
Preference and Similarity-based Behavioral

Discovery of Services

Farhad Arbab1 and Francesco Santini1,2

1 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
[Farhad.Arbab,F.Santini]@cwi.nl

2 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
francesco.santini@dmi.unipg.it

Abstract. We extend Constraint Automata by replacing boolean con-
straints with semiring-based soft constraints. The obtained general for-
mal tool can be used to represent preference-based and similarity-based
queries, which allow a user more freedom in choosing the behavior of the
service to finally use, among all possible choices. A user states his prefer-
ences through a “soft” query, and obtains results that satisfy this query
with different levels of preference. The soft requirements may involve a
parameter data of the service operations, or the (names of the) opera-
tions themselves. Moreover, we introduce a first implementation of the
search procedure by using declarative (Soft) Constraint Programming.

1 Introduction

Service-orientation is a design paradigm to build computer software in the form
of services. The term “service” refers to a set of related software functionalities
that can be reused for different purposes. In this sense, the service becomes more
important than the software. A Service-Oriented Architecture (SOA) offers some
benefits as return on investment, organisational agility and interoperability as
well as a better alignment between business and IT. In such loosely-coupled envi-
ronments, the automatic discovery process becomes more complex, and a user’s
decision has to be supported taking into account his (often not crisp) prefer-
ences, some semantic information on the related domain knowledge, and the
behavior signature of services, describing the sequence of its operations [16,10].
For instance, a user may need to find an on-line purchase service satisfying the
following requirements: i) charging activity is before shipping activity, ii) to pur-
chase a product, the requester first needs to log into the system and finally log
out of the system, and iii) filling the electronic basket of the user may consist a
succession of “add-to-basket” actions (a similar scenario is proposed in [16]).

In this paper, we define a formal framework that considers both user’s pref-
erences and (stateful) service behavior during the search procedure, in order to
retrieve multiple results for the same preference-based query; in this way, the
end user has the possibility to choose among different results by selecting the
service that maximizes his requirements. In the above mentioned purchase sce-
nario, for example, he may prefer to pay with a credit card instead of with a bank
transfer. Moreover, using the same framework, we also show how it is possible to

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301650419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

represent similarity-based search, in order to find the services that perform op-
erations “similar” to those requested. These services can be valid alternatives for
the user in case the “best” service is not available at the moment, for example,
due to failures or high number of requests. In Sec. 2 we report the related work,
showing that no general formal framework has been proposed in the literature
for such tasks, and this dearth is even more striking if we consider the behavior
of the services (i.e. the sequence of the operations).

In Sec. 3 we summarize the background on soft constraints, showing the basic
operations of this parametric preference-based framework [5,4].

As a first result of this paper, in Sec. 4 we extend Constraint Automata [2] in
order to deal with preferences on data-constraints: instead of (classical) boolean
constraints, we adopt semiring-based soft constraints, which can model any pref-
erence system as long as it can be cast into a semiring algebraic structure. How-
ever, also boolean constraints can be represented with semirings (see Sec. 3),
and used in the same framework as well. Services behavior has been already
described as Constraint Automata in [13].

In Sec. 5 we show how to model preference-based queries according to the
theory presented in Sec. 4. The names of the service operations correspond to the
names on the automaton transitions (i.e., the synchronization constraints [2]),
and they represent the behavior of the service the user is interested in. At the
same time, soft data-constraints model the preference on the data taken as I/O
by each operation. For example, the data required for the charging operation
can involve a bank transfer, a credit card number, or pay-on-delivery with cash.
For instance, a user may prefer the second method over the other two. In Sec. 5
we also demonstrate that the formal results of Sec. 4, as the join and hiding
operations on automata, and simulation/bisimulation relationships between au-
tomata, can be used to reason on preference-based queries.

In Sec. 6 we focus our attention on similarity-based search. In this scenario, a
user is interested in retrieving also services with “similar” operations; therefore,
soft constraints define a preference for the operation names, and not for their
I/O data as in Sec. 5. For example, instead of the Charging service, a service
named SendEstimate could be used by a user to receive a purchase-estimate
(and then buy with a phone call). In this case, the names (and the services)
Charging and SendEstimate are “similar”. Moreover, we show how to solve this
search problem as a Soft Constraint Satisfaction Problem (SCSP) [5,4].

We suppose the availability of meaning and similarity-scores of names as com-
puted from a proper domain-specific ontology [14] (as proposed by other works
in Sec. 2): in this paper we focus on the representation of preference/similarity-
based queries, and the formal computational framework we propose solve them.
Finally, in Sec. 7 we draw our final conclusions and explain our future work.

2 Related Work

In [16] the authors propose a new behavior model for WSs using automata and
logic formalisms. Roughly, the model associates messages with activities and
adopts the IOPR model (i.e., Input, Output, Precondition, Result) in OWL-
S [14] to describe activities. An automaton structure is used to model the service

behavior. A new query language is developed to express temporal and semantic
properties on service behaviors. Query evaluation algorithms are developed; an
optimization approach using tree structures and heuristics is shown to improve
the performance. However, similarity-based search is not mentioned in [16].

The model presented in [17] relies on a simple and extensible keyword-based
query language and enables efficient retrieval of approximate results, including
approximate service compositions. Since representing all possible compositions
and all approximate concept references can result in an exponentially-sized index,
the authors investigate clustering methods to provide a scalable mechanism for
service indexing. In [9] the problem of behavioral matching is translated to a
graph matching problem, and existing algorithms are adapted for this purpose.

