derived from a Stochastic Reo Automaton
(A, r,t) with A = (2,Q,d4) is a tuple (S, Act, —, =) where S = S4 U Sy is the set
of states. S4 represents the configurations of the system derived from its Stochastic
Reo Automaton and the pending status of I/O requests; Sy, is the set of states that
represent the occurrences of synchronized data-flows and result from the micro-step
divisions of the synchronized data-flows. In general, Act is a set of actions of the

4.5. Interactive Markov Chains and Reo 73

arrival of a data item at a boundary node and synchronized data-flows through a

connector. Thus, Act = ¥/ U Frrs where ¥/ is a set of boundary nodes, and Frs is a set

of firings, i.e., the counterpart of f in a label on a transition s % s'€dq, f € Frs.

The relation == Carr U Cproc C (S X 2% % S)U (S x 27 x) is a set of interactive
transitions, and == J4,» U dproe € S x RT x S is a set of Markovian transitions.
The sets indexed with Arr and Proc represent transitions for request-arrivals and
data-flows, respectively.

A state in S C Qx 2% x 2% represents three kinds of configurations: configurations
of a connector (Q), the occurrences of actions (first 2%'), and the presence of the I/O
requests pending on its boundary nodes (second 221), if any. The set of S4 and the
preliminary sets of request-arrival transitions are defined as:

Sa ={(¢, A, P) |Aq€Q,P§A§E'}
Carr ={(, 4, P) = (¢, AU{c}, P) | (¢, A, P), (¢, AU{c},P) €Y, c ¢ A}
S = 10 A4, P) 22 (¢, A, PU{c}) | (4. A, P), (¢, A,PU{c}) €5, c¢ P}

The sets (/y,.. and §4,.. are used to define below (4, and 0 4., respectively.

As mentioned in Section 4.4.1, synchronized data-flows are described by a single
transition in a Stochastic Reo Automaton. From the interactive transition perspec-
tive, the synchronized data-flows are also described by a single interactive transition.
However, from the Markovian transition perspective in a continuous time domain,
a transition corresponding to multiple synchronized data-flows needs to be divided
into micro-step transitions. For this purpose, we reuse the delay-sequence which is
extracted by Algorithm 3.3.1. We now derive transitions for synchronized data-flows
in two steps:

1. For each transition p gl—f> q € d4, we derive interactive and macro Markovian
transitions (p, A, P) ERN (p, A\ f, P) and (p, A\ f, P) EN (g, A\ f, P\ f), respec-
tively, for every set of pending requests P that suffices to activate the guard

g (ﬁ < g\ ¥), where A is the delay-sequence extracted by Algorithm 3.3.1

Ext(t(p o, q)). The sets of derived transitions are defined below as Casacro

and dpzqcero for interactive and macro Markovian transitions, respectively.

2. We divide a transition s = s’ € dprqero into a combination of micro-step tran-
sitions, each of which corresponds to a single event.

Given a Stochastic Reo Automaton (A, r,t) with =(Q, 3,5 4) and a set of bound-
ary nodes Y/, a macro-step transition for synchronized data-flows is defined as:

CMacro: {(paAv-P)i)(va\faP)|pﬂ>q65¢47 AngZ,? ﬁég\i}
6M0«C7“0: {(vav‘P)g(qvAvp\f) |pg|_f>q€6./4a Amf:Q)v ACPQZI?

P <g\S, A=Ext(t(p £ q)))
To derive an IMC from a Stochastic Reo Automaton, we reuse the function nodes
and modify the definitions of functions states and div in Section 3.3.3. Then, Sy, =

74 Chapter 4. Stochastic Reo Automata

state((p, A, P) 2 (g, A, P’)) where

states((p, A, P) % (¢, 4, P')) =
{(p’A7P)7(Q’A’P/)} ifA:o
U states(m) Vm € div((p, A, P) 2, (¢, A, P)) otherwise

The function div : dargero — 2°Meere is defined as:

div((p, A, P) 2 (¢, A, P")) =

{(p,A,P) % (q7A P}y ifA=0AB(p, A P) S (0, AP € Srracro

div((p, A, P) 5 (pay, A, P")) U div((py,, A, P") =% 22, (g, A, P))

if)\ A1; Ag where P” = P\ nodes(A1)
{ml Ime ‘ m; € dZU((va P) (p)\”A,PH)), { € {1,2}}

if A = A1|\y where P’ = P\ nodes()\;)
1] otherwise

where the function 8 : §yr4ero X Onfacro — 2°Maere computes all interleaving compo-

. . o A1l
sitions of the two transmons as follows. For a transition (p, A, P) L> (¢, A, P €

OMacros (P, A, P) = (pr,, A, P\ nodes(\1)) and (p, 4, P) % (pag, A, P\ nodes(\z2))
correspond to, respectively, m; and msy of the third condition in the definition of the
div function. While m; and msg are handled by the div function recursively, some
auxiliary states, i.e., states(mi) and states(ms), are generated. In the interleaving
composition, my can occur at any states that are generated by states(msz), and vice-
versa. This interleaving composition of m; and msy is represented as:

my Rmy = { div((pl,A,Pl) A2, (P1,70)» A, P1 \ nodes(A),

div((p2, A, P) = 2, (P2,a1) A, P2 \ nodes(/\1 M) |
S

(p1,A,P) € states(ml) and (p2, A, P») € states(ms) }

This composition is similar way to the function > explained in Section 4.4.2. The only
difference between these two functions is the structure of their states: CTMC states
are elements of) x 22/, whereas IMC states are in @ x 2% x 2% where Y is a set of
boundary nodes in a Stochastic Reo connector.

The division into micro-step transitions ensures that each transition has a single
3-tuple in its label. Thus, the micro-step transitions can be extracted as:

U(G)

(5Proc = {(paAaP) (p A P/) |

(p, A, P) (p', A, P") € div(t) for all t € dpracrot

As mentioned above, interactive transitions in (jsqcro do not need to be divided, thus,
CProc = CMacro

Splitting synchronized data-flows allows non-interfering events to interleave with
their micro-steps, disregarding the strict sense of their atomicity. In order to allow

4.6. Discussion 75

such interleaving, we must explicitly add such request-arrivals. For a Stochastic Reo
Automaton (A, r,t) with A = (2,Q,04) and a set of micro-step states Sy, its full
sets of request-arrival transitions, including its request-arrivals, are defined as:

Carr = Chrr U {(p.AP) % (p, AU{d}. P) |

(p,A,P),(p,AU{d},P) € Sy, d€X, d ¢ A}
Sare = Oy U {0, A,P) 2L (p A, PU{dY) |

(p, A, P),(p,A,PU{d}) € Sy, d€X, d¢ P}

Applying this method, Figure 4.13 shows the IMC corresponding to our 2sync
example. The derived result is similar to the IMC for a Sync in Figure 4.10 and
captures the correct behavior of the 2sync connector. Note that we use an abbreviated
notation for states, for example, we use p, ab, a instead of (p, {a, b}, {a}).

Figure 4.13: Derived IMC for 2sync

The foregoing illustrates that IMCs can serve as another alternative target model
for the translation from Stochastic Reo Automata, instead of CTMCs. Although doing
so does not exploit the compositionality of IMCs, translation into IMCs is still mean-
ingful. The derived IMCs, for instance, can represent not only exponential distribu-
tions, but also non-exponential distributions, especially phase-type distributions. The
analysis of IMCs is supported by tools such as the Construction and Analysis of Dis-
tributed Processes (CADP) [40]. CADP verifies the functional correctness of the spec-
ification of system behavior and also minimizes IMCs effectively [39]. Moreover, IMCs
can be used in various other applications, such as Dynamic Fault Trees (DFTs) [21,
22, 23], Architectural Analysis and Design Language (AADL) [20, 25, 24], and so
on [44].

4.6 Discussion

In this chapter, we introduced Stochastic Reo Automata by extending Reo Automata
with functions that assign stochastic values of arrival rates and processing delay rates

76 Chapter 4. Stochastic Reo Automata

to boundary nodes and channels in Stochastic Reo. This model is very compact and
tractable to handle, compared to QIA. Various formal properties of Stochastic Reo
Automata are obtained, reusing the formal justifications of the respective properties
of Reo Automata [19], such as compositionality.

The technical core in this chapter shows the complexity of the original problem
whence it stems from: derivation of stochastic models for formal analysis of end-to-
end QoS properties of systems composed of services/components supplied by disparate
providers, in their user environments. This complexity highlights the gross inadequacy
of informal, or one-off techniques and emphasizes the importance of formal approaches
and sound models that can serve as the basis for automated tools.

Stochastic Reo does not impose any restriction on the distribution of its annotated
rates such as the rates for request-arrivals at channel ends or data-flows through chan-
nels. However, for the translation from Stochastic Reo into a homogeneous CTMC
model, we considered only the exponential distributions for the rates. For more gen-
eral usage of Stochastic Reo Automata, we also want to consider non-exponential
distributions by considering phase-type distributions or using Semi-Markov Processes
[50] as target models of our translation. A simulation engine [51, 89], already inte-
grated into our toolset, the Extensible Coordination Tools (ECT) [35] environment,
supports a wide variety of more general distributions for Stochastic Reo.

We discussed why IMCs are not an appropriate semantic model for Stochastic
Reo, and showed the translation from Stochastic Reo into IMCs via Stochastic Reo
Automata. A natural and interesting future work is to consider whether it is possible
to adapt the composition operator of IMCs in order to delete unintended transitions
that it currently produces in synchrony propagation scenarios, and still remain within
a compositional framework.

Moreover, we have shown the extension of Stochastic Reo Automata with rewards
information to specify stochastic behavior. Such an extension allows us to consider
more general QoS aspects since, without rewards, Stochastic Reo Automata spec-
ify and reason about only timing information. The translation from the extended
Stochastic Reo Automata into CTMCs with state reward is also shown.

So far, the translation from Stochastic Reo is carried out using QIA (instead of
Stochastic Reo Automata) in our ECT environment. We are currently extending and
improving these tools to use Stochastic Reo Automata, as well as the extension with
reward information, so that the more compact sizes of the automata then allow us to
analyze larger models.

Chapter 5

Tool implementation

5.1 Introduction

The growing complexity and importance of coordination models in software applica-
tions necessarily lead to a higher relevance of performance issues for coordinators in
the development of systems. In this context, the performance of such models plays an
important role in the quality of the final software system. Unfortunately, the lack of
tools that support the performance analysis of coordination models makes it difficult
to automatically analyze the performance properties of coordination models.

In this chapter, we introduce a tool that integrates a Stochastic Reo editor and
a generator of CTMCs from Stochastic Reo models. The Stochastic Reo editor is an
extension of the existing Reo editor in the Extensible Coordination Tools (ECT) [35],
which is an integrated toolset for the design and the verification of (Stochastic) Reo.
We have implemented the CTMC generator based on the semantics of Quantitative
Intentional Automata (QIA) and their translation algorithm presented in Chapter 3.
This tool, called Reo2MC, is provided as a plug-in for the ECT.

This chapter consists of two parts: (1) the description of the implementation of
the Reo2MC tool and (2) a manual for its usage. In the first part, we explain the data
structures for certain elements such as stochastic rates and delay-sequences, which
were mentioned in the previous chapters.

In the second part, we explain how to use the tool: for instance, how to generate
a QIA model corresponding to a Stochastic Reo connector, or translate a CTMC
model from a Stochastic Reo connector or a QIA model generated from a Stochastic
Reo connector. In addition, we show the link to other stochastic analysis tools, in
particular PRISM [76, 57].

5.2 Reo2MC: description and implementation

Reo2MC is a plug-in for the ECT, which was introduced in [8]. The tool allows
users to draw Stochastic Reo models, using an extension of the existing Reo editor

7

78 Chapter 5. Tool implementation

in ECT, and automatically derive the QIA semantics of Stochastic Reo models and
their corresponding CTMCs.

Java - Reo2QIA/ordering.reo - Eclipse SDK LE
Fle Edit Diagram Navigate Search Project Run Window Help
B 0 Q- |8 @ 6| ® v | G v & (&avel
Sans sJs [¢]B 1| AY v sy o~ i ~ [100% v
i Package Explor 31 s Hierarchy = B x =8
e@ - 0| palette 3
@sic] 0,015 GORRCOReE T Comnector
b mRE system L p— L ¥l
& BinaryCalculal I B hode
£ CONNECT-Ma
[CONNECT-Mai Soueetnd
- Enter or select the parent folder: Sink End
B rorcen A c Link
B MoinTest.ea = Broperty
Bordering.ea | |, & pemo & Chamnels
Bordering.sm | [, & pelation D —sye
B orderingl.sm | |, o reoaqi +LossySync
B ordering.ea | | o post < Empty FIFO
1 ordering32.eal Rl FFO
5 ordering33.eal »—<syncorain
[ordering34.ca «syncspout
8 ordering3s.e3 s Asyncspout
i) Second.reo 3 < AsyncDrain
testtest.sm > Filter
i * . . file name: e
b @@src output file format = s
b miJRE System L Jemaites) 19 _| Bwiter
o default.ea + = (& Console] @ Amation FEEREL
Bifses
R LFSreo
B LFS2.ea @ Cancel Value
B Lossysyncl.e| ordering
B Lossysyncz.ea Appearance
Bisea
Bisreo
Bis2es
BiSLea
B LSLreo
Bisizea
B Mergerl.ea
B MRLea
B MRS.ca
B ordering.ea

| ooderngreo g

7IMofs12M @

Figure 5.1: A Snapshot of Reo2MC

Reo2MC works as an Eclipse application through a graphical user interface (see
Figure 5.1). The execution flow is depicted in Figure 5.2: the user provides as input
a Reo circuit (which is obtained either by using the graphical editor in ECT, or by
automatic synthesis from other specifications, such as UML sequence diagrams or
BPMN models, the tools for which are also provided in ECT [28]) and a textual
description of the stochastic constraints on the connector and its environment. Once
all this input has been provided, the model can be automatically translated into QIA
and CTMCs, both represented in XML. The GMF framework in Eclipse is used to
generate the graphical representations of QIA and CTMCs, and the XML files of the
generated CTMCs can be parsed into several other file formats, which are used as
input to PRISM, MATLAB, and Maple to analyze the performance of connectors.

5.2.1 Implementation

In this section, we show the data structures and underlying functionalities used for the
implementation of Reo2MC. In Reo2MC, we have implemented QIA as an operational
semantic model for Stochastic Reo and as an intermediate model for the translation
to CTMCs.

