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A variation-of-constants formula for nonlinear Volterra integral equations 
*) of convolution type 

by 

O. Diekmann & S.A. van Gils 

ABSTRACT 

With a Volterra integral equation of convolution type one can associate 

a semigroup of operators acting on a space of forcing functions. Within 

this context we derive a variation-of-constants formula for a certain class 

of nonlinear equations. We indicate how to extend the results to other 

classes by considering a special equation from mathematical epidemiology. 
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formula, semigroups of operators 

*) This report will be submitted for publication in the Proceedings of the 
Conference on "Nonlinear Differential Equations: Invariance, Stability 
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1. INTRODUCTION 

There are (at least) two different ways to associate with Volterra 

integral equations of convolution type a semigroup of operators: 
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(i) Write the equation in its translation invariant form and prescribe an 

initial function on an interval of the right length. The semigroup acts 

on the space of initial functions and it is defined by translation 

along the solution. 

(ii) Consider a space of forcing functions as the state space and define 

the semigroup by the formula which shows how the equation transforms 

under translation. 

In the linear case, with an appropriate choice of the spaces, one 

construction is modulo transposition of the matrix-valued kernel the adjoint 

of the other [2]. In the process of building a qualitative theory this 

observation, which applies to other delay equations as well [1,3], can be 

succesfully exploited in the proof of Fredholm alternatives and in the 

construction of projection operators. 

In this note we shall derive an important tool for a geometric theory 

within the framework of the second construction. It will appear that this 

somewhat unusual approach has certain advantages. For instance, if 

b rt) = I B(T)g(~(t-T))dT, t > o, 
0 

X (t) = <P (t) -b :-::; t :-::; o, 

then xis discontinuous int= 0 unless <PE M where by definition 

b 

M = {qi l <P(O) = J B(T)g(q,(--T) )dT}. 

0 

Of course one can restrict on~s attention to the manifold M, but, partic-

ularly in perturbation problems where Band g, and hence Mas well, may 

depend on parameters, this leads to technical (though not insuperable) 

difficulties [4, section 12.3;5]. Such difficulties are less prominent in 

the theory we are going to sketch. 

At first we shall deal with equations where the nonlinearity occurs in 





the integrand. But in section 5 we shall, by means of an example, indicate 

how the theory can be extended to equations which contain a nonlinear 

function of integrals. 

2. DEFINITION OF THE SEMIGROUP. 

In the following B denotes a given nxn-matrix valued function defined 
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and integrable on lR+ = [O,~). We assume that the support of Bis contained 
n n in the interval [O,b], where bis some positive number. Let g:lR + lR be 

a given uniformly Lipschitz continuous function. We are interested in the 

equation 

(2. 1) , X = B*g (x) + f 

where, as usual, 

t 

(B*g(x)) (t) = f B(T)g(x(t-T) )dT. 

0 

For reasons which are explained in detail in [2] we put rather severe re

strictions on the forcing function f. More precisely, we take f EX where 

X = {f € C(lR+) i~ f(t) = 0 for t 2: b}. 

We provide X with the suprerouµi norm topology. 

Let f EX be arbitrary. Equation {2.1) has a unique continuous solution 

x defined on JR+• We define, for s 2: 0, S{s)f by the relation 

(2. 2) X = B*g(x) + S{s)f, 
s s 

where x (t) = x(s+t). Using the identity 
s 

{B*g(xs)) (t) = {B*g{x)) (t+s) - (Bt*g(x)) (s) 

and (2.1) we obtain 
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(2.3) (S (s) f) (t) = f (t+s) + (Bt *g (x)) (s) • 

From the fact that translation is continuous in the L1-topology we 

infer that (Bt*g(x)) (s) is continuous as a function oft. Moreover, 

(Bt*g(x)') (s) = 0 for t ~ b. Hence S(s) is a mapping of X into itself. Since 

x(t) depends continuously on f, uniformly on compact t-intervals, S(s) is 

continuous. 

THEOREM 2 .1. The mapping s t+ S (s) defines a strongl11 continuous semigroup 

of continuous (nonlinear) operators on X. 

PROOF. Fro~ (2.2) we deduce that 

(x ) = B*g ( (x ) ) + S (s) S (o) f, 
0 S O S 

and 

x = B*g(x ) + S(s+o)f. 
s+o s+o 

Since (x) = x this implies that 
o s s+o 

S(s)S(o) = S(s+o). 

(Note that we use implicitly the uniqueness of the solution of (2.1).) 