In [3], the authors propose a crisp translation from interface description of
WSs to classical crisp Constraint Satisfaction Problems. Therefore, no service
behavior is considered and it is not possible to quantitatively reason on similar-
ity/preference involving different services: it is not possible to widen the results
of a query by obtaining similar services. In [19], a semiring-based framework is
used to model and compose QoS features of WSs. However, no notion of simi-
larity relationship is given in in [19].

In [7] the authors propose a novel clustering algorithm that groups names
of parameters of web-service operations into semantically meaningful concepts.
These concepts are then leveraged to determine similarity of inputs (or outputs)
of web-service operations. In [15] the authors propose a framework of fuzzy query
languages for fuzzy ontologies, and present query answering algorithms for these
query languages over fuzzy DL-Lite ontologies.

In [10] the authors propose a metric to measure the similarity of semantic
services annotated with an OWL ontology. Similarity is calculated by defining
the intrinsic information value of a service description based on the “inferenci-
bility” of each of OWL Lite constructs. The authors of [11] present an approach
to hybrid semantic WSs matching that complements logic-based reasoning with
approximate matching based on syntactic Information-Retrieval-based similarity
computations. Finally, in [18], the authors propose a retrieval method to assess
the similarity of available service interfaces with a provided desired-service de-
scription, extended to include semantically similar words according to wordNet.

The solution in this paper appears to be more general and comprehensive
compared to the works in this section, since it can be adapted to any semiring-like
metrics, and comes with several formal tools for reasoning over the queries (e.g.,
join and hiding in Sec. 5). Moreover, most of the proposed works do not consider
the service behavior at all, but only their interfaces. In addition, we propose
an implementation based on (Soft) Constraint Programming, which proves to
be expressive and efficient at the same time, adopting (off-the-shelf) AI-based
solving techniques in its underlying machinery.

3 Semirings and Soft Constraint Satisfaction Problems

A c-semiring [5] (simply semiring in the sequel) is a tuple S = 〈A,+,×,0,1〉,
where A is a possibly infinite set with two special elements 0,1 ∈ A (respectively

the bottom and top elements of A) and with two operations + and × that
satisfy certain properties over A: + is commutative, associative, idempotent,
closed and 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit element, and 0 is its
absorbing element. The + operation defines a partial order ≤S over A such
that a ≤S b iff a + b = b; we say that a ≤S b if b represents a value better
than a. Moreover, + and × are monotone on ≤S , 0 is its min and 1 its max,
〈A,≤S〉 is a complete lattice and + is its least upper bound operator (i.e., a+b =
lub(a, b)). Some practical instantiations of the generic semiring structure are the
boolean 〈{false , true},∨,∧, false, true〉,3 fuzzy 〈[0..1],max,min, 0, 1〉, probabilistic
〈[0..1],max, ×̂, 0, 1〉 and weighted 〈R+ ∪ {+∞},min, +̂,∞, 0〉 (where ×̂ and +̂
respectively represent the arithmetic multiplication and addition).

Given a semiring 〈A,+,×,0,1〉 and a, b ∈ A, we define the residuated nega-
tion [6] of a as ¬a = max{b : b× a = 0}, where max is according to the ordering
defined by + [6]. Note that over the boolean semiring the negation operator
exactly corresponds to the logic negation, since ¬0 = max{b : b × 0 = 0} and
b = 1, while when ¬1 = max{b : b× 1 = 0} then the only possibility is b = 0.

A soft constraint [5] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given S = 〈A,+,×,0,1〉 and an
ordered finite set of variables V over a domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring, i.e. c : (V → D) → A. Let C = {c | c : D|I⊆V | → A} be the set of all
possible constraints that can be built starting from S, D and V : any function
in C depends on the assignment of only a (possibly empty) finite subset I of V ,
called the support, or scope, of the constraint. For instance, a binary constraint
c(x, y) = x+ y (i.e., {x, y} = I ⊆ V) is defined on the support supp(c) = {x, y}.
Note that cη[v := d] means cη′ where η′ is η modified with the assignment v := d.
Note also that cη is the application of a constraint function c : V → D → A to
a function η : V → D; what we obtain is a semiring value cη = a.4

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η [5]; supp(c1 ⊗ c2) = supp(c1) ∪ supp(c2). Given the set C,
the combination function ⊕ : C ⊕ C → C is defined as (c1 ⊕ c2)η = c1η + c2η [4];
supp(c1⊕c2) = supp(c1)∪supp(c2). Informally, the ⊗/⊕ builds a new constraint
which associates with each tuple of domain values for such variables a semiring
element which is obtained by multiplying/summing the elements associated by
the original constraints to the appropriate sub-tuples. Given a constraint c ∈ C
and a variable v ∈ V , the projection [5] of c over V \{v}, written c ⇓(V \{v}) is
the constraint c′ such that c′η =

∑
d∈D cη[v := d]. Informally, projecting means

eliminating some variables from the support. Given a soft constraint c, ¬c is a
constraint such that if cη = a then ¬cη = ¬a [6], where supp(c) = supp(¬c).

The partial order ≤S over C can be easily extended among constraints by
defining c1 ⊑S c2 ⇐⇒ c1η ≤S c2η. In order to define constraint equivalency we
have c1 ≡S c2 ⇐⇒ c1η =S c2η and supp(c1) = supp(c2).