5.2. Reo2MC: description and implementation 79
(UML,BPMN,...)

Synthesizer

Graphical
Editor

Stochastic
Information

Reo Circuit

Stochastic Reo

QIA Generator

QIA (XML)

Graphical
Representation

(" Qia2MC
ey}

GMF
Graphical

Figure 5.2: Architecture of Reo2MC

The main data structures, the implementations of which are explained in this
section, consist of structural stochastic information for the activities involved in Reo
channels and a delay-sequence which is the sequence of individual structural stochastic
information for synchronized activities. The implementation of these data structures
is based on their definitions and features as covered in Chapters 3 and 4.

The functionalities implemented in Reo2MC are also based on the definitions and
the algorithms in Chapters 3 and 4. The main functionalities of Reo2MC are the
product of QIA, and the extraction and the division of delay-sequences to generate
their corresponding CTMCs from QIA. The following sections show the implementa-
tion details of these functionalities.

Data structures

Structural stochastic rates In Stochastic Reo, stochastic values are used to rep-
resent the arrival rates at each channel end and the processing delay rates of each

80 Chapter 5. Tool implementation

channel. The stochastic values must be non-negative real values since our target model
is CTMCs, and hence are defined with type double in the implementation. For sim-
plicity of modeling, we assume that each stochastic process has only one rate value.

In the existing Reo editor, a primitive Reo channel consists of two types of objects:
two channel ends and an arrow between the two channel ends. A channel end is
associated with one double value (its arrival rate), whereas the arrow in a channel is
able to have more than one double value, according to its behavior. For instance, a
Sync has one processing delay rate for a data-flow from its source to its sink nodes; a
FIFO1 has two processing delay rates for data-flows from its source node to its buffer
and from its buffer to its sink node; a LossySync also has two processing delay rates
for a successful data-flow from its source to its sink nodes and data-loss at its source
node.

Thus, we define the data type of the rates as an array of double values. According
to the assumptions mentioned above, an arrival rate of I/O request is only one value,
which we assume to be the first value in the array, i.e., the rest will be ignored. In
the case of processing delay rates, the values in the array are sequentially taken as
corresponding to the actions of a channel from a successful processing (e.g., a data-
flow in a LossySync) to a non-successful processing (e.g., a data-loss in a LossySync)
or its sequential data-flows (e.g., in a FIFO1 data-flow from its source node to the
buffer and from the buffer to its sink node correspond to, respectively, the first and
the second values in the array). This double array can be a general data structure, but
this array itself is not user-friendly because it requires users to have the insight of this
array, e.g., the meaning of the order of elements in the array. The implementation in
the Reo editor provides some guidelines to users by presenting specific rate labels for
respective Reo channels. The way of setting rates is shown in Section 5.2.2.

These values are propagated to and reused in a QIA model, corresponding to a
given Stochastic Reo connector, as the elements in the labels on QIA transitions.
The mapping from Stochastic Reo to QIA is carried out as follows. First, primitive
channels comprising a connector are mapped to their corresponding QIA models.
Since mapping the primitive channels to their corresponding QIA is a one-to-one
mapping, this is quite straightforward. Then the product of the corresponding QIA
models generates the QIA model for the connector. Thus, the actual pairing of a rate
with its relevant activity takes place during the mapping of primitive channels to their
corresponding QIA.

This pairing is decided according to the node names relevant to each stochastic pro-
cess, as the rates are named after their respective node names in Stochastic Reo (this
naming is explained on page 11). In addition, for the translation to CTMC, the rates
need to be delineated according to the connection information of the Stochastic Reo
connector. For this purpose, we propose structural stochastic information that de-
scribes the stochastic rates with explicit mention of their relevant source (input) and
sink (output) nodes. Such structural stochastic information is defined as a 3-tuple
and represented as an element in the labels of QIA transitions. Such a tuple, denoted
by a DelayElement, has been implemented as:

5.2. Reo2MC: description and implementation 81

public class DelayElement extends EObjectImpl implements EObject {
protected EList<String> input;
protected EList<String> output;
protected double delay = DELAY_EDEFAULT;

The attributes in this class are input (source nodes), output (sink nodes), and
delay (a rate).

Delay-sequences In the translation from QIA to CTMC models, a delay-sequence,
defined in Section 3.3.1, is generated for each transition of synchronized data-flows.
Each data-flow has a 3-tuple § = (I,0,r) that depicts its connection information
reflecting the topology of a Reo connector, which is implemented by DelayElement.

A delay-sequence is composed by the operators | and ; for, respectively, parallel
and sequential compositions. A delay-sequence composed by | describes that the data-
flows corresponding to each element in the delay-sequence occur interleaved. A delay-
sequence composed by ; describes that the data-flows occur sequentially, from the
leftmost element to the rightmost one.

In order to represent such delay-sequences, we define our own linked-list and its
elements, called DElmNode. The content of the elements of this linked-list is the tuple 6,
i.e., the data type F below is DelayElement. Each DElmNode has four pointers of prev,
next, right, and left as shown below.

public class DElmNode<E> {
public DElmNode<E> prev = null;

public DElmNode<E> next = null;
public DElmNode<E> left = null;
public DElmode<E> right = null;

public E data = null;

We use the above pointers to generate a linked-list, representing a delay-sequence.
The following example shows the concrete idea of the structure of our linked-list.
Recall the delay-sequence Ay = ((62;03)](0s;09)); (04|610]011) in Example 3.3.1. The
linked-list representation of this delay-sequence is described as:

82 Chapter 5. Tool implementation

@ 010 911

where we have omitted redundant pointers that indicate null.

In the implementation of our linked-list (see below), there are two different ways
to insert nodes: horizontal and vertical insertion. At a current node, horizontal in-
serting is used to insert a node that is composed with the current node in parallel;
vertical inserting is used to insert a node that is composed with the current node
sequentially. In implementation, horizontal and vertical insertings are described by
the functions parallelInsertion and sequentiallnsertion, respectively.

public class NewLinkedList{
DElmNode<DelayElement> head = null; //The head of the list
DElmNode<DelayElement> tail null; //The tail of the list
DElmNode<DelayElement> current = null; //Last modified node
//of the list

public void sequentiallnsertion(DelayElement f){
if (this.isEmpty()) addDatatoTail (f);
else if(this.current.next==null){
DElmNode<DelayElement> temp = new DElmNode<DelayElement>();
temp.prev = current;
temp.next = null;
temp.left = null;
temp.right = null;
temp.data = f;
current.next = temp;
current = temp,

tail = temp;

5.2. Reo2MC: description and implementation 83

public void parallelInsertion(DelayElement b){

if ('this.isEmpty() && current!=null){
DElmNode<DelayElement> temp = new DElmNode<DelayElement>();
temp.prev = current.prev;
temp.next = current.next;
temp.left = current.getLastright();
temp.left.right = temp;
temp.right = null;
temp.data = b;

Algorithms

Next, we explain the implementation of the algorithms for the mapping between
stochastic Reo and QIA, the product operation of QIA, and the translating of a QIA
to a CTMC.

Obtaining QIA for Stochastic Reo We obtain the QIA model corresponding to
a Reo connector in two steps:

1. map primitive channels, which constitute the connector, to their corresponding
QIA models.

2. compose the QIA models obtained from Step 1.

We assume that the types of primitive Reo channels are fixed (Sync, LossySync,
SyncDrain, FIFO1, and so on). Thus, we use a template that provides a one-to-one
mapping for each primitive channel and its QIA models.

Each QIA model in the template uses temporary names for its nodes such as
SOURCEO and SINKO. These temporary names in a QIA model are renamed according
to the node names of the primitive channel corresponding to the QIA model. When
a node is shared by more than two channels, e.g., a replicator or a merger, indices
are used in the renaming procedure to explicitly describe the processing delay rates
of the channels. The following code shows the implementation of this renaming where
sourceName is a name given by users and SOURCE is a default name in the QIA
template:

int i = 0;

for (PrimitiveEnd sourceEnd: channel.getSourceEnds()){
String sourceName = endNames.getName (sourceEnd);
QIARefactoring.renamePortName (SOURCE+ i++, sourceName, copy);

84 Chapter 5. Tool implementation

SOURCE is replaced with sourceName, and the index i is attached to the replaced
name.

Like temporary node names in the template, the values of processing delay rates
also use null temporary values. During the mapping, these values will be updated
according to the user’s input. However, providing values is optional at this stage and
can be postponed until the CTMC model corresponding to a connector is generated.
Next, we describe how to compose QIA models, by means of the product operation.

QIA product According to the QIA product in Definition 3.2.2, the resulting tran-
sition of the product of a pair of transitions fires them together, in case they agree on
the common nodes of the two automata, or independently, otherwise. In the case of
two synchronized firing transitions, the product result is implemented as joining all

. . . .- A|B,©;
the elements of the two transitions. For instance, given two transitions py ——— ps
C|D,©> .. . AUC|BUD,©;UB4
and ¢ ——= ¢o, the composition result is (p;,q1) ——————— (P2, o). For

the product of interleaved transitions, a different implementation is required, but for

code reusability, we decided to reuse this joining method. For this purpose, a null

o 010,09 . . .
transition ¢ ‘—> q is added to all states in the two automata as pre-processing for

. . A|B,© . .
the product. Then, for any interleaved transition p; % P2, its composition result

A|B,©,

is (p1,q) ——— (p2,q)-

Extracting delay-sequences The extraction of a delay-sequence is implemented
based on Algorithm 3.3.1. According to this algorithm, each independent sub-delay-
sequence \g is generated and then the sub-delay-sequences are composed in parallel
to generate the whole delay-sequence S. Each initial 3-tuple itself becomes a starting
point for an independent sub-delay-sequence. As a newly appended 3-tuple, each
initial one is used to choose adjacent 3-tuples, which are appended to the end of the
relevant sub-delay-sequences until no more adjacent 3-tuples exist. In the following
implementation, Post is used to denote the set of adjacent 3-tuples and it is appended
to the linked-list mentioned in Section 5.2.1, which is the data structure for a delay-
sequence. This function is a direct implementation of Algorithm 3.3.1.

List<DelayElement> Init = getEdgeInput(DI);
List<NewLinkedList> dlist = new Vector<NewLinkedList>();

for(DelayElement a : Init){
NewLinkedList temp = new NewLinkedList();
temp.sequentiallnsertion(a);
dlist.add(temp);

List<DelayElement> Pre = new Vector<DelayElement>();
List<DelayElement> Post = new Vector<DelayElement>();
Pre.add(a);

5.2. Reo2MC: description and implementation 85

Post = getNext(DI,Pre);
while('Post.isEmpty()){
for(DelayElement b : Post){
temp.contains_removes(b) ;
}
temp.sequentialInsertion(Post.get(0));
for(int i=1;i<Post.size();i++){
temp.parallelInsertion(Post.get(i));
}
Pre.clear();
Pre.addAll(Post);
Post = getNext(DI,Pre);

Deriving CTMC We discuss how to divide a macro-step transition with a delay-
sequence into a number of micro-step transitions. This is implemented based on the
function div, which is explained in Section 3.3.3. The first and the fourth conditions in
the div function are trivial, thus, here, we consider the second and the third conditions
only.

In the implementation, an element Current (see below) in a linked-list, which
points to the current position of the list, traverses the linked-list corresponding to
a delay-sequence. We extract the necessary information to generate a CTMC model
from the structural properties of the nodes in this list. For example, when the Current
element is a head node of a list, it corresponds an initial state of a CTMC model to
be generated. When the Current element is an actual element, this element must be
handled by adding a new transition with a new target state to the CTMC state that
is generated by its prev element. Moreover, when the pointer right of the Current
element indicates an actual element, the current element and its right element must
be interleaved.

We now consider the second and third conditions in the div function. The sec-
ond condition in div implies a sequentially composed delay-sequence. In this case,
right of the Current element is null. While traversing a linked-list, e.g., Current =
Current.next, it generates a linear state diagram corresponding to the sequentially
composed delay-sequence represented by the list.

while(Current!=null){

else if (Current.right==null){
State source = preTarget;
State target = new State();
Transition t = new Transition();

t.setSource(source) ;

86 Chapter 5. Tool implementation

t.setTarget (target) ;
Current = Current.next;

}

The third condition in div implies a delay-sequence composed in parallel. Then
right of the Current element must not be null. We divide this into two different cases
according to their possible structure: first a number of delay-sequences are composed
in parallel; second a number of 3-tuples are composed in parallel. These two cases are
denoted by, respectively, parallelList and parallelNode in the implementation,
and distinguished by the types of the Current element, i.e., a head or a normal node.
For example, if the right of the Current element is a head node, then it implies that
a delay-sequence is composed in parallel since the instance of each delay-sequence is
a linked-list and every linked-list starts with a head node. Thus, the parallellList
case is considered to generated a CTMC model.

if (Current.right!=null){
DElmNode<DelayElement> horizontal = Current;
parallellist = false;
parallelNode = false;
while(horizontal!=null){
if (horizontal.isHead()){
horizontal.setVisited(true);
store.push(horizontal .next);
parallellist = true;
X
else{
store.push(horizontal);
parallelNode = true;
}
horizontal = horizontal.right;

}

The elements connected to the Current element in the linked-list by the pointers
left and right are stored in the stack store in the implementation (see below). The
stored elements are used to generate the corresponding CTMC fragment according to
whether their structure identifies them as parallelList or parallelNode.

The CTMC fragment for parallelList is built as follows. Let L be a linked-list and
l1,...,l, be the linked-lists that are composed in parallel to constitute L. We first
generate the CTMC fragments corresponding to ly,...,l,, in a recursive procedure,
since each [; is also a linked-list. After that, the CTMC fragments of all [; are inter-
leaved. Thus, the CTMC fragment for the whole linked-list L guarantees the inde-
pendence of Iy, ... 1, while retaining the precedence order of the elements in each I;.