Clearly S(O) =I.Finally, 

(S(s)f) (t) - (S(O)f) (t) = x Ct) - x (t) + (B*(g(x) -g(x ))) (t) + 0 
S O S 0 

as s-o + 0 uniformly fort E [O,b]. D 

3. THE LINEAR CASE 

In the special case that g(x) = x the semigroup constructed above 

consists of linear operators and will be called T(s). Let R denote the 





resolvent of B, i.e. the unique (matrix-valued) solution of the equation 

(see [6]) 

(3 .1) R = B*R - B, 

(for later use we note that B*R = R*B). The solution of 

(3.2) X = B*X + f 

is given explicitly as 

(3.3) X = f - R*f. 
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Substitution of this expression into (2.3) yields an explicit representation 

of T(s): 

(3 .4) (T(s)f) (t) = f(t+s) + (Bt-Bt*R)*f(s). 

The formula (3.4) extends the action of T(s) to integrable functions and 

hence also to the columns of B. The next result will turn out to be useful. 

LEMMA 3.1. (T(s)B) (t) = Bt(s) - Bt*R(s). 

PROOF. By (3.4) and (3.1) we can write 

(T(s)B) (t) = Bt(s) + (Bt-Bt*R)*B(s) 

= Bt (s) + Bt *B (s) ·- Bt* (B+R) (s) 

= Bt(s) - Bt*R(s). □ 

One can show that the infinitesimal generator A of T(s) is given by 

(Af)(t) = f'(t) + B(t)f(O) 

with 





Moreover, 

V(A) = {f € X l f absolutely continuous and 

f' (.) + B(.)f(0) continuous}. 

b 

cr(A) = Pcr(A) ~o. l det[I - f e-ATB(T)d-r] = 0}, 

(} 

and one can decompose the space X according to the spectrum of A. We refer 

to [2] for a detailed account of these matters. 

4. THE VARIATION-OF-CONSTANTS FORMULA 

Suppose now that g(x) = x + r(x). Let for a given f EX the functions 

x and y be the solutions of, respectively, 

(4.1) 

(4.2) 

x = B*g(x) + f = B*x + B*r(x) + f, 

y = B*y + f. 

LEMMA 4.1. (Miller [6]) 

x - y = -R*r (x) • · 

PROOF. Subtracting the equati~ns we obtain 

x - y = B*(x-y) + B*r(x). 

Hence, by (3.1), 

R*(x-y) = R*(x-y) + B*(x-y) + R*r(x) + B*r(x) 

and so 

x - y = -R*r(x) - B*r(x) + B*r(x) = -R*r(x). 0 
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From (2.3) and the corresponding formula for T(s) we deduce, using 

Lemmas 3.1 and 4.1, that 

(S (s) f) (t) = (T (s) f) (t) + (Bt* (x+r (x)-y)) (s) 

= (T(s)f) (t) + ~(Bt-Bt*R)*r(x)) (s) 

= (T(s)f) (t) + J (T(s-T)B) (t)r(x(-r))d-r. 

0 

If we define F:JR+ ➔ X by F(s) = S(s)f and a:X ➔ JR by cx(f) = f(0) we can 

rewrite this identity as 

s 

(4. 3) F(s) = T(s)F(0) + f o(T(s-T)B)r(a(F(T)))dT 
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(indeed, note that, by (2.2), x(s) = a(S(s)f)). Our main result formulates 

the "equivalence" between (4.1) and (4.3). 

THEOREM 4.2. 

(i) Let x be the solution of ( 4 .1) • Then F: JR ➔ X defined by 
+ 

F(s) = x ~ B*g(x) satisfies (4.3). 
s s 

(ii) Conversely, let F satisfy (4.3). Then x defined by x(s) = a(F(s)) 

satisfies (4.1) with f• = F (0). 

PROOF. (i) has been proved above so we concentrate on (ii). Putting 

F(0) = f, x(s) = a(F(s)) and applying a to (4.3) we obtain, using Lemma 

3.1, (3.4) and (3.1), 

Hence 

X = f + (B-B*R) * (f-r (x)) 

= f - R*f - R*r(x). 

B*x = B*f - B*f - R*f - B*r(x) - R*r(x) 

= x - f - B*r(x). □ 





7 

REMARKS. 

(i) For obvious reasons we call (4.3) the variation-of-constants formula. 