3 The boolean semiring can be used to represent classical crisp constraints.
4 the constraint function ā always returns the value a ∈ A to all assignments of domain
values, e.g. 0̄ and 1̄ functions always return 0 and 1 respectively.

Fig. 1. A graphical representation of
four weighted constraints, e.g., c2 =
c3 ⊗ c4.

Fig. 2. A soft CSP based on a weighted

semiring.

In Fig. 1 we show a graphical example of four weighted constraints (i.e.,
defined in the weighted semiring), where we have c3 ⊗ c4 = c2, c4 ⊑ c3, c3 ⊑ c2,
c3 ⊑ c1, but c2 6⊑ c1 because of the gray region, where c1 ⊑ c2 instead; moreover,
in Fig. 1 we can see that supp(c1) = supp(c2) = supp(c3) = supp(c4) = {x}.

A SCSP [5] is defined as a quadruple P = 〈S, V,D,C〉, where C ⊆ C is the
constraint set of the problem P . The best level of consistency notion defined as
blevel(P) = Sol(P) ⇓∅, where Sol(P) =

⊗
C [5]. A problem P is α-consistent

if blevel(P) = α [5]; P is instead simply “consistent” iff there exists α >S 0
such that P is α-consistent [5]. P is inconsistent if it is not consistent. Figure 9
shows a SCSP as a graph: S corresponds to the weighted semiring, i.e. 〈R+ ∪
{+∞},min, +̂,∞, 0〉. Variables (V = {x, y}) and constraints (C = {c1, c2, c3})
are represented respectively by nodes and arcs (unary for c1 and c3, and binary
for c2), and semiring values are written to the right of each variable assignment
of the constraint, where D = {a, b}. The solution of P in Fig. 9 associates a
preference to every domain value of x and y by combining all the constraints,
i.e. Sol(P) =

⊗
C. For instance, for the assignment 〈a, a〉 (that is, x = y = a),

we compute the sum of 1 (which is the value assigned to x = a in constraint c1),
5 (which is the value assigned to 〈x = a, y = a〉 in c2) and 5 (which is the value
for y = a in c3). Hence, the resulting preference value for this assignment is 11.
For the other assignments, 〈a, b〉 → 7, 〈b, a〉 → 16 and 〈b, b〉 → 16. The blevel for
the example in Fig. 9 is 7, related to the assignment x = a, y = b.

4 Soft Constraint Automata

Constraint Automata were introduced in [2] as a formalism to describe the be-
havior and possible data flow in coordination models (e.g., the Reo language [2]);
they can be considered as acceptors of Timed Data Streams (TDS) [1]. In this
section we extend some of the definitions given in [2] in order to obtain Soft Con-
straint Automata (SCA). We now recall the definition of TDS from [1], while
extending it using the softness notions provided in Sec. 3: we name this result
as Timed Weighted Data Streams (TWDS). For convenience, we consider only
infinite behavior and infinite streams that correspond to infinite “runs” of our
soft automata, omitting final states including deadlocks.

Definition 1 (Timed Weighted Data Streams). Let Data be any set and
Dataω = {λ | λ : {0, 1, 2, . . .} → Data}, where Dataω is the set of infinite

sequences over Data, and given a semiring S = 〈A,+,×,0,1〉, a Timed Weighted
Data Stream (TWDS) is defined as:

TWDS = {〈λ, l, a〉 ∈ Dataω×R
ω
+×Aω : ∀k ≥ 0 : l(k) < l(k+1) and lim

k→+∞
l(k)}

Thus, a TWDS triplet 〈λ, l, a〉 corresponds to a data stream λ ∈ Dataw, a
time string l ∈ R

ω
+ and a preference stream a ∈ Aω. The time stream l indicates,

for each data item λ(k), the moment l(k) at which it is being input or output,
while the preference stream provides a preference score for each λ(k).

Constraint Automata [2] use a finite set N of names, e.g., N = n1, . . . , nn,
where ni stands for the i-th input/output port. The transitions of SCA are
labeled with pairs consisting of a non-empty subset N ⊆ N and a soft (instead
of crisp as in [2]) data-constraint c. Soft data-constraints can be viewed as an
association of data assignments with a preference for that assignment. Formally,

Definition 2 (Soft Data-Constraints). Soft data-constraints are functions
c : (dN⊆N → Data) → A defined over a semiring S = 〈A,+,×,0,1〉, where
dN = {dn | n ∈ N} represents the data items associated with every port n in
N , and Data is the domain of values that pass through ports in N . Soft data-
constraints are given by the following grammar:

cdN⊆N
::= 0̄ | 1̄ | c1 ⊕ c2 | c1 ⊗ c2 | ¬c

where dN⊆N is the support of the constraint, i.e. the set of data names that
determine its preference (see Sec. 3).

Informally, a soft data-constraint is a function that returns a preference value
a ∈ A given an assignment for the names dN in its support. In the sequel, we
write SDC(N,Data), for a non-empty subset N of N , to denote the set of
soft data-constraints. We will use SDC as an abbreviation for SDC (N,Data).
Note that in Def. 2 we assume a global data domain Data for all names, but,
alternatively, we can assign a data domain Datani

for every name ni ∈ N .
We can say that an assignment η for the names dN satisfies c with a preference

of a ∈ A, if cη = a. Equivalence and logical implication for soft data-constraints
are defined as in Sec. 3: we respectively write c1 ≡ c2, and c1 ⊑ c2.