5.2. Reo2MC: description and implementation 87

while(!store.isEmpty()){
if (parallelList){
DElmNode<DelayElement> tempNode = store.pop();
DelayElement temp = tempNode.getData();

Automaton tempAutomatonl = new Automaton();

NewLinkedList subl = list.subSeq4(temp);

costA =

product (costA, addNewParts(tempAutomatonl, transition, subl));

}

For a parallelNode, each element in the stack store corresponds to an automaton
with two states and one transition, which is represented as tempAutomaton2 below.
The automata generated for these elements are also interleaved in the composition.

else if (parallelNode){
while(!store.isEmpty()){
DElmNode<DelayElement> tempElement2 = store.pop();
tempElement2.setVisited(true);

// Make an automaton for each parallel delay
Transition tempTransition2 = new Transition();
State tempSource2 = new State();

State tempTarget2 = new State();
tempTransition2.setAutomaton(tempAutomaton?2) ;
tempTransition2.setSource(tempSource?2);
tempTransition2.setTarget (tempTarget2) ;

// Get an automaton of whole parallel delays
costA = product(costA, tempAutomaton2) ;

5.2.2 Usage

In this section, we explain the usage of Reo2MC. Reo2MC is a plug-in for the ECT,
which generates the semantic model, QIA, of a Stochastic Reo circuit and translates
it into its corresponding stochastic model, CTMCs. Depending on the type of analysis
to be performed on a Stochastic Reo circuit, users can choose the target model of the
translation as QIA or CTMCs.

The Stochastic Reo circuit input to Reo2MC provides auxiliary information such
as explicit node names and stochastic rates for request-arrivals and data-flows. Node
names are used to denominate rates that are used for the analysis. Thus, we need to

88

Chapter 5. Tool implementation

name only the nodes relevant to our stochastic processes of interest, instead of all the
nodes in a circuit. The rate values do not necessarily have to be set in the drawing

phase of the Reo circuits; their assignments can be postponed.

Java - ValueTest/default.reo - Eclipse Platform
File Edit Diagram Navigate Search Project Run Window Help

|e- @ @

J_‘;ans

2ol o G i =

Biv ole 2
Hiv oBv fev

|® [s~0-a | B#6 @ S| e s

@ O h

[£] #default.reo 2 reception_endBuffer.] reception_endB2.sm W reception3.sm

|| 55 Palette b

Sedtest

'. Procl |

<

FEE=R
f#4 Connector
Component
C Node

[Source End
[sink End

— Link

= Property

(=Channels «
—Sync

-2 LossySync
=2 FIFO

(=4 el
Reader
Writer

Component

[Z problems [@ Javadoc [K% Declaration [@ Error Log [EI Properties 13 . §= Outlinew [l Simulatinnw

Core Property value
Animation v Basic
mCRL2 Foreground Color
Delays Name
Reconfiguration Type URI =
CA ~ Performance
Rewards Processing Delays (]
Appearance

H 93M of 1+4M ‘ﬁ J 0e The Type URI of the Custom Primitive

Reo editor

Figure 5.3: Hierarchical modeling in Reo editor

In the Reo editor!, components and connectors between the components can be spec-
ified. A component in the Reo editor is described as a black box with source (input)

IThe graphical user interface of Reo2MC, including Reo editor and the basic template for au-
tomata, have been implemented by Christian Krause. Details can be focused in his thesis [55].

5.2. Reo2MC: description and implementation 89

and sink (output) ends to be connected to connectors. Such components function as
the environment for connectors. Drawing a component is done intuitively as follows:

e select Component in the Palette at the left of the Reo editor (see Figure 5.3
which is a screen shot of the Reo editor.)

e click any spot at the editing canvas

As mentioned before, connectors are specified by composing basic Reo channels.
The types of the basic channels are finite such as Sync, LossySync, and FIFO1. The
Reo editor provides a template of these basic channels in the Channels section below
the Palette section. Drawing connectors is very similar to the way of drawing compo-
nents. That is, first draw a Connector at the editing canvas instead of a Component,
then nodes and channels can be drawn inside the Connector. For instance, in Fig-
ure 5.3, a FIFO1 channel and two Sync channels are drawn inside the Connector test.

In addition, a component can be used hierarchically as a sub-component in con-
nectors or other components. This provides better visualization and readability for
modeling, and moreover, it guarantees reusability. See the model in Figure 5.3. The
Components Procl and Proc2 belong to Connector test. The specification of these
Components can be provided by external files that must include QIA or CA models
corresponding to their behavior. The location of these external files are set in the
TypeURL entry of the Basic field in the Core section in the Properties tab at the

Java - t2.re0 - Eclipse SDK BEE

File Edit Diagram Navigate Search Project Run Window Help

v v O B Qv | & ¥ G- | @ 9 |Gy G & (& javal

.
— Biv 0B Bav

- test2.reo & =8

2 | 3 Pélf«tte 3

4zl Connector
[E Component
Q Node

Source End

S5 LossyFIFOL
T f34 Lossyl T Sink End
Link

(@ @10 = Property

< nput = = Channels
—Sync

--» LossySync
= FIFO

output A

= SyncDrain
«*SyncSpout
s AsyncSpout

>ucEumeREain

&0 @
|| [Reader
al - [) B writer

g s [l e @ 2

Figure 5.4: Connector between components

90 Chapter 5. Tool implementation

bottom of the Reo editor. In Figure 5.3, this TypeURL entry is selected for setting
the location of external files. Such usage of external files for modeling enables one to
reuse existing automata models for other specifications.

As the environment of connectors, components interact with their adjacent connec-
tors through the boundary nodes of the connectors. Figure 5.4 shows a reader (CM2)
and a writer (CM1) components and a LossyFIFO1 circuit that connects them in the
Reo editor. Note that in Reo2MC, node names are represented in upper case. Even
though one can input node names in lower case, Reo2MC changes them into upper
case. Thus, here and in the remainder of this chapter, examples of Reo circuits have
node names in upper case.

As mentioned before, a Stochastic Reo connector has two different kinds of stochas-

tic values: arrival rates and processing delay rates. For setting these values, users first
have to choose a node or a primitive channel in the editor by clicking on it. Then

= Java - ValueTest/default.reo - Eclipse Platform Sl EE
File Edit Diagram Navigate Search Project Run Window Help
J - B @ Fi &'Java
J|‘3a|\s S ENE v Byv _Fv v Hiv v »
|®|s-0ra- | swe | @s o |00 oy
? [*default.reo 2 reception_endB2.sm W reception3.sm 1 reception2.sm]”z =0
3
2 | Szd LossySync | roper
ks ‘= chann. o
A C B=O
Problems | @ Javadoc Declaration | ¢] Error Log Properties &2 o= Qutline Simulation
[2! Probl doc |[& | Q) = i o I R |
R

> LossySync

I —

Core Property Value

Animation v Ends

mCRL2 Channel End One =

Delays Channel End Two =

Reconfiguration v _Performance

Pl Processing delay (data flow) 1.0

Areere Processing delay (data loss) 11,0

(<] [[>]

H 89M i:flSSM ‘@ J e Processing delay (data flow) J

Figure 5.5: Setting processing delay rates for LossySync

5.2. Reo2MC: description and implementation 91

the rates can be set in the Performance field of the Core section in the Properties
tab at the bottom of the editor. As an example, Figure 5.5 shows how to set the
processing delay rates of a LossySync circuit. According to the types of rates, i.e.,
arrival rates and processing delay rates, the Performance field shows relevant la-
bels. In Figure 5.5, a channel is selected, thus, the Performance field shows the la-
bel Processing delay, otherwise, Arrival rate would be presented. Moreover, if a
channel has more than one activity, e.g., a LossySync or a FIFO1, the Performance
field presents all possible types of processing delay rates explicitly. For instance, for a
LossySync channel, Processing delay (data flow) and Processing delay (data
loss) in Figure 5.5.

Setting values for the rates is optional. For fixed rate values, users can set the
values in this specification phase. However, if users want to analyze how the system’s
behavior changes by tweaking the rates, then the rates can be left without setting
their values to be decided after the translation into a CTMC model.

In order to set and manipulate the rate values in a derived stochastic model, users
need to fix the node name before the translation procedure. Otherwise, Reo2MC will
decide node names automatically and this makes it difficult to figure out which name

Java - test/default.reo - Eclipse SDK
File Edit Diagram Navigate Search Project Run Window Help

S
[i:3

fwit -0 Qv |8 & G | & & #java
sans <o [c)B I |Av &y sy v Biv o8y v | 0 v |[100% v

B =5
. |B =

"
B 4 Connector

5 Component
T ossyFFoT O Node

[Source End
Sink End

-] < palette b

(B Writer ‘[Reader Link
o requests=1 [} Oy +@——1 O (= requests=1 = Property
| [& Channels
—sync

Reoto Extendible automata convertor »LossySync
> FIFO
—syncbrain

> Syncspout
“ Asyncspout
>+« AsyncDrain
whFilter

o> Transform

® [Reo to QIA convertor(QIA)
O CA transformer(CA)

< Timer
&0 B3
[Reader
£ Writer

[2: Problems | @ Javadoc [€, Declaration @] Error Log| = Properties 52 E= Outline| [{) Simulation

& Connector

Core: Property Value

Colouring Engine |12 cwi.reo.colourif
1= LossyFIFO1

Animation
mCRL2 ame
Reconfiguration

Appearance Fnish |

@ <Back | Next> |[cancel

s7mMofomM T |

Figure 5.6: Translation of a Reo circuit into its QIA

92 Chapter 5. Tool implementation

corresponds to which node. Thus, if some nodes are not important (like mixed nodes),
then the user does not need to give them names. For example, we can skip naming
the mixed node of a LossyFIFO1 circuit, shown in gray in Figure 5.4.

Generating QIA for Stochastic Reo

CA and QIA are operational semantic models for Reo and Stochastic Reo, respectively.
Reo2MC is a part of the ECT toolset, and the ECT supports converting a Reo circuit
to a CA and a Stochastic Reo circuit to a QIA. As mentioned above, Stochastic
Reo is an extension of Reo with the annotation of rates. In addition to that, setting
rates can be postponed by setting all the rates with the default value 0.0. That is,
any Reo circuit can be considered as a Stochastic Reo circuit. Users decide which
semantic model will be the target of the translation. For converting a Reo circuit to
its semantic model, “Conwvert to Fxtensible Automaton” must be chosen in the pop-up
menu (which can be invoked using the mouse right-click on the circuit) of the Reo
circuit; then the user can decide the file name for the conversion result and which
semantic model to use as the target model for the conversion. Figure 5.6 shows the
step of selecting the target semantic model.

Translation from QIA to CTMC

From a generated QIA model, we can obtain its corresponding CTMC model. For this
translation, “Translate to MC diagram” must be chosen in the pop-up menu of a QIA
model. The result of this translation is a state diagram of a CTMC model. Figure 5.7
shows the CTMC model derived from the QIA for the LossyFIFO1 circuit above.

Java - €a - Eclipse/SDK EER)
File Edit Diagram Navigate Search Project Run Window Help

¥ B0 Qv | & # e | &g v Eif‘%}’}ava\
En—n oo L i e —

N 7] LossyFIFO1.reo LossyFIFOl.ea % =8
" [£) LossyFIFOL

% {ACportfaL10e} D
k [#) Automaton
{ ({A}.{Transaction}.0.0,[0.01} O State
(((A},(},uu,[uu])}fg\(((A},(purﬁsme},uu,[uu])}fm\ { ({portf9110e},{Transaction},0.0,(0.01)} ——————— L Transition
{({AL{}.0.0[0.00}
{ ({Tramsaction}, {C},0.0,[0.0)} {({Transaction},{C}.0.0.[0.01}
({1L{cro0f0.0}
,0.[0.0D}
{(nicroomony k(GO0 L00N} {({H{cho01000F
g g P {({AL{Lo.0J0.0N}
{({Ah{Lo.o 00D} «
\ "/ {(1a}, {portfo110e}, 00001} _/ { ({portfo1 10e}, (Tansaction},00000]} __/. e [3
al [D)
ind sfleR9BE

Figure 5.7: Generated CTMC model for LossyFIFO1 in Figure 5.4

For stochastic analysis, this result is fed into other analysis tools such as PRISM,

5.2. Reo2MC: description and implementation 93

MATLAB, and Maple. For this purpose, Reo2MC supports generating the textual
file describing the derived CTMC. For this generation, “Generate MC textual file”
must be chosen in the pop-up menu of the derived CTMC model. In the window (see
Figure 5.8), a result file name and its file format are specified in, respectively, File
name and Output file format entries. Reo2MC supports the “sm” file format for
PRISM and the “csv” file format for MATLAB and Maple.

Java - test/LossyFIFO1.ea - Eclipse SDK
file Edit Diagram Navigate Search Project Run Window Help

o B/ $ 0 Q- |5 # 6 |® v o [&javal
sans ¢|s ¢ 'Generate MC matrix or PRISMIinput file

[sans sloe I¢]B 1| AY &~ gv o~ Biv By fav | ¢

- | LossyFFolreo | 2 =
i He

Enter or select the parent folder:

[test

b @ ASK
b & ASKwithoutMain
b & Reception

| test

File name: [LossyFIFOL.sm

Output file format: e prism language (.sm) &

x

| cancel Finish |

A LossyFIFOL
% {ACportfo110e}

{ ({A}. {Transaction},0 0001}
i 5 —
o) (AL (1-0.0M0.0D} N {({A}{portfol10e}.0000.0D} TN { ({portfoli0e}. (Transaction}.00.[0.0D} 7 N

T({AY.{1.0 0,001}

{({TF n},{C}.0.0.l { ({Transaction}.{C}.0.0.[0.0)}

({14ch00 000}
{({.{crop 00N}
(@ crootoony [((IhLCho0l00n} (01000007

{({A},{1.00.00])}

{ ({A} {Transaction}.0 0.{0.0)}

2 3 8 4
T} 110000007\ ” /¢ ({4} {porti912063.0.0.0.00) _/ { ({portfo110e}. (ransaction},0 000D}

Figure 5.8: Generation of a textual file for the derived CTMC

Translation from Reo to CTMC

In general, the state space of MC grows drastically fast which causes the state-
explosion problem. As shown in Figure 5.7, the result of the translation into CTMC
models via QIA describes the whole state diagram. In the case of large systems, it may
not be feasible to generate the state diagram of the CTMC for the whole Stochastic
Reo circuit since, in general, it takes long to draw and deploy the whole state diagram.
Moreover, the large graphical result of the translation is neither tractable nor read-
able. Thus, Reo2MC also provides the translation from Stochastic Reo circuits into
the textual representation of the derived CTMCs without showing the whole CTMC
diagrams. To skip drawing the state diagram of the derived CTMC, “Convert Reo to
Markov Chain - no diagram” must be chosen in the pop-up menu of a Reo circuit.

94 Chapter 5. Tool implementation

Figure 5.9 shows the translation from the LossyFIFO1 circuit into its textual CTMC
model for PRISM with the “sm” file extension.