(ii) If r(x) = o(x), x + 0, then T(s) is the Fr~chet derivative of S(s) in 

f = o. 
(iii) Formal differentiation of (4.3) yields the autonomous ordinary diff

erential equation 

(4.4) 
dF 
-= 
ds 

AF + Br (aF) 

= F' + Bg(aF) 

in the Banach space x. So we have demonstrated the correspondence between 

solutions 6f (4.1) and mild solutions of (4.4). 

5. A SPECIAL EQUATION 

The equation 

1 1 

(5.1) x(t) = y(l - fx(t-T)dT) f a(T)x(t-T)dT, 

0 . 0 

arises from a model of the ·spread of a contagious disease, which supplies 

only temporary immunity, in a closed population. The positive parameter y 

is proportional to the population size. The nonnegative kernel a(T) describes 

the infectivity as a function of the time T elapsed since exposure. This 

infectivity vanishes for T > '1. Moreover, an infected individual becomes 

susceptible again after exactly one unit of time. Finally, x(t) is the 

frequency of those infected at time t. 

If we define 

{
1 

b 1 (T) = 
0 

if 0 ~ T ~ 1 , 

otherwise 

(5.2) 

b 2 (T) = ya(T), 

and if we prescribe x on the interval -1 ~ t ~ 0 we can rewrite (5.1) as 
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(5.3) 
1 1 2 2 

x = (1 - b *X - f) (b *X + f ), 

where f 1 and f 2 incorporate the influence of the past (the prescribed 

initial function). We observe that the support of f 1 and f 2 is contained in 

[0,1]. Motivated by this fact we choose 

provided with the topology induced by the norm 

II (f1 ,f2)11 = sup <lf1 (t) I + lf2 (t) I>, 
O~t~1 

as our state space. 

i = 1,2}, 

Additional properties of f 1 and f 2 will guarantee that (5.3) has a 

globally defined solution. Here we shall not comment on those properties, 

but rather we simply assume that they are satisfied. 
1 2 

Let f = (f ,f ). The semigroup S(s) is now defined by the formula 

(5.4) 1 
X = (1 - b *X 

s s 

' or, in other words, 

(5.5) i = 1,2. 

Introducing B = (b1,b2) we can rewrite (5.5) as 

(5.6) (S (s) f) (t) = f (t+s) + (Bt *x) (s). 

The equation (5.1) has two constant solutions. Each of these yields 

a fixed point of S(s) (for arbitrary s). Here we shall derive the variation

of-constants formula corresponding to the linearization about f = 0, but we 

remark that a similar formula exists for the other case. 

The linearized equation is 

(5.7) 

and the linearized semigroup is 





(5.8) (T(s)f) (t) = f(t+s) + (Bt*Y) (s), 

1 
(note that, essentially, there is no dependence on f in the linearized 

problem). Consequently 

(5.9) 

s 

S(s)f = T(s)f + J B(.+s-.T) (x(T)-y(T))d-r. 

0 

The following observations are intended to rewrite this identity in a more 

useful form. We omit the proofs since they are very similar to those of 

the corresponding results in the foregoing sections. 

(i) Let R denote the resolvent corresponding to b 2 , i.e. the solution of 

-R = b 2*R - b 2 • 

Define h by 

2 2 . 
X = b *X + f + h. 

Then X - y = h - R*h (see Lemma 4.1). 

(ii) The definition of h i~plies 

(iii) 

h = -(b1*x + f 1)~b2*x + f 2) 

= -(S(.)f) 1 (0).(S(.)f) 2 (0) 

= r ( a ( s (.) f)) , 

2 where a(f) := f(O) and r:JR + JR, · r(x1 ,x2) = -x1x2 • 

(T(s)B) (t) = Bt(s) - (Bt*R) (s). 

Using (i) - (iii) and (5.9) we obtain the variation-of-constants formula 

(5 .10) 

s 

S(s)f = T(s)f + f (T(s-T)B)r(a(S(T)f)))dT. 

0 

9 
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6. CONCLUDING REMARKS 

In work in progress we use the variation-of-constants formula for the 

construction of (local) invariant manifolds (the stable and unstable man

ifolds of a saddle point as well as the center manifold in the case of 

critical stability). We intend to apply these results to concrete problems 

(special equations). In a prelude to Hopf bifurcation R. Montijn has recently 

obtained rather detailed information about a characteristic equation assoc

iated with (5.1). It appears that lots of roots may cross the imaginary axis 

with nonzero speed. Detailed results will be given in future publications. 
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