Note that by using the boolean semiring (see Sec. 3), thus within the same
semiring-based framework, we can exactly model the “crisp” data-constraints
presented in the original definition of Constraint Automata [2]. Therefore, Con-
straint Automata are contained in Def. 3. Note also that weighted automata,
with weights taken from a proper semiring, have already been defined in the
literature [8]; in SCA, weights are determined by a constraint function instead.

Definition 3 (Soft Constraint Automata). A Soft Constraint Automaton
is a tuple TS = (Q,N ,−→,Q0, S) where i) S is a semiring 〈A,+,×,0,1〉, ii) Q
is a finite set of states, iii) N is a finite set of names, iv) −→ is a finite subset
of Q × 2N × SDC × Q, called the transition relation of TS, and v) Q0 ⊆ Q is

the set of initial states. We write q
N,c
−−→ p instead of (q,N, c, p) ∈−→. We call

N the name-set and c the guard of the transition. For every transition q
N,c
−−→ p

we require that i) N 6= ∅, and ii) c ∈ SDC (see Def. 2). TS is called finite iff
Q,−→ and the underlying data-domain Data are finite.

The intuitive meaning of an SCA TS as an operational model for service
queries is similar to the interpretation of labeled transition systems as formal
models for reactive systems. The states represent the configurations of a service.
The transitions represent the possible one-step behavior, where the meaning of
q

N,c
−−−→ p is that, in configuration q, the ports in N ∈ N have the possibility

of performing I/O operations that meet the soft guard c and that leads from
configuration q to p, while the other ports in N\N do not perform any I/O
operation. dN represent the names of the data associated with ports in N , i.e.
the data transformed by the I/O operations through ports in N .

In Fig. 3 we show an example of a (deterministic) SCA. In Fig. 4 we define
the weighted constraints c1 and c2 that describe the preference (e.g., a monetary
cost) for the two transitions in Fig. 3, e.g. c1η[dL := 2] = 5.

Definition 4. For a Soft Constraint Automaton TS = (Q,N ,−→,Q0,S), a
state q ∈ Q, N ⊆ N and P ⊆ Q, we define

sdcTS
(q,N, P) =

⊕
{c : q

N,c
−−→ p for some p ∈ P}

where
⊕

corresponds to the application of the ⊕ operator presented in Sec. 3 to
all the constraints of the set (⊕ is commutative and associative).

Intuitively, sdcTS
(q,N, P) is the weakest (i.e., with the best preference) soft

data-constraint that ensures the existence of an N -transition from state q to P .
Note that sdcTS

(q,N, P) = 0̄ if there is no N -transition from q to a P -state.
We define the language accepted by TS as

LTWDS =
⋃

q∈Q0

LTWDS(TS , q)

where LTWDS denotes the language accepted by the state q (viewed as the
starting state) of TS . The accepted languages on N = {L,M} are defined as the
set of all TWDS pairs 〈〈λ, l, ai〉, 〈µ,m, aj〉〉 that have an infinite run in TS starting
in state q. The data streams λ and µ correspond to the data elements that flow
through, respectively, L and M ; l and m contain the time instants at which these
operations take place. LTWDS(TS , q) consists of all pairs 〈〈λ, l, ai〉, 〈µ,m, aj〉〉

such there exists a transition q
N,c
−−→ q̄ that satisfies the following conditions:

q0 q1

{L}
c1

{M}
c2

Fig. 3. A Soft Constraint Automaton. Fig. 4. c1 and c2 in Fig 3.

l(0) < m(0) ∧ N = {L} ∧ cη[dL := λ(0)] = ai ∧ 〈〈λ′
, l

′
, a

′
i〉, 〈µ,m, aj〉〉 ∈ LTWDS(TS , q̄)

m(0) < l(0) ∧ N = {M} ∧ cη[dM := µ(0)] = aj ∧ 〈〈λ, l, ai〉, 〈µ
′
,m

′
, a

′
j〉〉 ∈ LTWDS(TS , q̄)

l(0) = m(0) ∧ N = {L,M} ∧ cη[dL := λ(0), dM := µ(0)] = ak ∧ 〈〈λ′
, l

′
, a

′
i〉, 〈µ

′
,m

′
, a

′
j〉〉

where 〈〈λ′, l′, a′i〉, 〈µ
′,m′, a′j〉〉 ∈ LTWDS and ai, aj , ak >S 0. Although the above

definition is circular in case q = q̄, a proper monotone operator can be formally
defined [2]. As an example, the language accepted by the automaton in Fig. 3
equals the set {〈〈λ, l, ai〉, 〈µ,m, aj〉〉 ∈ TWDS × TWDS | l < m < l′}.

We now define the soft join-operator of two SCA, performing the (natural)
join of two LTWDS . We can use this operator to merge two queries (see Sec. 5).