Java - test/default.reo - Eclipse SDK
File Edit Diagram Navigate Search Project Run Window Help

} & | &ava
[sans 3 [00% | v]
g =
= |B b
i] ,.;Paletle 3
2 7 Connector
3 Component
ESIEEGEY o
[Source End
- Sink End
g [Reader Link
RSt O @O e requests=1 siProneity
out ! in
‘ A < { - &Channels &
SERAR I REGTEOTMC CONVETTo —sync
: - - >LossySync
— o FIFO
—syncbrain
> Syncspout
Enter or select the parent folder: «» Asyncspout
test s AsyncOrain
wFilter
& Transform
b B ASK i
& Reception_DB
& Reception_RMHRT =10 ©
b & Reception WTDB) Reader
b & Receptoin_TQ 5 writer

2/ Problems| @ Javadoc [, Declaration @) Error Log| = Properties 52 £ Outline | [Simulation File name: [LossyFIFOLsm

Output file format: (wc prism language (.sm) ¢

i Connector

Core Property. Value

Animation Colouring Engine {= cwi.reo.colou

mCRL2 Name {#% LossyFIFO1

Reconfiguration ®@ Next> || cancel Finish
Appearance

37MofoBIM [| T

Figure 5.9: Translation of LossyFIFO1 into a CTMC model

Link to existing stochastic analysis tools The files generated by Reo2MC can
then be fed to other tools. Figure 5.10 shows a file opened in PRISM, generated from
the LossyFIFO1 circuit in Figure 5.9. As an example of stochastic analysis in PRISM,
Figure 5.11 shows the graph of the variation of the probability of data-loss at node
A in the LossyFIFO1 circuit when other rates of data-flow through the connector and
I/0O request arrivals at the other boundary node C are all set as 1. The graph shows
as the frequency of 1/0 request arrivals at node A increases, the data-loss increases
since node A is blocked more frequently.

5.3 Discussion

In this chapter, we introduced the Reo2MC tool in the ECT which is an integrated
toolset for the design and the verification of Stochastic Reo. As a plug-in for the ECT,
it provides the following functionalities: 1) editor for Stochastic Reo 2) generating

5.3. Discussion

95

[A PRISM 3.3.betal =)=
File Edit Model Properties Simulator Log Options
DG
PRISM Mode! File: /ufs/yjm/runtime-New configuration/test/LossyFIFO1.sm
f«# Model: LossyFIFO1.sm : 1 7f CTHE model
Type: Stochastic (CTMC) 4 2
@ Modules 3 /7 2000-06-26 11:22:46.278
4 I
=g
] constants 5 me
]
7 const int N = 10;
8
g const double dxi;
18
11 const double dc;
1z
13 const double dTransactionc;
14
15 const double dATranszction;
16
17 const double diportfollde;
18
19 const double dportfollOeTranzaction;
20
21 module Connector
22 s ¢ [0, N-1] init 9;
23
24 dA o [s'=1)
25 dc o (s'=2
26 di o (5130
27 da ot (s'=5);
28 dTransactionC @ [s5'=0);
29 dATransaction : [s'=4);
30 dTransactionC @ (s'=1);
31 dc i
32 .= dA =71;
33 -=dC (5=
34 -» dATransaction : (s'=6);
35 ->dC @ (s'=5);
o 38 = dAportfollde : [s'=8);
(EmE LR | By -» dportfoll0eTransaction @ (s'=4);
38 -» diportfollée : (5'=9);
39 -> dportfollbeTransaction : (s'=6);
48 ->dC ¢ (s'=8);
41 endmodul
A
| Model |TProperties | Simulator | Lag |
|Loading model... done.

Figure 5.10: Using the PRISM with the generated file for LossyFIFO1

10/

0.91]

Probabilty
e e 22 2 2
[¥9) = w [=)] -~ [++]

o
¥

01+

0.0 = .
0.0 0.5 1.0

The probability of data-lost at node A

15 20 25 30 35
da

40

4.5

Figure 5.11: Example of using the PRISM

50

Blocking A

96 Chapter 5. Tool implementation

semantic models for Stochastic Reo, in particular, QIA, 3) deriving a CTMC model
for a Stochastic Reo circuit.

Moreover, in this chapter, we also explained some implementation details of the
Reo2MC tool. We showed the data structures of certain elements such as stochastic
rates and delay-sequences: stochastic rates are used in Stochastic Reo and QIA; delay-
sequences are used as an intermediate object for the translation from Stochastic Reo
to a CTMC model.

Stochastic rates are annotated as properties of stochastic processes on a Reo con-
nector modeling request-arrivals at channel ends and data-flows between channels.
These constitute a delay-sequence for the translation from Stochastic Reo to its cor-
responding CTMC. A delay-sequence conveys the local topology of a connector, which
is used to delineate synchronized data-flows. Thus, the data structure of Stochastic
Reo contains the information about the topology of a connector.

The implementation is based on the definitions and the algorithms that we ex-
plained in Chapters 3 and 4.

Chapter 6

Case study

6.1 Introduction

In this chapter we show how the theory developed in previous chapters, implemented
as tools, can be used to model a part of a real industrial system, perform QoS analysis,
and help the developers get an insight into the system behavior, which enables to
improve the performance of the system. We model and analyze the ASK system, a
software system developed by the Dutch company Almende, which provides efficient
matching between service providers and clients. An example of the application of the
ASK system consists of a service-based system running in a call center that matches
calling clients with the appropriate representatives that can provide them with the
specialized customer service that they need.

One challenge that arises when installing particular instances of the ASK system
is how to allocate resources, which are typically scarce or expensive. For instance, in
the particular example above, the call center wants to have an optimal distribution
of its operators’ schedules in order to reduce waiting time for the customers without
increasing enormously its personnel costs. A stochastic model of the ASK system can
be used to perform analysis and provide advice to solve such problems.

The main contributions of this chapter are the following:

1. a stochastic Reo model of the ASK system!. The distributions in this model
were obtained by statistical analysis of real values filtered out of the logs of an
actual running ASK system.

2. analysis of several interesting properties using the probabilistic model checker
PRISM [57, 76] which allowed to produce suggestions for the performance im-
provement of the ASK system. This analysis is done on a CTMC obtained from
the Reo model.

IDetails available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/CaseStudies/
SimulatoronASK/Reception.

97

98 Chapter 6. Case study

3. analysis of the system using a simulator which enables the study of properties
involving non-exponential distributions (CTMCs can deal only with exponential
distributions).

6.2 The ASK system

The “Access Society’s Knowledge” (ASK) system [83] is an industrial software de-
veloped by the Dutch company Almende [1], and marketed by their daughter com-
pany ASK Community Systems [10]. The ASK system is a communication software
product that acts as a mediator between service consumers and service providers, for
instance, connecting rescue institutions (e.g., fire departments) and professional vol-
unteers. The connection established by the ASK system is provided by mechanisms
for matching users requiring information or services with potential suppliers. For this
purpose, the matching mechanisms use the profiles and availability offered by people
who provide or require services.

The main goal of the ASK system is to do the matching in an efficient way.
To achieve that, the system collects feedback on the quality of services after the
connection. Such feedback is used to decide better connections for the subsequent
requests of the same type. In addition, the system uses self-learning and self-organizing
mechanisms by continuously updating to users’ preferences and available resources.
Moreover, the ASK system enables users to inform others about their status, their
availability, and how they can be contacted best. This information is used to select
the right people for a communication session as well as the feedback.

To offer efficient connections, the ASK system considers the following aspects:

e human knowledge and skills of service providers
e time schedules of the provision of services
e communication media such as telephones, SMS, and emails

When people request a certain service from specialists or service providers, the ASK
system attempts to select the best possible service provider. This selection is based
on the rating of the knowledge and the skills of service providers who are available at
that moment. This rating, in turn, is based on the feedback on the quality of services
offered by the service providers.

The occurrences of events can follow either regular schedules or ad-hoc schedules.
The ASK system deals with both of these situations while satisfying the constraints
and the purposes of users’ requests.

The ASK system generally considers the telephone as a primary communication
medium, but other means of communication, such as email or SMS, are also sup-
ported. These types of media must be considered according to the reachability and
the preferences of the users requests. For example, people can have more than one
email address and telephone number, with different associated usage constraints and

6.2. The ASK system 99

user preferences. Such information must be indicated in the system to allow for effi-
cient connections.
Some representative applications of the ASK system include:

e Workforce deployment. To offer deployment of temporary workers by finding
those who are available for an assignment. For instance, this can the setup in
an employment agency.

e (Clustomer services. To directly connect customers to proper, available service
providers, according to the customers’ requirements. For instance, the Dutch
housing corporation Vestia increases its tenant satisfaction by using the ASK
system to put its tenants in direct contact with a repairman in case some house
facilities need to be repaired.

o Emergency response. To collect the status information of emergent situations
and provide safety by utilizing all possible means of communications. For in-
stance, this can be used to find available volunteers with the best accessibility
for emergency situations.

o Flexible resource allocation. To increase the flexibility of workforce and to de-
crease scheduling workload. For instance, this can be used to provide the best
matches between working schedules and private lives of employees. In fact, the
European mail distribution company TNT Post uses the ASK system for this
type of flexible resource allocation.

e Knowledge sharing. To collect, share, and distribute information, experiences,
skills, and preferences of users in order to provide high quality of service. For
instance, in patient care applications that involve multiple care giver profession-
als or institutions, such as individuals, hospitals, and/or pharmaceutical com-
panies, the ASK system can be used to update and share patient information
to provide proper services in synchronization.

The ASK system acts as an agent that connects service providers and service con-
sumers in an efficient way, handling multitudes of such connections simultaneously
at any given time. The ASK system has a hierarchical modular architecture, i.e., it
consists of a number of high-level components, which in turn consist of lower-level
components, etc., running as threads. In order to handle massive numbers of connec-
tions concurrently, the components need to utilize multiple threads that provide the
same functionalities. In this setting, allocation of system resources, e.g. the number
of threads, to various components plays a critical role in the performance and respon-
siveness of an installed system in its actual deployment environment (e.g., properties
of servers, available telephone lines, call traffic, available human operators, etc.), but
determining the proper resource allocations to provide good performance is far from
trivial. Deriving and analyzing a stochastic model for an installed ASK system pro-
vides valuable input and insight for improving its performance. Among other possibil-
ities, such a model allows system architects and installation operators to play what-if

100 Chapter 6. Case study

games by changing various resource and demand parameters and discover how a de-
ployed system would perform under such scenarios, in order to adjust and fine-tune
the system for cost-effective, optimal performance.

Various methods for performance evaluation have been suggested. Rigorous meth-
ods require mathematical models of a system involving variables that represent the
parameters relevant to its behavior. Stochastic models describe random system be-
havior, leading to more realistic models of behavior than their deterministic counter-
parts. CTMCs, one of stochastic models, are frequently used to model randomized
behavior in various systems and their features, and efficient closed-form and numer-
ical techniques [85] exist for analysis. Traditionally, such models are constructed by
human experts whose experience and insight constitute the only link between an ac-
tual system and the resulting models.

Ideally, mathematical models for the analysis of the behavior of a system should be
derived from the same (hopefully, verified correct) models used for its design and con-
struction. Such automation makes the derivation of these models less error-prone, and
ensures that a derived analytical model corresponds to its respective implemented sys-
tem. An expressive modeling formalism that simultaneously reflects structural, func-
tional, and QoS properties of a modeled system constitutes a prerequisite for this
automation. Reo serves as an example of such a formalism: (1) it provides structural
model elements whose composition reflects the composition of their counterpart sys-
tem components with architectural fidelity; (2) it allows formal verification of func-
tional and behavioral properties of a modeled system; (3) it supports derivation of ex-
ecutable code form its models; and (4) it supports derivation of mathematical models
for the analysis of the QoS properties of systems.

A Reo model of the ASK System was developed as a case study [34] within the
context of the EU project Credo [33] for verification of its functional properties. In
the work we report in this chapter, we refined and augmented this Reo model with
stochastic delays extracted from actual system logs to derive a Stochastic Reo model
for the ASK System. Together with the Almende company, we use this model to
analyze and study the QoS properties of the ASK system in various settings. For
instance, using the approach in [68], we derive CTMC models from the Stochastic
Reo model of the interesting parts of the ASK System, and feed them into CTMC
analysis tools, which enables us to do model checking of the stochastic behavior of
the system. We will show the analysis of several such properties using PRISM in
Section 6.4.1. The following sections describe the architecture of the ASK system in
some detail. The figures and the descriptions we use here are based on [84].

6.2.1 Overview of the ASK system

The top-level architecture of the ASK System is shown in Figure 6.1. Every com-
ponent in this architecture has its own internal architecture, with several levels of
hierarchical nesting. At its top-level, the ASK system consists of three parts: a web
front-end, a database (Domain Data in Figure 6.1), and a contact engine. The web
front-end deals with typical domain data, such as users, groups, phone numbers, mail

6.2. The ASK system 101

address, and so on. The database stores typical domain data, together with the feed-
back from users and knowledge from past experience. The contact engine handles the
communication between the system and the outside world (e.g., by responding to or
initiating telephone calls, SMS, emails, etc.) and provides appropriate matching and
scheduling functionalities.

As mentioned above, the ASK system connects service providers and consumers for
incoming requests. A connection is made when appropriate participants for a certain
request are found. Until its proper connection is established, an incoming request
loops through the system repeatedly as (sub-)tasks. This feature is called Request
loop and it is represented by thick arrows in the contact engine in Figure 6.1.

The contact engine consists of five components: Reception, Matcher, Ezecuter,
ResourceManager, and Scheduler. The Reception component determines which steps
must be taken by the ASK system to fulfill a request. According to the determined
steps, the result of the Reception component is sent to either the Matcher or the
Ezecuter component. The Matcher component determines proper participants for ful-
filling a request. The Executer component determines the best means of connection

Web
Front-end
A
¥
Domain
Data
A AN W
Contact Engine d B s
& ¥ EY T
ptior Matcher Executer [Schedule

v

Resource -
Manager

L S\ o

t | connec- | | connec- | | connec- | | connec- | | connec- | i
Qﬂids/' "\mids/ﬁ' \t-oids /" \I-oids/' ‘\t-nads / !