Definition 5 (Soft Product-Automaton (soft join)). The soft product-
automaton of two SCA T 1

S = (Q1,N1,−→1,Q0,1,S) and T 2
S = (Q2,N2,−→2

,Q0,2,S) on the same semiring S is defined as T 1
S ⊲⊳ T 2

S = (Q1×Q2,N1∪N2,−→
,Q0,1 ×Q0,2), where −→ is given by the following two rules:

q1
N1,c1−−−−→ p1, q2

N2,c2−−−−→ p2, N1 ∩ N2 = N2 ∩ N1

〈q1, q2〉
N1∪N2,c1⊗c2−−−−−−−−−−→ 〈p1, p2〉

(1)
q1

N,c
−−−→ p1, N ∩ N2 = ∅

〈q1, q2〉
N,c
−−−→ 〈p1, p2〉

(2)

The first rule is applied when there are two transitions in the automata
which can be fired together. This happens only if there is no shared name in
the two automata that is present on one of the transitions, but not present on
the other one. In this case, the transition in the resulting automaton is labelled
with the union of the name sets on both transitions, and the data-constraint
is the conjunction of the data-constraints of the two transitions. The second
rule is applied when a transition in one automaton can be fired independently
of the other automaton, which happens when the names on the transition are
not included in the other automaton. The proof for correctness of the soft join
directly derives from the correctness of the crisp join [2].

The hiding operator [2] abstracts the details of the internal communication
in the SCA, and shows the observable external behaviour of a query. In SCA,
the hiding operator ∃O[TS] (see Def. 6) removes all information about names
O ⊆ N , and removes the influence of the names in O from the SDC of TS : this
operator removes dO from the support of all soft constraints in TS .

Definition 6 (Hiding in Soft Constraint Automata). Let TS = (Q,N ,−→
,Q0, S) be an SCA and N,O ⊆ N . The SCA ∃O[T] = (Q,N\O,−→O,Q0,O, S)
is defined as follows. Let ∗ be the transition relation such that q ∗ p iff there

exists a finite path q
O,c1
−−−→ q1

O,c2
−−−→ q2

O,c3
−−−→ . . .

O,cn
−−−→ qn, where qn = p and

c1, . . . , cn are satisfiable (i.e., ci 6≡ 0̄) and ∀ci.supp(ci) = dO. The set Q0,O of
initial states is Q0∪{p ∈ Q : q0

∗ p for some q0 ∈ Q0}. The transition relation
−→O, where ⇓ is the soft constraint projection described in Sec. 3, is given by:

q ∗ p, p
N,c
−−→ r,N ′ = N\O 6= ∅, c′ = c ⇓dN\O

q
N ′,c′

−−−→O r

5 Expressing Preference-based Queries

In this section we use SCA (see Sec. 4) to model the queries we adopt to describe
i) the behavior of the services a user is interested in, and ii) the preferences of
the user with respect to data exchanged through I/O by the operations. The
behavioral signature is described via the automaton states: the operations are
described by the names on the transitions of the automata, as described in Sec. 4;
the ordering of the operations is enforced by the ordering of the reached states.
In addition, we use SDC (see Def. 2) to model user’s preferences for the data
used by the service operations. Assigning these names to the actual names of
the services in the database leads to a global preference for that service.

Our model assumes, ignoring details, the existence of a standard vocabulary
(i.e., a domain-specific ontology) for messages and activities (e.g., OWL-S [14]).
Therefore, we suppose that all the names in the following examples are properly
obtained from an ontology on services. Ontologies have already been used in the
literature to help preference and similarity-based searches (see Sec. 2), and serve
as a common dictionary for queries and services.

In Fig. 5 we show two first examples of soft queries: with q0 the user looks
for a bibliography-search service that is able to search for conference papers by
Author, while in case q1 the search is by Title. The preferences of the user are
summarized by the two soft constraints c1 and c2, which are represented in Fig. 6.
These examples can be modeled with the fuzzy semiring 〈[0..1],max,min, 0, 1〉:
c1 states that the user prefers to have a search by first name (with a fuzzy score
of 1), rather than to have it by full name (i.e. 0.8) or by last name (i.e., 0.2), while
c2 states that the user prefers to have a search using the conference title instead
of the paper title. The preference is equal to the bottom value of the semiring
where not expressed (here, 0 = 0). The scenario for these queries corresponds to
the fact that the user remembers the first name of the author, or the conference
where he met the author, but he has a vague memory of the author’s last name,
and of the title of the paper the author presented at that conference.

Suppose now that our database contains the four services represented in
Fig. 7. According to the preferences expressed by c1 and c2 in Fig. 6, queries
q0 and q1 in Fig. 5 return different preferences for each service, depending on
the instantiation of variables dAuthor and dTitle . Considering q0, services a, b,
and d have a respective preference of 0.2, 1, and 0.8. If query q1 is used instead,
the possible results are services c and d, with respective preferences of 1 and

q0 q1

{Author}
c1

{T itle}
c2

Fig. 5. Two soft Constraint Automata
representing two different queries.

Fig. 6. The definition of c1 and c2 in
Fig. 5.

a b c d

{Author}
dAuthor = last

{Author}
dAuthor = first

{T itle}
dTitle = conference

{Author}
dAuthor = full

{T itle}
dTitle = paper

Fig. 7. A database of services for the query in Fig. 5; d perfoms both kinds of search.

0.3. When more than one service is returned as the result of the search, the end
user has the freedom to choose the best one according to his preferences: for
the first query q0, he can opt for service b, which corresponds to a preference
of 1 (i.e., the top preference), while for query q1 he can opt for c (top prefer-
ence as well). A possible programming-like declaration for service a in Fig. 7
is “void Author(last)”. Note that a fifth possible service in the database may
implement a search by name initials, but according to c1 in Fig. 6, the user’s
preference for this service would be 0, i.e. cη[dAuthor := Initials] = 0.

Note also that we can define n-ary soft constraints for more than one input
data at the same time, in order to relate the preference for the values of two or
more I/O data. For example, if we want to search by author and title at the same
time, we can add a binary constraint c on dAuthor ,Title , such that cη[dAuthor :=
First , dTitle := Conference] = a1, cη[dAuthor := First , dTitle := Paper] = a2,
and a1 >S a2. This means that, when we know the first name of the author, we
prefer to search using the title of the conference, instead of the paper title.

In Fig. 8 we provide a more complex example of a soft query, where we
show the classical on-line purchase scenario cited in Sec. 1. In this case, the
requirements of the user are i) a login/logout service, ii) an electronic basket
that can be filled with the user’s orders (at least one item has to be added
before proceeding further), iii) a decision on the shipping method and, finally,
iv) a payment service. Therefore, this query is expressed with the help of four
different states modeling its behavior. The SDC expressing the user’s preferences
are represented in Fig. 8, where we suppose that the user expresses no preference
for the data concerning the Logout service, i.e., c2 = 1̄. Note that, after the
payment, the user can purchase a successive order without logging out.

In the following we show that the join and hiding operators presented in
Sec. 4 can be used to operate on queries. Query composition is useful in order

q0 q1 q2 q3

{Login}
c1

{Logout}
c2

{AddToBasket}
c3

{AddToBasket}
c3

{Shipping}
c4

{Charging}
c5

Fig. 8. A more complex soft query for the on-line purchase scenario presented in Sec. 1.

Fig. 9. The definition of c1, c3, c4, c5 for the query in Fig. 8 (we suppose c2 = 1̄).

q0 q1 q2 q3

{Login}
c1

{Logout}
c2

{AddToBasket}
c3

{Shipping}
c4

{Charging}
c5

Fig. 10. Two queries that can be composed (i.e., with join) to obtain Fig. 8.

to reuse part of a query into another one, or to split the query into different
knowledge domains. For example, in Fig. 4 the first query can be decided by the
internal IT department of the company that needs to use the service, according
to the internal security regulations, whereas the second query can be decided by
the purchasing department of the company.

The hiding operator presented in Sec. 4 can be used to hide some over con-
straining information from the query, if , for instance, the previous search has
led to a “no result” answer for the user. If we suppose to ask query q0 in Fig. 11
having a database as the one represented in Fig. 7, no result is returned because
no service implements a search by Author and Title at the same time. Then the
user may relax the query by hiding Title, and ask again obtaining as possible
response services a, b and d in Fig. 7.

5.1 Formally Reasoning on the Similarity of Queries

In the sequel we redefine the notions of bisimulation and simulation [2] by con-
sidering soft constraints, instead of crisp ones.

Definition 7 (Soft Bisimulation). Let TS = (Q,N ,−→,Q0, S) be an SCA
and let R be an equivalence relation on Q. R is called a soft bisimulation for
TS if, for all pairs (q1, q2) ∈ R, all R-equivalence classes P ∈ Q\R, and every
N ⊆ N : sdcTS

(q1, N, P) ≡ sdcTS
(q2, N, P).

q0 q0

{Author, T itle}
cdAuthor ,dTitle

{Author}
cdAuthor ,dTitle

⇓dAuthor

Fig. 11. Hiding information in a soft query.

As a reminder, c1 ≡ c2 iff c1η = c2η = a for each assignment η (see Sec. 3).
States q1 and q2 are called bisimulation-equivalent (q1 ∼ q2) iff there exists a
bisimulation R with (q1, q2) ∈ R. Two automata T 1

S and T 2
S are bisimulation-

equivalent (T 1
S ∼ T 2

S) iff their initial states are bisimulation-equivalent [2].

Definition 8 (Soft Simulation). Let TS = (Q,N ,−→,Q0, S) be an SCA and
let R be a binary relation on Q. R is called a soft simulation for TS if, for
all pairs (q1, q2) ∈ R, all R-upward closed sets P ⊆ Q, and every N ⊆ N :
sdcTS

(q1, N, P) ⊑ sdcTS
(q2, N, P).

An automaton T 2
S simulates another automaton T 1

S iff every initial state of
T 1
S is simulated by an initial state of T 2

S ; this relationship is denoted as T 1
S � T 2

S .
Soft bisimulation can be seen as a method to check the equivalence of two

LTWDS languages, while soft simulation concerns language inclusion, as ex-
plained in [2] for the crisp version.Moreover, since our timed streams are weighted
as explained in Def. 1 we can prove the following proposition:

Proposition 1. Given two automata T 1
S and T 2

S able to parse the languages
LTWDS1

and LTWDS2
respectively, and 〈λ, l, ai〉 ∈ TWDS1 and 〈µ,m, aj〉 ∈

TWDS2, then:

– If T 1
S ∼ T 2

S and λ(k) = µ(k), then ai =S aj.
– If T 1

S � T 2
S and λ(k) = µ(k), then ai ≥S aj.

The proof derives from the fact that, if T 1
S ∼ T 2

S , then sdcT 1

S
(q1, N, P) ≡

sdcT 2

S
(q2, N, P), and, if T 1

S � T 2
S , sdcT 1

S
(q1, N, P) ⊑ sdcT 2

S
(q2, N, P).