= Y
/ sm: \ ;/sgeduler

Figure 6.1: Overview of ASK system

102 Chapter 6. Case study

between the participants. The Resource Manager component either uses the Request
loop for complicated requests or establishes direct connections between users for triv-
ial requests. The Scheduler component, separated from the components within the
request loop, schedules requests based on the time constraints of the requests in the
database. For example, an incoming call arrives from the outside. First, the Resource
Manager component handles this call. If the request of the call is simple and trivial,
then the Resource Manager component establishes the connection between users im-
mediately. Otherwise, the request is sent to the Reception component. The Reception
component gathers some information from users and stores the information in the
database, and also determines if it needs to decide either the proper service partici-
pants or the efficient way of the connection between users. For determining the proper
service providers, the request is sent to the Matcher component; for the efficient ways
of connections, the request is sent to the Executer component. The Resource Man-
ager provides the connection between the determined service participants using the
determined means of connection. Actual connections occur based on the schedule by
the Scheduler component.

6.3 Modeling the ASK system

In this section, we consider the contact engine, which contains the Request loop, and
focus specifically on the Reception component. The components in the contact engine
have very similar architectures, thus, the analysis carried out here for the Reception
component can be used for the other ones, as well.

6.3.1 The Reception component

The Reception component consists of multiple threads, the so-called ReceptionMonks
(RMs), which handle incoming requests using two different types of functions:

e HostessTask (HT) which converts incoming requests into tasks that will be
put into the task queue.

¢ HandleRequestTask (HRT) which takes care of the communication flow, in-
teracts with the database, and possibly generates new requests which are dealt
with by the Matcher or the Executer component. For example, given an in-
coming request, HRT may ask questions from users by playing pre-recorded
messages, obtain information such as menu item choices, account number, etc.,
punched in by the users, and store this information into the database. During
this communication, new requests can be generated and sent to other compo-
nents.

Each thread runs one of these two different functions/tasks exclusively. That is, if an
RM thread runs the HT function, then it is forbidden to run the HRT function. This
implies that the Reception component needs to have at least two threads, one for
the HT function and the other for the HRT function. In general, the HRT function

6.3. Modeling the ASK system 103

524 Reception

RMHT
RRequestin -

0—0

REQUESTIN TQOut
TASKOUT TQin

[RMHRTL BMIRMERT2

EXECUTERREQUEST@TI CONTEXTL CONTEXT2

DBOUTL EEh
DBIN2
DNt o MATCHERREQUESTOUT2
MATCHERREQUESTOUT1 P
O i O

RDBIn

O
RmatcherRequestOut

EXEClEiRREQU ESTOUT2

NgW
RexecuterRequestOut

Figure 6.2: Reception component in ECT

takes more time than the HT function, since it actually deals with incoming tasks.
Thus, the Reception component needs more threads running the HRT function. For
simplicity of modeling, we assume that every thread in the Reception component has
only one function, e.g., either the HT or the HRT function. Reflecting this simplifi-
cation, Figure 6.2 shows the Reception model drawn in the Extensible Coordination
Tools (ECT) [35]. This figure shows a Reception component with three RM threads,
one with only the HT function and the other two with only the HRT function.

The inside boxes of the RMHT and the indexed RMHRTS in Figure 6.2 correspond
to RM threads for a HT and HRT functions, respectively. Incoming requests are
converted into tasks by the RMHT, and the converted tasks are stored in the task
queue which is represented as a FIFO1 laid between the RMHT and the indexed
RMHRTSs. The converted tasks are selected and handled by the RMHRTS.

We model task selection as a non-deterministic choice at the TQOut node in Fig-
ure 6.2 (a sink node of the FIFO1 channel), which will turn into a random process
once we associate the distributions of the stochastic variables that describe the actual
task mix of a running system, as extracted from its logs, which will be explained in
Section 6.3.2. The graphical notation ® used for TQOwut in Figure 6.2 is an abbrevi-
ation for an exclusive router [3] whose Reo circuit is depicted below.

104 Chapter 6. Case study

e)

This circuit delivers an incoming data item at node a to either node b or node c,
whichever one can accept it, and non-deterministically selects one when both can.
The non-deterministic choice is actually conducted by the merger d. Thus, the rates
for the random selection apply to the merger d.

Figure 6.2 serves as a basic template model for the Reception component. Depend-
ing on the specific properties of interest in each analysis, we slightly adapt this basic
template. For example, for the analysis of the properties of the task queue, we may
substitute a LossyFIFO1 connector for the FIFO1 channel, as shown in Section 6.4.1.
It should be noted that more than 3 RM threads can be used for modeling the Re-
ception component, but here we use only 3 threads since the CTMC corresponding to
the Stochastic Reo model of the Reception component with 3 RM threads is already
big to handle.

6.3.2 Extracting distributions from logs

A stochastic model of the ASK system requires the distributions for all activities in the
system. To obtain these distributions, we applied statistical data-analysis techniques
on the raw values extracted from the real logs of a running ASK system. The logs
contained the data of 100 incoming calls. Those calls simultaneously resulted in 369
requests sent to the Reception component. The trace holds exact timings of all actions
performed related to each process.

We need to determine the rates for request arrivals (RRequestIn) and process-
ing delay at the Reception component, reading request arrivals from the Matcher
(RmatcherRequestOut) and the Executer (Rexecuter-RequestOut). For this purpose,
after a cleanup of the raw data by removing outliers and erroneous data, we de-
termined the appropriate distributions, using statistical tests (like the chi-square
goodness-of-fit test).

For the Reo model, it is not important which type of distributions we obtain.
However, to perform analysis using PRISM, which takes a CTMC as input, only ex-
ponential distributions can be used. In the case of request arrival rates, we may in-
deed assume that the inter-arrival times of the requests are exponentially distributed.
This is reasonable since incoming calls to the ASK system are independent from each
other, and the inter-arrival times are memoryless. However, in the case of processing
delay rates, we were not able to conclude that the rates are exponentially distributed.
The statistical tests showed that we may assume that the processing times follow a
log-normal distribution.

6.4. QoS analysis 105

6.4 QoS analysis

In this section, we show how to analyze the ASK system using both the CTMC and
Reo Simulator approach. As mentioned in the previous section, the arrival or service
times for some activities are not exponentially distributed. This is one of the reasons
to analyze the Reo model with the Reo Simulator (see Section 6.4.2). The simulator
was also used when we could not obtain any proper distribution from the logs at all.
In this case, we used bootstrapping [69] in the simulator with the original data as
special inputs in the simulator for the rates.

6.4.1 Analysis on derived CTMC

In this section, we analyze the ASK system to reveal some of its interesting properties
in order to both evaluate and obtain clues for improving its performance. We carry
out our analysis on the CTMC model derived from the Stochastic Reo model of the
ASK system. We then feed the derived CTMC model as input to PRISM. In PRISM,
properties of models are expressed using operations such as P, S, and R operators:
the P operator is used to reason about the probability of the occurrence of a certain
event; the S operator is used to reason about the steady-state behavior of a model;
the R operator is used to analyze reward-based properties. In addition, labels are used
to concisely express the formulas representing the properties of a model. Specifically,
we use the following labels to express some properties later.

e num dataloss represents the number of task-loss in the task queue.
e run represents the running status of the RMHRT thread.

In general, resources are neither infinite nor free. Thus, one needs to balance cost-
effective resource utilization against most efficient performance, i.e., obtaining the best
performance taking into account the limited resource. In the Reception component in
Figure 6.2, the resources of interest include:

1. the minimum capacity of the task queue

2. the utilization and/or the performance of the RMHRT threads that handle tasks

Task queue

As mentioned above, RMHT merely converts incoming requests into tasks, but it
does not actually handles the requests. In general, the conversion into tasks does
not take long, whereas handling a request may take considerable time. Thus, if the
task queue has a small capacity, then RMHT frequently waits as it is blocked until
task queue capacity becomes available. On the other hand, if the task queue has a
large capacity, RMHT remains idle most of the time and some queue capacity goes to
waste. Therefore, we want to determine a reasonable (the least sufficient) size for the
task queue to make the ASK system efficient. We can check the probability of RMHT

106 Chapter 6. Case study

‘= Terminal E2EE
File Edit View Search Terminal Help
Model checking: R{"num dataloss"}=? [S] [~]

SCCs: 1, BSCCs: 1, non-BSCC states: O
BSCC sizes: 1:14528

Computing steady state probabilities for BSCC 1

Building hybrid MTBDD matrix... [levels=14, nodes=57678] [2.6 MB]
Splitting into blocks... [levels=5, n=29, nnz=419, compact] [1.8 KB]
Adding explicit sparse matrices... [levels=9, num=418, compact] [557.0 KB]
Creating vector for diagonals... [dist=445, compact] [31.9 KB]

Allocating iteration vectors... [113.5 KB + 4.0 KB = 117.5 KB]

TOTAL: [3.3 MB]

Starting iterations...

Gauss-Seidel: 78 iterations in 2.44 seconds (average 0.001962, setup 2.29)
BSCC 1 Reward: 0.018521245454519365

ALl states are in a BSCC (so no reachability probabilities computed)

Time for model checking: 3.29 seconds.

Result (expected num dataloss): 0.018521245454519365

[

Figure 6.3: Long-run expected number of task-loss

blocking by iteratively increasing the queue capacity in subsequent runs, but this
laborious approach is too time consuming. Alternatively, we can assume that the task
queue has infinite capacity and try to find how much of it is actually used. With this
task queue, we obtained the long-run expected number of task-loss due to unavailable
buffer capacity or the unbalanced performance of RMHT and RMHRT threads. For
this purpose, we use the following PRISM property R{"num dataloss"}=7[S]. The
result is shown in the screen-shot in Figure 6.3.

To mimic an infinite queue, we use a LossySync channel feeding into a queue with
a fixed capacity. This construct always accepts arriving tasks, but arriving tasks are
lost when the queue is full. We can approximate the minimum required queue capacity
out of the expected number of losing tasks by this construct. Replacing the FIFO1
queue in Figure 6.2 by the LossyFIFO1 connector in Figure 4.1 provides such a pseudo-
infinite task queue for this analysis. According to this result, around 18.5? requests
are lost per second in front of the task queue. From this result, we can conclude that
the minimum capacity of the task queue needs to be 20 to guarantee no task-loss.

6.4. QoS analysis 107

Terminal =E(=

File Edit View Search Terminal Help

B

Model checking: S=? ["run"]
Model constants: dTranMLl=0.00095

SCCs: 1, BSCCs: 1, non-BSCC states: O
BSCC sizes: 1:3680

Computing steady state probabilities for BSCC 1

Building hybrid MTBDD matrix... [lewels=12, nodes=14450] [677.3 KB]
Splitting into blocks... [levels=4, n=15, nnz=120, compact] [0.5 KB]
Adding explicit sparse matrices... [levels=8, num=120, compact] [80.3 KB]
Creating vector for diagonals... [dist=268, compact] [9.3 KE]

Allocating iteration vectors... [28.8 KB + 2.0 KB = 30.8 KE]

TOTAL: [798.3 KB]

Starting iterations..

Gauss-Seidel: 77 iterations in 0.14 seconds (average 0.000325, setup 0.12)
BSCC 1 probability: 0.18551608253780602

All states are in a BSCC (so no reachability probabilities computed)

Time for model checking: 0.319 seconds.

Result (probability): 0.18551608253780602

(< [

Figure 6.4: Probability that RMHRT1 is running

Functions

The RMHRT threads are the primary task handling processes. Thus, the performance
of the Reception component depends on the collective performance of its RMHRT
threads. It is interesting to learn how many RMHRT threads are required to handle a
task load, or what is the reasonable performance of RMHRT threads that can provide
a satisfactory QoS. Instead of changing the number of RMHRT threads, here we fix
their number at 2 and vary their performance by changing their processing delay rates.
These two threads have the same architecture with the same performance, thus, the
analysis on the utilization is carried out on the RMHRT1 thread, the result of which
can be used for the other RMHRT thread. We first find the steady-state probability
that the RMHRT1 thread is running, expressed as S=7 ["run"] in PRISM. The result,
shown in Figure 6.4, implies that the utilization of the RMHRT1 is 18%.

In a series of analysis experiments on this property, we varied the processing delay
rates for the RMHRT1 thread. However, the gaps between the experiment results
are not significant. For example, when we considered the activity of the RMHRT1
as an immediate activity by setting its rate as infinity, the steady-state probability

2The result 0.0185 was derived with millisecond as time unit.

108 Chapter 6. Case study

Thread in use

0.46

0.44

0.42
046
044 | 04
042 0.38
04 0.36
0.38 0.34
036 0.32
0.34 0.3
0.32
o5 [028
0.28 .
0.26

6

1.
Executer delay (ms)

Figure 6.5: Steady-state probability S=7["run"]

S=7 [“run”] from this rate value was 14%. Compared to the huge differences between
these two values for the delay rate of the RMHRT1 thread?, their resulting probabili-
ties are barely changed. This implies that improving the performance of the RMHRT1
thread does not influence the overall performance of the Reception component that
much, which suggests the presence of some bottlenecks in this system.

In order to figure out the bottlenecks, we experimented with the model by varying
the rates relevant to other activities in the system. Figure 6.5 shows the probability
results of these experiments. The label Sojourn at TQ presents the exit rate from
the task queue. As this rate decreases, incoming requests stay longer in the task
queue, and the RMHRT threads become more idle, i.e., the probability of the thread
utilization decreases, since the request arrive at the thread less frequently. The graph
in Figure 6.5 shows this tendency when one projects this graph onto the (Prob., Soj.)
plane. This implies that increasing Sojourn at TQ value generates higher utilization
of the thread.

The label Executer delay represents the frequency that the Executer component
takes the output from the Reception component. As this rate decreases, the threads
in the Reception component need to keep their results waiting longer and block in-
coming tasks. Thus, the thread becomes less idle, i.e., the utilization of the thread
increases, but their throughput becomes low since the thread just waits without do-
ing anything. This tendency is also observable in the graph in Figure 6.5 when one

3The original rate value derived from the statistical analysis is 0.095, and we used the value 231 —1
as an infinity for this comparison.

6.4. QoS analysis 109

projects this graph onto the (Prob., Exe.) plane. To obtain meaningful utilization,
we must increase Executer delay.

Based on the graph in Figure 6.5, we now determine bottlenecks in this system.
In general, a small change in a bottleneck causes significant differences for the overall
performance. The graph in Figure 6.5 shows an instance of this: variations in the rates
in the interval [0.1, 0.6] for both Executer delay and Sojourn at TQ induce a big
variation on the probability of utilization of the thread (represented in the vertical
axis). Thus, these two rates can be assumed to be bottlenecks, which limit the overall
performance. In order to mitigate these bottlenecks, we need to increase both rates
at least above 0.6. However, we cannot increase these rates enormously since their
relevant resources are neither infinite nor free. As a criterion for this increase, we can
consider the convergent disposition of this graph. Above the value 1.3 of the respective
rates, the utilization of the thread converges. Thus, we can choose 1.3 as the values of
the respective rates for the best cost-effective utilization of the thread in this system.