Bisimulation can be used to check if two queries are equivalent, that is if
they search the same services with the same preferences expressed by a user.
Simulation between T 1

S � T 2
S can instead be used to check if the query expressed

through T 1
S is entailed by T 2

S , and, consequently, the latter’s returned services
are a subset of the former’s. Note that simulation/bisimulation for weighted
automata (i.e., not for SCA) has already been defined in the literature [8]

6 Similarity-based Queries

In Sec. 5 we adopted the theory extended in Sec. 4 to represent the queries using
crisp synchronization constraints (i.e., “crisp names”) and soft data-constraints.
This way, it is possible to guide the search according to the preferences of the
user concerning the data used by the service operations.

In this section, we focus on similarity-based search, instead of preference-
based one: transition names are not crisp anymore, but we allow for different
operations considered somehow similar for the purposes of the user’s query. Note
that a similar service can be used, e.g., when the “preferred” one is down due to
a fault, or when it offers bad performances due to the high number of requests.
Definition 9 formalizes the notion of soft synchronization-constraint.

Definition 9 (Soft Synch.-constraint). A soft synchronization-constraint is
a function c : (V → N) → A defined over a semiring S = 〈A,+,×,0,1〉, where
V is a finite set of variables for each I/O port, and N is the set of I/O port
names of the SCA.

For example, suppose that a user asks only query q0 in Fig. 5. The possible
results are services a, b and d in Fig. 7, since service c only performs a search
based on the Title of the paper, and not on the Author. However, the two
services are very similar, and a user may be satisfied also by retrieving (and
then, using) service c. This can be accomplished with the query in Fig. 12,
where cxη[x := Author] = 1, and cxη[x := Title] = 0.7. In Fig. 13 we show a
similarity-based query for our on-line purchase scenario: in this case, we have
V = {x1, x2, x3, x4, x5, x6}, and the domain for each of these variables is N =
{MutualLogin,Login ,Logout ,AddToBasket , Shipping ,Charging , SendEstimate}.
A user can also choose for a mutual login in the first step, and for an estimate
of the price instead of a direct charging.

q0

{x}
cxη[x := Author] = 1
cxη[x := Title] = 0.7

Fig. 12. A similarity-based query for
the Author/Title example.

q0 q1 q2 q3

{x1}
cx1

η[x1 := MutualLogin] = 1
cx1

η[x1 := Login] = 0.8

{x2}
cx2

η[x2 := LogOut] = 1

{x3}
cx3

η[x3 := AddToBasket] = 1

{x4}
cx4

η[x4 := AddToBasket] = 1

{x5}
cx5

η[x5 := Shipping] = 1

{x6}
cx6

η[x6 := Charging] = 1
cx6

η[x6 := SendEstimate] = 0.5

Fig. 13. A similarity-based query for the on-
line purchase service.

6.1 A Mapping to Soft Constraint Satisfaction Problems

In this section we map our similarity-based search into a SCSP P (see Sec. 3);
by solving P , we find the services in the database closest to the requirements
expressed by a user’s query. We use this solving method for two fundamental rea-
sons: first, constraint programming is a declarative and very expressive means to
quickly define the acceptable results in terms of constraint relationships. Second,
SCSPs (and in general, Constraint Programming) come with several AI-based
techniques that can be used to cut the search space and improve efficiency. For
example, an α-cut on the branch-and-bound search can be used to stop the
search as soon as the preference of the partial solution becomes worse than a
threshold specified by the user. In this way, we can find only the α-consistent
solutions (see Sec. 3), thus sparing computational resources for those solutions
with a worse-than-α preference, which would not be selected by the user after all.
This is particularly desirable with very large databases of services, containing
interfaces with thousands of operations and thousands of behavioral states.

Mapping. We propose a mappingM such that, given the SCA TS = (Q,N ,−→
,Q0, S) (i.e., our query), and a database of services DB = {T1, T2, . . . , Th} rep-
resented by h crisp constraint automata [2], we obtain M(TS ,DB) = P , where
P = 〈S, V,D,C〉 is a SCSP (see Sec. 3). For each transition i in the automa-
ton TS modeling the query, we use two variables xi, yi representing the source
and destination states of the transition. A variable zi represents the operation

names that we associate with transition i. Therefore, V =
⋃
{xi, yi, zi}, for

i = 1 .. (|−→i |∈ TS). Concerning the domain of the variables in V , ∀xi, yi ∈
V.Dxi,yi

= {Q1 ∪ Q2 ∪ · · · ∪ Qh} = QDB (where, e.g., Q1 ∈ T1), and ∀zi ∈
V.Dzi = {N | N ⊆ NDB}, where NDB is the set of operation names used by the
services in DB. k is the total number of states for the services in the database,
i.e., k =| QDB |. We identify two different classes of constraints to build C ∈ P :

Automaton-structure constraints. With this set of constraints, we force the so-
lutions (i.e., the crisp automata in DB) to respect the structure of automaton

TS modeling the query. For each qa
Nl−−→ qb ∈ DB (qa, qb ∈ QDB), we have

cxi,yi(xi = qa, yi = qb) = 1, and 0 otherwise. In addition, we also need to en-
force the sequence of the states/transitions in the solution, according to the one
expressed by the query. For example, if we have qxi −→ qyi and qxj −→ qyj , and
yi = xj in TS , we need to add cxj ,yi(xj = yi) = 1, and 0 otherwise.

Name-preference constraints. These constraints model the preference for the name

on the transition. For each qa
Nl−−→ qb ∈ DB , cxi,yi,zi(xi = qa, yi = qb, zi = nl) = a,

where a ∈ A (the set of preferences in S) represents the preference for name nl.

Example 1. Here we list all the automaton-structure constraints with a preference
better than 0, that model the query in Fig 13: cx1,y1(x1 = qa, y1 = qb) = 1,
cx2,y2(x2 = qc, y2 = qd) = 1, cx1,y2(x1 = y2) = 1, cx2,y1(x2 = y1) = 1,
cx3,y3(x3 = qa, y3 = qb) = 1, cx3,y2(x3 = y2) = 1, cx4,y4(x4 = qa, y4 = qb) = 1,
cx4,y4(x4 = y4) = 1, cx4,y3(x4 = y3) = 1, cx5,y5(x5 = qa, y5 = qb) = 1, cx5,y4(x5 =
y4) = 1, cx6,y6(x6 = qa, y6 = qb) = 1, cx6,y5(x6 = y5) = 1, cx3,y6(x3 = y6) = 1, for
each qa −→ qb in the service database.
In the following we list also the name-preference constraints with a preference better
than 0: cx1,y1,z1(x1 = qa, y1 = qb, z1 = {Login}) = 0.8, cx1,y1,z1(x1 = qa, y1 =
qb, z1 = {MutualLogin}) = 1, cx2,y2,z2(x2 = qa, y2 = qb, z2 = {Logout}) = 1,
cx3,y3,z3(x3 = qa, y3 = qb, z3 = {AddToBasket}) = 1, cx4,y4,z4(x4 = qa, y4 =
qb, z4 = {AddToBasket}) = 1, cx5,y5,z5(x5 = qa, y5 = qb, z5 = {Shipping}) = 1,
cx6,y6,z6(x6 = qa, y6 = qb, z6 = {Charging}) = 1 and cx6,y6,z6(x6 = qa, y6 = qb, z6 =

{SendEstimate}) = 0.5, for each qa
nl−→ qb in the service database.

7 Conclusion

In this paper, we have proposed a general formal framework to express both
preference and similarity-based queries for the SOC paradigm, as WSs. This
framework has evolved from Constraint Automata [2] (to model the behavior of
services) and semiring-based soft constraint [5,4] (to model preference values):
we merged these two ingredients to obtain SCA, which comprise the tool we
use to model these kinds of queries. The resulting framework can parametrically
deal with different systems of semiring-based preferences.

In the future, we will automate the search by implementing the mapping
proposed in Sec. 6.1 into a real constraint programming environment, such as
CHOCO [12], and test the performance results. Moreover, we want to unify
both preference and similarity-based queries in a single framework, to be able to
express similarity-based queries with preferences on the input data.

References

1. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Recent Trends in Algebraic Development Techniques (WADT) Revised Selected
Papers. LNCS, vol. 2755, pp. 34–55. Springer (2002)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

3. Benbernou, S., Canaud, E., Pimont, S.: Semantic web services discovery regarded
as a constraint satisfaction problem. In: Flexible Query Answering Systems, 6th
International Conference. LNCS, vol. 3055, pp. 282–294. Springer (2004)

4. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. SpringerVer-
lag (2004), http://dl.acm.org/citation.cfm?id=993462

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

6. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language to
model the negotiation process. Fundam. Inform. 111(3), 257–279 (2011)

7. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: Proceedings of Very large data bases. vol. 30, pp. 372–383. VLDB
Endowment (2004), http://dl.acm.org/citation.cfm?id=1316689.1316723

8. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer
Publishing Company, Incorporated, 1st edn. (2009)

9. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval. In: IEEE International Conference on Web Services (ICWS). pp. 145–152.
IEEE Computer Society (2006)

10. Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web
services. In: Web Service Semantics Workshop at WWW (2005)

11. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discov-
ery with OWLS-MX. In: Proceedings of Autonomous agents and multia-
gent systems. pp. 915–922. AAMAS ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1160633.1160796

12. Laburthe, F.: CHOCO: implementing a CP kernel. In: Proceedings of TRICS:
Techniques for Implementing Constraint programming Systems, a post-conference
workshop of CP. pp. 71–85 (2000)

13. Meng, S., Arbab, F.: Web services choreography and orchestration in reo and
constraint automata. In: Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC). pp. 346–353. ACM (2007)

14. OWL-S: Semantic Markup for Web Services (2004),
http://www.w3.org/Submission/OWL-S/

15. Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable
querying services over fuzzy ontologies. In: Proceedings of World Wide
Web. pp. 575–584. WWW ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1367497.1367575

16. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of the 2005 IEEE International Conference on Services Computing - Volume
01. pp. 279–286. SCC ’05, IEEE Computer Society, Washington, DC, USA (2005)

17. Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A semantic approach to approx-
imate service retrieval. ACM Trans. Internet Technol. 8(1) (Nov 2007)

18. Wang, Y., Stroulia, E.: Semantic structure matching for assessing web-service sim-
ilarity. Service-Oriented Computing-ICSOC 2003 pp. 194–207 (2003)

19. Zemni, M.A., Benbernou, S., Carro, M.: A soft constraint-based approach to QoS-
aware service selection. In: Service-Oriented Computing - 8th International Con-
ference, ICSOC 2010. LNCS, vol. 6470, pp. 596–602 (2010)

http://dl.acm.org/citation.cfm?id=993462
http://dl.acm.org/citation.cfm?id=1316689.1316723
http://doi.acm.org/10.1145/1160633.1160796
http://www.w3.org/Submission/OWL-S/
http://doi.acm.org/10.1145/1367497.1367575

	Preference and Similarity-based Behavioral Discovery of Services