6.4.2 Simulation

The Stochastic Reo simulator [51, 89] supports performance evaluation of Reo models
through simulation. It allows arbitrary distributions for describing stochastic prop-
erties of channels and components. The method used by this tool combines simula-
tion techniques and specific stochastic automata models to conduct automated per-
formance analysis of both steady-state and transient properties of the model. The
tool uses the coloring semantics [30] of Reo to properly model context-dependent be-
havior, i.e. to express the availability of requests. The Stochastic Reo simulator tool
is developed as a plug-in within the ECT by Oscar Kanters. Through the GUI editor
of the ECT, one can develop a model of a system as a Reo circuit in an intuitive way,
annotate the circuit with rates, and then use the simulator to get insight into the
behavior of the model.

For the simulation of the ASK system, we also focus on the Reception component.
Since the other components in the ASK system have very similar architectures, we can
use some of the results from this simulation for their simulation as well. The Stochastic
Reo simulator tool does not support hierarchical models yet. Therefore, to run our
simulation we had to flatten the original Reo model for the ASK system (shown
in Figure 6.2), abstract its nested components into FIFO1 channels, and somewhat
simplify it to reflect some restrictions. The resulting Reo circuit that we use for this
simulation analysis appears in Figure 6.6 as an ECT screen-shot.

As a plug-in within the ECT, the simulator is used and accessed using the Simulat-
ion tab under the Reo editor (See Figure 6.6). In the Run and Result options
sub-tabs under the Simulation tab, users can set some variables such as Type of
simulation?, Max total number of events®, and so on. Having clicked the Reo
model to be analyzed and pressed the Start simulation button in the Simulation

4Long- or short-term simulation.
5When the simulation is based on events, the length of the simulation is determined by the given
event numbers.

110 Chapter 6. Case study

Javal Recep tionivin Sim.reo 28

File Edit Diagiem Navigete Search 2oject Run Window Help
riv B0 Q& B e S A & @l

v Biv 3y fav 5 [1o0% vl

[1) Reception_sim reo & =8
ipalette
LRan-
48 Connacter
i Componznt
O Node
Source End

I5}Reception sim

sicEnd
Link
= Froperty

2200 (&Channzls
v P4 . e yne

o-—0 19 Lossysyne
\ / \ »FD
DReaer) . - / \ ~syncorain
N RmatcieRequestou
J w ®., eSyncspout
T @ Asynespout.
ancpsyncoran

whFilter

T ® Toout
RRequestin /N

»Tags‘om

Resecuter3equestOut [Reader =10
ﬁm{ O rester

= 8 Wrier

 2roolems @ Javacac B Declaration 9 Ermor Log| = Properties | 8 ouziing | & Simulation
[£: Proolems @ &, Declaration @ Eror Log | = Properties |5 O [Simulation 2 =g

Run_Resul: options | Reslts | Cnarts

Selected connector. [nore | [stert simulation |
Options

3
Tyoe of simulation: @ Long-tem O Sort-tern
Base simulation end on C Time ® Everts
Events in viam-up eriod 10

Max total number of events: 1000000
Numker of atches.
Confidence inzerval {0, 1) 0.95

Dezect deadloc<?

| IjIIII

Dezect livelock?

Intemal colourings for livelock

36MofogIM [| 7¢

Figure 6.6: Flattened and simplified Reception model

tab, the simulation on the model is carried out. The simulation results are presented
in other sub-tabs of Results and Charts. More detailed explanation on the usage
and the underlying methods of this Reo simulator is given by [51].

The simulator provides information about

1. buffer utilization

2. end-to-end delays

3. the average waiting times of I/O requests at boundary nodes
4. channel utilization

The following examples show this information applying the simulator on the ASK
system. Because we are not intended in channel utilization in this section, we assumed

6.4. QoS analysis 111

- JavalIEclipse SOK. FEE
File Zdit Navigate Search Project Run Window Help
| rav |#0v e |&w e |® | I & [#ad
[2 Problems (@ Javadoc (IQ Declaration €] Errar Log (EI Properties (Ez outline [@ Simulation &3 =8
Run Result options [Resuts . Charts| &
Stops (Avg cond waiting tim (Avg waiting time [Buffer utilization " Channel ocked Channel utilization| End-end delay| Merger directions|
FIFO(C5-M1) [FIFO(C7-M2) FIFO(RRequesth-TQIn [FIFO(TQIn-TQOUE)
Statistic Value Batc1 Value | Obsenvations
Mean 57.52% 1 57.05% 5138
Observations per batch 5151 2 57.20% 5141
Standard deviation | 0.0066 3 57.20% 5173
Coeffcient of variation 0.0115 4 57.41% 5154
Interval [57.25%, 57.79%] 5 156.63% 5118

6

7

8

9

== al

56.85%; 5109
57.42% 5158
58.43%; 5153
57.37%; 5191
10 58.14%; 5172
1 58.00%; 5161
12 56.98%; 5161
13 58.12%: 5194
14 57.53%; 5132
15 57.39%; 5146
16 57.89%; 5142
17 56.64%; 5110
18 59.35%; 5121
19 57.52%; 5152
Batch results 2 | 56.74% 5178
2 58.18%: 5146
2 56.93% 5150
3 57.38%; 5174
2 58.44% 5144
25 57.25%; 5157

05650 05675 05700 05725 05750 05775 05800 05825 5650 0.5375 05900 03925 0595,
Value

JH 38M of 1023 ‘WJ g

Figure 6.7: Buffer utilization of the task queue

most data-flows through channels are immediate actions. The distributions used for
this simulation are also derived from the real logs of an actual running ASK system.

As an example of the simulation results we obtain, Figure 6.7 presents the ECT
screen-shot that shows the utilization of the buffer between the TQIn and TQOut
nodes. Actually, this buffer corresponds to the task queue in the Reception compo-
nent, whose average utilization, according to this analysis, is 57.52%. That is, on the
average, this buffer is used during 57% of the running time of the ASK system.

In addition, the graph at the bottom of the result in Figure 6.7 shows how fre-
quently this average value occurs during simulation. In general, this value follows a
normal distribution, which in this case does not happen. This can be due to a low
number of batches: if this number increases, our graph may tend to a normal distri-
bution.

As another example of the simulation, Figure 6.8 presents the ECT screen-shot
that shows one of the end-to-end delays from the RRequestIn node to the RmatcherRe-

112 Chapter 6. Case study

questOut node in Figure 6.6. This delay implies how long it takes for the Reception
component to handle an incoming request and to send its result to the Matcher com-
ponent. The average end-to-end delay is around 6500 microseconds, i.e., 6.5 millisec-
onds.

As the last example, Figure 6.9 presents the screen-shot that shows the waiting
time of I/O request at RRequestIn node in Figure 6.6. According to this result, on
the average, I/O requests wait 1727 microseconds, i.e., around 1.7 milliseconds.

6.5 Discussion
In this chapter, we have presented a stochastic analysis of (a deployed installation of)

the ASK system. We modeled the system using Stochastic Reo, from which we gener-
ated the CTMCs corresponding to some of the modules of the system. This enabled

€ Java D Eclipse/SDK 50
File Zdit Navigate Search Project Run Window Heb

=5 [# 0 e |Ew e @ b0 e o & [Beval

: [2. Problems (@ Javadoc (@ Declaration @) Errer Lag (EI Properties (gz Outline (@ Simulation 82 =a :
q Run|Result options (Resu'ts . Charts| &

Stops Avg cond waiting tim (Avg waiting time (Buffer utilization |Channel locked (Channel utilizat on (Enc-end delay . Merger directions|

] RRequesth - Rexecu: |R3eguestin - Rmatche
Statistic Value Batch Value Observaticns
Mean 6499.706% 1 63229420 2582

Observations per batch; 2578
Standard deviation | 156.9029 6576.1105; 2601
Coefficient of variation; 0.0241 €499.9230! 2606

2 6548.6564; 2596
3
a
Interval [6434.9405, 6564.4732] 5 6462.9691, 2526
6
7
8
9

620058361 2521
6656.2073] 2599
6309.2265) 2545
£421.0257| 2606
10 64612987 2595
1| 6425.4106] 2568
12 6466.9432 2566
13 645227581 2573
14 66110010 2605
15 65417594 2550
16 6269.0962 2526
7 67312657 2566
18 6798.8375 2594
19 64866171 2597
Batch results 20 63155808 2635
21 6766.1689 2566
2 6463.0027 2555
23 6400.5611 2563
% 67240700 2558
25 16575.1381] 25%

0375
0350
0325
0300
0275

5005
0250
§
30225

£o.200
o

20175

50150
0125
0100
0075
0050
0025
0000

6,200 6250 6300 6350 6400 6450 6500 6550 6600 665 6700 6,750 6,800
Value

JH 49M of 2439M ‘WJ [id

Figure 6.8: End-to-End delay from RRequestIn to RmatcherRequestOut in Figure 6.6

6.5. Discussion 113

us to use the probabilistic model checker PRISM to verify some properties of interest,
using the concrete stochastic distributions extracted from the logs of the running ASK
installation. The results of this verification allowed us to draw conclusions about re-
source allocation and how the system installation can be adapted in order to improve
its performance. CTMC models have the limitation of supporting only exponential
distributions. To overcome this limitation, we also used a simulator. Even though the
result from the simulation is approximation-based analysis, we can gain insight into
the aspects of the behavior of the system that involve non-exponential distributions.

We have focused our analysis in this chapter only on the Reception component of

the ASK system. However, the other components have very similar architectures and,
thus, all the techniques used in this chapter can be easily applied to them as well.

The distributions used in this case study were obtained by statistical analysis
based on the real logs of an actual running ASK system. Our analysis revealed ex-

= Java - Eclipse SDK ek
File Zdit Navigate Search Project Run Window Hely

| rav |#vovar|ewe |® | v & (v

[Problems (@ Javadac (@ Declaration @] Errer Log (ﬁ Properties (gz Outline [m Simulation 33 =gl

Run|Result options |Resuts . Charts|
Stops [Avg cond waiting tim [Avg waiting time . Buffer utilization| Channel ocked Channel utilization| End-end delay| Merger directions|

RRequestih Out| Rmat |

&= W om

Statistic Value Batch Value Observations
Mean 1727.8597 1 1737.0247 | 5138
Observations per batch; 5151 2 1746.4316 | 5141
Standard deviation | 36.4693 3 1718.6817 | 5173
Coefficient of variation; 0.0211 I3 1710.4913 | 5154
Interval [1712.8159, 1742.9235] 5 1680.1323 | 5119

6

7

8

9

1735.9129 5108
1719.0935 5159
1787.0808 | 5152
1661.9099: 5191
10 1745.2791 5172
un 1720.2202 : 5161
12 | 17416675 5162
13 16717840 | 5194
14 17419074 | 5131
15 1723.6006; 5146
16 1749.7810 5143
17 17216768 5110
18 18229758 5120
19 17422047 | 5152

Batch results 0 16793627 5179
030 2 17540772 5145
045 2 16739439 5151
2 17198449 5174
040 2% 176147685145
25 17301741 5156
5035
S030
g
2025
K
LR
015
010
005
000

1675 1,700 1725 1,750 1,800
Value

JH 82M of 2370M ‘WJ °

Figure 6.9: Waiting time of I/O request at RRequestIn

114 Chapter 6. Case study

ponential distributions for the arrivals and I/O requests. However, rates for the pro-
cessing/service times of some components were not exponentially distributed. This
made it necessary to do simulation for additional analysis. We used the Reo simula-
tor [51, 89], an integrated ECT tool, which enables the use of arbitrary distributions
and predefined probabilistic behaviors. Using this simulator we can study a model
which, for instance, has exponentially distributed data arrivals and log-normal dis-
tributed processing rates in some components.

In this analysis, we found two bottlenecks that were caused by (1) the low avail-
ability of the Executer component and (2) the long sojourn time at the task queue.
In what concerns (1), we observe that we are modeling the connections between the
Reception and other components (Executer and Matcher) synchronously (that is, us-
ing Sync channels), and that the observation that the consumption rates of the other
two components become bottlenecks is not surprising. We have experimented with
replacing the Sync channels with FIFOs to decouple the components and remove
these bottlenecks. In the process of these experiments, we identified another bottle-
neck internal to the Executer component itself. In what concerns (2), the bottleneck
is caused by congestion between the task queue and the threads. Thus, we can widen
the bandwidth of this connection to obtain better performance for the system.

In earlier initiatives to improve the performance of the ASK system, the focus has
been primarily on improving the execution times of request handling tasks, through
extensive profiling. The work presented in this chapter confirms and explains the
observations from small experiments with ASK components in isolation, carried out
by Almende last year. As a consequence of this, Almende decided to put additional
effort into the optimization of queue sizes and bandwidth between the task queue and
the threads in each of the ASK components. First attempts in this direction yield
promising results.

Chapter 7

Conclusions and Future work

In this chapter, we conclude this thesis with a summary of what we presented in the
previous chapters and a discussion of a number of future activities to extend the work
presented in this thesis.

7.1 Conclusions

As the Internet has advanced in terms of accessibility, usability, and utility, the interest
in using distributed services over networks for large-scale applications has increased.
However, the composition of distributed applications is non-trivial because of their
heterogeneity. When it comes to their quantitative aspects, it is challenging to specify
and reason about the end-to-end QoS of composed applications.

In this thesis, we provided a specification model, Stochastic Reo, to describe
coordination in such composition while considering non-functional (QoS) aspects.
As an operational semantic model for Stochastic Reo, Quantitative Intentional Au-
tomata (QIA) were introduced. This semantic model describes the data-flows through
connectors and the interaction with the environment of the connectors separately,
thus, it is appropriate to specify and reason about the end-to-end QoS in a com-
posed application. However, in general, QIA have a large number of states. In order
to overcome this, we introduced Stochastic Reo Automata as an alternative semantic
model to QIA. Stochastic Reo Automata are not only more compact, but they also
enabled us to prove a compositionality result easily, which was lacking for QIA. Both
semantic models serve as intermediate models for generating corresponding CTMCs
for stochastic analysis. In order to consider more general QoS aspects, we have ex-
tended Stochastic Reo Automata with reward information, and this extension is also
propagated to CTMCs as state rewards using the translation method. This translation
method has been implemented, in the Reo2MC tool, in the Extensible Coordination
Tools (ECT) [35]. As a plug-in for ECT, Reo2MC provides the following functionali-
ties: 1) editor for Stochastic Reo 2) generating semantic models for Stochastic Reo, in
particular, QIA, 3) deriving a CTMC model for a Stochastic Reo. That is, Reo2MC
can be seen as an integrated tool of a Stochastic Reo editor and a CTMC generator

115

116 Chapter 7. Conclusions and Future work

from Stochastic Reo. We explained the implementation details of the Reo2MC, as well
as its basic definitions and algorithms, and its usage. The output of the Reo2MC can
be fed to other tools, such as PRISM, MATLAB, and Maple, for stochastic analysis.
As a case study, we analyzed the ASK system, which is an industrial software and
acts as a mediator between service consumers and service providers. The ASK system
is specified using Stochastic Reo, whereby this model is translated into corresponding
CTMC for analysis using PRISM. The rates used in this model were obtained by
applying statistical analysis techniques on the raw values that we obtained from the
real logs of an actual running ASK system. The results of this verification allowed us
to draw conclusions about resource allocation and how the system installation can be
adapted in order to improve its performance.

7.2 Future work

Stochastic Reo does not impose any restriction on the distribution classes of its an-
notated rates, such as the rates for request-arrivals at channel ends or data-flows
through channels. However, for the translation from Stochastic Reo into an homo-
geneous CTMC model, we considered only exponential distributions for the rates.
For example, in the case study using the ASK system, if the rates, obtained from
statistical analysis on the raw values extracted from the real logs of a running ASK
system, were not exponentially distributed, then we had to assume the obtained rates
as exponential distributions or used other techniques, such as bootstrapping, to get
meaningful rates. Thus, in order to support the general usage of Stochastic Reo, we
want to consider non-exponential distributions such as phase-type distributions or
using Semi-Markov Processes [50] as target models of our translation.

In addition, during the case study, we encountered models whose state spaces
were too large to analyze. However, all the states in such a model are not meaningful
because some of them are caused by the structure of Reo primitive channels, not the
behavior of connectors. For example, consider the following connector:

a b c
1 1
| S| | S|

The data-flows from the first buffer to node b and from node b to the second buffer are
considered as two different events and represented sequentially in its corresponding
CTMC model. In general, we may not be interested in which buffer is full when
one of the two buffers is occupied. In this case, it is more meaningful to make these
two data-flows immediate events, to reduce the configurations of this connector to
include only empty, half-full, and full. For this purpose, we want to hide node b in
this connector. However, hiding nodes is not trivial since it can lead to the loss of
the structural information of connectors, which is used to generate corresponding
CTMCs from the connectors. Thus, it is an interesting future work direction to find
certain patterns of hiding nodes, which still allows to generate CTMCs with correct
operational semantics. Moreover, the implementation of checking these pattens for

7.2. Future work 117

hiding will be the next step in order to provide users with safe selection of nodes for
hiding. This will help to mitigate the large state space of the derived CTMCs.

Compared to CTMCs, Interactive Markov Chains (IMCs) are compositional, thus,
the IMC for a complex system can be built out of IMCs corresponding sub-systems
constituting the complex system. Then, one might wonder why IMCs are not used
as our stochastic target model without the translation via other operational seman-
tic models. To answer this question, we discussed why IMCs are not an appropriate
semantic model for Stochastic Reo since it generates unintended transitions that are
produced in synchrony propagation scenarios. In addition, we showed the translation
from Stochastic Reo into IMCs via Stochastic Reo Automata. A natural and inter-
esting future work is to consider whether it is possible to adapt the composition op-
erator of IMCs in order to delete the unintended transitions and still remain within
a compositional framework.

So far, the Reo2MC tool uses QIA (instead of Stochastic Reo Automata) as an
intermediate model for its translation. We are currently extending and improving
these tools to use Stochastic Reo Automata, as well as the extension with reward
information, so that the more compact sizes of the automata models will then allow
us to analyze larger models.

The connection considered in this thesis is described without considering the over-
head of establishing the coordination between components. That is, for a Reo connec-
tor, we considered only the interaction with the environment of the connector and its
internal processing, i.e., data-flows between its boundary nodes, and the coordination
was assumed to be established immediately. To be more realistic, we also need to
consider the overhead of establishing the coordination between the boundary nodes
before the internal processing of the connector occurs. In [54], Action Constraint Au-
tomata (ACA) were proposed to specify such a coordination processing in Reo con-
nectors in a compositional manner. However, they do not include the interaction with
the I/0 requests of the connectors, and moreover, ACA do not account for the QoS
aspects of the connectors. Thus, it will be an interesting and meaningful future work
to provide a stochastic extension of the specification for the coordination processing
in ACA and to, in turn, combine this extension and our specification approach, which
enables us to analyze and reason about more realistic end-to-end QoS of a Reo con-
nector.

1]
2]

[3]

[10]
[11]

Bibliography

Almende website. http://www.almende. com.

Farhad Arbab. Reo: a channel-based coordination model for component compo-
sition. Mathematical Structures in Computer Science, 14(3):329-366, 2004.

Farhad Arbab. Abstract Behavior Types: a foundation model for components
and their composition. Science of Computer Programming, 55(1-3):3-52, 2005.

Farhad Arbab. Composition of Interacting Computations, chapter 12, pages 277—
321. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon. Component
Connectors with QoS Guarantees. In COORDINATION, volume 4467 of Lecture
Notes in Computer Science, pages 286—-304. Springer, 2007.

Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo Moon,
and Chrétien Verhoef. From Coordination to Stochastic Models of QoS. In
COORDINATION, volume 5521 of Lecture Notes in Computer Science, pages
268-287. Springer, 2009.

Farhad Arbab, Ivan Herman, and Pal Spilling. An overview of manifold and its
implementation. Concurrency - Practice and Experience, 5(1):23-70, 1993.

Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Z. Kwiatkowska, and
Hongyang Qu. Reo2MC: a tool chain for performance analysis of coordination
models. In ESEC/SIGSOFT FSE, pages 287-288. ACM, 2009.

Farhad Arbab and Jan J. M. M. Rutten. A Coinductive Calculus of Component
Connectors. In WADT, pages 34-55, 2002.

ASK Community systems website. http://www.ask-cs.com.

Jos C. M. Baeten and W. Peter Weijland. Process Algebra. Cambridge University
Press, 1990.

119

120

[12]

[13]

[22]

23]

Bibliography

Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten. Model-
ing component connectors in Reo by constraint automata. Science of Computer
Programming, 61(2):75-113, 2006.

Christel Baier and Verena Wolf. Stochastic Reasoning About Channel-Based
Component Connectors. In COORDINATION, volume 4038 of Lecture Nonte in
Computer Science, pages 1-15. Springer, 2006.

Marco Antonio Barbosa, Luis Soares Barbosa, and José Creissac Campos. To-
wards a Coordination Model for Interactive Systems. Electronic Notes in Theo-
retical Computer Science, 183:89-103, 2007.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous Real-
time Components in BIP. In SEFM, pages 3—12. IEEE Computer Society, 2006.

Marco Bernardo and Roberto Gorrieri. A Tutorial on EMPA: A Theory of Con-
current Processes with Nondeterminism, Priorities, Probabilities and Time. Tech-
nical Report UBLCS-96-17, 1996.

Marco Bernardo and Roberto Gorrieri. Extended Markovian Process Algebra. In
CONCUR, volume 1119 of Lecture Notes in Computer Science, pages 315-330.
Springer, 1996.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-
straint satisfaction and optimization. Journal of the ACM, 44(2):201-236, 1997.

Marcello Bonsangue, Dave Clarke, and Alexandra Silva. A model of context-
dependent component connectors. Science of Computer Programming, In Press,
Corrected Proof, 2011.

Hichem Boudali, Pepijn Crouzen, Boudewijn R. Haverkort, Matthias Kuntz, and
Mariélle Stoelinga. Architectural dependability evaluation with Arcade. In Inter-
national Conference on Dependable Systems and Networks, pages 512-521. IEEE
Computer Society, 2008.

Hichem Boudali, Pepijn Crouzen, and Mariélle Stoelinga. A Compositional Se-
mantics for Dynamic Fault Trees in Terms of Interactive Markov Chains. In
ATVA, volume 4762 of Lecture Notes in Computer Science, pages 441-456.
Springer, 2007.

Hichem Boudali, Pepijn Crouzen, and Mariélle Stoelinga. Dynamic Fault Tree
Analysis Using Input/Output Interactive Markov Chains. In International Con-
ference on Dependable Systems and Networks, pages 708-717. IEEE Computer
Society, 2007.

Hichem Boudali, Pepijn Crouzen, and Marielle Stoelinga. A Rigorous, Com-
positional, and Extensible Framework for Dynamic Fault Tree Analysis. IEEE
Transactions on Dependable and Secure Computing, 7(2):128-143, 2010.

Bibliography 121

[24]

[25]

[33]
[34]

[35]

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll, and Marco Roveri. The COMPASS Approach: Correctness, Mod-
elling and Performability of Aerospace Systems. In SAFECOMP, volume 5775
of Lecture Notes in Computer Science, pages 173—-186. Springer, 2009.

Marco Bozzano, Alessandro Cimatti, Marco Roveri, Joost-Pieter Katoen,
Viet Yen Nguyen, and Thomas Noll. Codesign of dependable systems: a
component-based modeling language. In MEMOCODE’09: Proceedings of the 7th
IEEE/ACM international conference on Formal Methods and Models for Code-
sign, pages 121-130, Piscataway, NJ, USA, 2009. IEEE Press.

Mario Bravetti and Marco Bernardo. Compositional Asymmetric Cooperations
for Process Algebras with Probabilities, Priorities, and Time. FElectronic Notes
in Theoretical Computer Science, 39(3), 2000.

Peter Buchholz. Hierarchical Markovian Models: Symmetries and Reduction.
Performance Evaluation, 22(1):93-110, 1995.

Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A Unified Toolset for
Business Process Model Formalization. In 7th International Workshop on For-
mal Engineering approaches to Software Components and Architectures (FESCA
2010), pages 147-156, 2010.

Tom Chothia and Jetty Kleijn. Q-Automata: Modelling the Resource Usage
of Concurrent Components. Flectronic Notes in Theoretical Computer Science,
175(2):153-167, 2007.

Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchro-
nisation and context dependency. Science of Computer Programming, 66(3):205—
225, 2007.

David Costa. Formal Models for Context Dependent Connectors for Distributed
Software Components and Services. PhD thesis, Vrij Universiteit Amsterdam,
2010.

David Costa, Milad Niqui, and Jan J. M. M. Rutten. Intentional Automata: A
Context-Dependent Model For Component Connectors (Extended Abstract). In
FSEN, 2011.

Credo project. http://projects.cwi.nl/credo/.

Frank S. de Boer, Immo Grabe, Mohammad Mahdi Jaghoori, Andries Stam, and
Wang Yi. Modeling and Analysis of Thread-Pools in an Industrial Communica-
tion Platform. In Proc. 11th International Conference on Formal Engineering
Methods (ICFEM’09), volume 5885 of Lecture Notes in Computer Science, pages
367-386. Springer, 2009.

Extensible Coordination Tools. http://reo.project.cwi.nl/.

122

[36]

[37]

[38]

[39]

[40]

Bibliography

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Lud-
vig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogene-
ity - the Ptolemy approach. Proceedings of the IEEFE, 91(1):127-144, 2003.

Paulo Fernandes, Brigitte Plateau, and William J. Stewart. Efficient Descriptor-
Vector Multiplications in Stochastic Automata Networks. Journal of the ACM,
45(3):381-414, 1998.

Cédric Fournet and Georges Gonthier. The Join Calculus: A Language for Dis-
tributed Mobile Programming. In APPSEM, volume 2395 of Lecture Notes in
Computer Science, pages 268-332. Springer, 2000.

Hubert Garavel and Holger Hermanns. On Combining Functional Verification
and Performance Evaluation Using CADP. In FME, volume 2391 of Lecture
Notes in Computer Science, pages 410—429. Springer, 2002.

Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe. CADP
2006: A Toolbox for the Construction and Analysis of Distributed Processes.
In CAV, volume 4590 of Lecture Notes in Computer Science, pages 158-163.
Springer, 2007.

David Gelernter. Generative Communication in Linda. ACM Transaction on
Programming Languages and Systems, 7(1):80-112, 1985.

Peter G. Harrison and Jane Hillston. Exploiting Quasi-reversible Structures in
Markovian Process Algebra Models. The Computer Journal, 38(7):510-520, 1995.

Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality,
volume 2428 of Lecture Nonte in Computer Science. Springer, 2002.

Holger Hermanns and Joost-Pieter Katoen. The How and Why of Interactive
Markov Chains. In Formal Methods for Components and Objects (FMCO), vol-
ume 6286 of Lecture Notes in Computer Science, pages 311—-337. Springer-
Verlag, 2010.

Ulrich Herzog. Formal Description, Time and Performance Analysis. A Frame-
work. In Entwurf und Betrieb verteilter Systeme, pages 172-190, London, UK,
1990. Springer-Verlag.

Jane Hillston. PEPA: Performance Enhanced Process Algebra. Technical Report
CSR-24-93, University of Edinburgh, 1993.

Jane Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
University of Edinburgh, April 1994.

Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM: A Tool for Automatic Verification of Probabilistic Systems. In TACAS,
volume 3920 of Lecture Notes in Computer Science, pages 441-444. Springer,
2006.

Bibliography 123

[49]

[50]

[55]

[56]

C. A. R. Hoare. Communicating sequential processes. Communication of the
ACM, 21(8):666-677, 1978.

Hakan L. S. Younes and Reid G. Simmons. Solving Generalized Semi-Markov
Decision Processes using Continuous Phase-Type Distributions. In Proceedings of
the 19th National Conference on Artificial Intelligence, pages 742-748. California
AAAI Press, 2004.

Oscar Kanters. QoS analysis by simulation in Reo. Master’s thesis, Vrije Uni-
versiteit, Amsterdam, The Netherlands, 2010.

Joost-Pieter Katoen and Pedro R. D’Argenio. General Distributions in Process
Algebra. In European Educational Forum: School on Formal Methods and Per-
formance Analysis, volume 2090 of Lecture Notes in Computer Science, pages
375-430. Springer, 2000.

Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connector Rewrit-
ing with High-Level Replacement Systems. Flectr. Notes Theor. Comput. Sci.,
194(4):77-92, 2008.

Natallia Kokash, Behnaz Changizi, and Farhad Arbab. A Semantic Model for
Service Composition with Coordination Time Delays. In ICFEM, volume 6447
of Lecture Notes in Computer Science, pages 106—121. Springer, 2010.

Christian Krause. Reconfigurable Component Connectors. Phd thesis, Univer-
siteit Leiden, To appear in 2011.

Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Mod-
eling Dynamic Reconfigurations in Reo using High-Level Replacement Systems.
Science of Computer Programming, 76(1):23-36, 2011. Selected papers from the
6th International Workshop on the Foundations of Coordination Languages and
Software Architectures - FOCLASA’07.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic
Symbolic Model Checker. In Computer Performance Evaluation/TOOLS, pages
200-204, 2002.

Bilung Lee and Edward A. Lee. Hierarchical Concurrent Finite State Machines
in Ptolemy. In ACSD, pages 34-40. IEEE Computer Society, 1998.

Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The Ptolemy II Framework for
Visual Languages. In HCC. IEEE Computer Society, 2001.

Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli,
and Giuliana Franceschinis. Modelling with Generalized Stochastic Petri Nets.
SIGMETRICS Performance Evaluation Review, 26(2):2, 1998.

124

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Bibliography

Sun Meng and Farhad Arbab. QoS-Driven Service Selection and Composition
Using Quantitative Constraint Automata. Fundamenta Informaticae, 95(1):103—
128, 2009.

Vassilis Mertsiotakis. Approzimate Analysis Methods for Stochastic Process Al-
gebras. PhD thesis, University of Erlangen, 1998.

Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1989.

Jayadev Misra and William R. Cook. Computation Orchestration: A basis for
wide-area computing. Software and System Modeling, 6(1):83-110, 2007.

Michael Karl Molloy. On the integration of delay and throughput measures in
distributed processing models. PhD thesis, 1981.

Young-Joo Moon, Farhad Arbab, Alexandra Silva, Andries Stam, and Chrétien
Verhoef. Stochastic Reo: a Case Study. Accepted for publication in TTSS 2011.

Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab. A
Compositional Model to Reason about end-to-end QoS in Stochastic Reo Con-
nectors. To apper in Science of Computer Programming, 2011.

Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad Arbab. A Com-
positional Semantics for Stochastic Reo Connectors. In FOCLASA, volume 30
of EPTCS, pages 93-107, 2010.

Christopher Z. Mooney and Robert D. Duval. Bootstrapping: a nonparametric
approach to statistical inference. Sage Publications, 1993.

Marcel F. Neuts. Matriz-geometric Solutions in Stochastic Models: An Algorith-
mic Approach. The Johns Hopkins University Press, 1981.

Oscar Nierstrasz. Piccola - A Small Compositional Language (Invited Talk). In
FMOODS, volume 139 of IFIP Conference Proceedings. Kluwer, 1999.

C. A. O’Cinneide. Characterization of phase-type distributions. Stochastic Mod-
els, 6(1):1-57, 1990.

George A. Papadopoulos and Farhad Arbab. Coordination models and languages.
In M. Zelkowitz (Ed.), The Engineering of Large Systems, volume 46 of Advances
in Computers, pages 329-400. Academic Press, 1998.

James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall, 1981.

Brigitte Plateau and Karim Atif. Stochastic Automata Network of Modeling
Parallel Systems. IEEE Transactions on Software Engineering, 17:1093-1108,
1991.

Bibliography 125

[76]
[77]

(78]

[79]

[80]

[84]

[85]

[36]

Prism website. http://www.prismmodelchecker.org/.

José Proenca. Synchronous Coordination of Distributed Components. PhD thesis,
Universiteit Leiden, To appear in 2011.

José Proenca and Dave Clarke. Coordination Models Orc and Reo Compared.
Electronic Notes in Theoretical Computer Science, 194(4):57-76, 2008.

Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

Juan Guillen Scholten. Mobile channels for exogenous coordination of distributed
systems: semantics, implementation and composition. Phd thesis, Leiden Uni-
versity, 2007.

Mary Shaw and David Garland. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

Markus Siegle. On Efficient Markovian Modelling. In In Proc. QMIPS Workshop
on Stochastic Petri Nets, pages 213225, 1992.

Andries Stam. The ASK System and the Challenge of Distributed Knowledge
Discovery. In ISoLA, volume 17 of Communications in Computer and Informa-
tion Science, pages 663—668. Springer, 2008.

Andries Stam, Sascha Klippelholz, Tobias Blechmann, and Joachim Klein.
ReASK Final Models. Technical Report To be appeared, Almende, The Nether-
lands and Technical University of Dresden, Germany, 2009.

William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

William J. Stewart, Karim Atif, and Brigette Plateau. The numerical solution
of stochastic automata networks. Furopean Journal of Operational Research,
(3):503-525, 1995.

F. J. W. Symons. Introduction to Numerical Petri Nets, a General Graphical
Model of Concurrent Processing Systems. Australian Telecommunications Re-
search, 14(1):28-32, 1980.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2002.

Chrétien Verhoef, Christian Krause, Oscar Kanters, and Rob van der Mei.
Simulation-based Performance Analysis of Channel-based Coordination Models.
In COORDINATION 2011, volume 6721 of Lecture Notes in Computer Science,
pages 187-201. Springer-Verlag, 2011.

Abstract

The intensifying need for scalable software has motivated modular development and
using systems distributed over networks to implement large-scale applications. In
Service-oriented Computing, distributed services are composed to provide large-scale
services with a specific functionality. In this way, reusability of existing services can be
increased. However, due to the heterogeneity of distributed software systems, software
composition is far from trivial, and requires additional mechanisms to impose some
form of a coordination on a distributed software system. For this purpose, a number
of coordination languages have been proposed, such as Reo, Linda, and Orc.

Besides functional correctness, a composed service must satisfy various quantita-
tive/non-functional requirements for its clients, which are generically called its quality
of service (QoS). For instance, although a number of services may offer the same
functionality, some of them may accommodate tight deadlines, but others may not.
In particular, it is tricky to obtain the overall QoS of a composed service even if the
QoS information of its constituent distributed services is given.

In this thesis, Stochastic Reo is proposed, a formalism to specify software compo-
sition with QoS aspects. Stochastic Reo is an extension of Reo, a channel/connector-
based coordination language, with associated stochastic values which indicate the fre-
quency of I/O interactions and internal processing delays within connector primitives.

As a semantic model of Stochastic Reo, we propose two different automata models,
namely, Quantitative Intentional Automata and Stochastic Reo Automata. Stochastic
Reo Automata are compositional, which enables us to obtain the automata model of
a complex connector by composing the automata models of its constituent primitive
connectors. A formal proof of compositionality is included in the thesis. These two
semantic models are also used as intermediate models in order to generate their cor-
responding stochastic models, especially, Continuous-time Markov Chains (CTMCs)
and Interactive Markov Chains. These stochastic models can be used for practical
analysis of the underlying connectors.

Based on this theory, we have implemented the tool Reo2MC as a plug-in within
the Reo toolset, Extensible Coordination Tools. Reo2MC generates CTMCs corre-
sponding to Reo connectors, which are given to or drawn in the tool, via the semantic
models of the Reo connectors.

127

128 Abstract

As a case study, we have modeled and analyzed the ASK system using Reo2MC.
The ASK system is an industrial software developed by the Dutch company Almende.
Its analysis results provided the best cost-effective resource utilization and some sug-
gestions to improve the performance of the ASK system. For example, the results
provided suggestion of the required minimum capacity of a task queue and detected
some bottlenecks in the system.

In summary, this thesis proposes formal models to specify the behavior of con-
nectors coordinating distributed software over a network, and to reason about the
end-to-end QoS properties of the connectors. This thesis also shows how to translate
the semantic models of connectors into their corresponding stochastic models for fur-
ther analysis. The theoretical results obtained in this thesis have been implemented
and integrated as a plug-in into an existing tool set. The practical relevance of the
approach is demonstrated by modeling and analyzing a large industrial software using
the tool, which resulted in improvements to the analyzed system.

Samenvatting

De steeds groter wordende behoefte aan schaalbare software is de motivatie geweest
voor modulaire ontwikkeling en het gebruik van over netwerken gedistribueerde sys-
temen om grootschalige applicaties te implementeren. In Service-oriented Computing
worden gedistribueerde services samengesteld om grootschalige services met een spec-
ifieke functionaliteit aan te bieden. Hierdoor kan de herbruikbaarheid van bestaande
systemen vergroot worden. Als gevolg van de diversiteit aan gedistribueerde soft-
waresystemen is de samenstelling van software echter verre van triviaal, en zijn bi-
jkomende mechanismes nodig om gedistribueerde softwaresystemen te kunnen coordin-
eren. Voor dit doeleinde is een aantal coordinatietalen voorgesteld, waaronder Reo,
Linda en Orec.

Afgezien van functionele correctheid moet een samengestelde service voldoen aan
verschillende kwantitatieve en niet-functionele eisen voor de cliénten ervan, die in
het algemeen de ’quality of service’ (QoS) genoemd worden. Het kan bijvoorbeeld zo
zijn dat, zelfs als een aantal services dezelfde functionaliteit biedt, sommige stricte
deadlines accomoderen terwijl andere dit niet doen. Het is in het bijzonder lastig
om de algehele QoS van een samengestelde service te verkrijgen, zelfs als de QoS-
informatie voor de onderliggende constituenten een gegeven is.

In dit proefschrift wordt Stochastic Reo voorgesteld, een formalisme om samen-
stelling van software met QoS-aspecten te specificeren. Stochastic Reo is een uitbrei-
ding van Reo, een channel/connector-gebaseerde codrdinatietaal, met geassocieerde
stochastische waarden die de frequentie van I/O-interacties, en de interne verwerk-
ingsvertragingen in de primitieve connectoren, aangeven.

Als een semantisch model van Stochastic Reo stellen we twee verschillende auto-
matenmodellen voor, namelijk Quantitative Intentional Automata en Stochastic Reo
Automata. Stochastic Reo Automaten zijn compositioneel, wat ons in staat stelt om
het automatenmodel van een complexe connector te verkrijgen door de automaten-
modellen van de onderliggende primitieve connectoren samen te stellen. Een formeel
bewijs van de compositionaliteit is in dit proefschrift te vinden. Deze twee semantis-
che modellen worden ook gebruikt als tussenliggende modellen om de ermee corre-
sponderende stochastische modellen te genereren, in het bijzonder Continuous-Time
Markov Chains (CMTCs) en Interactive Markov Chains. Deze stochastische mod-

129

130 Samenvatting

ellen kunnen gebruikt worden voor een praktische analyse van de onderliggende con-
nectoren.

We hebben, gebaseerd op deze theorie, de tool Reo2MC' geimplementeerd als
een plugin binnen de Reo-toolset, Extensible Coordination Tools. Reo2MC' genereert
CMTCs die corresponderen met Reo-connectoren, die in de tool aangegeven of getek-
end worden, via de semantische modellen van de Reo-connectoren.

We hebben het ASK systeem als een case study gemodelleerd en geanalyseerd met
gebruik van Reo2MC. Het ASK systeem is een industrieel softwareproduct, ontwikkeld
door het Nederlandse bedrijf Almende. De analyseresultaten gaven het beste kosten-
effectieve resourcegebruik aan, en leverden een aantal suggesties voor verbetering van
het ASK systeem. De resultaten gaven, als voorbeeld hiervan, een suggestie van de
benodigde minimumcapaciteit van een task queue en hebben een aantal bottlenecks
in het systeem gedetecteerd.

Samenvattend stelt dit proefschrift formele modellen voor, om het gedrag van con-
nectoren die gedistribueerde software over een netwerk cotrdineren, te specificeren, en
om over de end-to-end QoS-eigenschappen van de connectoren te redeneren. Dit proef-
schrift laat ook zien hoe de semantische modellen van connectoren vertaald moeten
worden in de overeenkomstige stochastische modellen voor verdere analyse. De in dit
proefschrift verkregen theoretische resultaten zijn geimplementeerd en geintegreerd
als een plug-in binnen een bestaande toolset. De praktische relevantie van deze be-
nadering is aangetoond door een groot industrieel softwareproduct te modelleren en
analyseren met de tool, wat geresulteerd heeft in verbeteringen in het geanalyseerde
systeem.

Titles in the IPA Dissertation Series since 2005

E. Abrahdm. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong. FExperiments in Rights
Control - FEzpression and FEnforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty of
Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System Ar-
chitectures. Faculty of Mathematics and
Computing Sciences, TU /e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures for
Fquality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Fvolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining wus-
ing Genetic Programming: Classifica-
tion and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems wusing Simu-
lation Relations. Faculty of Science,

Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty of
Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transforma-
tion of Source Code by Parsing and

Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y. W. Law. Key management and link-
layer security of wireless sensor mnet-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complezity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU /e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for
Rewriting. Faculty = of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted wverification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Ezxtensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Ezxpressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.CM. wvan Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU /e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for FExogenous Coordination of
Distributed Systems: Semantics, Imple-
mentation and Composition. Faculty

of Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Abnor-
malities in Locally Autonomous Dis-
tributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandan Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,

Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trcka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of

Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the FElectronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Ezercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Ver-
ification of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Division

of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Compler Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU /e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

1.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Fvolvable Behavior Speci-
fications Using Context-Sensitive Wild-

cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Diirr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechan-
ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Ezperimental As-
pects of Pattern FEvaluation. Faculty

of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for
Performance FEvaluation. Faculty of

Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.LR. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,

Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for

Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MFEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. FEvaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness €&
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-

ulty of Mathematics and Computer Sci-
ence, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computa-
tional Complexity of Probabilistic Net-
works. Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law FEnforcement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-24

A.1. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhaufler. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division

of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty

of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illlumination of
the Template FEnigma: Software Code
Generation with Templates. Faculty of

Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Awvailability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An FExecutable The-
ory of Multi-Agent Systems Refinement.

Faculty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proenga. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moral. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On changing models
in Model-Based Testing. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty

of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability — A process-theoretic
view on automata theory. Faculty of

Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU /e. 2011-13

S. Malakuti. FEvent Composition
Model: Achieving Naturalness in Run-
time Enforcement. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and
Verification. Faculty of Mathematics
and Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Terrains.
Faculty of Mathematics and Computer
Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for
Quality of Service of Component Con-
nectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-17

